

ROCS Selection Criteria Doc Last Update: Josh Katz 6-27-18		The technical data in this document is controlled under the U.S. Export Regulations; release to foreign persons may require an export authorization.		Criteria	Definition	Example of a Unsatisfactory System	Example of a Satisfactory System	
	1	Extrinsic Design Criteria	Environments	Radiation	The system is capable of surviving the ambient radiation conditions	Highly radiation sensitive material used	Outer shell is robust to radiation	
	2	Intrinsic Design Criteria	System Resources	Mass	The overall mass of the system should be kept to a minimum	A shell exceeds the 13.7 kg mass. The volume made of solid steel	A capture volume made with a spacecraft aluminum or titanium	
	3			Volume	The volume of the system is kept to a minimum for stowed volume (KOV at launch)	Each external component doesn't link up the shell or cone	Structure meets the dimensions	
	4			Strength	The durability of the material is durable to withstand the impact of the OS	Structure gets damaged by the OS hitting it in the vacuum of space	Structural integrity stays in a constant shape without any shape altering	
	5	Life Cycle Criteria	Fabrication	Producibility	The system is relatively simple to produce or manufacture in a timely manner	Maufucturing process takes too long	Maunfacturing process is easy and timley	
	6		Operations	Accuracy	The system provides the necessary accuracy level required for the operation	The shell can't contain the OS while the arm is swinging	The shell sucessfuly contained the OS while alignment is going on	
	7	Effectiveness Criteria	Risk	Sensitivity to fabrication flaws	The system is capable of operating in spite of fabricator error	The shell is deformed	The shell meets the dimensions after fabrication	
	8	Programmatic Criteria	Project Impact	Production Cost	Cost should be kept to a minimum	The materials and production costs more than budgeted	The production and the materials are equal or under the budget	
	9			Time	Production of the part is done in a timely manner	Time takes too long to produce	Time to maufacture takes less time than anticipated	

DISCLAIMER : Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

H.S. ENGINEERING DESIGN

Students who demonstrate understanding can:

HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants HS-ETS1-2. Design a solution to complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. HS-ETS1-3. Evalutate a solution to a complex real-world problem based on prioritized criteria and trade-offs that ccount for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

HS-ETS1-4. Use a computer simulation to model the impact of proposed solutins to a complex real-world problem with numerous criteria and constrains on interactions within and between systems relevant to the problem.

This research was conducted over summer 2018 and continued over the summer of 2019 at the Jet Propulsion Laboratory, California Institute of Technology. The goal of the project was to apply the System Architecture Methodology to the engineering and education fields. During the summer of 2019, we ran weekly workshops for a select group of interns. Each week, we taught steps in the methodology, growing the interns' knowledge from the application to their projects. From these lessons, we hoped the interns advanced their creativity and comprehension of the design process. Bloom's Revised Taxonomy is utilized within all standards, objectives, and assessments

State-of-Technology

REFERENCES

Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives New York: Longman.

Mayer, R. E. (2011). Applying the science of learning. Boston, MA: Pearson/Allyn & Bacon. Younse, P., Strahle, J. W., Lalla, K., Dolci, M., Ohta, P.,

& Adajian, R. (2018, March 10). A System Architecting Methodology Using Bloom's Taxonomy to Promote Creative Engineering Synthesis [Digital image]. Retrieved from https://www-robotics.jpl.nasa.gov/people/Marco_Dolci/publications.cfm

Younse, P., Strahle, J. W., Dolci, M., Ohta, P., & Lalla, K. (2018, March 10). An Orbiting Sample Capture and Orientation System Architecture for Potential Mars Sample Return [Digital i mage]. Retrieved from https://www-robotics.jpl.nasa.gov/people/Marco_Dolci/publications.cfm

ACKNOWLEDGEMENTS

The 2019 STEM Teacher and Researcher Program and this project have been made possible through support from Chevron (www. chevron.com), the National Science Foundation through the Robert Noyce Program under Grant #1836335 and 1340110, the California State University Office of the Chancellor, and California Polytechnic State University in partnership with Jet Propulsion Laboratory, California Institute of Technology and Illinois State University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funders.

	;E	SS							
valuatio Synthesis									
	Comprehe	ension							
Knowledge									
Cognitive Process									
	3	4	ß						

-		က		4		ъ Л		Q			
		Apply		Analyze '		Evaluate		Create			
2.6	2.7	3.1	3.2	4.1	4.2	4.3	5.1	5.2	6.1	6.2	6.3
Comparing	Explaining	Executing	Implementing	Differentiating	Organizing	Attributing	Checking	Critiquing	Generating	Planning	Producing
				X				X			
				X				X			
								X			
								X	X		
Revised Taxonomy (2001)											

55	Lead Time	Sensitivity to fabrication flaws	Strength	Production Cost	Rank
kg	Short	Less	Strong	Middle	1
0 kg	Short	Less	Weak	Cheap	2
kg	Medium	Middle	Middle	Cheap	3
kg	Long	More	Middle	Expensive due to mixing different materials together	4
3 kg	Long	More	Strong	Expensive due to weight and machining	5

