
 
 

CONTROLLER MODELING AND STABILITY ANALYSIS OF MULTIPLE INPUT 

SINGLE OUTPUT DC-DC CONVERTER 

 

 

 

 

 

 

 

 

A Thesis 

presented to 

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

 

 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Electrical Engineering 

 

 

by 

Astha Adhikari 

January 2021 

  



ii 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

© 2021 

 

Astha Adhikari 

 

ALL RIGHTS RESERVED 



iii 
 

COMMITTEE MEMBERSHIP 

 
 

TITLE:  Controller Modeling and Stability Analysis of 

Multiple Input Single Output DC-DC 

Converter 

 

AUTHOR:  

 

 

Astha Adhikari 

 

DATE SUBMITTED:  

 

 

January 2021 

 

COMMITTEE CHAIR:  

 

 

Taufik, Ph.D. 

Professor of Electrical Engineering 

 

COMMITTEE MEMBER:  Tina Smilkstein, Ph.D. 

Professor of Electrical Engineering 

 

COMMITTEE MEMBER:  

 

 

Majid Poshtan, Ph.D. 

Assistant Professor of Electrical Engineering 

 

 
 
 
 
 
 
 

 



iv 
 

ABSTRACT 

Controller Modeling and Stability Analysis of Multiple Input Single Output DC-DC 

Converter 

Astha Adhikari 

 

This thesis entails the stability analysis of the Multiple Input Single Output (MISO) DC-

DC converter developed for the DC House Project at Cal Poly. A frequency domain 

control system model of the MISO converter was designed and constructed 

using MATLAB Simulink. Transfer functions were derived and modeled for each stage 

of the converter to best fit the converter circuit system used in the original MISO 

circuit. Stability metrics such as overshoot, undershoot, rise time, phase margin and gain 

margin were measured to evaluate and analyze the stability of the converter. These 

metrics were measured with the original model including the current sharing network that 

allows load sharing between multiple MISO modules. The simulation results demonstrate 

that based on the existing model, the system is stable with a gain margin of infinity and 

phase margin of around 40 degrees at crossover frequency of 47kHz with nominal input 

voltage of 24V. Another compensator was proposed to overcome the shortcomings of the 

original compensator model with respect to the overshoot and phase margin. The new 

compensator model improved the phase margin at the same crossover frequency with a 

higher rise time and lowered percent overshoot. Additional improvements and tradeoffs 

are further discussed to help with the decision when designing a compensator for DC-DC 

converter that uses the current mode control technique.  
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1. Introduction 

 

With the globalization of technology and increase in world population, there has been 

a significant worldwide demand for electricity. Such phenomenon is the result of the fact 

that electricity is vital in enhancing economic growth and improving the standard of 

living. Electricity further increases the quality of healthcare along with productivity. In 

fact, electricity is needed for just about everything, from operating household appliances 

to running big factories. Something as simple as basic medical services are compromised 

without access to electricity. Electricity fuels the model lifestyle targeted towards 

improving the way of living and connecting people across the world. However, not 

everyone is fortunate enough to use modern technologies.  

Approximately 940 million people still did not have access to electricity globally 

in 2016 [1]. While the number of people with access to electricity is increasing every year 

as shown in Figure 1.1, there are still millions living in the dark. Many reside in areas that 

pose big challenges in providing access to electricity via existing electric power grid [2]. 

Examples include people living in secluded islands, remote villages, and mountainous 

regions make it especially difficult to reach by any existing power grid. In particular, the 

high capital costs of building the necessary infrastructure and operating cost in 

maintaining it make it economically prohibitive to connect the existing power grid to 

these areas. Additional factors such as financial resources and local cultures further add 

to the complications in providing electricity to these remote areas. In such cases where it 

is challenging to connect to the grid, renewables offer a great solution [3]. 
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Figure 1-1: Number of people with and without access to electricity worldwide [1]. 

  

Renewable energy sources are sustainable and low in pollution as opposed to 

fossil fuels which are finite resources and cause pollution during combustion. They offer 

better environmental and economic benefits as they produce no greenhouse gases. They 

are one of the most effective tools to contribute towards meeting the Paris Agreement. 

The Paris Agreement is a landmark environmental accord adopted by over 186 nations in 

2015 to address climate change and its negative impact [4]. The goal of the agreement is 

to limit global warming temperature increase to 1.5 degrees Celsius by 2030. In addition, 

renewables help to sustain the energy demands for a globalizing world where everyone is 

connected. This is feasible with the significant improvement in power electronic 

technology needed for renewable sources. Power electronics is the use of semiconductor 

devices as tools in increasing input to output power efficiency by using various isolated 

or non-isolated power converters [5]. 
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The DC house project started at California Polytechnic State University, San Luis 

Obispo in 2010. The project is dedicated towards producing DC power from renewable 

energy sources for rural areas that are not connected to the grid. While most generation 

and transmission use AC power, many consumer products require DC power [6]. The DC 

house focuses on using only DC power generated from small renewable energy sources, 

thus eliminating the need to use AC to DC converters. This increases the overall system 

efficiency and reduces cost and size. The DC house aims to provide basic necessities 

needed to sustain a small off-grid house. In addition, the project also emphasizes the need 

for green energy and supports those looking for alternative energy sources. It serves as an 

example of how it is possible to survive solely on DC power fueled by renewables like 

solar, wind, hydro, etc.   

The DC House includes four major blocks: renewable sources, converters, battery 

storage and DC loads as shown in Figure 1.2. Among these, the multiple input single 

output (MISO) converter is one of the critical components of the DC House system. The 

MISO converter is a DC-DC converter that takes multiple inputs from renewable energy 

sources and gives a single DC output voltage to a main DC bus of the DC house.  A 

typical MISO converter uses isolated or non-isolated DC-DC converter topologies. 

Students at Cal Poly have studied several variations of MISO in the past. The initial study 

and prototype done by Wong in his thesis using a full bridge topology to achieve 600W 

[7]. However, this design lacked isolation and output power. Another design by Jong 

focused on fixing these shortcomings using the flyback converter topology [8]. Lastly, 

Gallardo’s thesis developed the MISO modules constructed from a non-isolated four 

switch buck-boost topology [8].  
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Figure 1-2: Simplified block diagram of the DC House project [6]. 

After choosing the suitable topology, the next phase in the MISO converter 

development includes investigation and study of the stability of the MISO converter. This 

is the aspect that has not been conducted yet for the current MISO prototype. More 

specifically, stability study of the MISO converter that is directly related to its steady-

state and transient performances is needed to ensure proper operation of the MISO 

converter under various source, load, and environmental conditions. This thesis focuses 

on the stability analysis of the MISO converter developed by Gallardo.  
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2. Background 

 

  

DC-DC converters maintain a constant value for the output voltage using control 

loop or feedback circuitry. In general, to obtain a regulated output voltage, the DC-DC 

converter employs an output voltage sensor which compares its voltage to a reference 

voltage whose difference translates into the required duty cycle of the switch used in the 

converter. There are four main control techniques to maintain the desired output voltage: 

voltage mode, current mode, hysteresis, and constant on time control. Each mode uses 

one or more feedback loop whose stability is central to the overall system design. Bode 

plot is a common tool used to determine the stability of a closed-loop system. It maps the 

frequency response of the system using two graphs: one showing the phase and one 

showing the magnitude. In order to perform stability analysis of a DC-DC converter 

using bode plots, the control technique employed in the DC-DC converter must first 

be investigated.  

In voltage mode control, an error voltage is compared to a saw-tooth ramp of 

fixed frequency to generate a PWM signal to control the power switch as shown in Figure 

2.1 [9]. The main characteristic of this technique is that it uses a single voltage feedback 

path or loop which is simple to design and analyze [10]. The error voltage is derived in 

the feedback system from the error amplifier that amplifies the difference between the 

output voltage and a reference voltage as shown in [10]. This reference voltage is 

typically a low DC voltage below 1.5 V and most commonly provided inside a controller 

chip; and thus, a user cannot change its value. If the error amplifier output voltage 

increases, then the duty cycle decreases. However, the correction process is longer 

when a disturbance occurs at its input stage such as a drop in input voltage. This is 
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because the disturbance signal will have to first travel through the converter and reach the 

output stage before it can be sensed by the feedback circuity. In inductor-based DC-DC 

converter, when the input voltage drops, the average inductor current 

drops accordingly causing the output voltage to drop as well. The error amplifier 

voltage plus the compensation network  

then increases to set the output voltage back to the desired value. This slower process of 

correcting the output voltage when the input voltage changes is one major drawback of 

voltage mode control.   

 
 
 

Figure 2-1: Voltage mode control block diagram [10]. 

Current mode control utilizes an additional inner current control loop. Similar to 

voltage mode control, an error voltage is generated by comparing the output voltage with 

the reference voltage as shown in Figure 2.2. This “outer” or bigger loop helps the 
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converter to react fast upon any disturbance occurring at the output stage of DC-DC 

converter. To overcome the shortcoming encountered in voltage mode control with the 

slow response upon disturbance at the input stage, the current mode control utilizes an 

additional sensor to monitor the peak of the inductor current. Whenever the peak current 

increases indicating an increase in load current which further corresponds to decreasing 

output voltage, the “inner” control loop reacts by increasing the duty cycle of the switch. 

In its practical implementation, the current mode senses the switch current instead of the 

inductor current for two major reasons. First, the peak switch current is the same as the 

peak inductor current. Secondly, the switch current is only a fraction of the inductor 

current making its more energy efficient to monitor switch current when a series sensing 

resistor is being used. Therefore, in current mode control the error voltage is directly used 

to control the peak of the switch current. If the error voltage increases, then the peak 

current increases causing the duty cycle to increase. This way, when a disturbance occurs 

at its input stage such as a drop in input voltage consequently changing the peak switch 

current, the inner loop works to correct the duty cycle without having to change the 

feedback voltage from the outer loop. This results in a faster response which covers both 

any disturbance at the input due a change in the source voltage and at the output due to 

the change in the load demand. This is a major advantage of current mode control.  

In other words, with current mode control, there is an immediate response to 

change in line voltage which eliminates the delayed response and gain variation with 

changes in input voltage [10]. In addition, unlike voltage mode, current mode provides 

higher power stage efficiency in both continuous conduction mode (CCM) and 

discontinuous conduction mode (DCM) [9]. The compensation is simpler and gives a 
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higher gain bandwidth for the error amplifier compared to voltage-mode circuits [10]. 

Furthermore, current mode makes load sharing easy when multiple power units are 

paralleled [10]. This is especially important in the context of the MISO converter which 

employs the current mode control. A drawback of current mode control is that slope 

compensation network is needed for duty cycle over 50% to keep the system stable [9]. 

The inductor current sensing also requires additional circuitry and power.  

  

Figure 2-2: Current mode control block diagram [10]. 

Hysteretic control maintains the output voltage within hysteresis band centered 

about the internal reference voltage [11]. When the output voltage reaches or exceeds the 

reference of the hysteresis band, the switch turns on causing the output voltage to 

decrease. The switch turns off when the output voltage decreases from the upper limit as 

shown in Figure 2.3 [12]. The advantages of hysteretic control are it provides the fastest 
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response to load changes and does not require loop compensation. This topology is 

popular because it is inexpensive and simple to use. On the other hand, the drawback is 

that it has variable switching frequency and can be sensitive to output noise. It also 

requires output voltage ripple at feedback comparator to perform as a regulator [11]. The 

ripple is generated by output capacitor’s equivalent series resistance (ESR). When using 

low ESR capacitor the topology may require additional feed forward capacitor to increase 

voltage ripple on the feedback pin.   

 

 

Figure 2-3: Hysteretic control block diagram [12]. 
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Constant on time (COT) control solves the variable switching frequency problem 

of a hysteretic control. Similar to hysteretic control, COT control offers a simple 

controller technique in DC-DC converter. As illustrated in Figure 2.3, the controller 

utilizes a voltage divider network to sense the output voltage just like voltage mode and 

current mode control [13]. However, with the COT, it is the valley of the output ripple 

voltage that is being compared with the reference voltage to generate fixed on time pulses 

to turn on the high side switch (Q1 in Figure 2.3). Then, switch Q1 turns off after the on 

time, and the low side switch Q2 turns on.  What makes COT different from hysteretic 

control is that it provides better frequency control. A constant on time generator or one-

shot timer is added to keep the frequency as constant as possible [14]. Like hysteretic 

control, COT does not require loop compensation and provides fast transient response, 

almost two times faster than voltage and current mode [9]. Since it uses ESR to generate 

the output ripple voltage, it faces similar problems as hysteretic controller when it comes 

to adding intentional series resistance or needing higher ESR capacitors that make the 

design more complicated. There are modern COT technologies that can create a ripple 

voltage by sensing the current on the low side MOSFET (Q2) [14]. However, COT is still 

not widely popular in the industry as current mode control.   
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Figure 2-4: Constant on time control block diagram [13]. 

For the MISO converter used in the DC House project, the latest design utilizes 

the current mode control. This is because the commercially available controller used for 

the MISO converter design is already equipped with the current mode controller [8]. As 

previously stated, the latest version of the MISO converter utilizes the four-switch buck-

boost topology which enables a wide input range operation needed for the DC House 

project. In the past, the converter has been tested for its steady-state operation and 

performances which include line and load regulations, peak to peak ripple at full load, 

and overall efficiency of the converter. However, the converter has never been tested 

under transient conditions such as a sudden change in its input voltage and/or output 

current. Such study will be critical to evaluate the overall performance of the converter 

under various operating conditions. This in turn will ensure the proper operation of the 

converter when it is used in the actual field implementation of the DC house system.   
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This thesis entails the stability analysis and study of the latest Cal Poly’s MISO 

converter for DC house project. First, it will cover the study of the feedback controller 

technique and circuitry to understand how the current mode controller is used in 

conjunction with equal load sharing control implemented in the MISO converter. 

Following this, the controller function will be formulated, and its time and frequency 

domain analysis will be conducted to evaluate the overall stability performance of the 

converter under different input voltage and load conditions. In addition, the current 

sharing circuit network will be implemented to further analyze the stability metrics for 

the overall circuitry. 
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3. Performance Test Measurement Requirements 

 

The stability of a system relates to its ability to respond to change in its inputs, 

outputs, and undesired inputs such as disturbances. One of the design requirements is 

choosing the correct analysis method to test the stability of the circuit. In step response 

method, time domain performance measurements such as percent overshoot, percent 

undershoot, and settling time quantify stability. A frequency response gives more 

information than step response as it allows for a quantitative measure of stability of a 

system by utilizing resonant frequencies, phase margin, and gain margin. The gain and 

phase margins are also known as the classical stability criteria.   

Figure 3.1 shows the block diagram of the MISO converter using current mode 

control. As mentioned in the previous chapter, the outer loop is similar to voltage mode 

control while the inner loop is the extra loop needed for current mode control. Unlike 

traditional current mode control block diagrams, the outer loop has an additional current 

input on the feedback network. This additional circuitry block called the current share 

block enables the current sharing ability among different MISO converters. Without this 

block, a single module can be overloaded with power causing the module failure. The 

block compares the Imon current sensed by the current sensing block with the current of 

other blocks to set the largest one as the master. The load is then adjusted by pushing 

current in or out of the compensation block.   
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Figure 3-1: Level 0 block diagram for current mode control. 

This thesis derives the transfer function for each block in Figure 3.1 and the entire 

system. After that, the thesis implements the blocks in MATLAB Simulink where 

frequency domain tests are performed under different load conditions and input voltages. 

The input voltage range is 10V-60V and the load conditions vary from light load around 

0.1A up to 4.17A.  The phase margin and gain margin of the overall system are measured 

and analyzed to see the stability of the overall system. The phase margin is measured at 

the crossover frequency where the gain crosses 0 dB. The greater the gain margin and 

phase margin, the greater the stability of the system. For a stable system, the minimum 

requirement for phase margin is 45 and the gain margin is 10 dB. In addition, the block 

diagram in Figure 3.1 will also be tested in time domain using step up and step-down 

inputs to look at the overshoot, undershoot, rise time and setting time. The load would 

step up from 10% to 90% of the load (0.42A to 3.75A) and step down from 3.75A to 
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0.42A at nominal input voltage of 24V. As for the input, the step response would be 

observed for a step-up change from 10V to 60 and step down from 60V to 10V. Table 3.1 

summarizes the measurement requirements that will be conducted in this thesis.   

 

Table 3-1: Performance test summary for MATLAB Simulink 

Measurement Domain Justification 

Phase Margin Frequency Shows the amount of change in open-loop phase 

needed to make a closed-loop system unstable, should 

be greater than 45 

Gain Margin Frequency Shows the amount of change in open-loop gain needed 

to make a closed-loop system unstable, must be greater 

than or equal to 10 dB 

% Overshoot Time Shows the limit for excess output voltage allowed for a 

step change in the input, should not exceed 10% of the 

steady state value 

% Undershoot Time Shows the amount by which the output voltage falls 

short of the desired value due to a step change in the 

input, should not exceed 10% of the steady state value 

Rise time Time Shows the time it takes for the response to rise from 

10% of final to 90% of the final value 

Settling time Time Represents the time it takes for the step response to get 

with 2% of the steady state value 
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4. Controller Model Design 

 

This chapter discusses the controller design for MISO converter in MATLAB 

Simulink in frequency domain. The first step in the controller model design is deriving 

the transfer functions for each block shown in Chapter 3. Since the converter uses a 

switching circuit, the converter is non-linear and needs linearization. A small signal 

model effectively models the linearized power stage. Note that the small signal model 

only applies to continuous conduction mode (CCM), thus the simulation will only look at 

the converter operating in CCM conditions. The MISO converter uses peak current mode 

(PCM) control which simplifies the internal current loop compared to average current 

mode control. It employs a current sampling ramp to compare with the output of the error 

amplifier to generate the regulated duty cycle [14]. Figure 4.2 shows a buck converter 

using PCM controller using small signal model where Vo is the output voltage. Appendix 

A shows additional models to linearize the system. The model shown in Figure 4.1 along 

with Figure 4.2 will be used in this chapter as guidance when deriving the transfer 

function for the power stage, output stage and compensation in the MISO converter.  

 
 

Figure 4-1: Simplified schematic for peak mode current buck converter [14]. 
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Figure 4-2: Small signal model for peak current mode buck converter [14]. 

 

4.1 Output Stage  

 

In Figure 4.1, the Zo block is the output stage for the MISO converter which 

includes the output capacitor and the load resistor. The equivalent series resistance (ESR) 

for the output capacitor is also considered when deriving the transfer function since the 

ESR and the output capacitor adds another zero to the system which affects the 

compensation network. The leakage is not considered since DC-DC converters operate at 

high frequency. Figure 4.3 shows the circuit diagram for the output stage. Using this 

figure, the transfer function is derived as a function of output voltage to inductor current.  

 

 
 

Figure 4-3: Output stage of the MISO circuit. 
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Using Kirchhoff’s current law,  

 

𝑖𝐿 =
𝑉𝑜

(𝑅𝐸𝑆𝑅 +
1

𝑠𝐶𝑜
)

+
𝑉𝑜

𝑅𝑙𝑜𝑎𝑑
 

 

𝑖𝐿 = 𝑉𝑜 (
𝑠𝐶𝑜

𝑠𝐶𝑜𝑅𝐸𝑆𝑅 + 1
+

1

𝑅𝑙𝑜𝑎𝑑
) = 𝑉𝑜 (

𝑠𝐶𝑜𝑅𝑙𝑜𝑎𝑑 + 1 + 𝑠𝑅𝐸𝑆𝑅𝐶𝑜

𝑅𝑙𝑜𝑎𝑑(1 + 𝑠𝑅𝐸𝑆𝑅𝐶𝑜)
) 

 

Thus, 
𝑉𝑜

𝑖𝐿
= 𝑅𝑙𝑜𝑎𝑑 ×

1 + 𝑠𝑅𝐸𝑆𝑅𝐶𝑜

1 + 𝑠𝐶𝑜[𝑅𝐸𝑆𝑅 +  𝑅𝑙𝑜𝑎𝑑]
          (4.1) 

 
The thesis also requires changing the load to measure load transient. This can be 

done using a variable input transfer function block in Simulink.  

4.2 Power Stage 

 

The power stage includes the inductor with the transfer function from duty cycle 

to inductor current [14].  

𝑖𝐿

𝐷
=

𝑉𝑖𝑛(1 + 𝑠𝑅𝑙𝑜𝑎𝑑𝐶𝑜)

𝑠2𝐿𝑅𝑙𝑜𝑎𝑑𝐶𝑜 + 𝑠𝐿 + 𝑅𝑙𝑜𝑎𝑑
          (4.2) 

 
The transfer function shown in equation 4.2 turns into equation 4.3 if the crossover 

frequency is much higher than the corner frequency [14]. 

 
𝑖𝐿

𝐷
=

𝑉𝑖𝑛

𝑠𝐿
          (4.3) 

 

4.3 Compensation Network 

 

The next block for the MISO controller model is the compensator block. This 

block takes in the output voltage, compares it to the given reference and provides a 
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compensating gain value to maintain the output voltage to the desired value of 48V. The 

compensator model can be type 1, 2 or 3.  

The type 2 compensation is commonly used with current mode control. For the 

LT8390 utilized by the MISO converter, an internal transconductance amplifier is used. 

Figure 4.4 shows the internal functional block diagram of the LT3890 switching 

controller [15]. Note that the internal reference voltage is 1V and EA1 is the internal 

transconductance amplifier compensated by Vc pin that uses external compensation 

network.  

 

 
 

Figure 4-4: Internal circuitry for LT8390, converter used in the MISO circuit. 
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Figure 4.5 illustrates the type 2 compensator with the transconductance [16]. 

Current mode control has a single pole on the low frequency and the compensation needs 

only a single pole role off and a single zero phase lead [9]. C3 is not necessary but can be 

useful for noise attenuation at high frequencies.  

 

 
 

Figure 4-5: Type two transconductance operational amplifier schematic. 

The output to input transfer function is: 

𝑉𝑐

𝑉𝑜
= −𝑔𝑚 ×

𝑅4

𝑅1 + 𝑅4
×

1 + 𝑠𝑅2𝐶1

𝑠(𝐶1 + 𝐶3) + 𝑠2𝑅2𝐶3𝐶1
          (4.4) 

 

Sometimes a type three amplifier is needed for additional phase boost. The type 3 

compensator may also have the transconductance as depicted in Figure 4.6 [16].  
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Figure 4-6: Type three transconductance operational amplifier schematic. 

The transfer output to input transfer function is: 

𝑉𝑐

𝑉𝑜
= −𝑔𝑚 ×

𝑅4 + 𝑠(𝑅1 + 𝑅3)𝐶2𝑅4

𝑅1 + 𝑅4 + 𝑠(𝑅4𝑅1 + 𝑅3𝑅1 + 𝑅3𝑅4)𝐶2

×
1 + 𝑠𝑅2𝐶1

𝑠(𝐶1 + 𝐶3) + 𝑠2𝑅2𝐶3𝐶1
          (4.5) 

 

4.4 Inner Current Loop 

 

 The inner current loop with the He(s) and Ri(s) blocks in Figure 4.2 consists of 

the sample and hold inductor current value. This block takes the average of inductor 

current and feeds it to the comparator. Knowing that the system works in peak current 

mode, this block can be further simplified to get rid of the He(s) block that accounts for 

the inductor current sample and hold effect to generate average inductor current [17]. 

This reduces the inner loop transfer function to the following where A1 is the gain for 

block comparator A1 in Figure 4.4.  
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𝑉𝑠

𝑖𝐿
= 𝐴1 × 𝑅𝑠𝑒𝑛𝑠𝑒          (4.6) 

4.5 PWM Gain 

 

The gain block for the PWM considers the actual inductor changing slope in 

comparison with the fixed external ramp generated by the oscillator for slope 

compensation. Slope compensation is needed for a current mode converter to operate at 

duty cycle higher than 0.5 to dampen subharmonic oscillation.  

 

 
 

Figure 4-7: Slope compensation gain schematic. 

Using [14] as the guidance, the gain block 𝐹𝑚 is derived using Figure 4.7. This 

refers to the gain blocks A3 and A4 in Figure 4.4 that amplify the difference between the 

outer and inner compensator loop output.  

𝐹𝑚 =
𝑓𝑠𝑤

𝑆𝑒 + 𝑆𝑛
          (4.7) 

 
In the above gain block equation, 𝑆𝑒 is the slope compensation rising slope 

element generated by the internal oscillator whose equation is: 

𝑆𝑒 = 𝑉𝑜𝑠𝑐𝑝𝑒𝑎𝑘 × 𝑓𝑠𝑤           (4.8) 
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𝑆𝑛 is the rising slope of the inductor current whose value depends on whether the 

MISO is in buck or boost mode. For the buck mode, the equation is 

𝑆𝑛 =
(𝑉𝑖𝑛 − 𝑉𝑜)𝑅𝑠𝑒𝑛𝑠𝑒

𝐿
          (4.9) 

While for the boost mode: 

𝑆𝑛 =
(𝑉𝑖𝑛)𝑅𝑠𝑒𝑛𝑠𝑒

𝐿
          (4.10) 

4.6 Current Share 

 

The current sharing circuit is what allows the MISO converter to connect in 

parallel with other MISO modules and to share total output current equally among the 

parallel MISO converters. The MISO uses active current sharing technique which 

automatically assigns a master and slaves. The master’s voltage is what compares with 

other slave modules to push or pull current from the feedback pin. In Figure 4.8 [8], 

ISMON_self represents the output voltage of a module and ISMON_all is the output 

voltage from another MISO module. The voltages are compared using a differential 

amplifier U02A which has a DC offset equivalent to VFB_self voltage coming from the 

voltage follower circuit U02D. The transfer function for this module was made using the 

differential amplifier with an offset.  



24 
 

 
Figure 4-8: MISO current sharing circuit schematic [8]. 

For simplification, Figure 4.9 is redrawn as Figure 4.8 where Zf refers to the total 

feedback impedance network made of R29 and C21 or R32 and C22 pairs. Rin represents 

R28 and R31. In addition, ISMON_self is V2 and ISMON_all is V1. Vf is the FB_self.  

 

 

Figure 4-9: Simplified MISO current sharing circuit schematic. 
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The transfer function of the current sharing circuit as shown in Figure 4.9 is 

derived as follows. Starting with the feedback network total impedance where R32 and 

C22 are parallel,  

𝑍𝑓 =

𝑅32

𝑠𝐶22

𝑅32 +
1

𝑠𝐶22

          (4.11) 

Note that the above equation also applies to R29 and C21 pair. As mentioned before, Rin 

in Figure 4.9 refers to R28 and R31 in Figure 4.8. Based on Figure 4.9, the equations for 

each current are  

𝐼1 =
𝑉1 − 𝑉𝑎

𝑅𝑖𝑛
 

𝐼2 =
𝑉2 − 𝑉𝑏

𝑅𝑖𝑛
 

𝐼3 =
𝑉𝑎 − 𝑉𝑥

𝑍𝑓
 

𝐼4 =
𝑉𝑏 − 𝑉𝑓

𝑍𝑓
 

Since there is zero current going into the positive node of the amplifier,  

I2 = I4 

Similarly,  

I1 = I3 

This further yield 

𝐼4 = 𝐼2 

𝑉𝑏 − 𝑉𝑓

𝑍𝑓
=

𝑉2 − 𝑉𝑏

𝑅𝑖𝑛
 

𝑉𝑏(𝑅𝑖𝑛 + 𝑍𝑓) = 𝑉2𝑍𝑓 + 𝑉𝑓𝑅𝑖𝑛 
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Since the voltage across the terminal nodes are always equal for an op amp,  

Va = Vb 

Substituting Va with Vb yields 

𝑉𝑎 = 𝑉𝑏 =
𝑉2𝑍𝑓 + 𝑉𝑓𝑅𝑖𝑛

𝑅𝑖𝑛 + 𝑍𝑓
 

𝐼1 = 𝐼3 

(𝑉1 − 𝑉𝑎)𝑍𝑓 = (𝑉𝑎 − 𝑉𝑥)𝑅𝑖𝑛 

𝑍𝑓

𝑅𝑖𝑛
(𝑉1 − 𝑉𝑎) = 𝑉𝑎 − 𝑉𝑥 

𝑉𝑥 = 𝑉𝑎 (1 +
𝑍𝑓

𝑅𝑖𝑛
) −

𝑍𝑓

𝑅𝑖𝑛
𝑉1 

Substitute for Va yields: 

𝑉𝑥 =
𝑉2𝑍𝑓 + 𝑉𝑓𝑅𝑖𝑛

𝑅𝑖𝑛 + 𝑍𝑓
(

𝑍𝑓 + 𝑅𝑖𝑛

𝑅𝑖𝑛
) −

𝑍𝑓

𝑅𝑖𝑛
𝑉1 

𝑉𝑥 =
𝑉2𝑍𝑓 + 𝑉𝑓𝑅𝑖𝑛

𝑅𝑖𝑛
−

𝑍𝑓

𝑅𝑖𝑛
𝑉1 

𝑉𝑥 = (𝑉2 − 𝑉1)
𝑍𝑓

𝑅𝑖𝑛
+ 𝑉𝑓 

𝑉𝑓 = −(𝑉2 − 𝑉1)
𝑍𝑓

𝑅𝑖𝑛
+ 𝑉𝑥         (4.12) 

Iout is the current going through R33 in Figure 4.9, 

𝐼𝑜𝑢𝑡33 =
𝑉𝑥 − 𝑉𝑓

𝑅33
 

Rewriting Vx in terms of Zf and Vf, 

𝐼𝑜𝑢𝑡33 = 𝑍𝑓

𝑉2 − 𝑉1

𝑅𝑖𝑛𝑅33
          

Using 𝑅𝑖𝑛 = 𝑅31 and equation 4.11,  
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𝐼𝑜𝑢𝑡33 =
𝑅32

𝑠𝐶22𝑅32 + 1
×

𝑉2 − 𝑉1

𝑅31𝑅33
          (4.13) 

Iout33 is the current that gets pushed into or pulled from the feedback pin. Since the 

feedback network uses big resistor values, it can be assumed that the current going 

through R5, R13 and R6 is zero in Figure 4.10 [8].  

 

Figure 4-10: MISO schematic with current sharing network. 

The ISP and ISN pin use a sense resistor to detect the current through each 

module and convert it to voltage for active current sharing comparison.  

 

Figure 4-11: LT8390 internal current sharing circuit, note that Vis is the voltage that is 

compared between modules to set the master and slave. 



28 
 

Based on the datasheet portion for current sharing in Figure 4.11, the ISMON_self or VIS 

or V2 voltage equals 

𝑉2 = 𝐴2𝑉𝑠𝑒𝑛𝑠𝑒 + 0.25𝑉   

𝑉𝑠𝑒𝑛𝑠𝑒 = 𝐼𝑜𝑢𝑡 × 𝑅𝑠𝑒𝑛𝑠𝑒 and 𝐴2 = 10 

𝑉2 = 10𝐼𝑜𝑢𝑡 × 𝑅𝑠𝑒𝑛𝑠𝑒 + 0.25𝑉          (4.14) 

The total FB voltage is the summation of the resistor divider voltage added with Vf from 

the current sharing circuit.  

𝑉𝐹𝐵𝑡𝑜𝑡 = 𝑉𝐹𝐵 + 𝑉𝑓 

Using superposition,  

𝑉𝐹𝐵 =
𝑅6

𝑅6 + 𝑅5 + 𝑅13
𝑉𝑜𝑢𝑡          (4.15) 

Since the output and the feedback pin nodes are both high impedances, the current 

coming from the current sharing network goes through R6 only,  

𝑉𝑓 = 𝑅6𝐼𝑜𝑢𝑡33          (4.16) 

Combining (4.12) and (4.15) gives 

𝑉𝐹𝐵𝑡𝑜𝑡 =
𝑅6

𝑅6 + 𝑅5 + 𝑅13
𝑉𝑜𝑢𝑡 + 𝑅6𝐼𝑜𝑢𝑡33                    

𝑉𝐹𝐵𝑡𝑜𝑡 =
𝑅6

𝑅6 + 𝑅5 + 𝑅13
𝑉𝑜𝑢𝑡 + 𝑅6

𝑅32

𝑠𝐶22𝑅32 + 1
×

𝑉2 − 𝑉1

𝑅31𝑅33
    (4.17) 

This voltage corresponds to the current that is added or taken from the feedback 

pin to enforce current sharing between multiple 200W MISO modules.  
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5. Simulation Results and Analysis 

 

This chapter uses the component values from the MISO schematic [8] in the 

transfer functions derived in Chapter 4. Some assumptions are made to get as accurate 

response as possible. Similar to Chapter 4, this chapter is divided into subsections 

discussing each block.  

5.1 Output Stage 

 

Using the following component values from MISO schematic and equation 4.1, 

the overall transfer function for the output stage reduces to the following. The original 

model uses two output electrolytic capacitors with 30 mΩ ESR. There are also 4 ceramic 

capacitors use for filtering the output. Typical ESR for ceramic capacitors range from 

0.01 to 0.1 Ω. The total calculated ESR using both extremes fall in the range between 3 

mΩ -12.6 mΩ. The simulation model only works for continuous conduction mode. 

Hence, the load varied from 0.1 A to 4.12 A which correspond to 480 Ω and 11.5 Ω for a 

200 W system. In addition, the inductor value used in the circuit is 22 µH. To summarize: 

Rload = 11.5 Ω - 480 Ω 

RESR = 3 mΩ - 12.6 mΩ 

Co = 120.8 µF, L = 22 µH 

Using these component values into the  
𝑉𝑜

𝑖𝐿
 transfer function in the previous chapter yields: 

𝑉𝑜

𝑖𝐿
= 11.5 ×

1 + 3.62 × 10−7𝑠

1 + 0.001389𝑠
 

 

Figure 5.1 shows the Simulink model using this transfer function.  
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Figure 5-1: Output stage Simulink model at maximum load and ESR. 

In control system performance test, step response helps analyze a system’s 

stability by showing how the system reacts when its input or load suddenly changes. 

Since the setup will be tested on varying load conditions to evaluate system performance 

under the load transient, the variable input transfer function block is used as follows 

where a0 is the summation of the load resistance and the equivalent series resistance. 

 

Figure 5-2: Output stage Simulink model with variable load and ESR. 

 

5.2 Power Stage  

 

 Referring to the MISO schematic again, the component values for the power stage 

are as follows: 

Inductor L = 22 µH, load resistor Rload = 11.5 Ω, Output capacitor’s Equivalent Series 

Resistance RESR = 12.6 mΩ, and output capacitance Co=120.8 µF.  
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Putting these values into the transfer function 
𝑖𝐿

𝐷
 as provided in equation 4.2 yields: 

𝑖𝐿

𝐷
=

𝑉𝑖𝑛(1 + 0.001389𝑠)

3 × 10−8𝑠2 + 22 × 10−6𝑠 + 11.5
 

This is implemented in the Simulink block as shown in Figure 5.3.  

 

Figure 5-3: Non-simplified power stage Simulink model. 

A simplification can be made to the above model if the crossover frequency is 

higher than the corner frequency. For this system, the corner frequency is 3.07 kHz. 

Cross-over frequency generally falls between 1/4 to 1/10 of the switching frequency. 

Keeping that in mind, the crossover frequency for MISO should be between 20 kHz-50 

kHz. This is ten times larger than the corner frequency and therefore the system can be 

simplified. The thesis uses the following transfer function to find the inductor current 

based on input voltage and transfer function.  

𝑖𝐿

𝐷
=

𝑉𝑖𝑛

22 × 10−6𝑠
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5.3 Type 2 Compensation Amplifier 

 

The original MISO compensation network as depicted in Figure 5.4 uses resistor 

R2 value of 14.3 kΩ and capacitor C1 of 3.3 nF. Capacitor C3 has no specified value in 

the original model. C3 is an additional capacitor to a type two amplifier that gives an 

additional pole to the system. The value for this capacitor as commonly done in practice 

is 0.1 pF to model a small capacitor such that its effect on the overall compensator 

response is negligible. After further evaluation and testing, this capacitor value is 

adjusted to obtain the desired system’s stability performance.  

 

Figure 5-4: Original MISO converter showing compensation resistor and capacitor in Vc 

pin. 

To summarize, the component values for the compensator are: 

R1 = 1010 kΩ, R4 = 21.5 kΩ, R2 = 14.3 kΩ 

C1 = 3.3 nF, C3 = 0.1 pF 

gm = 660 µS from LT8390 datasheet [15] 
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Using the 
𝑉𝑐

𝑉𝑜
 transfer function derived in Chapter 4, the above component numerical 

values give the following transfer function: 

𝑉𝑐

𝑉𝑜
= −660 × 10−6 ×

21.5𝑘

21.5𝑘 + 1010𝑘
×

1 + 47.19 × 10−6𝑠

3.3 × 10−9𝑠 + 4.719 × 10−18𝑠2
      

As before, the transfer function is then implemented as a Simulink block diagram as 

depicted in Figure 5.5. 

 

Figure 5-5: Type 2 compensation network Simulink model. 

The inner compensation current loop is a simple model made of the current sense 

resistor amplified by a certain gain. If the inner loop is not stable the system shows 

subharmonic oscillations. Since the LT8390 converter [15] datasheet does not provide a 

value for A1, the Simulink model will use different gain to tune the system.  

 

Figure 5-6: Inner loop current compensation network. 
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5.4 PWM Gain 

 

The general assumption for Vosc, which is the internal oscillation voltage within 

the PWM block, is that it cannot exceed the reference voltage. Assuming that Vosc is 

equal to the reference voltage and using equations 4.6, 4.7 and 4.8, the transfer function 

for the gain block reduces to the following: 

𝑆𝑒 = 𝑉𝑜𝑠𝑐𝑝𝑒𝑎𝑘 × 𝑓𝑠𝑤 = 0.2
V

μs
 

Peak buck mode: 

𝑆𝑛 =
(𝑉𝑖𝑛 − 𝑉𝑜)1 mΩ

22 𝜇𝐻
 

Peak boost mode: 

𝑆𝑛 =
(𝑉𝑖𝑛) 1 mΩ

22 𝜇𝐻
 

Using the above definitions for Se and Sn, the gain function (𝐹𝑚 ) block is shown 

below. Note that 𝐹𝑚 is the value that the compensator output that multiplies with the error 

voltage to get the small signal duty cycle.  

𝐹𝑚 =
200𝑘𝐻𝑧

0.2
V
μs +

(𝑉𝑖𝑛 − 𝑉𝑜)1mΩ
22𝑢𝐻

 

The Simulink model for the PWM gain block uses a gain block that is manually 

changed based on the mode of operation as shown in Figure 5.7. With the initial block 

gain set to 0, the system works in the boost mode operation by making Vo to be zero. 

Alternately if the gain is set to 1, then it works on the buck mode of operation.  
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Figure 5-7: PWM gain Simulink model. 

 

5.5 Current Share  

 

 Using superposition, the equation for total voltage to the feedback node in 

Chapter 4 is: 

𝑉𝐹𝐵𝑡𝑜𝑡 =
𝑅6

𝑅6 + 𝑅5 + 𝑅13
𝑉𝑜𝑢𝑡 + 𝑅6

𝑅32

𝑠𝐶22𝑅32 + 1
×

𝑉2 − 𝑉1

𝑅31𝑅33
     

 

 

Figure 5-8: MISO module with current share network components. 
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Using values for resistors and capacitors in Figure 5.8, 

𝑉𝐹𝐵𝑡𝑜𝑡 =
21.5

21.5 + 1010
𝑉𝑜𝑢𝑡 +

21.5 × 100

10 × 383
 

𝑉2 − 𝑉1

0.001s + 1
     

This total feedback voltage in Simulink is shown in Figure 5.9 where Vout is the output 

voltage for the master module and Vout2 is the output voltage from a slave module.  

 

Figure 5-9: Current share circuit simulation model where Vout and Vout2 are the output 

voltages of two MISO modules. 

5.6 Simulation Results 

 

The simulation was first performed without the current sense network to tune the 

gain for the inner current compensator loop.  The inner loop current gain values were 

changed from 1 to 100 to observe the frequency response. Figure 5.10 shows the 

Simulink model for a converter with Vin of 24V and maximum load. The bode plots were 

taken by injection method where a small sinusoidal signal was inserted after the feedback 
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network to the error amplifier and the output voltage was observed to see how that signal 

gets amplified.  

 

Figure 5-10: Overall model for converter with type 2 compensation. 

The system behaves as depicted in Figure 5.11 when the unknown inner current 

loop gain (A1) is set to 1. There is some oscillation in the output and the system does not 

settle to expected value of 48V.  

 

Figure 5-11: Transient output response with inner current loop gain (A1) set to 1 with 

24V input and maximum load. 
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As expected, the system oscillates since the compensation from the inner loop is 

too small to affect the overall system’s response. Any gain higher than 10 in the inner 

loop makes the system stable. A gain of 100 is chosen after making a model for an 

example circuit from LT8390 datasheet in Simulink and tuning it. Figure 5.12 shows the 

transient response for a gain of 100. Note that while the system is stable, the overshoot is 

higher than expected.  

 

 

Figure 5-12: Transient response for inner current loop gain (A1) of 100 with 24V input 

and maximum load.  

In Figure 5.13, the phase and gain margins are taken in terms of the system’s 

output voltage and the input voltage to the compensator. The slope at the 0 dB crossing is 

around -30 dB/decade. Ideally a slope of -20 to -25 dB is preferred since anything over -

40dB/decade implies that the gain changes drastically with change in the frequency 
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making the system unstable. As expected for a DC-DC converter, the gain is high at 

lower frequencies and reduced at higher frequencies. Based on the response, the closed-

loop system is stable with a crossover frequency of 46.6 kHz at nominal input voltage. 

Additionally, the phase margin falls within the appropriate value of around 45° to ensure 

stability. Based on this response, the original MISO circuit is stable.  

  

Figure 5-13: Open-loop response with A1 gain of 100 with 24V input and maximum 

load. 
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Table 5-1: Simulation summary for original MISO model with 3.3 nF compensator 

capacitor and 12.6 mΩ ESR 

Step conditions % 

Overshoot 

Rise 

time(us) 

Settling 

time (ms) 

Phase 

margin 

(degree) 

Gain Margin 

(dB) 

24V Vin 27.56 54.4 0.6 40.6 Inf 

90% to 10% load 

at Vin=24V 
27.56 53.44 0.61 40.6 Inf 

10% to 90% load 

at Vin=24V 
29.2 52.8 1.46 40.5 Inf 

Vin step up from 

10V to 60V 
29.2 54.0 0.6 63.2 Inf 

Vin step down 

from 60V to 10V 
25.5 58.5 0.5 23.7 Inf 

 

 

5.7 New Design Using Higher C1  

 

Table 5.1 summarizes the frequency response for the original MISO model [8]. 

The simulation results in a final voltage of 47.98 V and crossover frequency of 46.6 kHz 

with an input voltage of 24 V. The overshoot is higher than expected value of 10%.  

  Overshoot represents distortion in signal and one way to lower it is by changing 

the compensator capacitor C1 value. C1 is inversely proportional to the location of the 

left-hand plane (LHP) zero [18]. A LHP zero makes the system respond faster to a step 

change but with higher overshoot and lower rise time.  Increasing C1 moves the zero 

away from the LHP which lowers the overshoot at the cost of increased rise time. The 

datasheet recommends C1 to be 15 nF. Increasing C1 to 10nF is enough to reach the less 

than 10% overshoot threshold. However, further increasing C1 also increases the phase 
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margin. Therefore, in order to achieve a higher phase margin and lower overshoot, C1 

was raised to 15nF as advised by LT8390 datasheet. With new capacitor C1 value of 15 

nF, the system still maintains the crossover frequency of 47 kHz at nominal input voltage 

with a lowered percent overshoot as shown in Figure 5.15 which shows the new transient 

response.   

 

Figure 5-14: Transient output voltage response with C1 changed to 15nF, the percent 

overshoot is significantly lowered. 
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Figure 5-15: Power stage and type two compensator gain and phase. 
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 The new compensator design boosts the targeted gain and phase for the power 

stage. In this case, the same crossover frequency of 47kHz is picked at nominal input 

voltage. Figure 5.16 shows the overall loop response which is the summation of the 

power stage and compensator stage shown in Figure 5.15. Note that the slope at the 

crossover frequency is within expected value of -25dB/decade.  

 

 

Figure 5-16: Overall loop gain and phase with test signals in the compensator input. 

Table 5.2 summarizes the frequency and time measurements for MISO model 

with new compensator using a series capacitor of 15nF. This compensator enhanced the 

phase margin and lowered the overshoot. This can be seen when comparing Table 5.1 
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results with Table 5.2 where the percent overshoot is lowered significantly to achieve the 

less than 10% goal.  

 

Table 5-2: Simulation summary for Simulink MISO model with 15 nF compensator 

capacitor and 12.6 mΩ ESR 

Step conditions 
% 

Overshoot 

Rise 

time(us) 

Settling 

time (ms) 

Phase 

margin 

(degree) 

Gain 

Margin 

(dB) 

24V Vin  0.505 109 0.6 43.9 Inf 

90% to 10% load 

at Vin = 24V 
3.6 100 0.43 43.8 Inf 

10% to 90% load 

at Vin = 24V 
0.5 109 1.6 43.9 Inf 

Vin step up from 

10V to 60V 
6.98 97 1.7 65.2 Inf 

Vin step down 

from 60V to 10V 
1.971* 299 1.5 28.7 Inf 

*Undershoot 

5.8 Analysis 

 

Based on results in Tables 5.1, it is argued that the initial MISO design is stable 

with a phase margin around 40°. The gain margin of infinity ensures that the system will 

be stable no matter how much the gain increases. While the target goal for a typical DC-

DC converter phase margin is above 45°, a phase margin of 40° is still stable and only 

affects the transient overshoot.  

Some potential concerns with the initial MISO component values are higher 

overshoot and lower phase margin. While the initial values provide a faster response, 
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changing the capacitor value provides better stability metrics. The compensator series 

capacitor can be raised to increase the phase margin and lower the overshoot as shown in 

Table 5.2.  The percent overshoot is lowered by 192% using the new capacitor value and 

phase margin is improved by 8% at nominal input voltage as shown in Table 5.3. 

However, this changes the rise time and increases the settling time for step changes in 

input. An ideal rise time for load transient is less than inverse of the loop bandwidth 

frequency [19] which equals  

𝑓𝐵𝑊 =
𝐺𝑠𝑒𝑛𝑠𝑒𝑅4

2𝜋(𝑅5 + 𝑅13)𝐶𝑜
=

100 ∗ 14.3𝑘

2𝜋 ∗ 1010𝑘 ∗ 120.8𝑢
= 1.86𝑘𝐻𝑧 

1/𝑓𝐵𝑊 = 0.54ms 

As long as the transient rise time is much less than 0.54 milliseconds, the system 

will be fast enough to excite the loop for the compensator to work over a wide frequency 

range. This further shows that the increased rise time from the suggested compensator 

will not harm the overall load transient performance of the system. Another thing to note 

is that the crossover frequency increases with the increase in input voltage but remains 

below the threshold of half the switching frequency for the voltage range that MISO uses. 

Decreasing the series resistance is one way to lower the crossover frequency if required 

(see Appendix C). The higher crossover frequency implies a faster response or faster 

recovery for a step change in the load as shown in Table 5.1 and 5.2 where the rise time 

is lowered when the input steps from 10V to 60V. 
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Table 5-3: Percent difference calculation for time and frequency analysis metrics between 

initial compensator and proposed compensator values 

Step conditions %Overshoot Rise time Phase margin 

24V Vin 192 67 7.8 

90% to 10% load at Vin = 24V 154 61 7.5 

10% to 90% load at Vin = 24V 193 69 8 

Vin step up from 10V to 60V 123 57 3.1 

Vin step down from 60V to 10V 171 135 19 

 

5.9 Current Share Simulation and Analysis 

 

 

The Simulink model combines the current sharing network to observe the stability 

metrics. Since the current sharing method uses active current sharing, the main module 

acts as the master and the slave module acts as a step voltage that corresponds to the 

follower module’s output voltage. In this setting, the master always has the higher output 

voltage, while the follower modules increase their output voltage to take more current to 

lower the load burden from the master. This simulation observes the closed-loop response 

when the current share circuit was implemented as depicted in Figure 5.9. As expected, 

since the voltage added or taken from the feedback node is in the millivolts range, it does 

not affect the stability of the overall circuit as shown in Figure 5.17. The phase margin is 

still around 45° and the gain margin is infinite.  
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Figure 5-17: Closed-loop gain and phase with current share circuit implemented on main 

module. 

While this is a basic test to look at the loop stability, improvements can be made in 

future model design. Incorporate the diode that allows automatic selection of the master 

and slave modules is one improvement for future work. In addition, a parallel module can 

be made in Simulink to show a better model of the overall current sharing between 

multiple modules.   
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6. Conclusion 

 

This thesis developed the control system model of the Cal Poly’s multiple input 

single output (MISO) converter in MATLAB Simulink in frequency domain. Transfer 

functions were developed for each system block such as power stage, compensation, 

current sharing, and output stage. The transfer functions were derived and modeled to 

best fit the converter design used in the original MISO circuit. The goal of the thesis was 

to gather the transient and frequency response metrics to analyze the stability for the main 

MISO circuit in conjunction with testing the current sharing network. The current sharing 

network is what allows multiple MISO modules to be placed in parallel to account for 

higher load condition. The results from the simulation testing showed that the original 

MISO circuit was stable with a phase margin of around 40°. 

Since some blocks for the converter chip LT8390 were a black box, assumptions 

were made to make the Simulink model. The first assumption was that the inductor 

current was directly fed to the slope compensation network without sample and hold. 

This was done since Simulink does not allow transfer functions with numerators of 

higher order than denominator. The lack of sample and hold has a direct effect on phase 

margin. However, after some research it was found to be not significant enough to bring 

the whole system to instability. Another major assumption was made when picking the 

ESR for the output capacitors. The highest ESR was chosen to get the worst-case 

scenario. The compensation network was also designed to best fit the nominal input 

voltage. These assumptions, along with others mentioned in Chapter 4 could be the 

reason behind the lower phase margin and consecutive high overshoot observed when 

using the initial compensator design. An alternative compensator design was provided at 
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the end of Chapter 5 to overcome those challenges. In addition, the current share network 

was only tested using a single module with an additional input behaving as a parallel 

module.  

The next step as a follow up for this thesis is to accurately model multiple parallel 

modules with current share network and check the simulation to assure that it remains 

stable throughout the current sharing process. Another major step is to use a frequency 

response analyzer to check the physical frequency response to analyze the stability of the 

MISO circuit and compare it to simulation. This method provides the best measure for 

stability since all other parasitic components are taken into consideration when testing the 

hardware itself. This step will also provide better explanation on how accurate the 

simulation model was compared to the original model and give insight on how close the 

assumptions were to the original values. This information can then be used to improve 

the Simulink model for future designs.  

Overall, based on the simulation results in Chapter 5, the initial MISO schematic 

with a type 2 compensator is stable. The designed Simulink model successfully showed 

that while the initial design works as expected, changing the compensator gives better 

transient metrics such as lowered overshoot and higher phase margin. However, as 

mentioned in Chapter 5, tradeoffs should be taken into considerations when making such 

design decisions.  
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APPENDICES 

A. Linear Models  

 

Source: [17] 

B. Simulink Model 
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C. Additional Simulation Results  

 

  
 

Figure C.1: Open-loop response with 60V input and increased compensation capacitor to 

show how cross-over frequency increases with increase in input voltage. To lower the 

crossover frequency, decrease type 2 compensator’s series resistance value. 

 

 

 
 

Figure C.2: Open-loop response with R compensation lowered to 10k from 14.3k to 

decrease the crossover frequency by 20kHz, with 60V input.  


