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We present a computationally inexpensive, flexible feature identification method which uses a comparison 

of time series to identify a rank-ordered set of features in geophysically-sourced data sets. Many physical 

phenomena perturb multiple physical variables nearly simultaneously, and so features are identified as time 

periods in which there are local maxima of absolute deviation in all time series. Unlike other available methods, 

this method allows the analyst to tune the method using their knowledge of the physical context. The method is 

applied to a data set from a moored array of instruments deployed in the coastal environment of Monterey Bay, 

California, and a data set from sensors placed within the submerged Yax Chen Cave System in Tulum, Quintana 

Roo, Mexico. These example data sets demonstrate that the method allows for the automated identification of 

features which are worthy of further study. 
       
         

           
             

             
           

        
          

          
        

         
        

         
        

        
           

        
         

             
          
           
             

 

         
           

            
        
         

           
            

            
            

           
            

           
              

       
          

           
          

           
         

           
            

             
          

           

1.  Introduction 

Geophysical researchers often study physical phenomena using in-

strument arrays sampling the physical variables affected by those phe-

nomena at multiple spatial locations. This produces a data set consisting 

of vector time series. Features in the data set are often identified by 

methods such as the visual inspection of plots, or other ad hoc means. 

As the size and quality of geophysically-sourced time series data sets 

increase these methods become labor-intensive. Automated methods of 

identifying a set of features worthy of further study are needed. 

There are an enormous variety of vector time series analysis tech-

niques available. Empirical Orthogonal Functions (EOF) (Hannachi et 

al., 2007); more general dimension-reduction type methods (Pena and 

Poncela, 2006); wavelet (Walden and Serroukh, 2002), Fourier, har-

monic, and spectral analysis methods (Emery and Thomson, 1998); 

data smashing (Chattopadhyay and Lipson, 2014); similarity measure 

approaches (Yang and Shahabi, 2004); data mining techniques (Kur-

balija et al., 2010); and many more methods of varying mathematical 

sophistication. However, generally, existing vector time series analysis 

techniques are developed from a series of mathematical assumptions 

and then applied to data sets in a purely mathematical sense, free of 

physical information except for that encoded as parameters for the 

method. This abstraction is done both to satisfy the demands of math-

ematical rigor and to make the method applicable in a wide array of 

contexts. However, such methods apply in almost every context pre-

cisely because they largely ignore changes due to context. In particular 

it can become very difficult to combine the analyst’s knowledge of the 

physical context with the interpretation of the method’s output. 

Many methods depend on mathematical information which may be 

difficult to derive from the known physical context. So for example, 

some methods require a choice of statistical model in order to draw 

comparisons (Judd et al., 2008). The results of the method depend on 

the statistical model chosen, but in many geophysical contexts it is not 

at all clear which model should be used. Moreover many statistical 

methods only apply to data assumed to be of a certain mathematical 

form, such as ergodic, steady state, etc. In many geophysical contexts 

it is not reasonable to adopt such assumptions on the form of the data 

(see for example (Mourad and Bertran-Krajewski, 2002)). Nonparamet-

ric approaches such as (Matteson and James, 2014) avoid mathematical 

assumptions on the form of the underlying distribution, but still use 

mathematical tools like cost functions whose effect on the physical in-

terpretation of the method’s output can be difficult to determine. Even 

if certain mathematical assumptions are appropriate in a given con-

text, not all researchers will have the background necessary to encode 

their knowledge of the physical context in a statistical model. If the re-

searcher does not know what part of the method’s output is from the 

physics, and what part is from the underlying mathematics, their confi-

dence in deriving conclusions about the physics will be severely limited. 

* Corresponding author. 
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Finally, for practical purposes, more advanced data analysis methods 

are often limited in their usefulness by the availability of user-friendly 

software (e.g., the open and widely used package by (Torrence and 

Compo, 1998)). The method we present ameliorates all the concerns 

just listed, because it uses the researcher’s knowledge of the physical 

context without requiring them to quantify it for use in a mathematical 

formalism. 

One may rebut the concerns just outlined by pointing out that 

standard methods in geosciences could be used because their physi-

cal interpretations have been made clear over time through widespread 

use. However familiar methods are not well suited to identifying fea-

tures in vector time series caused by physical phenomena. For example 

EOF-type methods (Hannachi et al. (2007)) can process such data sets, 

but the focus here is on identification of events whose time duration 

is much shorter than the total record. EOFs are variance-maximizing, 

and while high total variance in a mode may be the result of an event, 

it may also be the result of low variance over the entire record. Meth-

ods of this type are therefore ill-suited for event detection. Similarly 

methods for comparing two time series abound, e.g. correlation, covari-

ance, or coherence (Emery and Thomson, 1998); (Torrence and Compo, 

1998), but when these methods are applied pairwise to a data set with 

more than two series there is a combinatorial explosion of options: if( )� there are � series, there are 2 = �(� − 1)∕2  such pairs. There are algo-
rithms that address this issue (Lyubushin, 2018a) but the sophistication 

of the mathematics ramps up quickly. The method presented here can 

be applied to any number of time series simultaneously, subject only to 

memory constraints. 

The purpose of this paper is not to downplay the value of exist-

ing methods, but rather to present a method for those researchers who 

would gladly trade some mathematical sophistication for a clearer link 

with the known physical context and a lower implementation cost. We 

present a physics-based, computationally inexpensive, flexible, easily-

implemented, and transparent method for the automated identification 

of features caused by physical phenomena. We call this method ‘the 

� method,’ and it is outlined in Section 2. In section 3 the method is 
applied to a data set from the coastal environment of Monterey Bay, 

California (section 3.1), and a data set from the Yax Chen Cave System, 

near Tulum, Mexico (section 3.2). Section 4 includes further discussion. 

The supplementary material includes tutorial codes for the � method 
written in MATLAB, R, and python. 

2.  Methods 

2.1. The � method 

Before details are presented we outline the � method in broad 
terms. To streamline the presentation we assume that the data has 

been controlled for quality and filtered by whatever methods the dis-

cipline deems appropriate. Assume the data set consists of time series 

{�1(�), �2(�), … , ��(�)} sampling multiple physical quantities with sensors 
nearby one another, as they would be in a single instrument cluster. We 

expect that physical phenomena of interest will impact multiple phys-

ical quantities nearly simultaneously. For example, Fig. 4A of (Maio 

et al., 2016) shows tropical storm Irene affecting wind speeds and air 

pressure as it passes a meteorological station. The physical quantities 

impacted by an event lead to deviations from the background state in 

the associated time series (wind speed and pressure in this case). We 

have now formulated the problem: 

Problem Statement 1. Given a data set consisting of time series {�1(�), 
�2(�), … , ��(�)}, identify time periods (features) denoted {1, 2, …} in 
which all ��(�) experience a deviation from their respective trends. 

To solve this problem, we proceed as follows. For each time series 

��(�), form the associated absolute deviation series 
            
          

           
           

         
            
         
            

      

               
            

             
              

          
             
             

          
           

            
         

            
         

             
           

           
           

           
            

            
 

            
          

            
            

             
              

           

   2.2. The defining set 

              
           

          
            

            
    
           
           

           
           
           

          
           
             

             
            

            
            

           
            

          

� �(�) =  ��|��(�) −  ��(�)| (1) 

where �� is a scaling constant and ��(�) is some trend chosen by the 
analyst as appropriate to the physical context. Large values of � � corre-

spond to large deviations from the trend, and small values correspond 

to values of �� near the trend. Absolute deviation rather than standard 

deviation is used to avoid accentuating outliers. The absolute devia-

tion series is still affected by outliers, but accentuates them less than 

the corresponding standard deviation series. For an in-depth discussion 

see (Huber and Ronchetti, 2009). Features in the data set are identified 

using the maxima of the time series 

�(�) = min{� �(�)} = min{��|��(�) −  ��(�)|} (2) 
� � 

at every time � (note that �(�) ≥ 0). We will call the set of time series 
{��} included in the definition of �(�) the ‘defining set’ of time series for 
�(�). Notice also that by construction of � , any number of time series 
may be in the defining set, so this method is not a pairwise comparison 

method. 

The key observation is this: because �(�) is defined as the mini-
mum curve, if it is perturbed from zero, all curves are perturbed from 

zero. Therefore, if we wish to find times where all time series are ex-

periencing deviations from their respective trends, we should look for 

deviations in �(�). In particular, the maxima of �(�) correspond to times 
when all physical quantities sampled by the time series in the defining 

set are experiencing large deviations from their respective trends. Fol-

lowing the reasoning above we expect these deviations to be caused by 

some physical phenomenon. Although each physical variable will not 

be perturbed at exactly the same time or for the same duration, we ex-

pect some time overlap of deviations in affected fields. The � method 
identifies such times (see the Figures in section 3). Time periods near 

these maxima are defined as features of interest for further study. Ar-

ranging the maxima in descending order produces a rank-ordered set of 

time extents as identified features {1, 2, …}, where the ranking is es-
sentially by size of overlap. See the accompanying tutorial codes for a 

constructed example. 

By construction this set of features is dependent on the choice of 

defining set, which allows tuning of the method for specific phenom-

ena. The analyst uses their knowledge of the physical context to decide 

which time series to include in the defining set, an appropriate trend, 

and how to synchronize the time series to one another. The chosen time 

series must then be scaled so that they may be compared in �(�). Finally, 
the feature length must be chosen. We consider each step in turn. 

The defining set can be chosen any way the analyst sees fit. If the 

analyst is looking for a specific physical phenomena, only the fields 

whose deviations would be associated with those events are included 

in the defining set. Alternatively the method may be applied to various 

subsets of the available time series to identify features first, with the 

analyst supplying physical explanations afterward. 

The analyst may construct any time series they deem useful and 

include it in the defining set. For example, suppose two thermistor 

chains are deployed in a small lake. The thermistor chains each pro-

duce a vertical vector of temperature time series. If all temperature 

time series are included in the defining set the corresponding �(�) has 
maxima when there is a temperature deviation at all sensors simultane-

ously. This choice of defining set may identify periods of temperature 

change driven at the lake scale, such as a deviation of temperature due 

to seasonal change. If instead the phenomena of interest ia a cold water 

inflow, it may suffice to take the depth-averaged values at each chain 

and consider the difference of the two averaged time series as an in-

dicator. Any time series the analyst can think of, and whose deviation 

would serve as an indicator for the given physical context and prob-

lem, may be included in the defining set. This would include smoothed 

versions of existing time series which preserve the relevant deviations 
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 2.3. Scaling 
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  2.5. Feature identification 

         

           
         

    

            
     

        
            
             
           

        
      

           

(Rong and Bailis, 2017), as well as time series produced from stan-

dard methods like EOF (i.e. amplitude time series) and scale-averaged 

wavelets if the analyst deems it appropriate (Walter et al., 2017). 

Once the defining set is chosen, a trend must be chosen for each time 

series. If the trend is unknown, mathematical methods such as (Wu et 

al., 2007) may be used to identify it, but this is not always necessary. 

The time mean ��(�) = ⟨��(�)⟩� is a reasonable constant valued choice 
in many applications. This is the choice we make for both data sets in 

section 3. 

Finally, the defining set must be synchronized. Different sensors may 

have different sampling rates, deployment duration, etc. The analyst 

uses their knowledge of the instruments and physical context to arrange 

the time series from each sensor along some global time regime. This 

global time regime � is the time on which � = �(�) depends. Differences 
in sampling rate may be handled by interpolation or subsampling, dif-

ferences in duration by truncation to an appropriate overlapping time 

period, and so on. Once the defining set has been chosen and synchro-

nized, the scaling must be chosen. 

Equation (1) includes a scaling constant for each absolute deviation 

series for two reasons. First, equation (2) defines �(�) as the minimum 
of all absolute deviation time series at every point in time. For this to 

make any physical sense every time series in the defining set should 

be nondimensionalized because each of them are sampled from phys-

ical quantities having possibly different units. Second, the choice of 

nondimensionalization constant �� allows further tuning of the method. 

Scalings may be chosen to increase the influence of some physical quan-

tities on �(�) while decreasing the influence of others. For the examples 
given in section 3 we have chosen to scale each time series by their re-

spective maximum values. In general, the choice of scaling is another 

opportunity for the analyst to apply their knowledge of the context and 

tune the � method to their purposes. 

Once the analyst has chosen the defining set, trend, synchroniza-

tion, and scalings, the final choice is feature length �. This parameter is 

simply an approximate length of time that the physical phenomena of 

interest is expected to last. In our algorithm, we use a windowing pro-

cedure, where maxima of � are identified, and features are defined as 
the time window of length � whose midpoint is at the maxima. If the 
feature length is unknown, then � may be set to be very short so that 
features identify maxima in � . 

The work in previous sections allows us to write Problem 1 as: 

Problem Statement 2. Given a defining set consisting of time series 
{��(�)}�

� 
=1 

synchronized along a global time regime, with respective scaling 
constants �� and trends ��(�), form 

�(�) = min{��|��(�) −  �� (�)|}. 
� 

Identify rank-ordered features {1, 2, … , �} as time windows of length � 
centered at the local maxima of � . 

We solve this problem iteratively, allowing overlapping features. 

Note that this means, for example, that the top several maxima of � 
may all be included in the first feature. In that case the second fea-

ture would not be centered at the second highest global maximum, but 

rather at the highest maximum outside the first feature. 

Problem 2 is solved using Algorithm 1. The rank-ordered identi-

fied features {1, 2, …} are generated by iteration on the maxima of 
   
    
       
        
 

    
  

          
          

    

         
           

    

  

             
          

         
       

            
         

          
          

           
           

           
  

     
          
            

           
              

          
              
             

           
             
            
            

              
         

          
            
            

           
        

           
            

            
            

          
            

           
         

             
           

             
             

              
       

            
           

Algorithm 1 Identify Features 
load, clean, and filter data 

choose defining set with trends, synchronization, and scaling 

choose feature length �, and number of features � 
define � 
for i = 1 to r do 
find � maximum �(��) 
set  to be the time extent of length � centered at � � � 

set �(� ) = 0  so a new feature is found in next iteration 
end for 
return {1 , 2 , … ,  }� 

�(�). MATLAB codes implementing Algorithm 1 were used for all results 
presented in section 3. Tutorial codes in MATLAB, R, and python are 

included in the supplementary material. 

3.  Results 

3.1. Monterey Bay 

The first data set we will consider is from a moored array of instru-

ments deployed in the nearshore coastal environment of Monterey Bay, 

California from July 7–21, 2011. The moored array measured density 

(derived from temperature and conductivity measurements) and veloc-

ities throughout the water column. For a detailed analysis of this data 

set see Walter et al. (2016). High-resolution measurements were col-

lected near a persistent upwelling front that forms between recently 

upwelled waters and warmer stratified waters that are trapped inside 

the bay (termed an upwelling shadow front). The front propagates as 

a buoyant plume front past the instrument array with high kinetic en-

ergy before breaking up into a combination of large amplitude internal 

waves and instabilities. ( )1Both density � and kinetic energy ��  = 2 
�2 + �2 + �2 (omit-

ting �0) are useful for identifying fronts, internal waves, and instabil-

ities. The overlap of the time series of both quantities has dimensions 

� × � = 35  × 19701 where � is the number of points in depth �, binned 
0.5 m apart, and � is the number of samples in time �, taken every 
minute. Each of the vector-valued time series for � and ��  are com-
prised of 35 time series, for a total of 70 individual time series. The � 
method may be applied directly to these 70 series, but a much simpler 

choice is appropriate in this context. The large kinetic energy and den-

sity events of interest tend to induce changes in the whole portion of 

the water column sampled by the data set. This makes the depth aver-

aged means � and ��  good indicators. These are 2 time series of length 
� , and we take them as our defining set. These time series are already 

synchronized because we expect fronts, internal waves, and instabilities 

to cause deviations in � and ��  nearly simultaneously. We also scale 
each of the deviation series by their maximum values since we consider 

both to be equally important. These choices then define �(�). Based on 
known forcing associated with local diurnal winds (cf. (Walter et al., 

2016)), we define our feature length as a day. 

Fig. 1 panel c shows the result of applying the � method. Panel c 
shows the first five features �. Notice the most important feature, 1, 

corresponds to the frontal crossing of July 17, a feature identified and 

studied extensively in (Walter et al., 2016). In (Walter et al., 2016), 

this particular event was identified based on a more complicated filter-

ing and wavelet analysis of the data set. Features 2 and 3 are large 

frontal crossing and internal wave events, and 4 coincides with a large 

regional-scale upwelling event and delineates a difference in forcing rel-

ative to earlier events (see discussion in (Walter et al., 2016)). The next 

most important feature is 5. The density profile, along with the veloc-

ity data (not shown) indicates that this feature is an across shore pulse 

of cold water (see (Walter et al., 2016) Fig. 1 b for orientation of axes). 

This is an example of a feature which may not have been identified by 

an analysis that did not use the method. 

Fig. 1 panel d shows the result of applying the � method using �, and 
an alternate choice of a second time series. Stratification stabilizes the 
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Fig. 1. The � method applied to the Monterey Bay data set. Panel a shows the full density � 3 (kg/m ) and panel b shows the full kinetic energy ��  2 2 (m /s ). In both 

a and b the vertical axis is bin number. Panel c shows the results of the � method using the defining set {�, ��}, and panel d shows the results of using the � method 
using the defining set {�, ��� }. All panels are aligned along the global time regime indicated below panel d. 
           
            

     

            
            

           
            

             
             
          

            
             

            
          

             
           

              
              

          
          

  3.2. Yax Chen 

             
          
               

           
           

             
             

            
            
              

water column. When kinetic energy is high but stratification is weak, 

we expect more vertical mixing. To capture this idea, we define the 

conditioned depth averaged kinetic energy, ��� as 

��  
��� = (3)|�� − �� | 
where �� is the density at the bottom sensor, and �� is the density 

at the top sensor. ��� is larger when the stratification is weak. The 

defining set is {�, ��� }. Applying normalization by the maximum as 
before defines �(�), leading to the results shown in Fig. 1 panel d. Note 
that 1 is now the upwelling period from July 14th to 15th. The large 

frontal crossing on July 17 is still identified as 2. This shows that im-

portant features may persist under time series conditioning. The across 

shore pulse of cold water is now identified as 3, because stratification 

is weak during this period. 4 is also a newly identified feature that is 

likely driven by strong surface wind forcing, due its confinement to the 

near-surface region. Finally, 5 identifies a time when ��  is small, but 
the stratification is weak and the water is cold: this is another weakly 

stratified cold water pulse. Both cold water events 3 and 5 are not 

immediately clear from panels a or b of Fig. 1, because the eye is drawn 

to the other events (see (Wang et al., 2004) for a discussion of the hu-

man visual system). In this way the � method identifies features previ-
ously identified by analysts, but may also identify features that analysts 

miss. 

For the second example, we apply the � method to a data set from 
the submerged Yax Chen Cave System, in Tulum, Quintana Roo, Mex-

ico. The Yax Chen Cave System is part of the larger Ox Bel Ha Cave 

System. The data set consists of time series from pressure (�), conduc-

tivity (�), and temperature (� ) sensors deployed within Yax Chen from 
May 2016 to April 2018. The sensors were deployed as a follow up 

to the work presented in Coutino et al. (2017) in  order to observe the 

changes in the aquifer as a result of heavy rainfall events from hurri-

canes and tropical storms, which are common to the region. The sensors 

were deployed 10 m downstream from a cenote at a depth of 4 m. 
            
           

        
            

            

         
             

           
           

           
           

           
           
            
       

         
             

            
           
           

          
           
          

           
          

              
            

           
          

            

         

There was a single sensor for each physical quantity, and the three sen-

sors sampled simultaneously every 30 minutes, so the time series are 

synchronized. Each time series has dimensions � × � = 1  × 33697 so 
there is no need to reduce the spatial dimension in this case. Normal-

ization is taken by the respective maxima, and the feature length as one 

week. 

Fig. 2 panel d summarizes the results of applying the � method 
using the defining set of {�, �, � }. The early October 2017 event, corre-
sponding to hurricane Nate1 is identified as 1. The late October event, 

corresponding to hurricane Philippe is identified as 2. The mid August 

event corresponds to hurricane Earl, identified as 3. The last two fea-

tures 4 and 5 identify the time period from mid to late September 

in which several storms, including hurricanes Irma and Jose could still 

have been affecting changes in the parameters measured in Yax Chen. 

This choice of the defining set identifies rainfall events large enough to 

affect pressure, salinity, and temperature in the cenote. 

Fig. 2 panel e summarizes the results of applying the � method us-
ing the defining set of {�, � }, i.e. without salinity. Since variations in 
salinity can only be due to mixing with the underlying marine water, 

this choice of defining set allows for the identification of events associ-

ated with longer trends, as opposed to turbulent mixing events (Coutino 

et al., 2017). Features 1 (early January 2017) and 5 (mid November 

2016) correspond to large rain events that are not hurricane related. 

Early October 2017, 2, corresponds to hurricane Nate. A hurricane’s 

primary expression in the cave network is via the turbulent mixing 

between the meteoric lens and the underlying marine water mass, re-

sulting in variations in �, but � is not included in the defining set. This 
explains why hurricane Nate is not identified as 1, and also why Hur-

ricane Phillippe is not captured. Features 3 and 4 (first half of July 

2017) do not coincide with large rainfall events, and their identifica-

tion by the � method as epochs which merit further study is completely 
new. 

1 All hurricane dates retrieved from the National Hurricane Center (https:// 

www.nhc .noaa .gov /). 

www.nhc.noaa.gov
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Fig. 2. The  � method  applied  to  the  Yax  Chen  data  set.  Panel  a  shows   � ,  panel  b  shows  � ,  and  panel  c  shows � .  Panel  d  is  �(�) for  the  defining  set  {�,  �,  � }.  Panel e  is  
�(�) for  the  defining  set  {�,  � }. 
        
            
          

            
           

            
           

           
           

           
          

              
               

      
          
            

            
             

           
           

             
               
              
             
             

             
           

  
           

          
            
             

             
              
          

           
             
          

           
            

              
          
           

4.  Discussion  &  conclusions 

Section 3.1 shows that the � method is able to automatically iden-
tify features of interest previously identified in an ad hoc manner, while 

also identifying new significant events. This means the � method can 
be applied to previously studied data sets and may find new results. 

Section 3.2 shows that the � method may be applied as soon as the 
physical context is known, to identify a set of features worthy of fur-

ther study. Both examples outline how the analyst uses their knowledge 

of the physical context to choose the defining set, trend, scalings, syn-

chronization, and feature length. For the sake of presentation we have 

outlined a broad range of possible necessary steps for choosing and syn-

chronizing the defining set. However, the practical application of the � 
method to a particular data set needs only a few steps. In practice we 

have found that taking the trend set to be the time mean and scaling by 

respective maxima serve as good default choices. 

The � method depends on the overlap of perturbed fields. For short-
duration features, or time series from sensors spaced far apart, it may 

be beneficial to time lag the time series before applying this method. 

For example, using the example of two thermistor chains in a lake from 

section 2.2, if the analyst is interested in temperature changes due to 

inflow, water masses inducing the change in temperature may pass the 

two thermistor chains separated by some time lag. In this case it may 

be preferable to make the defining set to be all of the sensors, but with 

an appropriate time lag on time series from one of the chains. If time 

lags are unknown but suspected, it may be possible to infer them by 

brute force application of the � method to a range of possible time lags. 
Finding the time lag appropriate for a given time series is a highly field-

and application-dependent problem and so must be left to the analyst, 

or other methods. 

If the knowledge of the physical context is incomplete, so that ex-

pected phenomena or time lags for synchronization are unknown, a 

modified version of the method may still be applied as follows. The 

defining set should include many, if not all, of the available time series. 

Since the phenomena and time lags are unknown, it may be that a fea-

ture of interest perturbs some but not all time series at a given time. 

The � method presented above is inappropriate, because a single time 
series being unperturbed will cause the method to miss the feature al-

together. There is a simple fix for this: define �(�) not as the pointwise 
minimum of the deviation series (equation (2)), but as some suitable 

intermediary curve. For example if the method is applied to a defin-

ing set with 10 time series, it is probably worth investigating features 

which result from the deviation of 8 of them, so �(�) could be taken as 
the third from minimum curve. Taking an intermediary curve for �(�) 
also ameliorates the problem of faulty or intermittent sensors. Note this 
          
              

           
            

             
               
     

        
           

           
            
           
           
           

            
             

           
          

          
         

          
         

          
            

           
           

             
            

           
   

          
          

         
           

          
           

            
             
           

         
              

            
          
           

          

modification essentially ignores time series whose time lags cause them 

to be unsynchronized with the rest of the data set. The level of the in-

termediary curve is another parameter that may be swept. In general, 

the weaker the knowledge of the analyst, the more parameters there are 

to sweep. The code runs on the order of seconds on modest hardware 

on all data sets we have tried, and is easy to parallelize for larger data 

sets or large sweeps, as necessary. 

There are many other immediate possible extensions of the � 
method. If positive and negative deviations from the mean are not 

equally important, the definition of � may be changed to a signed devi-
ation instead. If the data is streaming rather than complete, the method 

could be applied with a trend � defined by an appropriate recent win-
dow, resulting in an analogue of more sophisticated methods such as 

those presented in (Hill and Minsker, 2010). Features could be chosen 

by looking for extended deviations of � , rather than maxima. The most 

likely next application of the method for our research will be to apply 

it to time series pulled from numerical experiments in order to iden-

tify temporally under-resolved subsections which need to be rerun. The 

reader may have noticed any number of immediate modifications that 

could be made to the method as it was presented. 

Hurricane Nate’s identification over both choices of defining set in 

section 3.2 suggests that the � method could be employed to identify 
important features by their persistence across choices of defining set. 

Persistence over a parameter sweep is used as a measure of a topologi-

cal feature’s importance in topological data analysis (see section 2.4 of 

(Chazal et al., 2015) for an intuitive explanation). The � method could 
be run multiple times to sweep the choice of defining set as the pa-

rameter, yielding a final output of the most frequent features across all 

choices of the defining set. These persistent features would then be can-

didates for closer study. 

Clearly the � method is not as mathematically sophisticated as some 
other options. It is not designed to outline spectral information, iden-

tify weak synchronous signals, or automatically identify correct time 

shifts or choose the correct scaling. More sophisticated methods such as 

(Lyubushin, 2018b) address all of these concerns. However, even those 

readers with the resources to confidently apply one of the many vec-

tor time series methods available to yield results they are satisfied with 

may find the � method useful as a diagnostic. In many cases we have 
found that the � method’s incredible clarity and speed make it worth 
running before more sophisticated methods. For example the � method 
may be used to define time periods in a data set on which other meth-

ods are applied. Continuing the lake example, the method could be used 

to identify features defining cold and warm time periods before apply-

ing conventional methods to the data within those time periods. The 

results of the conventional methods may then be compared and con-
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trasted across different time periods. The advantage of this process is 

that the time periods are defined mathematically, rather than by visual 

inspection. 

In summary, the implementation of the � method to a given data 
set is straightforward and computationally inexpensive. The method is 

flexible and transparent, which allows it to be employed in a wide vari-

ety of contexts, and easily modified as necessary. After the initial tuning 

of the choices for a given context and problem, the method automates 

identification of a set of features which are worthy of further study. 
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