Developing Process Variables Necessary to Operate Simulacrum: The LCLS
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Motivation

Simulacrum is a system that will simulate the Linac Coherent
Light Source (LCLS) and its control system. This will allow
future operators to train on a simulated linear accelerator and
provide research scientists the opportunity to test future ex-
periments. We will study the network systems in Simulacrum
to write process variables (PVs) that will update graphical user

interfaces from LCLS.

Background

Network communications with LCLS begin when the user on
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an OPI machine that contains EPICS, a computer software,
sends commands to Input/Output Controllers (I0Cs). 10Cs
are computers that communicate with each other to provide
information about a specific (PV) that measures the value of

various parts of a device (See Figure 1.)
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Parameter Actual
Machine repetition rate 120
Laser pulse length (FWHM)
Laser iris diameter

Bunch charge

Gun voltage (energy gain)
Laser phase

L0a voltage (energy gain)
L0a phase

LOb voltage (energy gain)
Lob phase

L1S voltage (energy gain)
L1S phase

L1X voltage (energy loss)
L1X phase

BC1E0

BC1R56

Peak current after BC1

L2 phase (21-3 to 24-6)
BC2E0

BC2 R56

Peak current after BC2
BC1 Injector Phase

BC2 Injector Phase
Injector Phase

L3 phase (25-1 to 30-8)
Final electron energy

onooon

rms Bunch Length

Proj. Norm. x emittance @OTR2
Proj. Norm. y emittance @OTR2
Proj. Norm. x emittance @WS12
Proj. Norm. y emittance @WS12
Proj. Norm. x emit*"Bmag@L128
Proj. Norm. y emit*Bmag@L128
Proj. Norm. x emit*Bmag@LTU1
Proj. Norm. y emit*‘Bmag@LTU1
estimated FEL Wavelength
estimated FEL L_sat

estimated FEL P_out
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Tols. Parameter Actual High Low

LASR:IN20:475:PWR 0.34 60.00 1.00
OTRS:IN20:57 1:EMITN_X 0.46 0.40 -inf
OTRS:IN20:571:BMAG_X 2.66 0.00 0.00
OTRS:IN20:57 T:EMITN_Y 0.23 0.40 -inf
OTRS:IN20:57 1:BMAG_Y 4.09 0.00 0.00

WIRE:IN20:56 1:EMITN_X 056 0.55 0.00

WIRE:IN20:56 1:BMAG_X 2.15 1.10 0.00
WIRE:IN20:56 1:EMITN_Y 0.46 0.55 0.00

WIRE:IN20:561:BMAG_Y 2.18 1.10 0.00

WIRE:LI121:293:EMITN_X 0.83 0.56 -inf
WIRE:LI21:293:BMAG_X 1.40 1.10 0.00
WIRE:LI21:293:EMITN_Y 0.33 0.46 -inf
WIRE:LI21:293:BMAG_Y 1.56 1.10 0.00
WIRE:LI28:144.EMITN_X 0.35 1.20 -inf
WIRE:LI28:144.BMAG_X 3.25 1.10 0.00
WIRE:LI28:144.EMITN_Y 0.75 0.66 -inf
WIRE:LI28:144.BMAG_Y 1.01 1.10 0.00
WIRE:.LTUT:735:EMITN_X 0.68 1.30 -inf
WIRE:LTU1:735:BMAG_X 1.12 1.10 0.00
WIRE:LTU1:735:EMITN_Y 1.40 0.76 -inf

WIRE:LTU1:735:BMAG_Y 2.46 1.10 0.00
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Figure 1: Network communications with LCLS

Conversely, Simulacrum contains services containing PVs that

communicate via a high-performance messaging library called
ZeroMQ (See Figure 2.)
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Figure 2: PV services in Simulacrum

A successful migration of LCLS PVs into Simulacrum will pro-
duce functioning displays that monitor and control a simulated

LCLS.
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Figure 3: Network communications in Simulacrum
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Methods

The creation of Simulacrum is a group effort. Therefore many
Simulacrum environments can be created to built it and are
distinguished by unique port numbers (See Figure 5).
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Figure 5: Simulacrum environments & it's collaboration process

Figure 4: Top two left: LCLSkIystronCUD top right: LCLSOperatingPointControl, lower left: LCLSMapCUD, lower right: LC

Methods Continue

| SJit-

Next, to populate the PVs in the klystron and generic PV with
valuable data we used the following methods:

= write MATLAB code to call the caget (’pvName here’)
command for all PVs and

= write a Python script that imported sensible data from the

archive.

Since LCLS was in operation on December 12, 2018, we chose
to run hourly data to produce a movie of the events on that

day:.
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After creating a Simulacrum environment, we began consoli-
dating PVs from LCLS and moditying MATLAB and Python
scripts in Simulacrum to ensure that those PVs resided in the
klystron_service and generic_ pv_ service (See Figure 2.)
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Figure 6: Archive Viewer
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Results

After running the model, klystron, and generic services and
other MATLADB and Python scripts, we get can observe four
graphical user interfaces (See LCLS Displays on Simulacrum).
For instance, the LCLSJitterCUD is a snapshot of the movie
simulated by data stored in the archive on December 12, 2018.
This can be useful to an operator that is interested in study-
ing how certain parameters in LCLS behaved on that specific
dated. It is also important to note that the PVs populated
from either of our methods serve as initial values for the PVs.
Therefore, if an operator calls a caput(’pvName here’)
new value command on a specific PV, then the OPI machine
will send that message to the service where the PV lives. It
will update. Then, the model service will be notified and will
read the lattice file to recalculate its physics parameters. The
model service will then send messages back to the services so
that updates can be made. If these communications are suc-
cessful, then the LCLS displays in Simulacrum will allow users
to simulate the linac with accuracy.

Discussion

Our results lead to several questions left for discussion:

= What happens when a PV does not have a value in the
archive or in production’

= Where will the values come from?

We encountered PVs that had to be populated with take data,
but data that still made sense. For instance, PVs can take
in many values like integers. float numbers, vectors, strings,
and bytes. Therefore, understanding the role of these PVs is
important. A possible solution to addressing such unique PVs
may be in creating a new service that houses them. This may
make it possible for services that currently do have PVs with
values to communicate efficiently.

Figure 7: Accelerator Control Room, Building 52.
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