
Computing Homology of Hypergraphs
Jackson Earl1, Emily Heath2, Cliff Joslyn3, Brenda Praggastis3, Emilie Purvine3

1 Illinois State University
2 University of Illinois at Urbana-Champaign
3 Pacific Northwest National Laboratory

Acknowledgements

Abstract

The 2019 STEM Teacher and Researcher Program and this project
have been made possible through support from Chevron
(www.chevron.com), the National Science Foundation through the
Robert Noyce Program under Grant #1836335 and 1340110, the
California State University Office of the Chancellor, and California
Polytechnic State University in partnership with Pacific Northwest
National Laboratory and the Department of Defense. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the funders.

Background

Methods

Homology Groups and Betti numbers

Applications to IMDB Dataset

Motivation

In the modern age of data science, the necessity for efficient and

insightful analytical tools that enable us to interpret large data

structures inherently presents itself. With the increasing utility of

metrics offered by the mathematics of hypergraph theory and algebraic

topology, we are able to explore multi-way relational datasets and

actively develop such tools. Throughout this research endeavor, one of

the primary goals has been to contribute to the development of

computational algorithms pertaining to the homology of hypergraphs.

More specifically, coding in python to compute the homology groups of a

given hypergraph, as well as their Betti numbers have both been top

priorities.

A hypergraph is defined to be a collection of subsets E,

called edges, of a set of elements V, called vertices, and is

written as H = (V, E).

Hypergraphs have the ability to

capture multi-way relationships

that typical graphs used in data

science cannot. Graphs can

only code pairwise associations

between entities, whereas a

hypergraph can represent

several multi-way relationships

between an arbitrary number

of entities. It should be noted

that hypergraphs generalize

graphs in this way [1].

Figure 1. An example of a

hypergraph generated using

HyperNetX in python.

Algebraic topology is noted as a sub-field of topology that

is concerned with algebraic properties of spaces that

respect homotopy. Algebraic topology views two spaces as

“the same” if they are homotopy equivalent. Well,

homology classes and Betti numbers are topological

invariants that can tell us whether or not two spaces, such

as two hypergraphs, are homotopy equivalent. It is for this

reason that these metrics are of key interest.

A homotopy between two continuous functions 𝑓 and 𝑔
from a topological space 𝑋 to another space 𝑌 is defined

as a continuous function 𝐻:𝑋 × 0,1 → 𝑌 such that for all

𝑥 ∈ 𝑋 we have 𝐻 𝑥, 0 = 𝑓(𝑥) and 𝐻 𝑥, 1 = 𝑔(𝑥). We

think of 𝐻 as a continuous deformation of 𝑓 into 𝑔.

Computing the homology groups and Betti numbers of a hypergraph is an

extensive process, and by no means can it efficiently be done by hand,

especially in the case of very large hypergraphs. The general steps with

definitions are outlined below:

Figure 2. A typical schematic

demonstrating the homotopy

equivalence of a coffee mug and the

torus. The torus has Betti numbers

𝛽0 = 1, 𝛽1 = 2, and 𝛽2 = 1.

Step 1. We take the structure of a

hypergraph and realize it geometrically

as an abstract simplicial complex.

An abstract simplicial complex is a family

𝐾 consisting of a finite collection of subsets,

or simplicies, of a given set X such that if

𝜎 ∈ 𝐾 and 𝜏 ⊆ 𝜎, then 𝜏 ∈ 𝐾.

A 𝑘-simplex is an ordered (𝑘 + 1)-tuple of

affinely independent points 𝜎 = 𝑥0, … , 𝑥𝑛 . The

points in the set 𝑉 = {𝑥0, … , 𝑥𝑛) are the vertices

of the simplex 𝜎.

Step 2. We define the chain groups with

respect to the 𝑘𝑡ℎ Betti number we are

interested in.

A 𝑘-chain is defined to be a formal sum of

𝑘-simplicies. The set of 𝑘-chains with

formal addition over ℤ create a ℤ-module,

denoted 𝐶𝑘 and called a chain group, with

a basis given by the 𝑘-simplicies of 𝐾.

Step 3. We define a homomorphic

boundary map, 𝜕𝑘: 𝐶𝑘 → 𝐶𝑘−1, for each

chain group, which can be represented

as a matrix.

The boundary map is given by the

operator 𝜕𝑘 𝜎 = σ𝑖=0
𝑘 −1 𝑘(𝑥0, … ෝ𝑥𝑖 … , 𝑥𝑘)

where(𝑥0, … ෝ𝑥𝑖 … , 𝑥𝑘) is the (𝑘 − 1)-face of

𝜎.

The boundary operator presents a sequence of

connected chain groups called a chain

complex such that …𝐶𝑘+1
𝜕𝑘+1

𝐶𝑘
𝜕𝑘
𝐶𝑘−1

𝜕𝑘−1
…

where 𝜕𝑘−1 ∘ 𝜕𝑘 = 0 for all 𝑘 > 1.

Step 4. We compute two important sub-

groups called cycles and boundaries in

terms of their boundary maps. The 𝑘-cycles and 𝑘-boundaries are

defined as 𝑍𝑘 𝑋 = ker 𝜕𝑘 and

𝐵𝑘 𝑋 = 𝑖𝑚 𝜕𝑘+1 respectively.

Step 5. We can now compute

the homology groups and Betti

numbers!

The 𝑘𝑡ℎhomology group is denoted

𝐻𝑘 = 𝑍𝑘/𝐵𝑘+1.

The 𝑘𝑡ℎBetti number is defined as

dim𝐻𝑘 = dim 𝑍𝑘 − dim 𝐵𝑘.

To develop a function in python to

compute homology required some

methodology and gathering

insights:

1) Use prior python code written

in HyperNetX to articulate

updated versions.

2) Test function by comparing

results to known homology

groups and Betti numbers

(figure 3).

3) Explore how Betti numbers

change according to other

metrics like density (figure 4).

Future goals

References

1. Understand how Betti numbers correlate to other

metrics of hypergraphs such as inclusivity, aspect

ratio, degree centrality, etc.

2. Investigate the applications of Smith Normal

Form, Singular Value Decomposition, Principal

Component Analysis, and other algorithmic

approaches to computing homology.

3. Learn exactly how this code handles larger and

larger hypergraphs to determine its overall

efficiency.

After developing a function to

compute the Betti numbers of

basic hypergraphs, it was

tested on actual datasets.

Datasets of particular interest

are ones that carry multi-way

relationships such as IMDB

movie data. Relationships

between directors and actors

can be easily be modeled with

a hypergraph, for example.

And thus, we have a means of

computing homology. A sample

of the IMDB dataset is

displayed (figure 8).

Figure 3. A hollow tetrahedron

with four 2-simplexes as its faces.

It has known Betti numbers

𝛽0 = 1, 𝛽1 = 0, and 𝛽2 = 1.

Figure 4. Using NetworkX’s random

bipartite graph generated, it is shown

how Betti numbers are distributed

according to the density of hypergraphs.

Figure 8. A sample of the IMDB dataset

where edges represent directors and the

vertices represent actors. The full

dataset can be found at

https://www.kaggle.com/carolzhangdc/

imdb-5000-movie-dataset

The Betti numbers computed for this sample dataset are 𝛽0 = 1,

𝛽1 = 2, and zero otherwise. To compute the Betti numbers of the

whole dataset requires some refinement of the code and a

diagnosis of its computational efficiency. For larger datasets, the

code often runs into memory errors.

Figure 5. An example of a hypergraph

generated using HyperNetX in python.

Figure 6. The first four 𝑘-simplexes.
Retrieved from http://brickisland.net/DDGFall2017/wp-

content/uploads/2017/09/CMU_DDG_Fall2017_02_Simpicia

lComplex-1.pdf

Figure 7. A schematic representing the

mapping between chain groups.

Retrieved from https://i.stack.imgur.com/qa0Ja.jpg

[1] Purvine, E., Aksoy, S., Joslyn, C., Nowak, K.,

Praggastis, B., Robinson, M. (2018). A Topological

Approach to Representational Data Models. Lecture

Notes in Computer Science, volume 10904, 90-109.

https://link.springer.com/chapter/10.1007/978-3-319-

92043-6_8

