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ABSTRACT 

Host plant resistance in strawberries to anthracnose and colonization of crown and root 

tissue by Verticillium dahliae and Macrophomina phaseolina 

 

Omar Alexander Gonzalez Benitez 

 

 Strawberries are considered an important crop in California where in 2018 it was 

in the top 5 valued fruit and vegetable commodities valued at $2.84 billion accounting for 

88% of the total U.S. production. Strawberry production can be severely impacted by 

soilborne pathogens that can affect strawberry roots, crowns and leaves which can result 

in plant mortality. As much as 50 to 60% mortality can occur in one field. Pathogens 

responsible for such losses include Colletotrichum acutatum (syn. C. nymphaeae), 

Macrophomina phaseolina and Verticillium dahliae. With the phaseout of methyl 

bromide, host resistance and an understanding of host-pathogen interactions can play an 

important role in control of these diseases.  

A two-year study was conducted in order to evaluate host resistance of 

anthracnose in 105 cultivars and elite breeding lines developed by six strawberry 

breeding programs. Cultivars and elite breeding lines were inoculated using three local 

isolates in both years. All breeding programs provided genotypes that had a wide range of 

anthracnose susceptibility ranging from 0 to 100% mortality during both years. In both 

years an average of 78% of all the plant mortality occurred by 1 January. From the 105 

cultivars and elite breeding lines, 30 cultivars were common to both years. Of these 30 

cultivars, nine of them differed in their disease susceptibility between experiments by 

more than 20%. This suggests that several years of field evaluation may be necessary to 

determine susceptibility to anthracnose. Popular cultivars that represent the spectrum of 

susceptibility are Monterey (susceptible), Festival (moderately resistant), and Sensation 

(resistant).  

 A second study was conducted to evaluate pathogen colonization of resistant and 

susceptible strawberry cultivars, testing interactions among crown and root plant tissue 

and two sampling timings. These cultivars were challenged with two soilborne 

pathogens, Macrophomina phaseolina and Verticillium dahliae, over two years. Existing 

qPCR protocols for M. phaseolina and V. dahliae were used in order to quantify how 

much pathogen DNA was detected in crown and root samples. For the 2016-2017 V. 

dahliae trial there were significant effects for cultivar. Cultivar Benicia had significantly 

higher pathogen DNA compared to resistant cultivars Marquis, UC-12 and Camino Real. 

Susceptible cultivar BG 1975 had significantly less pathogen DNA compared to resistant 

cultivars San Andreas and Petaluma. In the 2017-2018 V. dahliae trial pathogen DNA 

amount was not significantly different based on cultivar, plant part colonization, or the 

sampling period. In the 2017-2018 M. phaseolina trial all three of the fixed factors, 

cultivars, plant part colonization and sampling period were statistically significant. 

Cultivar ‘Sweet Ann’ had a significantly higher level of M. phaseolina DNA in the early 

vs. the late sampling. 

 

Keywords: Fragaria × ananassa, Colletotrichum nymphaeae, Charcoal Rot, Verticillium 

Wilt 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Introduction 

Strawberries are considered an important crop in California where in 2017, 

803,000 tons of strawberries were harvested. This accounts for 88% of total U.S. 

production (California Strawberry Commission, 2018). In 2018, the value of strawberries 

was in the top 10 valued commodities for California at 2.84 billion dollars (CDFA, 

2018). There are approximately 300 strawberry growers located in five distinct growing 

regions: Watsonville-Salinas, Santa Maria, Oxnard, Orange County-San Diego and the 

Central Valley (California Strawberry Commission, 2018). Areas like Watsonville-

Salinas and Santa Maria are able to harvest fruit from March through November due to 

day-neutral varieties, typically planted each fall (California Strawberry Commission, 

2018). Santa Maria and Oxnard, in addition to the fall-planted crop, produce a second 

crop planted in May and June which allows for production during the winter months, 

October to December (California Strawberry Commission, 2018).  

Prior to planting for fruit production, high-quality and disease-free transplants are 

necessary for maximum production. Important diseases that can be plant-borne include 

Macrophomina charcoal rot, anthracnose and Verticillium wilt as they can cause fields to 

reach 50 to 60% mortality (Chamorro et al., 2016; Rahman et al., 2015; Wilhelm and 

Koch, 1956). Nursery stock can be certified as “clean” by voluntary inspection and 

testing through the Strawberry Registration and Certification program, adopted in 1949 

by the CDFA. 

Plant production begins with a meristem growing in tissue culture. A single 

meristem can produce 90 million daughter plants in a five-year period (Larson and Shaw, 
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1995). The use of pre-plant soil fumigation in nurseries reduces plant mortality due to 

soilborne disease and increases plant vigor (Wilhelm and Paulus, 1980). Low elevation 

nurseries are located in the Sacramento and San Joaquin valley while high elevation 

nurseries are located in the intermountain valleys of Northern California (Strand, 2008).  

Transplants used for fruit production are planted onto raised beds that help 

promote drainage and increase yields (Wilhelm and Sagen 1974). Black polyethylene 

mulches have been used extensively to manage weeds, conserve soil moisture, and 

increase fruit quality and yield (Freeman and Gnayem, 2005; Voth and Bringhurst 1959). 

Currently low-permeability films such as virtually impermeable film (VIF) are also used 

to reduce emissions of fumigants and improve their efficacy (Qin et al., 2011). Other 

fumigation films being used include totally impermeable film (TIF) (Fennimore and 

Ajwa, 2011; Holmes et al., 2020).  

Fragaria × ananassa, first described by Duchesne in 1766, arose from the 

hybridization of F. chiloensis and F. virginiana (Hancock, 1999). The origin of Fragaria 

× ananassa is not clear but it was discovered in a garden in Brittany and gardens across 

Europe. F. chiloensis is originally from South America while F. virginiana is originally 

from North America (i.e., eastern Canada and the state of Virginia in the US). The 

modern strawberry is characterized by the large fruit size of F. chiloensis and the 

hardiness, vigor, productivity and flavor of F. virginiana (Hancock, 1999; Wilhelm and 

Sagen 1974). The hybridization of these two species resulted in an important fruit crop 

worldwide due to its adaptable nature and attractive flavor (Howard et al., 1992).  

The variety of traits present in today’s strawberry cultivars can be attributed to 

breeding programs such as the University of California and the private breeding efforts of 
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Driscoll Strawberry Associates, Inc. (Guthman, 2019). Since the 1950s, most of the 

strawberry cultivars grown were developed from these two breeding programs (Wilhelm 

and Paulus, 1980). Strawberry yields during the 1950s were as high as 49.4 to 74.1 

tons/ha but the state average from 1950 to 1960 was only 12.3 to 14.8 tons/ha (Wilhelm 

and Paulus, 1980). From the 1950s to today, breeding programs such as the public UC 

Davis program have released more than 60 patented cultivars reaching yields of 74 

tons/ha compared to the 14.8 tons/ha in 1950 (Nelson, 2019). Despite genetic advances 

during a 20-year span, such high yields would not be possible in presence of numerous 

soilborne pathogens without soil fumigation (Wilhelm and Paulus, 1980).  

This literature review will discuss the soilborne pathogens Macrophomina 

phaseolina, Verticillium dahliae and Colletotrichum acutatum (synonym C. nymphaeae). 

The taxonomy, host range and distribution will be discussed of each pathogen. After that 

four control methods: preventative, cultural, host resistance and chemical will be 

discussed that can help a grower combat the diseases that these pathogens cause on 

strawberries. The review will conclude with the history and use of fumigants.  

1.2 Soilborne pathogens 

Soilborne pathogens are pathogens that cause plant diseases to its host via 

inoculum in soil (Koike et al., 2003). There are a few categories by which soilborne 

pathogens can be ecologically identified, these include soil inhabitants, soil invaders or 

soil transients and finally saprobes or saprophytes. Soil inhabitants can survive in the soil 

for a relatively long time, soil invaders can only survive for a short period of time while 

saprophytes are organisms that live on decaying organic matter (Koike et al., 2003). This 

includes fungi, bacteria and nematodes. Examples of soilborne pathogens that can affect 
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strawberry are Verticillium dahliae, Macrophomina phaseolina and Fusarium oxysporum 

f. sp. fragariae. In strawberry, soilborne diseases can be asymptomatic or symptomatic. 

Symptoms include damage to roots, crowns, leaves, and at times can lead to collapse of 

the crop (Paulus, 1990). In order for these diseases to thrive in the field, they require 

certain environmental conditions (Velasquez et al., 2018). Some of these environmental 

conditions include temperature, light, water availability and soil fertility. 

Strawberry pathogens use a wide range of strategies in order to survive (Maas, 

1998). These strategies include bacteria accessing the host through biological cell 

structures such as stomata and hydathodes. Fungi can enter the plant epidermal cells or 

access the plant with hyphae extending into, through or between the plant cell walls. 

Nematodes access the plant by inserting a stylet into the plant cell or through wounds 

(Amil-Ruiz et al., 2011).  

1.3 Colletotrichum acutatum (synonym C. nymphaeae) 

Anthracnose caused by Colletotrichum acutatum J. H. Simmonds, is a 

cosmopolitan fungus that causes important economic losses to a broad range of crops. 

The term “anthracnose” was originally used in Florida to describe the dark-brown oval 

lesions on the petioles and runners of strawberry plants (Brooks, 1931). At that time the 

symptoms were only described to be caused by C. fragariae. For recent decades the term 

“anthracnose” has been used to describe similar symptoms caused by all Colletotrichum 

species. Due to the similarity in symptoms, species cannot be characterized by symptoms 

alone and lab techniques are necessary to identify the species (Curry et al., 2002; Howard 

et al., 1992).  
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In strawberries, most C. acutatum research focuses on the differentiation between 

species of the pathogen, population dynamics, chemical treatments and control of the 

disease (Curry et al., 2002; Eastburn and Gubler, 1990; Peres et al., 2005). In California 

and Europe, C. acutatum is the primary source of infection on strawberry plants and fruit 

(Garrido et al., 2016; Peres et al., 2005). All parts of the plant are susceptible with 

symptoms of necrosis and blight. These symptoms are typically seen on leaves, petioles, 

flowers or even roots resulting in plant mortality of up to 50% in well managed fields 

(Howard et al., 1992; Turechek et al., 2006; Rahman et al., 2015) (Fig. 1.1). Another 

primary symptom is the fruit lesions on ripe fruit (Freeman et al., 1998; Peres et al., 

2005). Disease symptoms on ripe fruit are orange-salmon or black sunken lesions that 

make the strawberry fruit unmarketable (Rahman et al. 2013) (Fig. 1.1 B).  

 
Figure 1. 1 Anthracnose symptoms on strawberry. A, necrosis and blight on petioles; B, 

fruit lesion on mature fruit; C, micrograph (20X) of acervuli in fruit lesion.  

The primary source of infection for C. acutatum in fruit production fields is 

through the introduction of the disease on transplants from the nursery (Delp and 

Milholland, 1980; Eastburn and Gubler, 1990; Peres et al., 2005). C. acutatum is difficult 

to detect at the nursery if it is in the early stages of development and not producing 

A B C 



 

 

6 

visible symptoms (Peres et al., 2005). When C. acutatum is introduced into a grower’s 

field it easily spreads through overhead irrigation or through rain-splashed water 

(Madden et al., 1992; Yang et al., 1992).                                                                                  

1.3.1 Taxonomy, host range and distribution 

Colletotrichum acutatum was first described as a distinct species in Queensland, 

Australia (Simmonds, 1965, 1968). In strawberries, Colletotrichum species are major 

pathogens around the world (Maas, 1998). In recent years, the use of molecular 

phylogenetic methods as well as morphology have helped to define species within the 

genus (Cannon et al., 2012). In 2019, Wang et al. rejected the hypothesis that the C. 

acutatum species-complex had increased genetic diversity among contemporary isolates. 

Based on phylogenetic analyses using four genetic loci of 217 C. acutatum species-

complex cultures isolated over a 23-year period, Wang et al. (2019) determined that the 

correct Latin name for this pathogen was C. nymphaeae, which accounted for 97.7% of 

the tested isolates. C. nymphaeae is an ascomycete in the Division: Ascomycota, Class: 

Sordariomycetes, Order: Glomerellales, Family: Glomerellaceae and Genus: 

Colletotrichum. The pathogen was previously described as a Gloeosporium species (Arx, 

1970). C. nymphaeae typically has smooth-walled, septate, branched hyphae, ranging 

from 1-5.5 μm in diameter (Liu et al., 2018). When on a host, acervuli serve as the 

primary conidial production for C. nymphaeae. Conidia in C. nymphaeae are typically 

ellipsoid. A unique characteristic for conidia in C. nymphaeae is that they are fusiform 

shaped only at one end (Peres et al., 2005). C. nymphaeae has the unique characteristic of 

forming secondary conidia on leaf surfaces (Leandro et al., 2001). Spores on potato-

dextrose agar (PDA) are white, salmon pink and orange and will turn black or gray over 
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time. The colonies when observed on the underside of the culture plates are an orange 

salmon color with streaks of gray or black (Damm et al., 2012). C. nymphaeae has a wide 

range of hosts and is distributed worldwide. Hosts of C. nymphaeae include fruits such as 

strawberry, blueberry, almond, citrus, apple, olive and peach; ornamental herbaceous 

crops and conifers (Peres et al., 2005; Sreenivasaprasad and Talhinhas, 2005). C. 

nymphaeae can also be found overwintering on different weed species (Peres et al., 

2005).  

1.4 Macrophomina charcoal rot 

 Charcoal rot caused by Macrophomina phaseolina (Tassi) Goid was first 

discovered in strawberries in Illinois in 1958 but became more prominent in Florida and 

California after the phase out of methyl bromide (Koike, 2008; Mertely et al., 2005; 

Tweedy and Powell, 1958). In California M. phaseolina was initially restricted to the 

southern growing region (Oxnard). By 2010, M. phaseolina was present in the northern 

growing region (Watsonville-Salinas) (Koike., 2008; Koike et al., 2013). During 2015 

and 2016, growers in Florida reported up to 30% mortality early in the season, reaching 

60% mortality at the end of the season (Chamorro et al., 2016). Reports suggest that M. 

phaseolina has a broad host range having no host preference (Pearson et al., 1987; 

Zazzeini and Tosi, 1989; Zveibil et al., 2012), but recent studies have shown that there 

are isolates that have a preference for strawberries (Burkhardt et al., 2018; Koike et al., 

2016).  

1.4.1 Taxonomy, host range and distribution 

Macrophomina phaseolina from the Phylum: Ascomycota, Class: 

Dothideomycetes, Order: Botryosphaeriales and Genus: Macrophomina has a host range 
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of more than 500 plant species and is distributed worldwide. Host species include 

soybean, common bean, maize, cotton, cowpea and strawberry (Dhingra and Sinclair, 

1977; Mertely et al., 2005; Koike, 2008). On crops like soybean, M. phaseolina has been 

present in North and South America, Australia, Asia Europe and African Continents 

(McGee, 1991). The pycnidial name of M. phaseolina initially was Macrophoma 

phaseolina, Tassi, 1901 but had two name changes in 1905 and 1927, Macrophoma 

phaseoli and Macrophomina phaseoli until eventually returning to its original name 

Macrophomina phaseolina by Goidanich (Maublanc, 1905; Ashby, 1927; Goidanich, 

1947).  

M. phaseolina produces black microsclerotia allowing for it to be long-lived in 

agricultural soils and can germinate within two days of root presence (Chowdhury et al., 

2014). Microsclerotia are the primary source for new infections in strawberry plants as 

they are protected by fallen crop residues and eventually released after crop residue 

breakdown (Ramkrishnan, 1955). Microsclerotia are made up of 50 to 200 individual 

cells that have the ability to germinate (Gupta et al., 2012; Kaur et al., 2012). Infected 

seedling plants will contain M. phaseolina microsclerotia until optimal conditions for 

disease development, typically when the plant is stressed (Gupta et al., 2012). Ideal 

conditions for M. phaseolina include temperatures of 25 to 30° C, pH between 5 and 7 

and multiple days in dry weather (Dhingra and Sinclair, 1978; Fang et al., 2011). Drought 

and dry weather can increase microsclerotia growth at lower water potential (Olaya and 

Abawi, 1996). With the loss of methyl bromide and the long persistence in soil of M. 

phaseolina, it is critical to identify alternative control methods for Macrophomina 

charcoal rot. Typical symptoms caused by Macrophomina charcoal rot are: older leaves 
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wither and die, while young leaves remain alive, leading to stunted growth (Sanchez et 

al., 2016). When subjected to stress these plants will eventually fully collapse and die 

(Sanchez et al., 2016). Crown discoloration also occurred in the internal tissue of the 

crowns, internal vascular and cortex tissues were dark brown to orange brown (Koike, 

2008).  

1.5 Verticillium wilt 

Verticillium dahliae Kleb, first described in 1931, has been an important soilborne 

pathogen of strawberries (Tribble Bros, 1912; Willhelm and Koch, 1956). At times fields 

infested with V. dahliae had up to 50% mortality (Thomas, 1932 and Wilhelm and Koch, 

1956). Verticillium wilt was so devasting that it was one of the primary considerations 

when selecting land for strawberry production. The implementation of an annual 

cropping system rather than multiyear plantings of up to 4 years in southern California 

and up to 8 years in northern California was another breakthrough in mitigating V. 

dahliae soil infestations (Voth and Bringhurst, 1990). V. dahliae has the ability to spread 

through flowing water, tools and machinery and soil or roots (Ries, 1996).  

1.5.1 Taxonomy, host range and distribution 

Verticillium spp. from Phylum: Ascomycota, Class: Sordariomycetes, Order: 

Hypocreales and Genus: Verticillium can infect a total of 80 plant genera and more than 

410 plant species (Pegg and Brady, 2002). Among Verticillium species, V. dahliae, along 

with V. albo-atrum cause the most economic losses in crops around the world (Heale, 

1988; Pegg and Brady, 2002). V. dahliae can be found in agricultural soils throughout 

California. V. dahliae is favored by moist soils and temperatures ranging from 21-27° C. 
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Verticillium wilt is a monocyclic disease, attacking plant roots to produce inoculum in a 

single plant growth cycle (Bishop and Cooper, 1983a; Fradin and Thomma, 2006). 

Conidiophores are verticillately branched, septate from the base of the terminal 

whorl (Smith, 1965). Conidia are continuous, hyaline, elliptical and are produced on 

phialides. Typically, there are 1 to 5 (usually 3 to 4) phialides per whorl (Smith, 1965). V. 

dahliae attacks the xylem, the water-conducting part of the plant. The infection of V. 

dahliae extends into the plant’s xylem where it spreads to other parts of the plant as 

conidia (Fradin and Thomma, 2006). When conidia reach cell walls, they germinate and 

penetrate into other vessel segments, eventually producing more conidia (Bell, 1992). 

Hyphal growth in the xylem prevents the transport of water causing the common wilt 

symptoms on strawberry plants (Berlanger and Powelson, 2000). Microsclerotia are 

produced by V. dahliae and are dense aggregates of dark pigmented, ellipsoid, thick-

walled hyphal cells (Fradin and Thomma, 2006). Melanin is present in microsclerotia and 

can provide protection against the environment, thus increasing survival (Polak, 1989). 

Microsclerotia can survive in the soil for up to 25 years in the absence of a host (Welch, 

1989). Microsclerotia can be resistant to several abiotic stresses that include desiccation, 

temperature and UV radiation (Jimenez Diaz and Millar, 1988). Crop rotation can be 

used for reducing microsclerotia in soil, but this only provides limited protection from the 

disease (Bollen et al., 1989). In the soil, germination and infection by microsclerotia is 

influenced by root exudates and nutrients being released into the rhizosphere (Lynch and 

Whipps, 1990; Mol et al., 1995). Microsclerotia germination success is increased due to 

the ability of individual cells to germinate, which allows for the multicellular 

microsclerotia to germinate from each cell (Fradin and Thomma, 2006). Infected plants 
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will wilt, and outer leaves will dry and turn necrotic (Mansoori et al., 1995). Infected 

plants will collapse, eventually completely wilting and dying. In strawberries, 

Verticillium wilt will not cause visible damage to the roots or internal discoloration of the 

crown (Gordon and Subbarao, 2008). 

1.6 Pathogen Colonization  

Colonization refers to the establishment of a pathogen within a specific host. 

There are many ways that a fungal pathogen can establish on a specific host. For 

strawberries, both Verticillium dahliae and Macrophomina phaseolina are able to 

colonize on strawberry tissue through germ tubes. Germ tubes are products of 

germinating microsclerotia in the soil or crop residue. Germ tubes become hyphae that 

penetrate the cell wall or through natural openings (Bowers and Russin, 1999). In the 

case of Verticillium dahliae, these hyphae grow intercellularly in the cortex and then 

intracellularly through the xylem resulting in a colonized vascular tissue. For 

anthracnose, it’s primary form of infection and colonization is through conidia produced 

in acervuli (Peres et al., 2005). Once conidia germinate, appressoria are produced 

infecting host plants (Agostini et al., 1992). In strawberries several studies have been 

done on pathogen colonization. The main test that has been used to identify the pathogen 

on the host tissue has been polymerase chain reaction (PCR). Parikka and Lemmetty 

(2004) used these techniques and concluded that PCR can confirm a pathogen is present 

even though the symptoms are not present. Pathogens can interact differently among 

certain cultivars and different plant parts. Baird et al. (2003) showed that M. phaseolina 

isolation frequencies declined over time, possibly affected by root segment degradation 

or interactions with other microorganisms in the soil. Studies have been done where 
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symptom expression was measured among strawberry cultivars (Shaw et al. 2010). Shaw 

et al. (2010) also showed that 60% of the visual symptom expression variation among 

genotypes was because of genetic differences. In both Freeman et al. (2001) and Shaw et 

al. (2010), findings suggest that colonization, resistance and tolerance to colonization can 

change over the course of a season. Shaw et al. (2010) also observed that when the extent 

of colonization had a partial genetic correlation with symptom expression, strawberry 

genotype performance in the presence of V. dahliae may be enhanced by both resistance 

and tolerance mechanisms within genotypes. It was also observed that genetic 

mechanisms that help prevent systemic infection can be more stable over the growing 

season.  

1.7 Management of Verticillium wilt, Macrophomina charcoal rot and anthracnose 

There are a variety of ways that a grower, Pest Control Advisor, plant breeder or 

researcher can approach a pest problem in the field. Ideally an integrated pest 

management approach is taken where a sustainable, science-based, decision-making 

process is used to combine biological, cultural, physical and chemical tools to identify, 

manage and reduce risk from pests and pest management tools and strategies in a way 

that minimizes overall economic, health and environmental risks (USDA-ARS, 2018). 

Controls for strawberry diseases include preventative, cultural, host resistance and 

chemical controls. 
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1.7.1 Preventative controls  

The first line of defense is using a preventative approach prior to the growing 

season. A preventative approach involves using factors such managing the crop, 

surrounding areas and even equipment to prevent the movement of pathogens from 

entering a site using exclusion (Strand, 2008). Another preventative measure that should 

be taken is the use of disease-free plants. For anthracnose the main way it gets into a field 

is on infected transplants. Planting anthracnose-free plants in production fields is the best 

way to prevent anthracnose from establishing in strawberry fields (McInnes et al., 1992). 

C. acutatum is an issue because when present on strawberry transplants brought from the 

nurseries, marketable yield can drop by 40% (Daugovish et al., 2009). Planting fields 

with disease-free plants is the goal and this is often achieved due to strict sanitation and 

disease management practices in the nursery. Pathogens such as C. acutatum, V. dahliae 

and M. phaseolina can infect plants that initially are asymptomatic, making it difficult for 

workers to identify. Such pathogens can be introduced in soil, plants and equipment that 

is transported from field to field (Howard et al., 1992; McInnes et al., 1992).  

1.7.2 Cultural controls 

Cultural controls involve using the production or utilization methods of a 

commodity (All, 2004). An environment is usually altered by multipurpose technical 

procedures that either avoid high-risk situations for infestations or develop unfavorable 

conditions for pests (All, 2004). Alternatives to fumigation are used but are only partly 

effective in managing disease in strawberry fields. These controls include soil 

solarization, anaerobic soil disinfestation (ASD), soil amendments and steam application. 

ASD, also known as biological soil disinfestation, uses organic amendments (e.g., rice 
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bran, molasses, etc.) to supply labile carbon to soil microbes to create anaerobic 

conditions in moist and plastic-covered soil (Shrestha et al., 2016). Some trials have 

shown positive results for diseases like V. dahliae but in the case of M. phaseolina it did 

not provide complete control in the field (Shennan et al., 2016). Using ASD involves the 

addition of a labile carbon source followed by anaerobic conditions, first through 

application of water to fill soil pore space, and then covering the soil with plastic mulch 

to prevent oxygen exchange (Shennan et al., 2018). Another primary cultural practice is 

avoiding the use of fields with cropping history that can harbor the pathogen. In the case 

of V. dahliae, crops like tomato and lettuce in rotation with strawberries can increase the 

pathogen concentration in the soil (Guthman, 2019; Njoroge et al., 2009). When 

strawberries are rotated with broccoli, a decrease in disease incidence is seen compared to 

rotation with lettuce (Njoroge et al., 2009). If a strawberry crop is rotated with a lettuce 

crop there is a potential increase of V. dahliae microsclerotia that can form on lettuce 

plants (Njoroge et al., 2009; Subbarao et al., 2007; Vallad et al., 2006). 

Cultural practices include using drip instead of overhead irrigation in order to 

avoid any splash dispersal, the primary way C. acutatum spores are spread (Madden et 

al., 1992; Ntahimpera et al., 1998; Smith, 1998; Yang et al., 1990). Lastly, effective 

sanitation measures should be used in order to remove any infected fruit from the field as 

it can serve as a source for the spread of anthracnose (Smith, 1998; Yang et al., 1990). 

Surrounding weeds in nurseries should also be removed or controlled as they could serve 

as inoculum reservoirs for C. acutatum spores (Karimi et al., 2019).  
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1.7.3 Host resistance 

Host resistance can be an important control against soilborne pathogens and a 

primary replacement to fumigant controls. Host resistance is considered the most cost 

effective and sustainable control method for crown and root diseases in strawberries 

(MacKenzie et al., 2006; Partička and Hancock, 2005). Genetic resistance to V. dahliae is 

considered as one of many components in an integrated management system that includes 

the reduction of pest populations in all growth stages (Shaw et al., 2005). Historically, 

due to the outstanding control of Verticillium wilt by pre-plant soil fumigation, breeding 

efforts could focus on fruit production and quality rather than disease resistance (Wilhelm 

and Paulus, 1980). A positive correlation was documented between fruit firmness and 

resistance to Verticillium wilt and Macrophomina crown rot (Shaw et al., 1996) and this 

could have slowed progress in breeding for disease resistance. Early efforts in resistance 

screening for V. dahliae found that in wild germplasm there is extensive variation in 

susceptibility but none of the genotypes had high resistance levels to withstand high 

inoculum densities (Bringhurst et al., 1966). High variation in germplasm for resistance 

to V. dahliae has been observed in California (Shaw et al., 1996; Shaw et al., 1997; 

Holmes et al., 2016). In Russia a segregation of six distinct races in V. dahliae was 

identified due to the resistance of different strawberry varieties indicating a complex 

host-pathogen interaction between these isolates and cultivars (Govorova and Govorov, 

1997). This study supports the claim that multiple sources of resistance to V. dahliae 

were observed across six strawberry cultivars indicating many genetic resources that can 

be used by breeders (Cockerton et al., 2019).  
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Varying degrees of resistance to M. phaseolina can be found in soybean, cowpea 

and sorghum (Smith, 1997; Muchero et al., 2011; Diourte et al., 1995). Prior to 2012, no 

knowledge of resistance to M. phaseolina in commercial strawberry cultivars was known 

(Fang et al., 2012). Fang et al. (2012) showed that ‘Albion’ was the most resistant 

cultivar to M. phaseolina while ‘Camarosa’ was the most susceptible. Even though 

‘Albion’ was considered resistant in the Fang et al. trial of 2012, it was found that 

‘Albion’ was susceptible to M. phaseolina in a growth chamber trial (Sanchez et al., 

2016). The difference in resistance of ‘Albion’ could be attributed to the inoculation 

method used by Fang et al. which relates to the biology of microsclerotia; Sanchez et al. 

(2016) used different isolates than Fang et al.(2012). 

Due to the sporadic nature of anthracnose in California no breeding efforts have 

been made to control or to screen for this disease. Consequently, most research is focused 

on preventative measures for disease management. At the University of Florida (UF) 

recurrent phenotypic selection has been used to improve fruit quality and disease 

resistance to anthracnose fruit rot and anthracnose crown rot (Whitaker et al., 2012). 

Throughout past decades, most cultivars have shown to be moderately to highly resistant 

to fruit rot (Chandler et al., 2006; Seijo et al., 2008).  

1.7.4 Chemical controls  

After the phaseout of methyl bromide, many alternatives have been tested and 

used for control (Fennimore et al., 2008). Methyl bromide alternatives include 

chloropicrin, 1,3-dichloropropene, metam sodium and dazomet. Other types of controls 

include the use of preplant fungicides applied as transplant dips, but this has been 

effective against anthracnose and not Verticillium wilt or Macrophomina crown rot. 
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Preplant fungicides have the ability to decrease the incidence of anthracnose crown rot 

and plant collapse at early plant stages while also increasing fruit yields (Daugovish et 

al., 2009). Foliar fungicides play an important role in control of anthracnose through a 

good rotational program to avoid fungicide resistance (Louws et al., 2014). A good 

fungicide rotational program is important because resistance has been found to the 

quinone outside inhibitor (QoI) active ingredient azoxystrobin (Haack et al., 2018). 

Another chemical control approach that can be used is crop termination. Crop termination 

is another exploratory method of disease management that is used prior to plastic removal 

from the field to reduce inoculum build up from the survival of any biotrophic plant 

pathogen, nematode or insect (Holmes et al., 2020; Khatri et al., 2020). Herbicides have 

been considered for crop termination, but they do not control weed seeds, nematodes or 

soilborne pathogens (Khatri et al., 2020). With the use of metam sodium, there is the 

potential that it controls plant pathogens, nematodes and weeds but the efficacy is 

dependent upon the location of the pest on the bed (Khatri et al., 2020).  

Fumigation is important for controlling soilborne diseases. However, given that 

propagules of C. acutatum only survive in the soil for up to 9 months (Eastburn and 

Gubler, 1992; Freeman et al., 2002), fumigation is rarely a primary means of anthracnose 

control. In the case for V. dahliae and M. phaseolina, microsclerotia have shown to live 

in the soil for many years, making fumigation far more important. 

1.8 The use of Fumigants 

1.8.1 Chloropicrin and Methyl Bromide 

A primary control that has been used for soilborne diseases is soil fumigation. 

Soil fumigation is the use of volatile compounds applied in the form of a gas to control 
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plant pathogens and pests that live in the soil and can disrupt plant growth and crop 

production (Chellemi, 2014). Soil fumigants can provide benefits to growers by 

controlling a wide range of pests, including nematodes, fungi, bacteria, insects and weeds 

(Chellemi, 2014). 

One of the first soil fumigants used was chloropicrin (Cl3CNO2) also called 

trichloronitromethane. Chloropicrin was first discovered after World War I as one of the 

war gases that improved soils for plant growth (Russell, 1920). Verticillium dahliae, first 

described in 1931, has been an important soilborne pathogen of strawberries and was one 

of the main reasons that chloropicrin was developed as a soil fumigant (Tribble Bros, 

1912; Thomas, 1939; Wilhelm and Koch, 1956). Verticillium wilt was so devasting that it 

figured prominently in the selection of land used to grow strawberries. In 1920, the heavy 

loss of a strawberry field due to Verticillium dahliae from the Driscoll-Reiter strawberry 

organization was believed to be linked to a previous tomato crop (Wilhelm and Paulus, 

1980). Soon after, a field where cotton was previously grown in the San Joaquin Valley 

was said to have the same effects as tomatoes on strawberries (Wilhelm and Paulus, 

1980). Over the next years, after the discovery of control with the use of chloropicrin in 

1956, more experiments were established to improve such control. The first discoveries 

that improved fumigation were the use of machine applied chloropicrin rather than hand 

injected (Wilhelm and Koch, 1956). The improvement of fumigation came with the 

addition of polyethylene sheeting, leading to the discovery that it was excellent for weed 

control (Wilhelm et al., 1961). This was important because weeds such as hairy 

nightshade that serve as an alternative host were linked to V. dahliae infestations 
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(Wilhelm and Paulus, 1980). This weed was important as it didn’t show exterior 

symptoms and symptoms were only visible as vascular discoloration.  

The discovery of the combined use of chloropicrin and methyl bromide was 

important as this helped the strawberry industry in a span of 15 years to be able to 

produce fruit of 40 to 60 tons/ha by 1972 (Wilhelm et al., 1974). The production in the 

1960s was at 12.3 to 14.8 tons/ha (Wilhelm and Paulus, 1980). In 2017 industry-wide 

average production was at 61.7 tons/ha (California Strawberry Commission, 2018). 

Methyl bromide (CH3Br), also known as bromomethane is a colorless odorless gas at 

room temperature and normal pressure. Methyl bromide is dangerous to humans as it can 

be readily absorbed through the lungs (Budnik et al., 2012). Methyl bromide is an ozone 

depleting fumigant because when released into the atmosphere UV light causes the 

bromine to be released. Bromomethane is readily photolyzed when in the atmosphere and 

it causes the release of bromine radicals which are more destructive to the stratospheric 

ozone (Wang et al., 2019). 

1.8.2 Methyl bromide phaseout 

The Montreal Protocol was established in order to protect the ozone layer by 

reducing and eliminating the production and consumption of ozone-depleting substances. 

Both the US Clean Air Act and the Montreal Protocol restricted the use of methyl 

bromide considering it an ozone-depleting compound. Through the US Clean Air Act, the 

United States was able to satisfy the obligations of The Montreal Protocol. Starting in 

1991 to 2005, methyl bromide was completely banned by the end of a 14-year span 

(Schneider et al., 2003). Despite its ban in 2005, crops such as strawberries were still able 

to use methyl bromide by applying for a critical use exemption up until 2016 (Holmes et 

https://en.wikipedia.org/wiki/Photodissociation
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al., 2020). Today strawberry nurseries are still able to use methyl bromide through 

quarantine and preshipment exemption. This exemption authorizes methyl bromide use in 

order to control the introduction or spread of a pest within the U.S. (Holmes et al., 2020).  

1.8.3 Alternative fumigants 

The fumigant 1,3-dicholoropropene (1,3-D) was originally developed as a 

nematicide under the brand name Telone (Dow AgroSciences LLC, Indianapolis, IN). 

1,3-D alone controls nematodes and some weeds but has very limited activity against 

soilborne pathogens and weeds (Noling and Becker, 1994). When 1,3-D is combined 

with chloropicrin these fumigants can control fungi, bacteria, insects, nematodes and 

weeds but weed control is limited (Ashworth et al., 2014). In 2014, Ashworth et al. tested 

several combinations of chloropicrin and 1,3-D showing that in combination, emissions 

dropped compared to chloropicrin applied alone. Some concerns when using Telone 

products (Telone II, Telone C-17, and Telone C-35) are potential ground water 

contamination, worker exposure, air emissions as potential chronic exposure and 

California Proposition 65 labeling it as a carcinogen (Duniway, 2002).  

Other fumigants listed in California include metam sodium or metam potassium. 

Metam sodium (sodium N-methyl dithiocarbamate) and metam potassium are fumigants 

that breakdown rapidly to methyl isothiocyanate (MITC) (Duniway, 2002). Both of these 

fumigants work best when applied in sequential applications. MITC is a broad-spectrum 

fumigant that can control nematodes, weeds, oomycota and fungi (Kreutzer, 1963). 

Metam sodium uses higher rates and when using VIF, it increases weed control (Ajwa et 

al., 2010). Metam sodium is typically formulated as 18 to 42% aqueous solutions sold 
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under trade names such as Metam CLR, Vapam and Sectagon (Carlock and Dotson, 

2010).  

1.9 Conclusion and objectives 

The plant’s ability to resist infection or yield reduction when challenged by 

pathogens has been employed as an important management tactic in agriculture. Host 

resistance has not been sufficiently utilized by the strawberry industry to manage 

soilborne pathogens due to the availability and use of effective soil fumigation 

chemistries. Current fumigant chemistries are effective when distributed efficiently in the 

soil profile, but this can be difficult to achieve in a field setting, and their availability in 

the future is uncertain. In the post-methyl bromide era, host resistance will likely be an 

important tool for managing most soilborne disease in strawberries. 

 A thorough phenotypic screening of resistance should involve commonly used 

and available strawberry cultivars, as well as elite breeding selections that are being 

developed for future use. Disease screening would help growers select resistant cultivars. 

This could also aid breeding programs in their selection of resistant genotypes. 

Evaluating pathogen colonization in strawberry cultivars can help future research by 

providing pathogen-specific management strategies and can help better understand when 

the disease is more prominent in the growing season.  

In Florida, extensive research has been conducted on anthracnose in strawberries. 

A primary reason for this is that anthracnose is a prominent disease that occurs yearly 

during the Florida production season. In California, anthracnose is not present in most 

years but can cause severe yield losses when it does occur. The sporadic appearance of 

anthracnose in California strawberry production did not give priority to much 
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anthracnose research for the California crop. With the recent outbreak in the 2015-2016 

season, research on anthracnose became a higher priority.  

Our first research objective was to determine the susceptibility of cultivars and 

elite breeding lines to anthracnose. A replicated field trial was conducted to screen 

commercially available strawberry cultivars and elite breeding lines for their resistance to 

anthracnose. The results will help plant breeders implement genetics of resistant cultivars 

into future breeding lines. Research conducted in Florida and other parts of the world can 

be used and combined in order to have preventive control measures laid out for growers 

and pest control advisors in the state in preparation for future outbreaks.  

Our second research objective was to evaluate colonization of root and crown 

tissue by V. dahliae and M. phaseolina in strawberry cultivars with different levels of 

disease resistance. The overall goal of this objective was to identify host-pathogen 

interactions between disease resistant and susceptible strawberry cultivars, between plant 

tissue (crown and root) and over two sampling periods (early- and late-season). The 

findings will help us understand how and when these pathogens attack their hosts. This 

research can also provide input to breeders in their continuous characterization of and 

breeding for disease resistance. 
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CHAPTER 2: EVALUATING HOST RESISTANCE TO ANTHRACNOSE IN 105 

CULTIVARS AND ELITE BREEDING LINES OF STRAWBERRY 

2.1 Introduction 

Strawberries are considered an important crop in California where in 2017, 1.8 

billion pounds of strawberries were harvested (California Strawberry Commission, 2018). 

With total U.S. production at 2.6 billion pounds, this accounts for 88% of total U.S. 

production (California Strawberry Commission, 2018). In 2018, the value of strawberries 

was in the top 5-valued fruit and vegetable agricultural commodities for California at 

2.84 billion dollars (California Department of Food and Agriculture, 2018).  

Anthracnose caused by Colletotrichum acutatum (syn. C. nymphaeae) is an 

economically important disease of strawberry (Fragaria × ananassa) where in 2002 it 

caused the California industry millions of dollars (Gaines, 2005). In California and 

Europe, C. acutatum is the primary species causing anthracnose on strawberry plants and 

fruit (Garrido et al., 2016). All parts of the plant are susceptible, causing necrosis and 

blight symptoms on tissues such as leaves, petioles, flowers or even roots, resulting in 

plant mortality (Peres et al., 2005). Another primary symptom is the fruit lesions it causes 

on ripe fruit (Peres et al., 2005). C. acutatum is an issue because when present on 

strawberry transplants brought from the nurseries, marketable yield can drop by 40% 

(Daugovish, 2009). A disease like anthracnose will be destructive under the right 

conditions, especially when grown on black plastic in areas with high rainfall as this 

provides a springboard for water droplets, encouraging the spread of the disease (Louws, 

2014). Due to the low persistence of anthracnose in soil, the main concern and control is 

at the nurseries (Poling 2008). A grower’s main control for anthracnose is not fumigation 
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and therefore growers rely on disease-free transplants in order to not introduce 

anthracnose into their fields. During the most recent California outbreak in the 2015-2016 

season, it became obvious that cultivars differed widely in their susceptibility to 

anthracnose (Holmes, personal communication). Therefore, host plant resistance to 

anthracnose could be utilized if susceptibility of strawberry genotypes was widely 

known. In order to determine susceptibility to anthracnose, a replicated field trial was 

conducted where 105 cultivars and elite breeding selections were screened. Only 30 of 

the 105 cultivars and elite breeding selections were evaluated both years.  

2.2 Materials and Methods 

2.2.1 Strawberry cultivars and elite breeding lines 

A total of 105 strawberry cultivars and elite breeding lines were tested over two 

years (2018 and 2019). A total of 76 strawberry cultivars and elite breeding 

lines/selections were included in the field evaluation for year one of the trial. For year 

two, 59 cultivars and elite breeding lines were included. Thirty of the 105 strawberry 

cultivars and elite breeding lines were tested both years. Day neutral and short-day 

strawberry genotypes were provided from six public and private breeding programs: 

University of California Davis (Davis, CA), University of Florida (Wimauma, FL), 

Driscoll’s (Watsonville, CA), Planasa (Red Bluff, CA), Plant Sciences, Inc. (Watsonville, 

CA) and Lassen Canyon (Redding, CA) (Table 2.1). In year two, no cultivars or elite 

breeding selections were used from the Planasa breeding program.  
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2.2.2 Field site and layout 

2.2.2.1 Year 1 (2018) 

The experiment was conducted on the California Polytechnic State University 

campus in San Luis Obispo, CA; Field 25, Block 3 (35°18’18.9” N; 120°40’38.3 W). The 

soil type in block 3 is a Salinas Silty clay and standard irrigation and fertilization 

practices were used for establishment and maintenance of the crop. The field site selected 

had previously been cropped for over twenty years with row and vegetable crops 

(broccoli, lettuce, corn, tomato and squash) prior to its first strawberry planting which 

occurred in October 2014. Strawberries have been continually grown at this location until 

the 2019-2020 season. The field was pre-plant, broadcast soil fumigated using Ally 33 

(67% AITC + 33% chloropicrin at 55 gal/treated A) on 20 September 2018. 

2.2.2.2 Year 2 (2019) 

In year two the field trial was conducted on the California Polytechnic State 

University campus in San Luis Obispo, CA Field 25, Block 8 (35°18'14.2"N 

120°40'30.1"W). The soil type in block 8 is the same as block 3 used the previous year. 

This site is 200 meters distance from the field site in year one with a similar cropping 

history. The first strawberry planting occurred on 23 October 2019. The field was 

fumigated via drip lines using the pre-plant soil fumigant Ally 33 (67% AITC + 33% 

chloropicrin at 55 gal/treated A) on 7 October 2019. 

2.3 Experimental design  

Raised beds were prepared prior to planting and were constructed as 162 cm 

center to center, and approximately 30 cm tall. Two lines of drip irrigation (low-flow, 1.2 

liter/min/30.4 m at 55 kPa, with 20 cm spacing on emitters) (Tri-Cal®, Hollister, CA) per 
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bed were buried approximately 5 cm deep in the raised beds, and the beds were covered 

with 1 mil, black TIF (totally impermeable film) polyethylene mulch. Each bed contained 

four planting rows which were 25 cm apart, and plants were spaced 40 cm apart within 

the plant row. Bareroot transplants were planted by hand on 25 October 2018 and on 23 

October 2019. 

 For year one all 76 plots for a single replicate were arranged on three individual 

strawberry beds. Each plot consisted of 10 plants of the same genotype. In year two, the 

60 plots for a single replicate were arranged on two strawberry beds. Again, each plot 

consisted of 10 plants. Plots were approximately 1 m long and organized in a randomized 

complete block design (RCBD) with four block replicates plus one non-inoculated 

replicate.  

Immediately prior to planting, transplants were inoculated by adding 100 ml of 

the prepared inoculum into a 3.8-liter Ziplock bag containing 10 plants and mixed for one 

minute. The non-inoculated block was separated from the inoculated blocks by a planted 

bed. The non-inoculated block only contained a single plot per genotype and served as a 

check for the presence of other pathogens or confounding factors.  

2.3.1 Mortality assessments and AUDPC 

Visual plant mortality assessments were conducted weekly. Mortality assessments 

began three weeks after planting (WAP) when symptoms of the disease were observed. 

Disease diagnostics were conducted on a biweekly basis up until the last ratings in 

December (8 plants per sampling) and then sporadically sampled throughout the season. 

Plants with symptoms (50-80% foliar necrosis) were sampled and plated on selective 

medium acidified corn meal agar, Acidified Potato Dextrose Agar (APDA), P10ARP 
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(Erwin and Ribeiro, 1996) and Sorensen’s NP-10 medium (Sorensen et al., 1991). 

Symptoms observed when mortality assessments were initiated were necrotic leaves and 

collapse of plants. After determining initial plant stand, any transplants that failed to 

produce new leaves were recorded as dead. Weekly assessments to determine plant 

mortality commenced on 12 November 2018 and continued until 29 April 2019. In year 

two, weekly assessments began on 11 November 2019 (3 WAP) and continued until 29 

April 2020. Percent mortality was calculated for each 10-plant plot.  

Mortality assessment data was used to determine the area under disease progress 

curve (AUDPC). AUDPC is a useful quantitative summary of disease intensity over time 

(Jeger and Viljanen-Rollinson 2001, Madden et al., 2007). The most common method 

used for AUDPC is the trapezoidal method, which can discretize the time variable (hours, 

days, weeks, months, or years) and calculate the average disease intensity between each 

pair of adjacent time points (Madden et al., 2007). AUDPC is calculated using the 

following formula: 

𝐴𝑈𝐷𝑃𝐶 = ∑
(𝑦𝑖 + 𝑦𝑖+1)

2
× (𝑡𝑖−1 − 𝑡𝑖)

𝑁𝑖−1

𝑖=1

 

Where 𝑦𝑖 is the percent mortality for the observation number 𝑖, 𝑡𝑖 is the number of days 

from the planting date, and 𝑁 is the total number of observations. 

2.3.2 Inoculum production  

PDA plates were used to grow C. acutatum spores for inoculation. One thousand 

petioles were collected by cutting them from the plant at the base of each petiole. 

Trifoliate leaves and stipules were removed from the petioles. Petioles were washed and 

rinsed three times with deionized (DI) water. Petioles were cut into 2.5 cm segments and 
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placed into 150 ml plastic containers (Nalgene®, Rochester, NY) with 50 ml of DI water. 

The containers were autoclaved on two separate days for 30 minutes (STM-E, Market 

Forge CO., Everett, MA).  

Colletotrichum acutatum isolates CA-1, CA-15 and CA-140 used in this study 

were obtained from diseased strawberry plants in 2015 (CA-1, CA-15) and 2016 (CA-

140). These isolates were confirmed and identified as C. acutatum based on their 

morphological and colony characteristics on PDA. The protocol used for the inoculation 

method in this trial was slightly modified from the protocol used by Haack et al. 2018. C. 

acutatum spores used for transplant inoculations were initially harvested by transferring a 

1  1 cm agar block from actively growing cultures into a 15 ml water tube. The 15 ml 

tubes contained 13 ml of autoclaved deionized (DI) water and glass beads for spore 

separation. The 15 ml tubes were vortexed for 30 s to disperse the fungal hyphae and 

spores in DI water. C. acutatum inoculum (0.5 ml) was spread onto a PDA plate using a 

sterile glass rod and petiole pieces (9 per plate) were evenly spaced out on the agar 

surface. Plates were stored at room temperature for a total of 12 days or until over 80% of 

the plate was covered by C. acutatum. After 12 days, 5 ml of autoclaved DI water 

containing Tween 20 (DI-20) to help disperse spores was added to the PDA plates 

containing petioles and fungal growth. Spores were harvested by using a glass rod to rub 

the culture surface, dislodging petiole segments and spores from the agar surface for 

approximately 30 seconds per plate. The 5 ml of DI-20 water containing spores from the 

PDA plate were poured through a double layer of cheese cloth (to remove petioles and 

hyphae). This process was repeated for all three isolates. A total of 8 gallons of inoculum 

were made by adjusting the spore counts in both years. Year one was adjusted to 6.75 × 
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105 and year two to 8.25 × 105 conidia/ml for all three isolates (the target concentration 

was 1 × 106 conidia/ml). 

2.3.3 Data analysis 

A standard sum of squares analysis of variance (ANOVA) was performed for the 

single effect of cultivar on percent mortality, and on AUDPC (JMP® pro version 13.1 

SAS Institute, Cary, NC). Prior to statistical analysis, AUDPC was calculated using 

mortality assessments on an Excel spreadsheet for each cultivar. Relative area under 

disease progress curve (rAUDPC) was calculated showing the proportion of maximum 

possible disease severity over each year. AUDPC scores were divided by the maximum 

AUPDC possible over the entire length of the season. Maximum AUDPC score was 

calculated by calculating the maximum mortality count (i.e., 10) on each assessment date. 

After calculations, results for rAUDPC will show 0.0 to 1.0, 0.0 (resistant) being no 

disease severity over time and 1.0 (susceptible) meaning 100 percent disease severity 

over time. Both trial years were analyzed separately. Significant genotype differences 

were found based on the F-test, where critical values were calculated at the 5% level of 

probability (α = 0.05). The Student’s t-test was used as the multiple comparisons test ( p-

value < 0.0001 for both years).  

2.4 Results 

2.4.1 Percent mortality by cultivar 

2.4.1.1 Year 1 

Anthracnose symptoms were initially observed two weeks after planting in 

December 2018, with the first observations of plant mortality occurring at three weeks 

after planting. Most plant mortality occurred during the month of December, with 74.8% 
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mortality occurring before 8 January 2019. Following a rain and increased temperatures 

in April, 23 additional genotypes showed increased mortality.  

There were statistically significant effects (F= 16.6607, P < 0.0001) of strawberry 

genotype on percent mortality observed during the 29 April 2019 assessment. Average 

mortality of each genotype ranged from 0 to 100% (Figs. 2.1 and 2.3; Table 2.2). The 

five genotypes with the highest mortality levels were Monterey, UC-9A, Laredo, Victor 

and Spartan, with 94.7, 95.0, 97.5, 100.0, and 100.0 percent mortality, respectively (Fig. 

2.1 and 2.3; Table 2.2). The five strawberry genotypes with the lowest mortality were PS 

5016, PSI-9, PSI-10, LC-1, and LC-4, with 0.0. 0.0, 2.5, 5.0 and 5.0 percent mortality 

respectively (Fig. 2.1 and 2.3).  

All breeding programs had genotypes showing a wide range of plant mortality in 

year one. Variability among replicates measured with standard error showed a range of 

standard error from 0.0 to 13.1. Among all 46 genotypes listed in year 1, there were eight 

genotypes with a standard error larger than 10.0. Genotypes from the University of 

California breeding program had disease ranging from 15.0 (UC-15) to 100% plant 

mortality (Monterey, UC-9 and UC-10) (Fig. 2.3). Genotypes from the University of 

Florida breeding program ranged from 15.0% (Sensation) to 60.0% plant mortality 

(Winterstar) (Fig. 2.3). Genotypes from the Planasa breeding program ranged from 

54.7% (PL 3001) to 84.7% plant mortality (PL 12-04R) (Fig. 2.3.). Genotypes from Plant 

Sciences Inc. ranged from 2.5% (PS 5016 and PSI-10) to 77.5% mortality (BG 3.324) 

(Fig. 2.3). Genotypes from Lassen Canyon ranged from 10.0% (LC-1) to 70.0% mortality 

(LC-7) (Fig. 2.3). Genotypes from Driscoll’s ranged from 22.5% (Prado) to 100.0% plant 

mortality (Spartan) (Fig. 2.3). The non-inoculated block maintained a healthy and 
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vigorous growth throughout the season with the exception of a few genotypes showing up 

to 20% mortality (Table 2.1) Based on observations comparing inoculated plots with non-

inoculated plots, there were some cultivars that were stunted compared to their respective 

non-inoculated plots (data not presented).  

2.4.1.2 Year 2 

Symptoms appeared 2 weeks after planting while the first observations of plant 

mortality began 23 days after planting. Most plant mortality occurred by 1 January 2020, 

63 days after planting. At this time, 80.6% of the total mortality occurred. Mortality 

across all 59 cultivars averaged 58.0%. There were statistically significant effects (F= 

18.2975, P < 0.0001) of strawberry genotype on percent mortality observed at the 29 

April 2020 assessment. 

In year 2, a wide range of plant mortality was again observed for the genotypes 

evaluated. Variability was also seen among replicates for each genotype. For this second 

year the range in standard error was from 0.0 to 13.4. There was a total of five out of 29 

genotypes that had a standard error over 10.0. The five strawberry genotypes exhibiting 

the highest mortality levels were Lara, UC-9, UC-5, Warrior and Monterey with 97.5, 

100.0, 100.0, 100.0 and 100.0% mortality respectively (Fig. 2.2 and 2.4). These five 

susceptible genotypes were not statistically different from each other. The five strawberry 

cultivars with the lowest mortality were bg 4.352, bg 4.367, bg 9.3128, Del Rey and pe 

7.2054 with 7.5, 7.5, 7.5, 10.0, 10.0 and 12.5% mortality, respectively (Fig. 2.2 and 2.4). 

These five resistant genotypes with the lowest percent mortality were numerically 

different but not statistically different from each other. The non-inoculated block 

maintained healthy and vigorous plants season long. In comparison with the inoculated 
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plots there were some cultivars that were stunted compared to their respective non-

inoculated plots (data not presented). 

2.4.1.3 Two-year cultivars 

A total of 30 cultivars were tested in both years of the experiment (Fig. 2.5). 

Breeding programs from Plant Sciences, Driscoll’s, University of California, Davis, 

University of Florida and Planasa had, 8, 7, 7, 6 and 2 genotypes common to both years, 

respectively. Looking at all genotypes common to both years a total of 21 cultivars had a 

difference in final plant mortality at or below 20% (Fig. 2.6). Del Rey and Ruby June 

differed dramatically (>50% mortality) between years. In year one, Ruby June was 

resistant with 25.0 percent mortality while Del Rey was Moderately susceptible with 66.7 

percent mortality (Fig. 2.6). In year two, Ruby June was susceptible with 80.0 percent 

mortality while Del Rey was resistant with 10.0 percent mortality (Fig. 2.6).  
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Figure 2. 1 Average percent mortality due to anthracnose as of 29 April 2019, 184 days 

after inoculation, sorted from highest to lowest within breeding programs. Average 

values were derived from percent mortality of four replicate plots. Error bars are standard 

error of the mean. 
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Figure 2. 2 Average percent mortality due to anthracnose as of 29 April 2020, 188 days 

after inoculation, sorted from highest to lowest within breeding programs. Average 

values are derived from percent mortality of four replicate plots. Error bars are standard 

error of the mean. 
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Figure 2. 3 Average percent mortality due to anthracnose as of 29 April 2019, 184 days 

after inoculation, sorted from highest to lowest. Average values are derived from percent 

mortality of four replicate plots. Error bars are standard error of the mean. 
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Figure 2. 4 Average percent mortality due to anthracnose as of 29 April 2020, 188 days 

after inoculation, sorted from highest to lowest. Average values are derived from percent 

mortality of four replicate plots. Error bars are standard error of the mean. 
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Figure 2. 5 Two-year average percent mortality due to anthracnose as of 29 April 2019 

and 29 April 2020 (184 and 188 days after inoculation, respectively). Cultivars and elite 

breeding lines are sorted from highest to lowest based on results in year one (2018-2019). 

Average values are derived from percent mortality of four replicate plots. Error bars are 

standard error of the mean. 
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Figure 2. 6 Difference in average percent mortality due to anthracnose between cultivars 

and elite breeding lines included in both years (Year 2 – Year 1) as of 29 April 2019 and 

29 April 2020, 184 and 188 days after planting, respectively. Average values are derived 

from percent mortality of four replicate plots.  

2.4.2 AUDPC by cultivar 

2.4.2.1 Year 1 

There were statistically significant effects (F= 16.5551, P < 0.0001) of strawberry 

genotype on AUDPC observed for the 29 April 2019 assessment. AUDPC for all 76 

genotypes averaged 662, while the total possible AUDPC for the whole season at max 

mortality for each rating was 1725. Average AUDPC based on plant mortality ranged 

from 0 to 1709 (Table 2.3). The five strawberry genotypes with the highest rAUDPC 

were Spartan, Monterey, Laredo, UC-9 and Victor with 0.81, 0.85, 0.87, 0.88 and 0.90 

rAUDPC (Table 2.3). All top five susceptible genotypes demonstrated numerical 

differences in AUDPC, yet they were not statistically different from each other. The five 

strawberry genotypes with the lowest rAUDPC were PSI-9, PS 5016, PSI-10, LC-1 and 

-80.0

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

D
el

 R
ey

O
sc

eo
la

W
in

te
rs

ta
r

B
ig

 S
u
r

P
il

g
ri

m

B
G

 3
.3

2
4

B
G

 6
.3

0
2
4

B
G

 9
.3

1
4
2

O
d
es

sa

A
m

ad
o

V
ic

to
r

P
E

 3
.2

1
1

S
en

sa
ti

o
n

M
av

er
ic

k

M
o
n

te
re

y

R
ad

ia
n
ce

P
E

 7
.2

0
5
9

B
ea

u
ty

P
S

 5
0
1
6

F
es

ti
v
al

P
et

al
u
m

a

B
ri

ll
ia

n
ce

1
8
D

N
0
2
3
6

S
an

 A
n
d
re

as

S
w

ee
t 

A
n
n

P
E

 6
.2

0
3
6

P
S

 9
2
7
1

C
ab

ri
ll

o

F
ro

n
te

ra
s

R
u
b
y
 J

u
n
e

D
if

fe
re

n
ce

 i
n
 %

 m
o
rt

al
it

y
 

(y
ea

r 
2

-
y
ea

r 
1
) 

Cultivars/elite breeding lines



 

 

39 

LC-4, with 0.0, 0.0, 0.01, 0.03 and 0.03 rAUDPC, respectively (Table 2.3). These five 

resistant genotypes with the lowest AUDPC were numerically different but not 

statistically different from each other. All breeding programs contained genotypes 

showing a wide range of rAUDPC in year one.  

2.4.2.2 Year 2 

Symptom development occurred 2 weeks after planting while the first 

observations of plant mortality began 23 days after planting. Most plant mortality 

occurred by 1 January 2020, 63 days after planting. At this time, 80.6% of the total 

mortality occurred. AUDPC across all 59 genotypes averaged 857 AUDPC while the 

total possible AUDPC for the whole season at max mortality for each rating was 1790. 

There were statistically significant effects (F= 22.2325, P < 0.0001) of strawberry 

genotype on AUDPC observed at the 29 April 2020 assessment. The five strawberry 

genotypes exhibiting the highest rAUDPC were Lara, UC-5, UC-4, Warrior and UC-9 

with 0.86, 0.89, 0.91, 0.92 and 0.95 rAUDPC (Table 2.3). These five susceptible 

genotypes demonstrated numerical differences in percent mortality, but they were not 

statistically different from each other. The five strawberry genotypes with the lowest 

rAUDPC were Del Rey, bg 9.3128, bg 4.352, pe 3.211 and bg 4.367 with 0.05, 0.05, 

0.05, 0.06 and 0.06 rAUDPC (Table 2.3). These five resistant genotypes with the lowest 

AUDPC were numerically different but not statistically different from each other.  
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Table 2. 1 Strawberry non-inoculated cultivars and elite breeding lines (genotypes) in ranking 

order by percent plant mortality as of 29 April 2019. 

Cultivar/Elite 

Breeding Line 

Plant Mortalityw (%) 

2018-2019 2019-2020 

Meanx Meanx 

Year 1 & 2  

ps 5016 0 0 

Brilliance 0 0 

Sensation 0 0 

Sweet Ann 0 0 

pe 7.2059 0 0 

pe 3.211 0 0 

ps 9271 0 0 

Ruby June 0 0 

Radiance 0 0 

Beauty 0 0 

Festival 0 0 

bg 6.3024 0 0 

pe 6.2036 0 0 

Winterstar 0 0 

San Andreas 0 0 

bg 9.3142 0 0 

Del Rey 0 0 

Petaluma 0 0 

Big Sur 0 0 

18DN0236 0 0 

Maverick 0 0 

Odessa 0 0 

Pilgrim 0 0 

Monterey 0 20 

Victor 0 0 

Fronteras 10 0 

Amado 10 10 

Cabrillo 10 0 

Osceolay 11.1 0 

Year 1  

PSI-1A 0.0 - 

PSI-2A 0.0 - 
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PSI-3A 0.0 - 

PSI-4A 0.0 - 

PSI-5A 0.0 - 

PSI-6A 0.0 - 

PSI-7A 0.0 - 

PSI-8A 0.0 - 

PSI-9A 0.0 - 

PSI-10A 0.0 - 

PSI-11A 0.0 - 

bg 4.367 0.0 - 

bg 6.3016 0.0 - 

UC-1A 0.0 - 

UC-2A 0.0 - 

UC-3A 0.0 - 

UC-4A 0.0 - 

UC-6A 0.0 - 

UC-7A 0.0 - 

UC-8A 0.0 - 

UC-11A 0.0 - 

UC-12A 0.0 - 

UC-13A 0.0 - 

UC-14A 0.0 - 

LC-1A 0.0 - 

LC-2A 0.0 - 

LC-3A 0.0 - 

LC-4A 0.0 - 

LC-5A 0.0 - 

LC-6A 0.0 - 

LC-7A 0.0 - 

LC-8A 0.0 - 

El Dorado 0.0 - 

Kora 0.0 - 

Fortaleza 0.0 - 

Marquis 0.0 - 

Laredo 0.0 - 

Spartan 0.0 - 

PL 12-04R 0.0 - 

PL 09-55 0.0 - 

PL 3001 0.0 - 

UC-9A 10.0 - 
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UC-15A 10.0 - 

Prado 10.0 - 

179AB165 10.0 - 

PL 3002 10.0 - 

Year 2 

bg 3.324 - 0 

bg 4.352 - 0 

bg 4.367 - 0 

bg 9.3128 - 0 

pe 7.2054 - 0 

Royal Royce - 0 

Valiant - 0 

Warrior - 0 

UC-1B - 0 

UC-2B - 0 

UC-4B - 0 

UC-5B - 0 

UC-6B - 0 

UC-7B - 0 

UC-9B - 0 

UC-10B - 0 

UC-11B - 0 

LC-1B - 0 

LC-2B - 0 

LC-3B - 0 

LC-4B - 0 

Lusa - 0 

Lara - 0 

Flamingo - 0 

Mariposa - 0 

148AC398 - 0 

DW147.064 - 0 

DN102.076 - 0 

Elyana - 0 

UC-8Bz - 16.7 
w Percent mortality as of 29 April 2019 and 29 April 2020, 184 and 188 days after inoculation, respectively.  
x Mean values and standard error derived from four plot replicates. Each plot replicate contained 10 plants. 

“-“ No data available for this year.  
y Plant mortality for Osceola had an initial plant stand of 9 plants.  
z Plant mortality for UC-8B had an initial plant stand of 6 total plants  
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Table 2. 2 Strawberry inoculated cultivars and elite breeding lines (genotypes) in ranking 

order by percent plant mortality as of 29 April 2019 (year 1).  

Cultivar/Elite 

Breeding Line 

Plant Mortalityy (%) 

2018-2019 2019-2020 

Meany SEz Meany SEz 

Year 1 & 2  

PS 5016 0.0 0.0 13.1 5.1 

Brilliance 7.5 4.8 25.0 6.5 

Sensation 10.0 7.1 12.8 6.3 

Sweet Ann 10.0 4.1 32.5 11.1 

pe 7.2059 12.5 4.8 25.0 8.7 

pe 3.211 15.3 6.4 10.0 4.1 

ps 9271 25.0 8.7 50.0 7.1 

Ruby June 25.0 9.6 80.0 7.1 

Radiance 27.5 4.8 37.5 9.5 

Beauty 37.5 2.5 50.0 0.0 

Festival 43.3 7.1 57.5 7.5 

Fronteras 45.0 6.5 85.0 5.0 

bg 6.3024 45.8 4.2 30.0 15.8 

pe 6.2036 47.5 16.5 70.0 5.8 

Winterstar 50.0 10.8 17.5 2.5 

Cabrillo 53.9 14.8 85.0 6.5 

San Andreas 56.4 4.7 75.0 6.5 

bg 9.3142 60.0 4.1 45.0 15.0 

Osceola 62.5 11.1 27.5 6.3 

Del Rey 66.7 4.7 10.0 4.1 

Petaluma 67.9 6.3 82.5 4.8 

Amado 71.7 2.9 57.5 6.3 

Big Sur 75.0 6.5 55.0 9.6 

18DN0236 75.0 8.7 92.5 4.8 

Maverick 77.2 12.4 80.0 9.1 

Odessa 84.7 4.9 70.0 9.1 

Pilgrim 87.5 9.5 67.5 8.5 

Monterey 94.7 3.1 100.0 0.0 

Victor 100.0 0.0 92.5 4.8 

Year 1  
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PSI-9A 0.0 0.0 - - 

PSI-10A 2.5 2.5 - - 

LC-1A 5.0 2.9 - - 

LC-4A 5.0 2.9 - - 

LC-5A 8.3 8.3 - - 

PSI-1A 12.5 9.5 - - 

UC-15A 12.5 7.5 - - 

Prado 15.0 6.5 - - 

bg 6.3016 15.6 5.2 - - 

PSI-3A 15.8 7.1 - - 

LC-2A 17.5 6.3 - - 

LC-6A 17.5 4.8 - - 

PSI-5A 18.1 4.9 - - 

PSI-2A 20.0 7.1 - - 

PSI-8A 20.0 7.1 - - 

PSI-4A 20.8 4.8 - - 

LC-3A 22.5 13.1 - - 

PSI-7A 24.4 6.0 - - 

LC-8A 25.0 8.7 - - 

179AB165 25.0 5.0 - - 

PSI-11A 26.9 7.4 - - 

UC-14A 28.1 4.5 - - 

UC-1A 30.0 4.1 - - 

UC-2A 39.2 10.0 - - 

PL 3001 43.9 9.6 - - 

PSI-6A 46.4 3.9 - - 

UC-6A 46.9 5.6 - - 

UC-12A 55.0 11.9 - - 

PL 09-55 57.5 6.3 - - 

LC-7A 57.5 11.1 - - 

UC-3A 62.5 11.1 - - 

UC-8A 67.5 11.1 - - 

UC-11A 75.0 8.7 - - 

UC-13A 75.6 11.7 - - 

PL 12-04R 76.9 6.2 - - 

Marquis 80.0 10.0 - - 

PL 3002 81.7 8.0 - - 
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El Dorado 81.9 2.7 - - 

UC-7A 83.6 9.7 - - 

Fortaleza 89.4 4.1 - - 

Kora 92.5 2.5 - - 

UC-4A 94.4 3.3 - - 

UC-9A 95.0 2.9 - - 

Laredo 97.5 2.5 - - 

Spartan 100.0 0.0 - - 

Year 2 

bg 4.352 - - 7.5 4.8 

bg 4.367 - - 7.5 4.8 

bg 9.3128 - - 7.5 4.8 

pe 7.2054 - - 12.5 6.3 

148AC398 - - 17.5 8.5 

Elyana - - 20.0 4.1 

LC-1B - - 25.0 6.5 

LC-4B - - 27.5 11.1 

Mariposa - - 30.0 12.2 

bg 3.324 - - 42.5 13.1 

LC-2B - - 55.0 13.2 

LC-3B - - 57.5 9.5 

UC-7B - - 65.0 2.9 

UC-10B - - 69.4 13.4 

Lusa - - 80.0 9.1 

UC-1B - - 82.5 10.3 

Valiant - - 85.0 6.5 

UC-6B - - 85.0 2.9 

UC-2B - - 87.5 4.8 

Flamingo - - 87.5 9.5 

DN102.076 - - 90.0 0.0 

UC-11B - - 92.5 4.8 

DW147.064 - - 92.5 2.5 

Royal Royce - - 95.0 2.9 

UC-8B - - 95.8 4.2 

UC-4B - - 97.5 2.5 

Lara - - 97.5 2.5 

Warrior - - 100.0 0.0 

UC-5B - - 100.0 0.0 

UC-9B - - 100.0 0.0 
y Percent mortality as of 29 April 2019 and 29 April 2020, 184 and 188 days after inoculation, respectively.  
z Mean values and standard error derived from four plot replicates. Each plot replicate contained 10 plants. 

“-“ No data available for this year.  
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Table 2. 3 Strawberry inoculated cultivars and elite breeding lines (genotypes) in ranking 

order by area under disease progress curve (AUDPC) as of 29 April 2019 and 29 April 

2020.  

Cultivar/Elite 

Breeding Line 

AUDPCw 

2018-2019 2019-2020 

Meanx SEy rAUDPCz Mean SE rAUDPC 

Year 1 & 2  

PS 5016 0.0 0.0 0.00 150.5 74.7 0.08 

Sensation 94.0 79.7 0.05 166.1 89.9 0.09 

Brilliance 116.6 81.3 0.07 376.6 85.6 0.21 

pe 3.211 142.9 74.0 0.08 105.6 57.3 0.06 

Sweet Ann 159.1 70.9 0.09 402.9 145.9 0.23 

pe 7.2059 165.4 65.8 0.10 294.4 70.1 0.16 

ps 9271 298.3 90.2 0.17 623.3 131.6 0.35 

Ruby June 369.6 144.7 0.21 1258.3 107.5 0.70 

Radiance 424.3 90.0 0.25 541.9 121.2 0.30 

Beauty 517.6 21.0 0.30 703.0 43.1 0.39 

pe 6.2036 538.0 226.2 0.31 778.1 139.9 0.43 

Festival 578.1 96.5 0.34 889.8 115.1 0.50 

bg 6.3024 593.3 107.2 0.34 413.5 244.8 0.23 

Cabrillo 702.5 206.2 0.41 1303.4 109.8 0.73 

Fronteras 712.3 112.0 0.41 1382.0 85.9 0.77 

Winterstar 779.5 168.2 0.45 270.3 38.0 0.15 

Osceola 834.3 146.2 0.48 249.0 39.3 0.14 

San Andreas 849.6 92.6 0.49 1195.6 112.0 0.67 

Del Rey 901.5 80.5 0.52 87.9 62.5 0.05 

Amado 909.1 51.6 0.53 505.4 117.6 0.28 

bg 9.3142 910.4 45.1 0.53 471.3 86.3 0.26 

Petaluma 936.5 141.2 0.54 1292.8 73.8 0.72 

Maverick 1063.1 148.1 0.62 1043.6 139.9 0.58 

18DN0236 1168.8 129.2 0.68 1527.0 97.2 0.85 

Big Sur 1199.3 132.5 0.70 852.9 157.8 0.48 

Odessa 1246.6 108.0 0.72 944.3 114.4 0.53 

Pilgrim 1357.0 163.2 0.79 903.8 134.8 0.50 

Monterey 1472.8 60.4 0.85 1384.3 20.5 0.77 

Victor 1544.5 59.4 0.90 1466.4 79.3 0.82 

Year 1        
  PSI- 9A 0.0 0.0 0.00 - - - 

PSI-10A 11.3 11.3 0.01 - - - 
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LC-1A 47.3 27.3 0.03 - - - 

LC-4A 58.9 34.2 0.03 - - - 

PSI-1A 68.4 39.7 0.04 - - - 

PSI-3A 110.8 105.0 0.06 - - - 

LC-5A 117.6 117.6 0.07 - - - 

PSI-7A 154.0 62.4 0.09 - - - 

bg 6.3016 158.6 60.4 0.09 - - - 

PSI-5A 159.0 58.3 0.09 - - - 

UC-15A 165.4 96.1 0.10 - - - 

LC-6A 177.5 62.7 0.10 - - - 

Prado 186.1 73.2 0.11 - - - 

PSI-2A 192.1 91.0 0.11 - - - 

LC-2A 193.4 82.4 0.11 - - - 

PSI-8A 230.3 88.7 0.13 - - - 

PSI-4A 267.1 41.9 0.15 - - - 

LC-3A 288.1 167.2 0.17 - - - 

179AB165 296.8 44.1 0.17 - - - 

LC-8A 358.1 130.5 0.21 - - - 

PSI-11A 365.8 148.5 0.21 - - - 

UC-1A 414.4 68.0 0.24 - - - 

UC-14A 426.4 80.9 0.25 - - - 

UC-2A 572.5 158.6 0.33 - - - 

PSI-6A 635.3 68.1 0.37 - - - 

PL 3001 679.8 165.4 0.39 - - - 

UC-6A 687.6 82.5 0.40 - - - 

UC-12A 735.8 135.0 0.43 - - - 

LC-7A 777.4 184.3 0.45 - - - 

PL 09-55 876.5 116.0 0.51 - - - 

UC-3A 951.8 181.7 0.55 - - - 

UC-11A 1101.0 89.6 0.64 - - - 

Kora 1121.3 44.1 0.65 - - - 

UC-13A 1124.3 235.0 0.65 - - - 

PL 12-04R 1141.1 141.0 0.66 - - - 

UC-8A 1146.8 192.9 0.66 - - - 

Marquis 1179.1 187.4 0.68 - - - 

El Dorado 1194.8 60.2 0.69 - - - 

UC-7A 1195.4 170.7 0.69 - - - 

PL 3002 1210.1 183.7 0.70 - - - 

Fortaleza 1246.3 86.0 0.72 - - - 

UC-4A 1392.8 89.1 0.81 - - - 
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Spartan 1402.0 54.0 0.81 - - - 

Laredo 1507.1 51.4 0.87 - - - 

UC-9A 1514.8 22.0 0.88 - - - 

Year 2       
bg 4.352 - - - 95.6 64.5 0.05 

bg 9.3128 - - - 95.6 58.5 0.05 

bg 4.367 - - - 111.8 68.6 0.06 

148AC398 - - - 144.9 63.5 0.08 

pe 7.2054 - - - 192.1 95.0 0.11 

Elyana - - - 243.4 94.9 0.14 

LC-1B - - - 323.5 91.0 0.18 

LC-4B - - - 409.3 188.3 0.23 

Mariposa - - - 415.5 160.3 0.23 

bg 3.324 - - - 639.8 181.4 0.36 

LC-3B - - - 753.6 140.0 0.42 

LC-2B - - - 841.5 218.4 0.47 

UC-8B - - - 994.3 77.8 0.56 

UC-7B - - - 1001.5 26.1 0.56 

UC-10B - - - 1044.4 187.0 0.58 

Flamingo - - - 1080.9 76.5 0.60 

Lusa - - - 1180.3 177.9 0.66 

Valiant - - - 1272.8 70.4 0.71 

UC-1B - - - 1330.5 224.9 0.74 

DN102.076 - - - 1346.6 45.9 0.75 

DW147.064 - - - 1370.5 18.4 0.77 

UC-6B - - - 1422.1 47.6 0.79 

UC-2B - - - 1453.4 76.1 0.81 

Royal Royce - - - 1467.5 64.7 0.82 

UC-11B - - - 1502.5 60.3 0.84 

Lara - - - 1542.1 71.1 0.86 

UC-5B - - - 1592.5 76.8 0.89 

UC-4B - - - 1623.8 39.2 0.91 

Warrior - - - 1650.5 5.0 0.92 

UC-9B - - - 1699.4 16.1 0.95 

       

       
w AUDPC = Area under disease progression curve calculated over all season ratings (18 observation 

events). 
x Percent mortality as of 29 April 2019 and 29 April 2020, 184 and 188 days after inoculation, respectively.  
y Mean values and standard error derived from four plot replicates. Each plot replicate contained 10 plants 

“-“ No data available for this year.  
z rAUDPC = refer to materials and methods for calculation of rAUDPC 
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2.5 Discussion 

The objective of this experiment was to identify resistance of strawberry cultivars 

and elite breeding lines (genotypes) to anthracnose caused by C. acutatum. Among all six 

breeding programs, genotypes showed a wide range of plant mortality allowing us to 

characterize their susceptibility to anthracnose. Cultivars such as Festival, Radiance and 

Elyana have been identified as moderately resistant and resistant (Seijo et al., 2008). In 

this experiment cultivars ‘Festival,’ ‘Radiance’ and ‘Elyana’ had average mortality of 

50.4, 32.5 and 20.0%, respectively. For ‘Festival’ and ‘Radiance’ average mortality was 

based on 2 years of data while ‘Elyana’ was based on one year of data.  

Based on Fig. 5, only three of the 30 cultivars and elite breeding lines included in 

both years can be classified as “resistant”: PS 5016, Sensation, and PE 3.211. Resistance 

is classified using average percent morality and the standard error that was derived from 

four replicate plots in each year. If a cultivar was resistant, average percent mortality was 

below 25% and resistance was also confirmed based on AUDPC (Table 2.3). Cultivars 

such as Ruby June, Fronteras, Cabrillo, Winterstar, Osceola and Del Rey were cultivars 

that had a difference of at least 30 percent mortality when comparing data for both years. 

One factor that could have led to this could have been confounding results from another 

pathogen being the cause of mortality. A good example for this could be cultivar Ruby 

June, which is susceptible to other pathogens such as M. phaseolina. Ruby June was one 

of the cultivars sampled for further analysis in the lab and no other pathogens besides C. 

acutatum was found. Another factor that could have led to this disparity might be 

mislabeling or misidentification of cultivars at planting. In this case we believe this was 

not a factor since the breeding programs had their plants labeled and bagged prior to 
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arrival. Furthermore, in year one, the Driscoll’s breeding program did genotypic 

screening on their cultivars and showed that plot labels and plant genetics matched.  

 For several decades breeding programs have tested genotypes at the seedling 

stage and at different locations over several years (Galletta, 1980). Results with such 

differences between years demonstrates that disease screening trials such as this, it is 

important to do several years of evaluation. A cultivar should be evaluated at least three 

to four years per location with local isolates in order to determine accurate susceptibility 

to a disease. Multiple year trials can help identify outliers and add confidence to the 

characterization of resistance attributes.  

Breeding programs can identify markers using molecular tools as a way to help 

decrease time taken to develop resistant cultivars. For anthracnose, SCAR markers such 

as Rca 2 and FaRCg1 have been identified and tested for resistance to anthracnose 

(Lerceteau-Kohler et al., 2005; Salinas et al., 2020). Both these markers differ at which 

pathogenicity group (PG) the markers control anthracnose. A pathogenicity group is a 

group that is classified by different disease reactions to different cultivars with different 

resistance genes (Dusabenyagasani and Fernando, 2008). For Rca 2 it is most effective 

against PG-2 isolates of C. acutatum while FaRCg1 is most effective against PG-1 

isolates (Salinas et al., 2020).  

The inoculation method in this experiment was successful in providing high 

disease severity for susceptible and resistant cultivars. In both years the majority of death 

occurred by the beginning of January, 73 and 69 days after planting for year one and two, 

respectively. In year one, total mortality of 74.8% occurred by 8 January 2019. Total 

death of 80.6% for year 2 occurred by 1 January 2020. The average percent mortality in 
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year one was at 56.8% while for year two it was 59.0%. Overall the disease pressure was 

similar with the exception of an increase of 6% when comparing the total plant mortality 

by January. Throughout both years, an increase in observed visible symptoms on fruit 

were observed after sporadic rain events (data not presented). Typical symptoms included 

water-soaked spots, and firm, sunken brown lesions on fruit (Freeman et al., 1998; Peres 

et al., 2005). These observations support claims on how C. acutatum spores easily spread 

through overhead irrigation or through rain (Madden et al., 1992; Yang et al., 1992). 

Irrigation practices at the experimental plots for this experiment followed industry 

standards and used overhead irrigation for plant establishment for the first four weeks 

after planting.  

Anthracnose has a low persistence in the soil; therefore, the main concern and 

control is at the nurseries (Strand, 2008; Poling 2008). Understanding host resistance can 

allow for nurseries to identify susceptible and resistant cultivars to anthracnose allowing 

them to modify irrigation practices and controls if suspected of having anthracnose in the 

field. Breeding programs can also benefit from these results by incorporating them into 

breeding decisions regarding resistance to anthracnose. By doing this categorization, 

breeding programs can market current cultivars and guide breeding efforts for maximum 

benefits. Since we saw that there were some cultivars that were stunted compared to their 

respective non-inoculated plots (no data presented), for future research plant 

measurements between the non-inoculated and inoculated should be taken to better 

address the disease occurrence and presence (Salinas et al., unpublished). 
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CHAPTER 3: COLONIZATION OF STRAWBERRY CROWN AND ROOT TISSUES 

BY MACROPHOMINA PHASEOLINA AND VERTICILLIUM DAHLIAE IN 

SELECTED GENOTYPES 

3.1 Introduction 

California is one of the top strawberry producing areas of the world, accounting 

for 88% of total U.S. production, totaling 1.8 million tons of harvested fruit (California 

Strawberry Commission, 2018). In 2018, the value of strawberries was in the top 5 

valued commodities for California at 2.84 billion dollars (CDFA, 2018). Prior to 

commercial growers receiving transplants, production of high-quality and disease-free 

plants is necessary. Production of strawberries can be limited by pathogens like 

Verticillium dahliae and Macrophomina phaseolina. It is important for a plant to be able 

to recognize and identify a pathogen as there are many defense mechanisms such as cell 

wall reinforcement, production of reactive oxygen species, and pathogenesis-related 

protein accumulation (Amil-Ruiz et al., 2011). V. dahliae, first described in 1931, has 

been an economically important soilborne pathogen of strawberries (Thomas, 1939; 

Willhelm and Koch, 1956). After the phase out of methyl bromide in 2005, M. 

phaseolina was first reported as an economically emerging soilborne threat to 

strawberries (Koike, 2008). M. phaseolina was initially restricted to California’s southern 

growing region but by 2010 M. phaseolina was present in the northern growing region 

(Koike et al., 2013). V. dahliae has a broad host range and can cause significant losses in 

susceptible cultivars (Zazzeini and Tosi, 1989; Zveibil et al., 2012; Pearson et al., 1987). 

Recent studies have shown that there are M. phaseolina isolates that have a preference for 

strawberries (Burkhardt et al., 2018; Koike et al., 2016).  
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There are many ways that a fungus can become established on a specific host. For 

strawberries, both V. dahliae and M. phaseolina are able to colonize strawberry tissue 

through germ tubes. Germ tubes are produced when microsclerotia germinate in the soil 

or in crop residue. Germ tubes become hyphae and for M. phaseolina can form 

appressoria that penetrate the cell wall or through natural openings (Bowers and Russin, 

1999). In the case of V. dahliae, these hyphae grow intercellularly in the cortex and then 

intracellularly through the xylem resulting in colonized vascular tissue. In strawberries, 

several studies have been done on pathogen colonization. Through these studies it has 

been shown that pathogens can interact differently among certain cultivars and different 

plant parts (Baird et al., 2003; Shaw et al., 2010). Baird et al. (2003) showed that M. 

phaseolina isolation frequencies from plant tissue declined over time, possibly affected 

by root segment degradation or interactions with other microorganisms in the soil. 

Studies have been done where the symptom expression was measured among strawberry 

cultivars (Shaw et al., 2010). Shaw et al. (2010) also showed that 60% of the visual 

symptom expression variation among genotypes was because of genetic differences. In 

both Freeman et al. (2001) and Shaw et al. (2010), findings suggest that colonization, 

resistance and tolerance to colonization can change over the course of a season. Shaw et 

al. (2010) also observed that when the extent of colonization had a partial genetic 

correlation with symptom expression, strawberry genotype performance in the presence 

of V. dahliae may be enhanced by both resistance and tolerance mechanisms within 

genotypes. It was also observed that genetic mechanisms that help prevent systemic 

infection can be more stable over the growing season. 
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 The use of fumigation in nurseries attributes to reduced plant mortality and 

increased plant vigor for commercial growers (Wilhelm and Paulus, 1980). Historically a 

pathogen like V. dahliae played an important role in the discovery and use of the soil 

fumigant chloropicrin as a control measure (Tribble Bros, 1912; Thomas, 1939; Willhelm 

and Koch, 1956). Fumigants like chloropicrin and methyl bromide were important as they 

helped the strawberry industry in a span of 15 years to produce fruit of 40 to 60 tons/ha 

by 1972 (Wilhelm et al., 1974). In 2017 statewide average yield was at 61.7 tons/ha 

(California Strawberry Commission, 2018). The implementation and addition of new 

fumigants like methyl bromide and annual planting systems helped to control 

Verticillium wilt (Wilhelm and Koch, 1956; Voth and Bringhurst, 1990).  

M. phaseolina produces black sclerotia allowing for it to be long-lived in 

agricultural soils and can germinate within two days of root presence (Chowdhury et al., 

2014). Microsclerotia are the primary source for new infections in strawberry plants as 

they are protected by fallen crop residues and eventually released after crop residue 

breakdown (Ramakrishnan, 1955). Microsclerotia are also produced by V. dahliae and 

are dense aggregates of dark pigmented, ellipsoid, thick-walled hyphal cells (Fradin and 

Thomma, 2006). Melanin is present in microsclerotia and can provide protection from 

degrading environmental conditions, thus increasing survival (Polak, 1989).  

Host resistance can be an important control tactic for soilborne pathogens and a 

primary replacement to fumigant controls. Host resistance is considered the most cost 

effective and sustainable control method for crown and root diseases in strawberries 

(Partička and Hancock, 2005; MacKenzie et al., 2006). Genetic resistance to V. dahliae is 

considered as one of many components in an integrated management system that includes 
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the reduction of pest populations in all growth stages. Due to improved yield with 

fumigation efforts, this allowed for breeding efforts to focus on fruit production and 

quality rather than from disease resistance breeding (Wilhelm and Paulus, 1980). Fruit 

firmness and productivity began increasing over time leading to a belief that resistance to 

V. dahliae and M. phaseolina is positively correlated with fruit firmness (Shaw et al., 

1996). Breeding efforts were slow at first but in recent years host resistance trials have 

been conducted in an effort to find resistant cultivars. Cultivar Albion was considered 

resistant in the Fang et al. trial of 2012, but it was found that ‘Albion’ was susceptible to 

M. phaseolina under a growth chamber trial (Sanchez et al., 2016). The difference in 

resistance of ‘Albion’ could be attributed to the inoculation method used by Fang et al. 

which relates to the biology of microsclerotia; in the case of Sanchez et al. they used 

different isolates compared to what Fang et al. used (Fang et al., 2012; Sanchez et al., 

2016). Host resistance can also be attributed to host genetics as it plays a key role in the 

selection of the microbial communities associated with the roots (Smith and Goodman, 

1999; Wissuwa et al., 2008; Andreote et al., 2010). The presence of certain microbes in 

the rhizosphere can play an important role as when V. dahliae is present in the field the 

microbiome is dominated by populations of Pseudomonas spp. (Berg et al., 2005). Soil 

moisture and temperature play an important role in survival of the microsclerotia in V. 

dahliae and M. phaseolina. For V. dahliae, a low soil matric water potential (0.001 bar to 

air dry) and a high soil temperature (28 C) cause a rapid decline of microsclerotia 

present in the soil (Green, 1980). As for M. phaseolina, the environment where 

microsclerotia best thrive is in dry soil and high temperatures (Dhingra, 1975; Pratt, 

2006). 
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Early efforts in resistance screening for V. dahliae found that in wild germplasm 

extensive variation in susceptibility was found but none of the genotypes had sufficiently 

high resistance levels to withstand high inoculum densities (Bringhurst et al., 1966). High 

variation in germplasm for resistance to V. dahliae has been observed in California (Shaw 

and Gubler, 1996; Shaw et al., 1997; Holmes et al., 2016). Segregation of six distinct 

races in V. dahliae have been proposed due to the resistance of different strawberry 

varieties indicating a complex host-pathogen interaction between these isolates and 

cultivars (Govorova and Govorov, 1997). In this experiment we evaluated pathogen 

colonization in different strawberry cultivars, plant parts (i.e., crowns and roots) and 

timings (i.e., early- and late-season). Our objective was to see how much pathogen DNA 

was present in crowns and roots. Crowns and roots were the two plant parts studied due 

to the biology of the pathogens. Identified molecular techniques for each pathogen were 

used to quantify how much pathogen DNA was present. Our V. dahliae trial from 2016-

2017 is a continuation of the thesis of J. Winslow (2019) where he assessed cultivars 

resistant to M. phaseolina.  

3.2 Materials and Methods 

3.2.1 Field layout 

Two field experiments for V. dahliae were carried out in two consecutive field 

seasons at field 25 block 3 (35°18’18.9” N; 120°40’38.3 W) at California Polytechnic 

State University. During year one, 90 strawberry cultivars and elite breeding lines were 

evaluated for host resistance to V. dahliae. In this experiment 90 strawberry genotypes 

were evaluated for  susceptibility to Verticillium wilt. Genotypes were arranged 

randomly into 5 blocks; four blocks were in soil naturally infested with V. dahliae and 
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one block was in soil fumigated with Ally 33 (67% allyl-isothiocyanate + 33% 

chloropicrin at 55 gal/treated A) as a control. Cultivars for this trial were selected from a 

non-fumigated block. The same location was used in year two. In 2017-2018 cultivar 

replications were all on one bed in the fumigated block. For this trial a randomized block 

design determined the positions of planting for each plant. A total of 3 inoculated 

replications were laid out for each of the three cultivars.  

In the 2017-2018 M. phaseolina trial a similar experiment with a similar plot 

layout was established in field 35B (35°18'20.5"N 120°40'23.8"W) at California 

Polytechnic State University. For this trial a total of 3 inoculated replications were laid 

out for each of the three cultivars in the trial. For both fields and for both years, standard 

irrigation, fertilizer application, and pest management practices were used. 

3.2.2 Strawberry genotypes  

3.2.2.1 2016-2017 

 For the 2016-2017 season 90 strawberry cultivars and elite breeding lines were 

evaluated for resistance to V. dahliae (Holmes et al., 2016). Strawberry germplasm was 

selected from six breeding programs: University of California (UC), University of 

Florida, Plant Sciences, Driscoll’s, Planasa and Lassen Canyon. Ten out of the 90 

genotypes were selected to determine the colonization of V. dahliae in the crowns and 

roots of individual plants. The 10 selected cultivars consisted of five susceptible: BG 

1975, Festival, BG 4.367, Benicia and Odessa; and five resistant: San Andreas, UC-12, 

Marquis, Petaluma and Camino Real. Susceptibility was determined through previous 

germplasm screening trials (Holmes et al., 2016).  
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3.2.2.2 2017-2018 

For the 2017-2018 season three cultivars were selected to determine colonization 

for V. dahliae in the crowns and roots of individual plants. Selected genotypes consisted 

of two resistant cultivars (Marquis and Sweet Ann) and one susceptible cultivar 

(Festival).  

During the 2017-2018 season, a total three cultivars were selected to determine 

colonization for Macrophomina crown rot caused by M. phaseolina. Cultivars selected 

consisted of two resistant (Manresa and Marquis) and one susceptible (Sweet Ann). Data 

presented for the M. phaseolina trial is only from the 2017-2018 season.  

3.2.3 Field site and layout 

3.2.3.1 Planting 

Standard grower practices from the southern regions (Oxnard and Santa Maria) 

were used. Transplants were planted into beds 162 cm between centers with four plant 

rows spaced 25 cm apart. Plants were spaced 41 cm apart. Strawberry beds were 30 cm 

high and 2 rows of Tri-Cal low-flow drip irrigation tape (1.2 liter/30.4 m, 20 cm between 

emitters) were laid 2 to 3 cm below the soil surface. Beds were covered with a totally 

impermeable film (TIF), polyethylene mulch, which was 1 mil thick, black on top and 

white on the reverse side. 

3.2.3.1.1 Verticillium dahliae trial 

For the 2016-2017 season, bare-root transplants were planted on 18 Oct 2016 

located on the California Polytechnic State University campus in San Luis Obispo, CA 

Field 25, block 3 (35°18’18.9” N; 120°40’38.3 W). This field was naturally infested with 

approximately 20 colony forming units of V. dahliae per gram of soil. The trial consisted 
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of a randomized complete block design of 20-plant plots replicated four times, with a 

fifth control replicate plot. The fifth control replicate plot was planted in an area 

fumigated with 350 lb/A methyl bromide (50%) + chloropicrin (50%) in fall of 2014.  

For the 2017-2018, bare-root transplants were planted on 23 October 2017 Field 

25, block 3. This field was naturally infested with approximately 20 colony forming units 

of V. dahliae per gram of soil. The trial consisted of a complete randomized block design 

consisting of 20-plant plots replicated four times, with a fifth block planted in fumigated 

soil as a control.  

3.2.3.1.2 Macrophomina phaseolina trial 

For the 2017-2018 season, bare-root transplants were planted on 23 October 2017 

at field 35b located on the California Polytechnic State University campus in San Luis 

Obispo, CA. Two weeks later each plant was inoculated with 5 grams of cornmeal-sand-

Macrophomina inoculum. The inoculum was prepared by making a homogenized 

1.1:0.4:0.4 sand:cornmeal:deionized water mixture over a one-month incubation period 

as described by Mihail (1992) and Winslow (2019). Once colonized, the cornmeal-sand-

inoculum was applied by adding 5 g of inoculum to the crown of the strawberry plant. 

Inoculum was directly placed in contact with the crown and root zone in the upper inch of 

soil. The trial consisted of 20-plant plots replicated five times, with the fifth replicate plot 

was not inoculated.  

3.2.4 In field plant sampling 

Plant sampling was conducted twice per pathogen of interest i.e. early season (4 

months after planting) and late season (7 months after planting). Plants were dug up using 

a garden trowel and roots were slightly shaken to remove soil. Plant samples were placed 
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in 3.7 liter plastic bags and in a styrofoam cooler for transport (Ziplock®, C. Johnson & 

Son, Inc., Racine, WI). Between plant samples the garden trowel was cleaned and 

sanitized using 5.5% O-benzyl-p-chlorophenol (Lysol®, Reckitt Benckiser, Parsippany, 

NJ).  

3.2.4.1 2016-2017  

 A random selection of five plants per cultivar were harvested on 14 July 2017 in 

order to determine colonization by V. dahliae. Each cultivar had five crowns and five 

roots. For this sampling there were 50 crown samples and 50 root samples.  

3.2.4.2 2017-2018 

 There were two sampling dates for the V. dahliae trial and the M. phaseolina 

trials, 27 February and 30 May 2018; 27 February and June 27, 2018, respectively. On 27 

February 2018 both the V. dahliae and the M. phaseolina trials had the same sampling 

process. Three plants were sampled from each control plot and four plants were collected 

from each inoculated/infested plot. For each cultivar there were 3 control plant samples 

and 12 inoculated plant samples. For the non-inoculated plots there were three crown 

samples and three root samples. For each cultivar there was a total of 12 crown samples 

and 12 root samples. For the entire sampling of the early harvest there were 9 non-

inoculated crown samples and 9 non-inoculated root samples and there were 36 

inoculated crown samples and 36 inoculated root samples.  

 In the late sampling of the V. dahliae trial, plants were sampled on 30 May 2018 

while the M. phaseolina sampling took place on 27 June 2018. The same plant sampling 

techniques from the early sampling were used. For this sampling period four plants were 

harvested from the non-inoculated plots and from the inoculated plots of each cultivar. 
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For each cultivar there were 12 non-inoculated plant samples and 16 inoculated/infested 

plant samples. For the entire sampling of the late harvest there were 36 non-inoculated 

crown samples, 36 non-inoculated root samples and there were 48 inoculated crown 

samples and 48 inoculated root samples.  

3.2.5 Missing Plant Samples  

For the late harvest V. dahliae trial there were 73 crown and root samples missing 

(Table 3.1). For the late harvest M. phaseolina trial there was one plant sample missing 

from the non-inoculated plots. Statistical analysis was conducted using the samples and 

data collected. Cultivar Festival was removed from the late harvest sampling date in the 

V. dahliae trial due to missing samples.  
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Table 3. 1 Number of crown and root samples for the V. dahliae trial cultivars in the late 

season harvest, 30 May 2018. A total of four plant samples were harvested for non-

inoculated and inoculated plants.  

 

Replicate 

Total Plants 

Resistance to V. dahliae  Cultivar Crown Root 

Sweet Ann, Fumigated  1 4 2 

Resistant 

Sweet Ann, Fumigated  2 4 4 

Sweet Ann, Fumigated  3 2 2 

Sweet Ann  1 4 4 

Sweet Ann  2 4 3 

Sweet Ann  3 4 4 

Sweet Ann  4 4 4 

Marquis, Fumigated 1 2 3 

Resistant 

Marquis, Fumigated  2 4 4 

Marquis, Fumigated  3 4 4 

Marquis  1 3 3 

Marquis  2 4 3 

Marquis  3 3 3 

Marquis  4 1 2 

Festival, Fumigated 1 0 1 

Susceptible 

Festival, Fumigated 2 0 0 

Festival, Fumigated 3 1 0 

Festival  1 0 0 

Festival  2 0 0 

Festival  3 1 0 

Festival  4 0 0 

 

3.2.6 Plant Processing 

 Plants were rinsed using tap water in order to remove soil. Once rinsed, plants 

were aseptically sectioned into crowns and roots. For both seasons, roots were cut into 5 

to 8 cm segments. For the 2016-2017 samples, crowns were cut into 0.2 cm × 0.2 cm 

pieces. For the 2017-2018 season excess root tissue was removed from crowns and were 

not cut into smaller pieces but were stored for future processing. Crown samples included 

the vascular tissue, cortex and pith. Roots and crowns were separated and placed into 
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labeled 4 mil poly bags (10.16 cm × 12.7 cm, ULINE, Pleasant Prairie, WI). Plant 

samples were then stored in a -20° C freezer for future freeze drying.  

3.2.7 DNA Extractions 

Plant crowns and roots were lyophilized soon after being removed from the -20°C 

freezer. Samples were lyophilized at -50°C, 0.039 mBar for 18-24 hours (Freezone® 4.5, 

Labconco® corporation, Kansas City, MO). Lyophilized tissues were first crushed with 

three impacts of a hammer then pulverized for 1 min using a hand roller tissue 

homogenizer (Agdia Inc., Elkhart, IN). Subsamples (≤ 20 mg) were taken for each 

sample and weights were recorded. Stainless steel spatulas were used to measure sample 

weights and subsamples were transferred to 2 ml bead beating tubes (Lysing Matrix I, 

MP Biomedicals, Solon, OH) containing 2 mm yellow zirconia beads and 4 mm white 

ceramic spheres. 

Plant DNA extractions were completed using a modified version of a commercial 

extraction kit (DNeasy® Plant Mini Kit, Qiagen Inc., Valencia, CA). This modified 

version followed a version from Dr. Alexis Pasulka’s lab at the California Polytechnic 

State University, San Luis Obispo. The modifications included adding a freeze thawing 

procedure after adding 400 μl of AP1 buffer. The buffer and sample were freeze-thawed 

three times in liquid nitrogen and a water bath (65°C) until completely thawed. The 

sample in 2 ml bead beating tube was then bead beaten for 45 seconds at 4.5 meters per 

second (FastPrep FP120, ThermoSavant). After bead beating a proteinase-K was added to 

each tube and incubated at 55°C for 1 hour. Samples were mixed by inverting five times 

every 15 minutes. After this addition, the original Qiagen Plant Kit protocol was 

followed, and DNA was eluted with 50 μl of AE buffer.  
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In order to get pure fungal DNA of V. dahliae and M. phaseolina for standard 

curve generation, a modified version of a manufacturer’s protocol was used (DNeasy® 

UltraCleanKit® Microbial Kit Qiagen Inc., Valencia, CA). The procedure was modified 

at step 4 where a bead beater was used to shake the PowerBead tube for 45 s at 4.5 m/s. 

3.2.8 Standard Curve 

 The standard curve for M. phaseolina was created using a five-point serial 

dilution from pure M. phaseolina DNA (isolate Mp 21). DNA was extracted and its 

concentration was measured following a QubitTM 4 fluorometer protocol (Applied 

Biosystems, Foster City, CA). Serial point dilutions using pure M. phaseolina DNA were, 

1, 0.1, 0.01, 0.001, and 0.0001 ng μL-1. The slope of standard curve was -3.5 with an 

efficiency of 94.9% and an R2 of 0.93.  

 The standard curve for V. dahliae was created by using a five-point serial dilution 

from pure V. dahliae DNA (isolate Vd 5). DNA was extracted and its concentration was 

measured following a QubitTM 4 fluorometer protocol (Applied Biosystems, Foster City, 

CA). Serial point dilutions used from V. dahliae DNA were, 1, 0.1, 0.01, 0.001, and 

0.0001 ng μL-1. The slope of standard curve was -3.3 with an efficiency of 100% and an 

R2 of 0.96.  

3.2.9 Single-tube nested TaqMan assay 

 Colonization of root and crown tissues by M. phaseolina and V. dahliae were 

determined using quantitative polymerase chain reaction (qPCR) of the plant DNA 

extractions. The qPCR assay used for M. phaseolina followed the procedure outlined by 

Burkhardt et al. (2018). The qPCR assay used for V. dahliae followed the procedure 

outlined by Bilodeau et al. (2012). Both assays use a TaqMan molecular single-tube 
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nested assays and the Burkhardt et al. (2018) procedure uses an internal control (IC) that 

was developed by Bilodeau et al. (2012). The purpose of this IC is to monitor for the 

presence of PCR inhibitors.  

Quantitative PCR assays for M. phaseolina were performed in a 25 µl reaction 

with 5X PerfeCTa® Multiplex qPCR ToughMix (Quantabio, Beverly, MA), and 1 µL of 

DNA extract. Primers and probes in the reaction included Mps_TaqMan forward (5’-

CCT CGG CAA ATC CCT ATA G-3’) and Mps_TaqMan reverse (5’-CTT TAC CCT 

CTC TCT ATT CC-3’) primers at 400 nM, Mps_TaqMan_External forward (5’-CTA 

AAC TGG CTT AAT ACT AAT TTA GCG CCG GCG AAT C-3’) and 

Mps_TaqMan_External reverse (5’-CTA AGC CTT ACC GCA CTA GAA CTA AGG 

CTA AGA TCG-3’) primers at 20 nM, Mps_TaqMan_Probe (5’-TAMRA-CTA TTT 

GCT TAA CCC CTA CTC GCT TAG ACT-BHQ2-3’) at 200 nM. The IC was included 

in the reaction mixture with the following concentrations Vdf929-PPF1F (5’-CCT TTC 

CCC TTA CTC TTC T-3’) and Vdr1076-PPF1R (5’-GGA TTT CGG CCC AGA AAC 

T-3’) at 1000 nM, and probe Vdhrc-FAM (5’-FAM-CAC CGC AAG CAG ACT CTT 

GAA AGC CA-BHQ1-3’) at 400 nM, and 32 fg V. dahliae purified DNA. The nested 

thermocycling parameters for M. phaseolina were 1 cycle of 3 min at 95°C, 20 cycles of 

15 s at 95°C and 20 s at 70°C with a plate read, followed by 50 cycles of 15 s at 95°C and 

30 s at 62°C with a plate read.  

The qPCR assays for V. dahliae were performed in a 25 µl reaction with 5X 

PerfeCTa® Multiplex qPCR ToughMix (Quantabio, Beverly, MA), and 1 µL of DNA 

extract. Primers and probes included Vdf929-PPF1F (5’-CCTTTCCCCTTACTCTTCT-

3’) and Vdr1076-PPF1R (5’-GGATTTCGGCCCAGAAACT-3’) at 1000 nM, and probe 
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Vdhrc-FAM (5’-FAM-CACCGCAAGCAGACTCTTGAAAGCCA-BHQ1-3’) at 400 

nM, 32 fg V. dahliae purified DNA, and Vert IC probe (VIC-

AAACTAAGCTTATCGATACCCTCGACCT-QSY) at 2µM. For V. dahliae, the 

thermocycling parameters were 1 cycle of 2 min at 95°C, followed by 55 cycles of 15 s at 

95°C and 30 s at 62°C with a plate read. For V. dahliae Ct values were taken from the 

amplification cycle and readings for M. phaseolina Ct values were taken from the second 

amplification cycle.  

3.2.10 Statistical Analysis 

For the 2016-2017 season, data was tested for normality and multiple 

transformations were attempted to normalize the data using JMP® pro statistical software 

(version 14.2 SAS Institute, Cary, NC). Due to there being no normality, data was 

analyzed using the Wilcoxon/Kruskall-Wallis test. The fixed factors tested were cultivars 

and plant part sampled (crown and root). For the 2017-2018 season, data was tested for 

normality and multiple transformations were used to try and meet normality assumptions. 

Wilcoxon/Kruskall-Wallis test was performed to measure cultivars, plant part 

colonization (crown and root), and sampling period. A Fisher’s least significant 

differences (LSD) post hoc analysis at a p-value of 0.05 was used to test factor means 

from the main effect cultivar. 

3.3 Results 

3.3.1 Colonization by Verticillium dahliae 

Wilcoxon/Kruskall-Wallis test for the amount of V. dahliae DNA present among 

cultivars in 2016-2017 were statistically significant (p-value = 0.0090, Chi-square = 

21.96). Mean amount of V. dahliae in different cultivars was significantly different (p-
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value = 0.0090). When comparing the mean amount of V. dahliae between plant part we 

saw no differences between roots and crowns (p-value = 0.98, Chi-square = 0.024). The 

average V. dahliae DNA amount from all cultivars was 68.721 mg/g dry strawberry 

tissue (Fig. 3.1). Among the 10 cultivars within the 2016-2017 trial there were means that 

were numerically smaller than the others in ng/g dry strawberry tissue between 

susceptible and resistant cultivars. Susceptible cultivars had an average V. dahliae DNA 

amount of 83.724 mg/g dry strawberry tissue while resistant cultivars had an average of 

53.719 mg/g dry strawberry tissue.  

For the 2017-2018 Verticillium samples (Fig. 4.2) the fixed factors of cultivar, 

plant part colonization, and sampling period all had p-values higher than 0.05 and we 

were not able to reject the null hypothesis stating that all the mean ranks for the groups 

are the same. P-values for cultivar, plant part colonization and sampling period were 

0.16, 0.87 and 0.43, respectively. Chi-squared values for cultivar, plant part colonization 

and sampling period were 3.65, 0.0269, and 0.61, respectively.  

3.3.2 Colonization by Macrophomina phaseolina 

Significance was found between all three of the fixed factors for the cultivars used 

to measure colonization by M. phaseolina (p-value = 0.0027, Chi-square = 11.84), plant 

part colonization (p-value = 0.0342, Chi-square = 4.49) and sampling period (p-value 

<0.0001, Chi-square = 39.88). Cultivar Sweet Ann had an average of M. phaseolina 

DNA of 25.2 pg/g dry strawberry tissue, Manresa had an average of M. phaseolina DNA 

of 0.89 pg/g dry strawberry tissue and Marquis had an average of M. phaseolina DNA of 

0.56 ng/g dry strawberry tissue. The mean amount of M. phaseolina DNA was 

significantly different among cultivars (p value = 0.0027). The means of the early and 
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late sampling period were 0.19 pg/g and 4.26 pg/g dry strawberry tissue, respectively. 

Only Sweet Ann had a significantly higher level of M. phaseolina between the early and 

late sampling.  

 

Figure 3. 1 Total average value of V. dahliae DNA detected in root and crown tissue for 

the year 2016-2017 with n = 5 and error bars represent standard error of mean. Uppercase 

letters are for root means comparison and lowercase letters are for crown means 

comparison. Means designated with the same letter are not significantly different (P > 

0.05) as determined by Fishers’s LSD. Resistance and susceptibility were determined 

with phenotypic assessments of plant mortality as of 14 July 2017 (Table 3.2). Plant 

samples were collected on 14 July 2017. 
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Figure 3. 2 Total average value of V. dahliae DNA detected in root and crown samples 

for early and late sampling dates. Averages determinized among three cultivars. 

Resistance was determined with phenotypic assessments of plant mortality by 14 July 

2017 (Table 3.2). Early samples (A) were collected on 27 February 2018 and late samples 

(B) were collected 30 May 2018. Error bars represent the standard error of the means. No 

error bars are shown for the non-inoculated reps as they only represent one replication. 

The fixed factors for cultivar, plant part colonization, and sampling period all had p-

values higher than 0.05 and we were not able to reject the null hypothesis. Symbol “N/A” 

represents no data shown for the missing plant samples not analyzed.
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Figure 3. 3 Average values of M. phaseolina DNA (n = 16) detected in root and crown 

tissue for early (A) and late (B) sampling dates in the year 2017-2018; error bars 

represent standard error of mean. Means designated with the same letter are not 

significantly different (P > 0.05) as determined by Fishers’s LSD. 
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Table 3. 2 Cultivars selected for this trial and their respective percent mortality at the date 

of sampling.  

 

Verticillium dahliae   

Cultivar Year Sample Date 

Percent Mortality 

Mean 

Year 1 

BG 1975 2016-2017 14-Jul-17 45.0 ± 7.1 

Festival 2016-2017 14-Jul-17 46.3 ± 10.9 

BG 4.367 2016-2017 14-Jul-17 57.5 ± 1.4 

Benicia 2016-2017 14-Jul-17 68.8 ± 9.9 

Odessa 2016-2017 14-Jul-17 40.0 ± 12.7 

San Andreas 2016-2017 14-Jul-17 6.3 ± 2.4 

UC-12 2016-2017 14-Jul-17 1.3 ± 1.3 

Marquis 2016-2017 14-Jul-17 2.5 ± 1.4 

Petaluma 2016-2017 14-Jul-17 3.8 ± 3.8 

Camino Real 2016-2017 14-Jul-17 2.5 ± 1.4 

Year 2 

Festival  2017-2018 27-Feb-18 0.0 

Sweet Ann 2017-2018 27-Feb-18 1.3 ± 1.3 

Marquis 2017-2018 27-Feb-18 4.1 ± 2.5 

Festival  2017-2018 30-May-18 4.1 ± 4.1 

Sweet Ann 2017-2018 30-May-18 2.6 ± 2.6 

Marquis 2017-2018 30-May-18 4.1 ± 2.5 

 

Macrophomina phaseolina   

Manresa 2017-2018 27-Feb-18 0.0 

Marquis  2017-2018 27-Feb-18 0.0 

Sweet Ann 2017-2018 27-Feb-18 0.0 

Manresa 2017-2018 27-Jun-18 0.0 

Marquis  2017-2018 27-Jun-18 5.0 ± 3.5 

Sweet Ann 2017-2018 27-Jun-18 36.3 ± 8.5 
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3.4 Discussion 

Susceptibility of a plant to a pathogen is defined as a compatible interaction, 

while resistance of a plant to a pathogen is defined as an incompatible interaction (Fang 

et al., 2012). For this trial, all cultivars had colonization by the pathogen in both crown 

and root tissues (Figs. 3.1, 3.2, 3.3). In a V dahliae trial by Shaw et al. (2010), 11 

resistant strawberry genotypes were tested to characterize the relationship between 

symptom expression and plant infection levels. The results showed that resistance scores 

and percentage of pathogen-free petioles decreased from the first sample to the second. 

For this trial our susceptible cultivar (Table 4.1) Sweet Ann in the M. phaseolina trial 

showed that disease incidence increased from the early sample period to the late sample 

period. M. phaseolina symptoms usually appear when the plant has been established, at 

the beginning of harvest or when exposed to water stress and high temperatures (Sanchez 

et al., 2016). For Macrophomina charcoal rot, cultivar Sweet Ann showed an increase in 

crown colonization in the late harvest compared to the early harvest. In sorghum Diourte 

et al. (1995) showed that M. phaseolina increased the disease development under 

environmental stresses such as drought and increased temperatures among resistant and 

susceptible cultivars. Potential future observations to support these claims can be adding 

multiple sampling events in the season. Evaluating colonization too early can result in 

overestimation of resistance in a cultivar or if evaluating colonization too late it can miss 

a critical time of tuberization (Pasche et al., 2013).  

There are detection methods used for V. dahliae that are soil based or by plating 

on agar plates while counting microsclerotia (Goud and Termorshuizen, 2003; Kabir et 

al., 2004; Bilodeau et al., 2012). In recent years, Babu et al. (2007) reported about 
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conventional polymerase chain reaction (PCR) based on the internal transcribed spacer 

(ITS) for M. phaseolina. Mercado-Blanco et al. (2003) found that the extent of the 

pathogen colonization does not clearly determine the virulence phenotype. Another 

observation made was that pathogen DNA was present both in the stem and root tissue 

before visual symptoms had fully developed.  

In strawberries several studies have been done on pathogen colonization. The 

main method used to identify the pathogen on the host tissue has been PCR. Freeman et 

al. (2001) used this technique and showed that the pathogen is present even though 

symptoms are not. For this trial the qPCR technique identified the pathogen in all 

cultivars and plant parts. Pathogens can interact differently in certain cultivars and 

different plant parts. Baird et al. (2003) showed that M. phaseolina isolation frequencies 

declined over time, possibly affected by root segment degradation or interactions with 

other microorganisms in the soil. Studies have been done where symptom expression was 

measured in strawberry cultivars (Shaw et al., 2010). Shaw et al. (2010) also showed that 

60% of the visual symptom expression variation among genotypes was because of 

genetic differences. In both Freeman et al. (2001) and Shaw et al. (2010), findings 

suggest that colonization, resistance and tolerance to colonization can change over the 

course of a season. In this trial susceptible cultivar Sweet Ann (M. phaseolina) and 

resistant cultivars, Sweet Ann and Marquis (V. dahliae) both showed how resistance and 

tolerance to colonization changed between early- and later-season. Shaw et al. (2010) 

also observed that the presence of V. dahliae may be enhanced by both resistance and 

tolerance mechanisms among genotypes. It was also observed that genetic mechanisms 

that help prevent systemic infection can be more stable over the growing season.  
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In the V. dahliae trial from 2016-2017 (Fig 3.1) there was little distinction 

between pathogen DNA among susceptible and resistant cultivars. In this trial there was 

one susceptible cultivar (Benicia) that had significantly higher pathogen DNA compared 

to resistant cultivars Marquis, UC-12 and Camino Real. Susceptible cultivar BG 1975 

had significantly less pathogen DNA compared to resistant cultivars San Andreas and 

Petaluma. This difference could have could be due to a difference in virulence among V. 

dahliae isolates, as shown in M. phaseolina isolates by Mercado-Blanco et al. (2003).  

We saw the same trend in the M. phaseolina trial with the exception of cultivar 

Sweet Ann that had higher quantity in the crown and even had an increase from the early 

to the late sampling period. In the V. dahliae trial from 2017-2018 we observed that 

during the early sampling season the crowns were more readily colonized compared to 

the late sampling season. Potential reasons for this could be that primary sites of infection 

for V. dahliae from germinating microsclerotia are the root tip, the root elongation zone 

and the points where lateral roots emerge (Soesanto, 2000). Fang et al. described how 

spores of F. oxysporum f. sp. fragariae were settled on grooves and between epidermal 

cell grooves on roots and some on root hairs. After the spores germinated, germ tubes 

penetrated roots through depressions and junctions of epidermal cells but only in the 

susceptible cultivar did the tube directly penetrate the epidermal cell by hyphae swollen 

at the penetration sites (Fang et al., 2012). For V. dahliae, microsclerotia are stimulated to 

germinate by root exudates of host and non-host plants (Berlanger and Powelson, 2000). 

For M. phaseolina, once the microsclerotia germinate, germ tubes become hyphae and 

can form appressoria that penetrate the host epidermal cell walls (Bowers and Russin, 

1999).  
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By understanding host and pathogen interactions we can help develop pathogen-

specific management strategies. Host and pathogen interactions involve colonization of 

the plant. Colonization refers to the establishment of a pathogen on a specific host. For 

fungal pathogens there are many ways that a fungus can establish on a specific host. For 

strawberries, both V. dahliae and M. phaseolina are able to colonize strawberry tissues 

through germ tubes, hyphae and appressoria. It is important for a plant to be able to 

recognize and identify a pathogen as there are many defense mechanisms such as, cell 

wall reinforcement, production of reactive oxygen species, and pathogenesis-related 

protein accumulation (Amil-Ruiz et al., 2011).  

A combination of disease suppressive cultural practices and resistant cultivars can 

lead to alternatives to the use of methyl bromide. Strawberry cultivars can respond to 

pathogens in many ways. These results show that cultivar Sweet Ann in the M. 

phaseolina trial had an increase in pathogen DNA from the early- to the late-season 

sampling dates. Unfortunately, we did not have data on ‘Festival’ as this could have 

provided some valuable information.  
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