
PREDICTING PERSONALITY TYPE FROM WRITING STYLE

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Tanay Gottigundala

December 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/395034176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2020

Tanay Gottigundala

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Predicting Personality Type from Writing

Style

AUTHOR: Tanay Gottigundala

DATE SUBMITTED: December 2020

COMMITTEE CHAIR: Franz Kurfess, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Bruno da Silva, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Carrie Langner, Ph.D.

Professor of Psychology

iii

ABSTRACT

Predicting Personality Type from Writing Style

Tanay Gottigundala

The study of personality types gained traction in the early 20th century, when Carl

Jung’s theory of psychological types attempted to categorize individual differences

into the first modern personality typology. Iterating on Jung’s theories, the Myers-

Briggs Type Indicator (MBTI) tried to categorize each individual into one of sixteen

types, with the theory that an individual’s personality type manifests in virtually

all aspects of their life. This study explores the relationship between an individual’s

MBTI type and various aspects of their writing style. Using a MBTI-labeled dataset

of user posts on a personality forum, three ensemble classifiers were created to predict

a user’s personality type from their posts with the goal of outperforming existing

research as well as outperforming the test-retest reliability of online questionnaire-

based personality assessments. With the increasing amount of textual data available

today, the creation of an accurate text-based personality classifier would allow for

user experience designers and psychologists to better tailor their services for their

users.

iv

ACKNOWLEDGMENTS

Thanks to:

• I would like to express my gratitude to Dr. Franz Kurfess, my advisor, for his

assistance and support at every stage of this process.

• I would like to extend my thanks to Dr. Carrie Langer and Dr. Bruno da Silva

for their insightful comments and suggestions.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

2 Background and Related Work . 3

2.1 Myers-Briggs Personality Type Indicator 3

2.1.1 Testing Categories . 3

2.1.2 Shortcomings of Myers-Briggs 4

2.2 Applicability of MBTI to Software Design 6

2.3 Automation of Personality Type Prediction 9

2.3.1 Recurrent Neural Networks and Long Short-Term Memory . . 9

2.3.2 Gradient Boosting . 11

3 Implementation . 13

3.1 Data . 13

3.2 Libraries . 14

3.2.1 NumPy . 15

3.2.2 pandas . 15

3.2.3 Natural Language Toolkit (NLTK) 16

3.2.4 Scikit-learn . 18

3.3 Preprocessing . 18

3.3.1 Data Cleaning . 19

3.3.2 Tokenization . 20

vi

3.3.3 Stemming . 20

3.4 Term Frequency-Inverse Document Frequency (TF-IDF) 21

3.5 Truncated Singular Value Decomposition (Truncated SVD) 23

3.6 Classifiers . 24

3.6.1 Multiclass Classification . 24

3.6.2 Ensemble Learning . 25

3.6.3 Random Forest Classifier . 26

3.6.4 Extra Trees Classifier . 27

3.6.5 Gradient Boosting Classifier 28

3.7 Cross Validation . 30

3.7.1 Stratified K-Fold . 30

4 Discussion . 32

4.1 Results . 32

4.2 Comparison To Existing Work . 33

4.3 Comparison To Test-Retest Rate . 33

4.4 Ethical Considerations . 34

5 Future Work . 35

5.1 Dataset . 35

5.2 Classification . 36

5.3 Regulation of Target Advertising . 36

6 Contributions . 38

7 Conclusion . 39

BIBLIOGRAPHY . 40

vii

LIST OF TABLES

Table Page

4.1 Accuracy of Each Classifier . 32

viii

LIST OF FIGURES

Figure Page

2.1 The four categories of MBTI and their characteristics as described
by a Business Insider article [16] . 4

2.2 The frequency of each personality type in the population of the
United States as stated by Isabel Briggs Myers [43] 5

2.3 A simple example of a decision tree that classifies animals [12] . . . 12

3.1 The frequency of each personality type in the population vs the dataset 14

3.2 The frequency of each dimension of MBTI in the dataset 15

3.3 The frequency of each dimension of MBTI in the US population [35] 16

3.4 Average comment length and comment length variance by MBTI type 17

ix

Chapter 1

INTRODUCTION

Attempting to describe and explain individual differences in behavior and thoughts

has been a highly researched topic in personality psychology in the past century. In

1921, Carl Jung published Psychologische Typen, in which he theorized that people

could be categorized using a personality typology. In his original theory of psycho-

logical types, he proposed three separate dimensions: extraversion vs introversion,

sensation vs intuition, and thinking vs feeling [33]. Jung’s early theories were iter-

ated upon by Katharine Cook Briggs and Isabel Briggs Myers with the creation of the

Myers-Briggs Type Indicator (MBTI). The MBTI has served as an instrument that

people have used in attempts to better understand their own beliefs and motivations.

While the reliability and validity of the MBTI has often drawn criticism, it remains

the most widely used personality measure.

Our personality manifests in all aspects of our life, and it affects the way we perceive

and interact with the world. This study specifically focuses on the predictive strength

of an individual’s MBTI type based on their posts and comments from an online

personality forum. Existing research in this area has shown that there is a correlation

between between an individual’s writing and their personality type, but they have not

yet managed to outperform the test-retest error of the MBTI, which stands at 38.82%

[15]. This represents the rate at which an individual received identical personality

classifications when they took the test twice with a 5-7 month break between the

attempts.

1

With the increasingly abundant amount of textual data available today [42], clas-

sifying an individual’s personality type can become a more accurate tool than the

standard questionnaires used in personality classification today. More accessible and

accurate personality classifiers serve as a useful tool for user experience designers by

allowing for better understanding of their users and customized experiences based on

personality type. It is also important for consumers to understand what assumptions

can be made based on their social media presence, with targeted ads becoming more

intrusive and the advertising-based business model gaining popularity. The MBTI

also serves as a tool that can help facilitate introspection for individuals, helping

them better understand their thoughts, behaviors, and interpersonal relationships.

This study explores a machine learning approach to classifying an individual’s MBTI

type based on their writing style.

2

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Myers-Briggs Personality Type Indicator

The Myers-Briggs Type Indicator (MBTI) is a widely used personality classification

tool that attempts to identify behavioral and cognitive patterns in people. The theory

that people’s seemingly unpredictable variation in behavior and thought patterns can

actually be interpreted as consistent and orderly became increasingly popular in the

early and mid 1900s. This idea was pioneered by Carl Jung, a renowned psychologist

and student of Sigmund Freud. In his book, Psychological Types [33], Jung designed

a psychological typology that he believed could reduce people’s personalities into a set

of classifications, which he believed was key to understanding other people and their

motivations. Using this as the backbone of their research, Isabel Briggs Myers and

Katharine Briggs iterated on Jung’s original theory, formulating a set of hypotheses,

which were then used to create the four dichotomies that are currently viewed as the

main categories for the test [18]. This allowed for a new wave of personality research

since it became easier to study personality in a quantitative manner.

2.1.1 Testing Categories

The MBTI is split up into four main categories: extraversion vs introversion, sensation

vs intuition, thinking vs feeling, and judging vs perceiving. These four dichotomies

are described in further detail in Figure 2.1. The combination of these four binary

classifications gives us sixteen total possible personality types. Each personality type

has distinct characteristics and the combinations of multiple of these categories have

3

Figure 2.1: The four categories of MBTI and their characteristics as de-
scribed by a Business Insider article [16]

unique effects. It’s also important to note that each of these categories are on a

continuum, so individuals within the same classification will still have noticeable

variation.

2.1.2 Shortcomings of Myers-Briggs

While it is estimated that about five million people take the MBTI test each year,

the validity of this test has long been disputed. Critics of the MBTI have questioned

nearly every aspect of the MBTI [18], including its excessive reliance on Jungian

theories, categorical classification, and self-reported metrics.

4

Figure 2.2: The frequency of each personality type in the population of
the United States as stated by Isabel Briggs Myers [43]

A lot of the criticism of the MBTI is valid, with most of Jung’s theories lacking

empirical evidence to support his claims. In addition, Jung’s categories have drawn

criticism from the basis that the covariance between the pairs of variables within each

category is limited. Critics have also taken issue with the fact that the MBTI attempts

to classify people into one of two types within each category when in practice, most

people fall somewhere in the continuum between the two classifications. This is

problematic because an individual who only has a slight preference for a certain

metric will be classified in the same way as someone with a strong preference while in

reality, that individual may have a combination of characteristics from both sides of

the spectrum. Finally, the self-reported responses that the MBTI test asks individuals

to take can be problematic. While questionnaires are inherently lacking in validity, it

is also important to consider that each of the categories are not bimodally distributed

5

as one might expect. This leads to an unbalanced distribution of personality types

as shown in Figure 2.2.

Another potential shortcoming of the MBTI is the lack of evidence for the reliability

of the dimensions. The test-retest error of the most popular MBTI questionnaire is

38.82%. In other words, if an individual took a MBTI questionnaire and received a

classification, the chance of receiving the same classification is 38.82%. This number

is quite low and indicates that the MBTI suffers from poor test-retest reliability [15].

In general, the introversion vs extraversion scale has the highest reliability and the

sensation vs intuition scale has the lowest reliability.

In spite of its shortcomings, the MBTI has been the most popular and well-researched

measure of personality typology. One of the main motivations of this study was to

eliminate the lack of validity that the self-reported test brings by creating a system to

classify users without asking them any direct questions. Despite the flaws described

in this section, empirical evidence has shown that certain aspects of the MBTI serve

as good predictors of certain behaviors and preferences.

2.2 Applicability of MBTI to Software Design

The notion that an individual’s MBTI type is correlated with their behavior and

thoughts is backed by empirical evidence [21], but research specifically involving

the correlation between MBTI and human computer interaction has been relatively

sparse. Existing research in this topic has generally focused on the user experience

differences between various personality types. The dimensions that these studies have

measured include software usability, user interface design, and task completions.

6

The link between personality and software usability is hard to measure because both

are hard to accurately measure in a quantitative manner. In one study, a researcher

attempted to examine the correlation between the MBTI and the Software Usability

Measurement Inventory (SUMI), which is a widely used user experience tool that at-

tempts to measure and maximize an application’s usability [37]. The study examined

various MBTI types against the subscales of the SUMI, which include efficiency, af-

fect, helpfulness, control, and learnability. While most of the subscales did not show

a correlation with MBTI, the helpfulness metric showed a statistically significant

correlation. Helpfulness aims to measure the extent to which a piece of software is

self-explanatory as well as things like documentation and user guides. This indicates

that MBTI can impact software usability.

Dr. James Pennebaker’s research has shown that there is a strong correlation between

various aspects of an individual’s writing style and certain personality traits. He found

that people counting the different kinds of words that a person says could be indicative

of how they view the world [58]. This research also suggested that variations in an

individual’s feelings of insecurity, threat, and emotional state. Pennebaker created a

classification method that classified each type of word into one of several categories.

This was an important finding because it demonstrates that aspects of an individual’s

psychology can be seen in their writing.

One study attempted to find patterns in personality traits on Stack Overflow using

IBM Personality Insights. They found that users with high post scores and high

reputation on Stack Overflow tended to exhibit a greater degree of Openness and

Neuroticism [2]. They also found an inverse correlation between the popularity of an

answer and the agreeableness score of that user. These are valuable insights because

they indicate that certain online platforms tend to draw in users of some personality

types better than others.

7

Other researchers have attempted to optimize reward contingencies in video games

based on the personality of each individual user [44]. They found that optimizing

reward contingencies based on player personality helped keep players motivated in

the game. While some players tend to prefer rewards based on performance, others

tend to prefer rewards for just completing the tasks. While both of these reward types

performed better than no rewards, the difference between the two reward contingen-

cies could serve to increase a player’s intrinsic motivation. This study showed that

personality-based customization could have a significant effect on the user experience.

An individual’s personality type also affects the way they complete tasks in software

applications. There is a statistically significant correlation between personality type

and task-oriented software use [39]. In a study examining how personality interacts

with software use, researchers found examples of tasks where MBTI factors had a

strong influence on what and how tasks get accomplished. They noted that ”Judgers

(J) tended to delete or move their email to folders while Perceivers (P) tended to keep

email in their inbox even when they didn’t need it anymore” and that Feelers (F)

were more likely to read reviews than Thinkers (T). These differences are important

to keep in mind when designing software because using them appropriately can help

increase conversion rates throughout an application.

In summary, existing research suggests that an individual’s MBTI type affects the way

they interact with software. This highlights the importance of incorporating users’

personality types when designing software. Designing software that is customized by

a user’s personality type could be a paradigm shift in the field of user experience, and

the implementation of an automated personality type predictor could be instrumental

in facilitating it.

8

2.3 Automation of Personality Type Prediction

The practice of predicting personality type without a self-reported questionnaire

would be a significant advancement in personality psychology. Existing research has

shown that predicting personality type from writing style through machine learning

systems is possible. Three main pieces of existing research will be used in this study

as a point of comparison. Two models used recurrent neural networks (RNN) with

long short-term memory (LSTM) and another used gradient boosting. The following

subsections will provide a brief overview of the methods used in these studies.

2.3.1 Recurrent Neural Networks and Long Short-Term Memory

Recurrent Neural Networks (RNNs) use past outputs as inputs while having hidden

states. While this type of network is often slower, it has several advantages in the

field of Natural Language Processing (NLP). The first advantage is that it can process

inputs of any length without increasing the size of the model. Another advantage

which is that it keeps track of historical information when classifying an input. This

is especially useful in this case because it helps the network understand the context

in which something was said. They achieve this by executing in loops, which allows

the information to persist [53]. Finally, the weights are shared across time, which is

a key differentiating feature from a normal feedforward network.

Long Short-Term Memory (LSTM) networks are a type of RNN that are capable of

learning long-term dependencies [28]. Remembering information for long durations

of time is their distinguishing behavior. LSTMs work similarly to normal RNNs, but

they have some key differences. While RNNs have a repeating input layer, LSTMs

have four that interact with each other. This allows the model to remember infor-

9

mation for long periods of time and consequently understand context better. These

features are ideal for NLP problems such as this one since the context of words in a

sentence and sentences in a paragraph are important.

Hernandez and Knight used text samples from a personality forum as their primary

dataset[27]. This is the same dataset that this research will be using and will be

described in further detail in the next section. They constructed a binary classifier

for each aspect of the personality type and got a 28 percent accuracy rate. They

discussed the fact that half of the people that retest their MBTI type get a different

type the second time, which is a fairly high error rate. They hoped that their system

would work well as a verification system for the test. The main drawback to this

piece of research was the somewhat low accuracy rate, but the fact that textual data

is becoming available in abundance makes the prospect of automating personality

type prediction with higher accuracy an increasingly plausible idea given a larger

dataset.

Ma and Liu used text samples from books of authors with known personality types

as their dataset [40]. One significant flaw in their research was the size of the dataset,

which was quite small for a deep learning model. This naturally caused them to

overfit their model to the training data. They could’ve addressed this in part by

adding dropout and regularization. In addition, they also used a relatively simplistic

loss function that did not adapt based on how close the prediction was. In other

words, they penalized the same amount if an INFJ was classified an ISFJ as they did

if it was classified and ESTP. This led to a strange distribution of predictions where

we might expect the classifier to miss closer than it did.

10

2.3.2 Gradient Boosting

Currently, the most effective model for predicting personality type seems to be Ex-

treme Gradient Boosting. One study found that when performing binary classifica-

tion, they were able to achieve up to 86% accuracy on individual MBTI categories

[1]. This is a significant finding because psychology research indicates that specific

MBTI categories can influence the way users interact with software. Their study

uses the same dataset used in this paper. This study highlighted the fact that some

categories of the MBTI are more likely to noticeably manifest in an individual’s

writing style. Another key takeaway from this study was the effectiveness of Term

Frequency–Inverse Document Frequency (TF-IDF), which essentially tries to assign

words an importance level based on their frequency. One of the most effective parts

of this paper was its’ robust preprocessing, and a lot of the preprocessing done in

my study, which will be explained in the implementation section, derives its influence

from their research.

Their main advancement to the state of the art was the use of a library called Extreme

Gradient Boosting (XGBoost). Gradient boosting is a popular machine learning

technique that is often used in classification problems and it works by building an

ensemble of prediction models [45]. Ensembling is the practice of combining multiple

machine learning models to build one strong predictive model. Gradient boosting and

ensembling are also very effective at limiting overfitting compared to other approaches.

These ensembles generally tend to consist of weak prediction models such as decision

trees, which are non-parametric algorithms with a tree-like structure. In a decision

tree, a node represents an attribute, with each branch representing the outcome of

that attribute. A leaf in a decision tree describes the output, which would be a

personality type identifier (e.g. ENFP) in this case, given a certain input, which

11

would be a user’s post data. Figure 2.3 below is a simplified example of a decision

tree.

Figure 2.3: A simple example of a decision tree that classifies animals [12]

When these decision trees are iteratively constructed, it allows for more accurate

predictions by attempting to correct each model based on the residual errors of the

previous one. These steps are repeated with each iteration attempting to fit the

residuals of the previous predictor. The final prediction made from boosting takes into

account the aggregate result from the predictions made by the models. Amirhosseini

and Kazemian showed the effectiveness of ensembles and boosting, and consequently

influenced the direction of this research.

12

Chapter 3

IMPLEMENTATION

3.1 Data

The dataset used in this research was scraped from an online personality forum on

personalitycafe.com and it is freely available on Kaggle, an online data science com-

munity [32]. This dataset contains posts on the forum from 8675 users. Each user

has 50 text samples separated by a ‘|||’ sequence, which totals to 433,750 total user

comments. These users each have a labeled MBTI type with all four dimensions:

introversion (I) - extraversion (E), intuition (N) - sensing (S), thinking (T) - feeling

(F), and judging (J) - perceiving (P). The distribution of personality types in this

dataset is quite different from the overall population distribution, as shown in Figure

3.1. Intuitively, it is understandable that introverts would have a larger presence on a

semi-anonymous online forum. Figure 3.2 describes the distribution of the prevalence

of each individual MBTI attribute in the dataset. This dataset appears to have a

significantly distorted proportion of people with each attribute. higher proportion of

people with the Introversion and Intuition attributes in their types than their Ex-

traversion and Sensing counterparts. In the general population, the distribution of

the the individual MBTI attributes is more balanced, as seen in Figure 3.3. The

users from this dataset tended to be heavily introverted while the general population

tended to be fairly split in that category. In addition, people with the Intuition at-

tribute were heavily overrepresented when compared to the the population numbers.

The Thinking-Feeling and Judging-Perceiving dimensions were relatively consistent

with the population statistics. It’s important to note that this dataset does not prop-

13

Figure 3.1: The frequency of each personality type in the population vs
the dataset

erly represent the population because it was not randomly sampled and likely has

self-selection bias. This means that the characteristics under which the individuals

in this group were selected suffers from sampling bias [25].

Upon first look at the dataset, there don’t seem to be obvious differences between the

length of the posts or variance of the length, as shown in Figure 3.4.

3.2 Libraries

The main libraries used in this study were NumPy, pandas, Natural Language Toolkit

(NLTK), and Scikit-learn. This implementation was written in Python 3.7.6.

14

Figure 3.2: The frequency of each dimension of MBTI in the dataset

3.2.1 NumPy

NumPy is an effective tool for managing and manipulating large array-like data [23].

NumPy is an open source project that was first released in 2005, iterating on the work

done by earlier numerical computing libraries, with the goal of simplifying the task of

working with big data in Python. It is widely used in machine learning applications

because of its ability to work with large matrices and higher order functions. The use

of NumPy in this study is limited to the evaluation step of the model.

3.2.2 pandas

pandas is a popular, open source data analysis and manipulation tool and its DataFrame

object is often used to work with machine learning models [59]. pandas was written

by Wes McKinney in 2008 in an attempt to build a quantitative analysis tool for

15

Figure 3.3: The frequency of each dimension of MBTI in the US population
[35]

financial data. It currently serves as a building block for machine learning because of

its flexibility and ease of data manipulation. This library allows for easy importing of

various forms of data, including comma-separated values (CSV), excel spreadsheets

(XLS, XLSX), and JSON. It works best with table-like data, and is popular due to its

emphasis on performance with big data, which is critical in machine learning. It con-

tains functions that simplify data aligning, reshaping, slicing, and mutating, among

other applications. The DataFrame object, a two-dimensional labeled data structure,

was the primary data structure used in this research.

3.2.3 Natural Language Toolkit (NLTK)

Natural Language Processing (NLP) is the practice of helping a computer understand

and manipulate natural language data through software [7]. NLP has been extensively

16

Figure 3.4: Average comment length and comment length variance by
MBTI type

studied in recent decades. It has been a cornerstone for services that attempt to

analyze and generate text and speech data, such as virtual assistants (e.g. Google

Assistant, Siri, Alexa), chatbots, and sentiment analysis. NLP research has even

reached the point where models are able to generate text that is indistinguishable

from human text [24]. This project focuses on natural language understanding, using a

popular NLP library called Natural Language Toolkit (NLTK). NLTK was developed

in 2001 with the goal of simplifying the analysis and manipulation of language data

[4]. This library was used primarily in the preprocessing phase of this study to prepare

the data for training.

17

3.2.4 Scikit-learn

Scikit-learn is a machine learning library that offers a number of high-performance

algorithms that make tasks like classification, regression, and clustering accessible

in a high-level language [46]. Scikit-learn has been used by researchers and machine

learning practitioners extensively and it has proven itself as a state of the art machine

learning library. It was developed by David Cournapeau and Matthieu Brucher,

and released in 2010. This library was picked for this study because of its robust

classification models and preprocessing functionality. Scikit-learn is the library that

this study relies on most, utilizing its Ensemble, Decomposition, Feature Extraction,

Model Selection, and Pipeline modules [10]. These modules will be discussed in

further detail in the upcoming subsections.

3.3 Preprocessing

Preprocessing for this library was primarily done through several NLTK functions

and it was based on the preprocessing done by [1], which was discussed in the pre-

vious section. This is an important phase of the study because removing irrelevant

data from the dataset in this phase significantly improves the model’s performance.

The preprocessing phase for this study consisted of three main parts: data cleaning,

tokenization, and stopword removal. All of these are crucial components to perform

on this dataset in order to achieve optimal performance, and they will be discussed

in further detail in the upcoming subsections.

18

3.3.1 Data Cleaning

Data cleaning is an important component of machine learning in classification prob-

lems and is an essential technique in the preprocessing phase for raw data [31]. Data

cleaning allows for the reducton of noise, inconsistencies, and errors in a dataset.

The dataset used in this study contains 50 comments from each individual user, and

because it allowed for virtually any text to be posted by the user, it contains a siz-

able amount of data that contains insignificant information for our purposes. The

following list describes the techniques employed in the data cleaning phase of this

experiment, with justification provided:

• Links were removed from this dataset because they often contain information

that does not contain any discernible meaning without exploring the contents

of the link (e.g. http://www.youtube.com/watch?v=EY21CYqGaMw).

• All text was turned into upper case because the important information that

we want to examine in this dataset involves context and we have little use for

predicting sentence beginnings. In addition, due to the informal nature of the

data source, capitalization is an unreliable source of information.

• Information in square brackets was removed because it usually either contained

information that paraphrased text that was already written or nonsensical text

that would only serve to obfuscate the data.

• Punctuation and stop words were removed because this is a standard NLP

practice since both of those components generally carry little weight for the

overall meaning of textual data for this purpose. Stop words in English refer

to words that generally do not affect the meaning of a sentence, such as “the”,

“and”, and “was”.

19

• Words with numbers were removed from this dataset due to an abnormally

high amount of nonsensical alphanumeric sequences and unicode characters (e.g.

’x93a’, ’'’).

Most of the cleaning of this dataset was performed using regular expressions since

it tends to be the best one for performance. The removal of these features had a

significant effect on the accuracy of the algorithm and this will be discussed in the

next section of this paper.

3.3.2 Tokenization

Tokenization refers to the task of splitting natural language data such as a user’s

posts into smaller units. These smaller units typically tend to be words and num-

bers, which is the case in this study. This process is an essential preprocessing step

that allows for machine learning algorithms to make sense of textual data. For the

purposes of this study, tokenizing by words is the appropriate method, and this is

generally a fairly simple task. Because of the lack of need for special features that

NLTK’s word tokenize and spaCy provide, the main metric used in picking a tokenier

was performance. Tokenization was performed using NLTK’s regex tokenize function

because it is typically regarded as the most efficient tokenizer [38].

3.3.3 Stemming

In most natural language datasets, it is common practice to remove suffixes of words in

order to generate their root words. For example, if the word is ”jumping”, the process

of stemming would shorten this to its root word ”jump”. This is a good practice in

a lot of NLP applications because the use of variations of a word does not generally

change the meaning of the sentence. The first modern implementation of this practice,

20

which was called Porter Stemming, was developed by Martin Porter in 1980 [48] as a

means of improving the process of information retrieval from natural language data.

In this study, Porter2 Stemming was used to perform stemming on this dataset.

Porter2 was built in a special language called Snowball, which Porter is also credited

with creating. According to Porter, the original Porter stemmer inaccurately stems

words about 14 percent of the time, which is a significant shortcoming. Porter created

the Snowball language as a system that allows for the creation of properly defined

stemming algorithms. Porter2 Stemming was chosen because it is generally better

than Porter Stemming for most applications, and Lancaster Stemming is typically

much more aggressive [54]. its also important to note that the Snowball stemmer

has implementations in a large number of natural languages, which allows for this

study to be better expanded in the future. While Porter2 generally performs fairly

well in most cases, it is not a perfect algorithm. For example, using the Porter2

algorithm on the word ”multiply” returns the stem ”multipli”. This is due to the

fact that stemming relies on a set of somewhat rigid rules rather than a dictionary of

mappings. Porter2 performs about five percent better than its predecessor and avoids

the overstemming problem that Lancaster often runs into, which makes it the clear

choice for this study [26].

3.4 Term Frequency-Inverse Document Frequency (TF-IDF)

When processing natural language data, it is important to define a structure that

scores each word in the dataset. Because machine learning algorithms work best with

numbers, we need another algorithm that can translate the words in our input into a

vector. One popular and efficient algorithm for performing this is Term Frequency-

Inverse Document Frequency (TF-IDF). TF-IDF aims to measure the relevance of a

word to a document in a collection of documents [11]. In other words, the importance

21

of a word in one particular sample goes up when it appears at a higher frequency

than in the collection of samples.

TF-IDF is composed of two main components that work together to create a weight

for each word: Term Frequency (TF) and Inverse Document Frequency (IDF) [41].

Term Frequency refers to the proportion at which a term appears in a document. The

following equation describes how TF is calculated:

TF (t) = nt/N , where nt is the number of occurrences of term t in the document and

N is the total number of terms in the document.

Inverse Document Frequency is a heuristic that attempts to measure the relative

importance of the term. This is an important component of this process because

TF alone would simply put weight on words that occur most frequently. This would

put an unreasonable amount of weight on words like “MBTI” since they occur very

frequently on likely every document in this dataset. IDF relieves this shortcoming by

decreasing the weight of words that occur in a lot of documents, while increasing the

weight of words that occur in fewer documents. It does so by applying this equation

on the term:

IDF (t) = ln(D/nD), where D is the total number of documents and nD is the number

of documents that contain the term t.

TF-IDF is then calculated using the product of these two equations:

TFIDF (t) = TF (t)× IDF (t)

As a whole, TF-IDF places the most weight on words that occur frequently in one

document while occurring infrequently in the collection of documents as a whole.

Vectorization is an important process in text classification and TF-IDF provides a

relatively reliable measure that machine learning algorithms can work with.

22

3.5 Truncated Singular Value Decomposition (Truncated SVD)

One key problem with large datasets like the one used in this study is the difficulty

of processing data with such high dimensionality. Truncated Singular Value Decom-

position (TSVD) is Scikit-learn’s implementation of Singular Value Decomposition

(SVD) and it is widely used in in NLP applications. SVD is a useful linear alge-

bra tool that performs data reduction on high-dimensional data. SVD helps reduce

large amounts of data, like the vectorized textual data used in this study, into its

key features that are necessary for analyzing this data [9]. It serves as a preliminary

step for a large number of machine learning applications. This technique allows us to

tailor the data to a coordinate system to solve a specific problem by allowing us to

understand the dominant patterns of the data. This technique allows us to tailor a

coordinate system to data in order to understand dominant patterns of the data [6].

SVD works by decomposing a matrix into several component matrices, each of which

contain key properties of the original matrix.

The equation for SVD works as follows: A = U × Σ × V T , where A is the original

m × n matrix that we want to decompose, U is an m × m matrix, Σ is a m × n

diagonal matrix, and V T is a transposed n × n matrix. To find the most relevant

features in the dataset, the largest k singular values are selected from Σ. TSVD is a

slight variation of SVD that only uses the first k columns of U and V [52].

The definitions of the main parameters of the Scikit-learn implementation of TSVD

as well as the values passed are described below:

n components - 10. This refers to the dimensionality of the output data.

n iter - 5. This refers to the number of iterations used by the SVD solver.

23

3.6 Classifiers

Classification is a subset of supervised machine learning problems that attempts to

predict the class that an element belongs to based on features of that data. Text clas-

sification is an increasingly popular use case, with applications like content tagging,

search engine optimization, and spam filtering [22]. This study employs multiclass

text classification in an attempt to predict users’ MBTI based on their text sam-

ples. One popular approach to solving text classification problems has been ensemble

learning, which attempts to use multiple classification algorithms and aggregate the

results in order to achieve better predictive performance. In this study, three Scikit-

learn ensemble learning methods were examined: Random Forest Classifier, Extra

Trees Classifier, and Gradient Boosting Classifier. The performance of each of these

classifiers is evaluated in an attempt to find the best ensemble classifier for this use

case.

3.6.1 Multiclass Classification

Of the sixteen personality type indicators that the MBTI presents, there are four

individual dimensions. For this study, this means that there are two options for

classification: binary classification and multiclass classification. The first gives us

the option to create four separate binary classifiers, each of which would tackle one

dimension of the MBTI (i.e. One classifier might attempt to classify a user as either

an Introvert or an Extrovert). This is the approach that most existing research in

this realm have taken. The other approach is multiclass classification, which attempts

to fit a user into one of several existing classes. In this case, that would mean that

a single classifier would attempt to classify all four dimensions of an individual’s

personality type. This is the approach that has been chosen in this study because

24

predicting all four dimensions of an individual’s MBTI has been shown to be more

beneficial to understanding an individual than any individual component due to the

unique interactions that each component of the MBTI have with each other [51].

Choosing a multiclass approach allows for us to define a loss function that focuses

on getting all four dimensions correctly since the model will be penalized the same

amount regardless of how close it may have been.

3.6.2 Ensemble Learning

Ensemble learning, in the context of classifiers, is the practice of combining decisions

from multiple classification models in order to achieve higher accuracy than any of

the models alone [49]. Ensemble algorithms generally reduce the amount of noise,

bias, and variance that a typical machine learning model might suffer from. The

main disadvantages of ensembles is their somewhat poor computational performance

as well as the reduced interpretability of the model. This means that figuring out why

a certain prediction was made is much harder in ensembles compared to traditional

machine learning algorithms.

There are two primary families of ensemble methods: averaging methods and boosting

methods. Averaging methods, as the name suggests, involve averaging the predictions

of several estimators. This process reduces the variance that a single estimator might

encounter. Boosting methods, on the other hand, call for the sequential building of

estimators, with each consecutive one attempting to reduce the bias of the previous

estimator. Extra Trees Classifier and Random Forest Classifier are both averaging

methods while Gradient Boosting Classifier is a boosting method.

25

3.6.3 Random Forest Classifier

Random forest is an ensemble method that is built on top of the concept of decision

trees, which are often considered the building blocks of random forests. In the training

phase of a random forest, a large number of decision trees are created from the input

data. Each of these decision trees gets a random subsample of the input data and

each node in the decision tree represents a feature [19]. These samples are drawn

with replacement, which means that each sampling unit can be selected more than

once. Random forests are particularly useful because of their tendency to introduce

randomness while constructing the classifiers. This is a good technique because it

reduces the variance of the base estimators and consequently reduces overfitting.

Random forest generally performs better than most other machine learning algorithms

on outliers as well as high-dimensional parameter spaces.

In the construction process of each tree in a random forest, it is important to figure

out the importance of each feature and place the feature with highest importance at

the root of the tree. Traversing down the tree generally also indicates a greater level

of uncertainty. In order to calculate the level of uncertainty of each node, the Gini

index is used. The Gini index measures how important a feature is to classification by

figuring out the amount of randomness in a data point [56]. It’s a number ranging from

0 to 0.5, indicating the distribution of paths down the decision tree. The following

equation is used to calculate the Gini index of a particular node in a decision tree:

Gini = 1−
∑n

i=1(pi)
2, where pi represents the probability of a sample being classified

correctly to a certain class. A node with a low Gini index means that it has a higher

level of purity. This indicates that the chance of incorrectly labeling a data point on

that node is low, which is the rationale behind placing it higher in the decision tree.

26

The Scikit-learn implementation of random forest calls for two main parameters:

n estimators and max features. The parameters used for this implementation as well

as the definitions of each parameter are described below.

n estimators: 200. This refers to the number of trees in the forest. Using more

trees in a random forest typically increases accuracy, but the algorithm suffers from

diminishing returns after a certain point.

max features: sqrt. For classification tasks, it is generally recommended to use the

square root of the number of features in the dataset (i.e.
√
num features).

criterion: gini. This is the function that measures the impurity of each node in the

decision trees. Gini is computationally faster than entropy, which is the alternative

measure.

bootstrap: True. The trees are samples with replacement.

3.6.4 Extra Trees Classifier

Extra trees, also known as extremely randomized trees, are based on random forests

with two key distinctions. The first is that extra trees, unlike random forest, samples

without replacement [3]. This means that extra trees uses the entire original sample,

which consequently increases the amount of variance. The second distinction from

the random forest algorithm is the method that extra trees uses to split the nodes.

While random forest chooses an optimum split at each node by looking for the best

discriminative thresholds, extra trees makes this split randomly for each feature. After

choosing the split, both algorithms work identically, attempting to choose the best

splits between the subsets of features. While this increases the bias of the model,

the advantages are two-fold [20]. Because extra trees does not calculate the optimal

27

split and instead chooses the split randomly, the computational time is significantly

reduced. In addition, this further reduces the amount of variance in the model. It is

also important to note that extra trees performs with very similar accuracy to random

forest.

Scikit-learn’s implementation of extra trees calls for the same main parameters as

random forest. The size of the model is O(M ×N × log(N)), where M is the number

of trees and N is the number of samples. The parameters used for this study are

shown below.

n estimators: 180.

max features: sqrt.

criterion: gini.

bootstrap: False. The whole dataset is used to build each tree.

3.6.5 Gradient Boosting Classifier

Gradient boosting, also known as gradient boosted decision trees, is a type of ensem-

ble method that relies on the concept of boosting. Boosting is the idea of improving

weak models iteratively until they become stronger predictors [57]. Boosting relies

on filtering observations that a weak learner can predict on its own while developing

another learner that can handle the observations that the existing learners have diffi-

culty predicting [8]. Gradient boosting was first proposed as a boosting paradigm in

1999, when it proved its effectiveness in classification and regression problems when

using regression trees [17].

28

Gradient boosting relies on three main components: loss function, a weak learner, and

an additive component. In most classification cases, a differentiable logarithmic loss

function such as deviance are used. In this case and for most use cases of gradient

boosting, regression trees are used as the weak learners. Regression trees, unlike

decision trees, accept continuous values rather than binary values. Similar to random

forest and extra trees, the regression trees are constructed using algorithms to measure

the quality of the split in an attempt to find the best split. The significance of using

regression trees instead of decision trees is that it gives us the ability to combine

the outputs of the other regression trees in order to correct for errors in predictions.

The Friedman mean squared error is the criterion used to measure the quality of

the split and it refers the the distance of the prediction from the actual values. The

last component of gradient boosting is the additive component, which is necessary

because existing trees in a gradient boosting model model cannot be changed. The

additive component used in most gradient boosting applications is called functional

gradient descent, which is similar to gradient descent. Functional gradient descent

attempts to create each new tree to reduce the loss values of existing predictors.

The parameters below were used in this implementation of gradient boosting using

the scikit-learn api. The two main parameters that were optimized were n estimators

and learning rate.

n estimators: 200.

learning rate: 0.03.

criterion: ’friedman mse’. The Friedman mean square error function is based on

the mean square error function but it also includes an improvement score metric that

Friedman describes in his paper [17].

loss: deviance.

29

3.7 Cross Validation

Cross validation is a technique that is commonly used to evaluate machine learning

models in an attempt to approximate the usefulness of the model on data that it

has not seen before [5]. It is particularly useful when attempting to find a good

predictor given a small dataset. In k-fold cross validation, the main parameter, k,

determines the number of groups that a dataset should be split into. These groups

are referred to as folds and a total of k− 1 folds, each of size n/k where n is the total

number of data points, are used to train the model. This process is repeated k times,

with each iteration using a different fold to evaluate the model. The advantages of

this process are increased generalizability on unseen data and a lower likelihood of

overfitting [29]. It typically yields less biased estimates than the traditional train-test

split method. K-fold cross validation is often referred to as the gold-standard for

evaluation a model’s performance and usually outperforms the alternatives.

Choosing the appropriate k value can be a challenge in k-fold cross validation. The

general rule is that that a k value of 5 or 10 is ideal for limiting the amount of bias

and variance [30]. Choosing a k that is too high limits the number of samples that

can be generated while choosing a k value that is too low can cause increased bias.

3.7.1 Stratified K-Fold

This study uses a slight variation of k-fold cross validation called stratified k-fold.

As discussed earlier in this paper, the distribution of each personality type in this

dataset is very imbalanced. Stratified k-fold is better choice in this case because of the

imbalanced class distribution of this dataset. Stratified k-fold tackles this problem by

30

keeping the distribution of the datasets the same in each of the folds. The Scikit-learn

implementation of Stratified k-fold’s parameters are described below.

n splits: 5. This is the number of folds used.

shuffle: True. This shuffles the data prior to creating the folds.

31

Chapter 4

DISCUSSION

4.1 Results

Table 4.1: Accuracy of Each Classifier
Model Accuracy
Random Forest 45.35%
Extra Trees 45.29%
Gradient Boosting 44.88%

The results of this experiment indicate that predicting an individual’s MBTI using

their writing style from comments on online forums is possible with reasonable accu-

racy. The three classification methods used in this experiment performed somewhat

similarly when their parameters were optimized, as shown in Table 4.1.

These results show that random forest and extra trees performed very similarly to

each other. This was expected since extra trees is considered an iteration of random

forest. Despite their similarity in accuracy, extra trees is the better choice because it is

less computationally expensive due to the way the splits are created in the estimators.

This means that a classifier with same number of estimators would make a prediction

much faster in extra trees. Extra trees also has less variance than random forest,

which means that we can expect greater precision from extra trees.

Extra trees and random forest surprisingly performed better than the gradient boost-

ing implementation in this study. While gradient boosting typically performs better

on most datasets after parameter optimization, it likely performed marginally worse

in this case due to the amount of noise present in the data, which is expected consid-

32

ering the source of the dataset. Despite this limitation, gradient boosting appears to

be the best approach to this problem

4.2 Comparison To Existing Work

Several pieces of existing research have attempted to solve this problem using various

recurrent neural network architectures [27][40], but the approach that has performed

best has been gradient boosting [1]. This is likely due to the relatively small size of

the dataset since recurrent neural network architectures like long short-term memory

would otherwise be ideal for solving this problem. As shown in this study, gradient

boosting appears to have a very similar accuracy rate to random forest and extra

trees. Despite the fact that it scored marginally lower, it is likely the best approach

for this type of problem if the hyperparameters are further tuned and the dataset has

less noise. It is also important to note that the gradient boosting study made four

separate binary classifiers that attempted to maximize the accuracy of each dimension

of the MBTI while this study attempts to optimize the accuracy of getting all four

dimensions right. This makes it somewhat hard to compare the two studies directly

since they have four individual accuracy rates for each dimension, the product of

which is 32.96%.

4.3 Comparison To Test-Retest Rate

One metric that was used to measure the impact of this study was the test-retest rate

of questionnaire-based MBTI assessments. In this case, the test-retest rate indicates

the likelihood that an individual, who took the assessment twice with a five to seven

month gap between the attempts, receives the same personality classification both

times. The most popular online assessment, 16Personalities, has a test-retest rate

33

of 38.82%. This means that the classifier developed in this study marginally beats

the test-retest rate, which is a significant finding. The system developed in this

study could serve as an effective way to validate the results of a questionnaire-based

assessment for some use cases.

4.4 Ethical Considerations

This study has shown that predicting individual’s personality types using their post

and comment data from online communities is possible. While the benefits of this

are significant in some areas, it is important to consider that most social media users

generally do not have the freedom to control how their data is used. A number of

large technology companies generate the majority of their revenue through targeted

advertising. It is estimated that 79% of all websites contain tracking scripts that

attempt to capture your web footprint [36]. Targeted advertising also tracks user

behavior, including posts and comments on social media. Evidence indicates that

targeted ads strongly influence self-perception, consequently affecting personal beliefs

and behaviors [50]. The ability to discern an individual’s personality gives targeted

advertising more power than it should have. Regulation of the data that targeted

advertising can use is essential to protecting consumer privacy.

34

Chapter 5

FUTURE WORK

This work demonstrated that the concept of predicting personality from writing style

is possible with reasonable accuracy; however, there are quite a few potential areas

for improvement.

5.1 Dataset

While this dataset provided a good start for solving this problem, it is clear that a

model developed with this training set is unlikely to generalize well to other forms

of textual data. Expanding this dataset to social media posts and comments would

greatly increase the power as the diversity of content on those platforms tends to be

much greater than that of the dataset used in this study. In addition, this dataset

is very unbalanced and while the distribution of personality types in the population

is unbalanced as well, the distributions are significantly different from each other as

shown in Figure 3.1. As a result, it is is unclear whether this dataset is an appropriate

representation of the population. While the prediction power of the classifier trained

in this study is weak outside of writing from the personality forum, it is likely that

a more complete dataset with increased variance could expand the results of this

experiment to a much larger scope.

35

5.2 Classification

The three main classifiers used in this study proved to be reasonably effective at

solving this problem; however, there are limitations to these implementations. As

previously discussed, the implementations in this study made the best of a relatively

small dataset. While this proved to be a good candidate for data resampling using

stratified k-fold cross validation, it is evident that this task does not fully accom-

plish what a neural network with a large dataset could. Using a convolutional neural

network (CNN), especially in hierarchical text datasets, would allow a classifier to

consider context, which can often change the meaning and sentiment of a comment

[47]. For example, a social media dataset would likely take into account the hierarchy

of the comment threads as well as the content of the original post in order to make

a more well-informed classification. Another potential area of improvement for the

classification task is the method used for word embedding. While TF-IDF performs

fairly well in assessing the relevance of each word, Bidirectional Encoder Representa-

tions from Transformers (BERT) has shown a high level of effectiveness in NLP tasks

and could be a better choice for this study given its prowess in understanding context

[13]. It is important to note, however, that both CNNs and BERT are much more

computationally expensive than the tools used in this study.

5.3 Regulation of Target Advertising

With the Cambridge Analytica scandal in 2018, it became evident that social media

has the power to strongly influence people’s beliefs and behaviors [14]. The fact

that this power goes virtually unregulated in the United States is a huge invasion of

privacy. The possibility of being able to microtarget individuals using data that was

meant for different purposes should be considered unacceptable. At it’s core, targeted

36

advertising serves as a manipulation machine that is able to predict our behaviors and

influence our thoughts using individuals’ data. In a world where algorithms are able

to make sense of user data at such a large scale, it is vital that the type of data that

these targeted advertising companies are able to use is restricted in order to protect

user privacy.

37

Chapter 6

CONTRIBUTIONS

The major contributions of this work include:

1. Three ensemble classification methods for predicting personality type from writ-

ing style.

2. A multiclass approach in classifying MBTI dimensions.

3. An examination of the applicability of MBTI in human-computer interaction.

4. Guidelines for appropriate use cases for several classification methods to solve

this problem.

38

Chapter 7

CONCLUSION

This study highlighted the effectiveness of ensemble classifiers such as random forest,

extremely randomized trees, and gradient boosting, at predicting personality type

from writing style given a relatively small training dataset. The accuracy of the

system proposed currently performs better than existing research and manages to

beat the test-retest rate of the most popular personality assessment. With a more

versatile and larger dataset, the gradient boosting approach appears to be the best

choice while extremely randomized trees appears to perform marginally better given

a small, noisy dataset. With a much bigger dataset, a convolutional neural network

would likely have the most predictive power, but the lack of a publicly available

dataset of this size makes research on it difficult.

Our digital footprint has grown a significant amount in recent years due to the in-

creasing prevalence of social media and website trackers. With this data comes a

great deal of power that has gone relatively unchecked, and the need for regulation

has become increasingly urgent given the assumptions big tech companies can make

using data as simple as the dataset used in this study. There are also many posi-

tive use cases for classifiers such as this one. Existing research claims a better user

experience when it is tailored to users’ personality types. In addition, this opens

up the possibility of replacing questionnaire-based personality assessments in some

use cases, which could remove the time consumption and self-serving bias that are

inherent to those methods. While the dataset used in this study had limitations on

the generalizability of this classifier, the capability of systems proposed in this study

can be utilized for more purposes with a more robust and versatile dataset.

39

BIBLIOGRAPHY

[1] M. H. Amirhosseini and H. Kazemian. Machine learning approach to

personality type prediction based on the myers–briggs type indicator.

Multimodal Technologies and Interactions, Mar 2020.

[2] C. Asato and B. C. da Silva. Understanding the personality traits of stack

overflow users: Text analysis with ibm personality insights. Jun 2019.

[3] P. Aznar. What is the difference between extra trees and random forest?

Quantdare, Jun 2020.

[4] S. Bird, E. Loper, and E. Klein. Natural Language Processing with Python.

O’Reilly Media, 2016.

[5] J. Brownlee. A gentle introduction to k-fold cross-validation. Machine Learning

Mastery, May 2018.

[6] J. Brownlee. How to calculate the svd from scratch with python. Machine

Learning Mastery, Oct 2019.

[7] J. Brownlee. What is natural language processing? Machine Learning Mastery,

Aug 2019.

[8] J. Brownlee. A gentle introduction to the gradient boosting algorithm for

machine learning. Machine Learning Mastery, Aug 2020.

[9] S. L. Brunton and J. N. Kutz. Singular Value Decomposition (SVD), page

3–46. Cambridge University Press, 2019.

[10] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,

V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton,

40

J. VanderPlas, A. Joly, B. Holt, and G. Varoquaux. API design for machine

learning software: experiences from the scikit-learn project. In ECML

PKDD Workshop: Languages for Data Mining and Machine Learning,

pages 108–122, 2013.

[11] D. Cam-Stei. Tf-idf vs word embedding, a comparison and code tutorial.

Medium, Feb 2019.

[12] D. H. Chowdary. Decision trees explained with a practical example. Towards

AI - The Best of Tech, Science, and Engineering, May 2020.

[13] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep

bidirectional transformers for language understanding. Association for

Computational Linguistics, 2019.

[14] G. Edelman. Why don’t we just ban targeted advertising? Wired, Mar 2020.

[15] J. Fayard. Your favorite personality test is probably bogus. Psychology Today,

Sep 2019.

[16] R. Feloni. The best jobs for every personality type. Business Insider, Aug 2015.

[17] J. H. Friedman. Greedy function approximation: A gradient boosting machine.

Annals of Statistics, 29:1189–1232, 2000.

[18] A. Furnham. Myers-Briggs Type Indicator (MBTI), pages 1–4. Springer

International Publishing, Cham, 2017.

[19] A. Garrido. Random forest: many are better than one. Quantdare, Feb 2017.

[20] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine

Learning, 63(1):3–42, 2006.

[21] A. Gordon. In defense of the myers-briggs. Psychology Today, Feb 2020.

41

[22] S. Gupta. Text classification: Applications and use cases. Medium, Feb 2018.

[23] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,

D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,

M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del

R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard, T. Reddy,

W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant. Array

programming with NumPy. Nature, 585(7825):357–362, Sept. 2020.

[24] W. D. Heaven. Openai’s new language generator gpt-3 is shockingly good-and

completely mindless. MIT Technology Review, Jul 2020.

[25] J. J. Heckman. Selection Bias and Self-selection, pages 201–224. Palgrave

Macmillan UK, London, 1990.

[26] H. Heidenreich. Stemming? lemmatization? what? Medium, Dec 2018.

[27] R. Hernandez and I. S. Knight. Predicting myers-brigs type indicator with text

classficiation.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1184/reports/6839354.pdf.

[28] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, Nov. 1997.

[29] J. Jackovich and R. Richards. Machine Learning with AWS: Explore the Power

of Cloud Services for Your Machine Learning and Artificial Intelligence

Projects. Packt Publishing, 2018.

[30] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to

Statistical Learning: With Applications in R. Springer Publishing

Company, Incorporated, 2014.

42

[31] P. Jeatrakul, K. Wong, and C. Fung. Data cleaning for classification using

misclassification analysis. JACIII, 14:297–302, 01 2010.

[32] M. Jolly. (mbti) myers-briggs personality type dataset.

https://www.kaggle.com/datasnaek/mbti-type, Sep 2017.

[33] C. G. Jung, R. F. C. Hull, and H. G. Baynes. Psychological types. Princeton

University Press, 1990.

[34] V. Kostov and S. Fukuda. Development of man-machine interfaces based on

user preferences. In Proceedings of the 2001 IEEE International Conference

on Control Applications (CCA’01) (Cat. No.01CH37204), pages 1124–1128,

2001.

[35] G. Lawrence and C. R. Martin. Building people, building programs: a

practitioner’s guide for introducing the MBTI to individuals and

organizations. Center for Applications of Psychological Type, 2001.

[36] N. Lindsey. Invasion of privacy: Tracking your online behavior across the web.

CPO Magazine, Dec 2017.

[37] W. H. Lindsey. The relationship between personality type and software usability

using the Myers-Briggs Type Indicator (MBTI) and the Software Usability

Measurement Inventory (SUMI). PhD thesis, Nova Southeastern

University, 2011.

[38] A. Long. Benchmarking python nlp tokenizers. Medium, Sep 2019.

[39] P. Ludford Finnerty and L. Terveen. Does an individual’s myers-briggs type

indicator preference influence task-oriented technology use? In INTERACT

’03, 01 2003.

43

[40] A. Ma and G. Liu. Neural networks in predicting myers brigg personality type

from writing style.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2736946.pdf.

[41] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information

Retrieval. Cambridge University Press, Cambridge, UK, 2008.

[42] C. G. Miller. The volume of data is increasing. Quality Magazine RSS, Nov

2017.

[43] I. B. Myers. MBTI manual: a guide to the development and use of the

Myers-Briggs Type Indicator. Consulting Psychologists Press, Inc., 1999.

[44] A. Nagle, R. Riener, and P. Wolf. Personality-based reward contingency

selection: A player-centered approach to gameplay customization in a

serious game for cognitive training. Entertainment Computing, 28:70 – 77,

2018.

[45] K. Nishida. Introduction to extreme gradient boosting in exploratory. Medium,

Mar 2017.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

[47] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang.

Large-scale hierarchical text classification with recursively regularized deep

graph-cnn. In Proceedings of the 2018 World Wide Web Conference,

WWW ’18, page 1063–1072, Republic and Canton of Geneva, CHE, 2018.

International World Wide Web Conferences Steering Committee.

44

[48] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

[49] J. Ramzai. Simple guide for ensemble learning methods. Medium, Mar 2019.

[50] C. S. Rebecca Walker Reczek and R. Smith. Targeted ads don’t just make you

more likely to buy - they can change how you think about yourself.

Harvard Business Review, Apr 2016.

[51] R. Reinhold. Understanding the mbti R© and myers briggs personality types.

Myers Briggs Personality Type Dynamics, Jan 2006.

[52] M. Sawant. Truncated singular value decomposition (svd) using amazon food

reviews. Medium, Jul 2019.

[53] A. Sherstinsky. Fundamentals of recurrent neural network (rnn) and long

short-term memory (lstm) network. Physica D: Nonlinear Phenomena,

404:132306, Mar 2020.

[54] T. Srivastava. Nlp: A quick guide to stemming. Medium, Aug 2019.

[55] K. Subaramaniam and O. Baker. Human personality types and software

interface design: Hci from a different perception. International Journal on

Advanced Science, Engineering and Information Technology, 1, 01 2011.

[56] N. Tyagi. Understanding the gini index and information gain in decision trees.

Medium, Mar 2020.

[57] L. Valiant. Probably approximately correct: nature’s algorithms for learning and

prospering in a complex world. Basic Books, A Member of the Perseus

Books Group, 2014.

[58] J. Wapner. He counts your words (even those pronouns). The New York

Times, Oct 2008.

45

[59] Wes McKinney. Data Structures for Statistical Computing in Python. In

Proceedings of the 9th Python in Science Conference, pages 56 – 61, 2010.

46

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Background and Related Work
	2.1 Myers-Briggs Personality Type Indicator
	2.1.1 Testing Categories
	2.1.2 Shortcomings of Myers-Briggs

	2.2 Applicability of MBTI to Software Design
	2.3 Automation of Personality Type Prediction
	2.3.1 Recurrent Neural Networks and Long Short-Term Memory
	2.3.2 Gradient Boosting

	3 Implementation
	3.1 Data
	3.2 Libraries
	3.2.1 NumPy
	3.2.2 pandas
	3.2.3 Natural Language Toolkit (NLTK)
	3.2.4 Scikit-learn

	3.3 Preprocessing
	3.3.1 Data Cleaning
	3.3.2 Tokenization
	3.3.3 Stemming

	3.4 Term Frequency-Inverse Document Frequency (TF-IDF)
	3.5 Truncated Singular Value Decomposition (Truncated SVD)
	3.6 Classifiers
	3.6.1 Multiclass Classification
	3.6.2 Ensemble Learning
	3.6.3 Random Forest Classifier
	3.6.4 Extra Trees Classifier
	3.6.5 Gradient Boosting Classifier

	3.7 Cross Validation
	3.7.1 Stratified K-Fold

	4 Discussion
	4.1 Results
	4.2 Comparison To Existing Work
	4.3 Comparison To Test-Retest Rate
	4.4 Ethical Considerations

	5 Future Work
	5.1 Dataset
	5.2 Classification
	5.3 Regulation of Target Advertising

	6 Contributions
	7 Conclusion
	BIBLIOGRAPHY

