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Motivation

In the modern age of data science, the necessity for efficient and 

insightful analytical tools that enable us to interpret large data 

structures inherently presents itself. With the increasing utility of 

metrics offered by the mathematics of hypergraph theory and algebraic 

topology, we are able to explore multi-way relational datasets and 

actively develop such tools. Throughout this research endeavor, one of 

the primary goals has been to contribute to the development of 

computational algorithms pertaining to the homology of hypergraphs. 

More specifically, coding in python to compute the homology groups of a 

given hypergraph, as well as their Betti numbers have both been top 

priorities. 

A hypergraph is defined to be a collection of subsets E, 

called edges, of a set of elements V, called vertices, and is 

written as H = (V, E). 

Hypergraphs have the ability to 

capture multi-way relationships 

that typical graphs used in data 

science cannot. Graphs can 

only code pairwise associations 

between entities, whereas a 

hypergraph can represent 

several multi-way relationships 

between an arbitrary number 

of entities. It should be noted 

that hypergraphs generalize 

graphs in this way [1].   

Figure 1. An example of a 

hypergraph generated using 

HyperNetX in python.  

Algebraic topology is noted as a sub-field of topology that 

is concerned with algebraic properties of spaces that 

respect homotopy. Algebraic topology views two spaces as 

“the same” if they are homotopy equivalent. Well, 

homology classes and Betti numbers are topological 

invariants that can tell us whether or not two spaces, such 

as two hypergraphs, are homotopy equivalent. It is for this 

reason that these metrics are of key interest. 

A homotopy between two continuous functions 𝑓 and 𝑔
from a topological space 𝑋 to another space 𝑌 is defined 

as a continuous function 𝐻:𝑋 × 0,1 → 𝑌 such that for all 

𝑥 ∈ 𝑋 we have 𝐻 𝑥, 0 = 𝑓(𝑥) and 𝐻 𝑥, 1 = 𝑔(𝑥). We 

think of 𝐻 as a continuous deformation of 𝑓 into 𝑔.

Computing the homology groups and Betti numbers of a hypergraph is an 

extensive process, and by no means can it efficiently be done by hand, 

especially in the case of very large hypergraphs. The general steps with 

definitions are outlined below: 

Figure 2. A typical schematic 

demonstrating the homotopy 

equivalence of a coffee mug and the 

torus. The torus has Betti numbers 

𝛽0 = 1, 𝛽1 = 2, and 𝛽2 = 1. 

Step 1. We take the structure of a 

hypergraph and realize it geometrically 

as an abstract simplicial complex.

An abstract simplicial complex is a family 

𝐾 consisting of a finite collection of subsets, 

or simplicies, of a given set X such that if 

𝜎 ∈ 𝐾 and 𝜏 ⊆ 𝜎, then 𝜏 ∈ 𝐾.

A 𝑘-simplex is an ordered (𝑘 + 1)-tuple of 

affinely independent points 𝜎 = 𝑥0, … , 𝑥𝑛 . The 

points in the set 𝑉 = {𝑥0, … , 𝑥𝑛) are the vertices 

of the simplex 𝜎. 

Step 2. We define the chain groups with 

respect to the 𝑘𝑡ℎ Betti number we are 

interested in.

A 𝑘-chain is defined to be a formal sum of 

𝑘-simplicies. The set of 𝑘-chains with 

formal addition over ℤ create a ℤ-module, 

denoted 𝐶𝑘 and called a chain group, with 

a basis given by the 𝑘-simplicies of 𝐾. 

Step 3. We define a homomorphic 

boundary map, 𝜕𝑘: 𝐶𝑘 → 𝐶𝑘−1, for each 

chain group, which can be represented 

as a matrix. 

The boundary map is given by the 

operator 𝜕𝑘 𝜎 = σ𝑖=0
𝑘 −1 𝑘(𝑥0, … ෝ𝑥𝑖 … , 𝑥𝑘)

where(𝑥0, … ෝ𝑥𝑖 … , 𝑥𝑘) is the (𝑘 − 1)-face of 

𝜎.

The boundary operator presents a sequence of 

connected chain groups called a chain 

complex such that …𝐶𝑘+1
𝜕𝑘+1

𝐶𝑘
𝜕𝑘
𝐶𝑘−1

𝜕𝑘−1
…

where 𝜕𝑘−1 ∘ 𝜕𝑘 = 0 for all 𝑘 > 1.

Step 4. We compute two important sub-

groups called cycles and boundaries in 

terms of their boundary maps. The 𝑘-cycles and 𝑘-boundaries are 

defined as 𝑍𝑘 𝑋 = ker 𝜕𝑘 and 

𝐵𝑘 𝑋 = 𝑖𝑚 𝜕𝑘+1 respectively. 

Step 5. We can now compute 

the homology groups and Betti 

numbers!

The 𝑘𝑡ℎhomology group is denoted 

𝐻𝑘 = 𝑍𝑘/𝐵𝑘+1.

The 𝑘𝑡ℎBetti number is defined as 

dim𝐻𝑘 = dim 𝑍𝑘 − dim 𝐵𝑘. 

To develop a function in python to 

compute homology required some 

methodology and gathering 

insights:

1) Use prior python code written 

in HyperNetX to articulate 

updated versions.

2) Test function by comparing 

results to known homology 

groups and Betti numbers 

(figure 3).

3) Explore how Betti numbers 

change according to other 

metrics like density (figure 4).

Future goals

References

1. Understand how Betti numbers correlate to other 

metrics of hypergraphs such as inclusivity, aspect 

ratio, degree centrality, etc.

2. Investigate the applications of Smith Normal 

Form, Singular Value Decomposition, Principal 

Component Analysis, and other algorithmic 

approaches to computing homology. 

3. Learn exactly how this code handles larger and 

larger hypergraphs to determine its overall 

efficiency. 

After developing a function to 

compute the Betti numbers of 

basic hypergraphs, it was 

tested on actual datasets. 

Datasets of particular interest 

are ones that carry multi-way 

relationships such as IMDB 

movie data. Relationships 

between directors and actors 

can be easily be modeled with 

a hypergraph, for example. 

And thus, we have a means of 

computing homology. A sample 

of the IMDB dataset is 

displayed (figure 8). 

Figure 3. A hollow tetrahedron 

with four 2-simplexes as its faces. 

It has known Betti numbers 

𝛽0 = 1, 𝛽1 = 0, and 𝛽2 = 1.

Figure 4. Using NetworkX’s random 

bipartite graph generated, it is shown 

how Betti numbers are distributed 

according to the density of hypergraphs.  

Figure 8. A sample of the IMDB dataset 

where edges represent directors and the 

vertices represent actors. The full 

dataset can be found at 

https://www.kaggle.com/carolzhangdc/

imdb-5000-movie-dataset

The Betti numbers computed for this sample dataset are 𝛽0 = 1, 

𝛽1 = 2, and zero otherwise. To compute the Betti numbers of the 

whole dataset requires some refinement of the code and a 

diagnosis of its computational efficiency. For larger datasets, the 

code often runs into memory errors. 

Figure 5. An example of a hypergraph 

generated using HyperNetX in python.  

Figure 6. The first four 𝑘-simplexes. 
Retrieved from http://brickisland.net/DDGFall2017/wp-

content/uploads/2017/09/CMU_DDG_Fall2017_02_Simpicia

lComplex-1.pdf

Figure 7. A schematic representing the 

mapping between chain groups.
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