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ABSTRACT 
 

A Comparative Study on Seismic Analysis Methods and the Response of 
Systems with Classical and Nonclassical Damping 

 
Noah G. Bleichner 

 
 This thesis investigated the application of seismic analysis methods and 
the response of idealized shear frames subjected to seismic loading. To 
complete this research, a Design Basis Earthquake (DBE) for a project site in 
San Luis Obispo, CA, and five past earthquake records were considered. The 
DBE was produced per the American Society of Civil Engineers’ Minimum 
Design Loads for Buildings and Other Structures (ASCE 7-10) and used for 
application of the Equivalent Lateral Force Procedure (ELFP) and Response 
Spectrum Analysis (RSA). When applying RSA, the modal peak responses were 
combined using the Absolute Sum (ABS), Square-Root-of-the-Sum-of-Squares 
(SRSS), and Complete Quadratic Combination (CQC) method. 
 MATLAB scripts were developed to produce several displacement, 
velocity, and acceleration spectrums for each earthquake. Moreover, MATLAB 
scripts were written to yield both analytical and numerical solutions for each 
system through application of Linear Time History Analysis (THA). To obtain 
analytical solutions, two implicit forms of the Newmark-beta Method were 
employed: the Average Acceleration Method and the Linear Acceleration 
Method. 
 To generate a comparison, the ELFP, RSA, and THA methods were 
applied to shear frames up to ten stories in height. The system parameters that 
impacted the accuracy of each method and the response of the systems were 
analyzed, including the effects of classical damping and nonclassical damping 
models. In addition to varying levels of Rayleigh damping, non-linear hysteric 
friction spring dampers (FSDs) were implemented into the systems. The design 
of the FSDs was based on target stiffness values, which were defined as portions 
of the system’s lateral stiffness. To perform the required Nonlinear Time History 
Analysis (NTHA), a SAP2000 model was developed. The efficiencies of the 
FSDs at each target stiffness, with and without the addition of low levels of 
viscous modal damping are analyzed.  
 It was concluded that the ELFP should be supplemented by RSA when 
performing seismic response analysis. Regardless of system parameters, the 
ELFP yielded system responses 30% to 50% higher than RSA when combing 
responses with the SRSS or CQC method. When applying RSA, the ABS method 
produced inconsistent and inaccurate results, whereas the SRSS and CQC 
results were similar for regular, symmetric systems. Generally, the SRSS and 
CQC results were within 5% of the analytical solution yielded through THA. On 
the contrary, for irregular structures, the SRSS method significantly 
underestimated the response, and the CQC method was four to five times more 
accurate. Additionally, both the Average Acceleration Method and Linear 
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Acceleration Method yielded numerical solutions with errors typically below 1% 
when compared with the analytical solution.  
 When implemented into the systems, the FSDs proved to be most efficient 
when designed to have stiffnesses that were 50% of the lateral stiffness of each 
story. The addition of 1% modal damping to the FSDs resulted in quicker energy 
dissipation without significantly reducing the peak response of the system. At a 
stiffness of 50%, the FSDs reduced the displacement response by 40% to 60% 
when compared with 5% modal damping. Additionally, the FSDs at low 
stiffnesses exhibited the effects of negative lateral stiffness due to P-delta effects 
when the earthquake ground motions were too weak to induce sliding in the ring 
assemblies. 
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1. Introduction 

Recent major earthquakes have shown the need for adequate structural 

design in regions prone to seismic activity. Although structural and seismic 

engineering requirements are constantly improving, the yearly occurrence of high 

magnitude earthquakes continually brings to light the deficiencies of current 

seismic design standards. The purpose of this thesis is to develop 

recommendations for improving the performance of structural systems subject to 

earthquake ground motions. Throughout this research, two primary approaches 

are taken to better structures vulnerable to seismic activity. First, the accuracy of 

several seismic analysis methods – the Equivalent Lateral Force Procedure 

(ELFP), Response Spectrum Analysis (RSA), Time History Analysis (THA) – is 

analyzed. The seismic analysis methods are applied to a wide range of systems 

to develop an understanding of the limitations of each method, as well as the 

parameters that can improve or hinder their accuracy. Secondly, the impacts of 

damping on the response of a system are analyzed. In addition to classical 

damping models, this study researches the efficiency of nonclassical damping 

models through the application of Friction Spring Dampers (FSDs). In order to 

optimize the effects, an iterative approach is taken to designing and 

implementing the FSDs in each system. There is a need to study the effects of 

FSDs to not only improve their quality, but also to increase their prevalence in 

structural systems. To increase the level of understanding, the methods and 

approaches taken in this study are thoroughly detailed, and past research and 

literature are consistently referenced throughout this thesis. 
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1.1 Motivation 

The occurrence of earthquakes in highly developed regions poses a 

serious danger to human life. In the twentieth century alone, over two million lives 

were lost due to earthquakes, with the average number of fatal earthquakes per 

year increasing through the century (Nichols & Beavers, 2008). In the first fifteen 

years of the twenty-first century alone, earthquakes have resulted in 800,000 

deaths (Statista Research Department, 2016). Although improvements have 

been made to seismic analysis and design, structural collapse accounts for 75% 

of all earthquake related deaths (Coburn et al., 1992). Consequently, there is a 

continual need to research the effects of seismic events as they pertain to 

structural engineering. 
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2. Literature Review 
 

The literature review herein focuses on the code provisions, theoretical 

development, and past work used to develop and conduct the research in this 

thesis. In addition to the references in this section, the subsequent chapters of 

this study utilize current literature to further detail and explain the applied 

methods and theories.  

2.1 Code Provisions 

 In this study, the code requirements defined in the American Society of 

Civil Engineers’ (AISC) Minimum Design Loads for Buildings and Other 

Structures (ASCE 7-10) are referenced. The criteria and provisions for applying 

the ELFP, RSA, and THA are found in Chapter 8, Chapter 9, and Chapter 16, 

respectively. Additionally, the National Earthquake Hazards Reduction Program’s 

(NEHRP) Recommended Seismic Provisions for New Buildings and Other 

Structures (FEMA P-1050) are also referenced to further detail seismic 

requirements.  

 2.2 Theoretical Development 

 In order to correctly implement dynamic analysis, An Introduction to 

Applied Structural Dynamics (Kasper & Hall, 2018) is repeatedly referenced. This 

textbook provides equations, methods, and theory necessary for performing 

dynamic analysis on both single degree of freedom (SDOF) and multiple degree 

of freedom (MDOF), damped and undamped systems. Furthermore, Dynamics of 

Structures: Theory and Applications to Earthquake Engineering (Chopra 1995) 
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supplements the understanding and application of dynamic analysis in this 

thesis.  

 Moreover, The Finite Element Method: Linear Static and Dynamic Finite 

Element Analysis (Hughes, 2012) is referenced throughout this research. This 

textbook is used to apply finite element analysis (FEA) for the elastic analysis of 

the shear frames and to understand the differential equations necessary to solve 

for analytical and numerical solutions in THA. Hughes’ provides numerous 

mathematical derivations and proofs which reveal the expected behavior and 

stability of each variation of the Newmark-beta numerical method, which are 

detailed and analyzed throughout this thesis.  

2.3 Past Work 

 Past research has provided knowledge regarding the accuracy and 

applicability of various seismic analysis and numerical methods. A Comparative 

Study of Equivalent Lateral Force Method and Response Spectrum Analysis in 

Seismic Design of Frames (Shrestha, 2019) shows the ELFP yields conservative 

results for frames with heights above four-stories. In the study, A Replacement 

for the SRSS Method in Seismic Analysis (Wilson et al., 1981), the SRSS 

method considerably underestimates the response of three-dimensional 

structures with mass irregularities. Also, Analysis Procedures for Performance 

Based Design (Kelly & Chambers, 2000) suggests the application of THA for all 

performance-based designs, despite the relative complexity of the analysis. In 

Stability and Accuracy of Newmark’s Method (Maghdid, 2002), the Newmark-

beta method increases in accuracy for smaller beta values, but consequently 
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also results in only conditional stability of the solution. Additionally, Stability of 

Average Acceleration Method for Structures with Nonlinear Damping (Li et al., 

2006) proves the stability of the Average Acceleration Method for SDOF systems 

with nonlinear damping using the velocity power function and MDOF systems 

with nonlinear damping by applying the virtual displacement theorem. 

 To develop an understanding of the FSDs, the findings of three key 

research studies are analyzed. First, The Utility of Ring Springs in Seismic 

Isolation Systems (Hill, 1995), defines equations for the stiffness properties and 

details the hysteric characteristics of the FSDs. Secondly, Seismic Performance 

Evaluation of Low-Rise Steel Building Frames with Self-Centering Energy-

Absorbing Rocking Cores (Hu et al., 2019) provides a design procedure for the 

FSDs in Self-Centering Energy-Absorbing Rocking Core (SCENARIO) systems 

and shows that the FSDs successfully reduce the inter-story drifts and demolition 

patterns of the frames. Thirdly, in the thesis Nonlinear Dynamic Analysis of a 

Single-Story Frame with Friction Spring Damper Using SAP2000 (Gurara, 2018), 

FSDs effectively reduce the inter-story drift and base shear of SDOF frames 

subjected to earthquake ground motions.  
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3. Static Seismic Analysis 
 

Throughout the contents of this study, various methods of seismic analysis 

are performed on one-story, two-story, and three-story shear frames.  Although 

the Modal Response Spectrum Analysis Method and Linear Response History 

Analysis Method are both accurate, dynamic methods of seismic analysis, the 

Equivalent Lateral Force Procedure (ELFP) outlined in ASCE 7-10 provides a 

simplified, static method for estimating seismic base shear forces. The results 

from the ELFP and various dynamic methods of analysis are compared at a later 

point in this work. Further explanation and a step-by-step example of the ELFP 

on a three-story shear frame are shown in this chapter.  

3.1 Equivalent Lateral Force Procedure 

The ELFP estimates the seismic forces by relating the total base shear 

and seismic weight of the structure through the seismic response coefficient. The 

governing equation of the ELFP is shown by Equation 3.1. 

𝑉 = 𝐶$𝑊 

Where CS represents the seismic response coefficient. The seismic 

response coefficient is dependent on various site-specific quantities, the 

importance factor of the structure, and the type of lateral force resisting system 

used.  

In this study, the shear frames have floor heights of 11 feet, seismic floor 

weights of 100 kips, and seismic roof weights of 80 kips. Also, the geographic 

location of the three shear frames is chosen to be San Luis Obispo, CA 93407. In 

the case of a lateral force resisting system with an associated floor plan, the 

(Equation 3.1) 
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seismic weights can be determined through the load combination equations 

defined in ASCE 7-10. Although in many cases the seismic weight is solely due 

to the dead load, ASCE 7-10 details the parameters and special inclusions to 

consider when calculating the seismic weight.  

Once the seismic weights are determined, the next step in the ELFP for 

the three-story shear frame is to determine the Occupancy Category (Risk 

Category), which is then used to find the Importance Factor, Ie, associated with 

the structure. As outlined in ASCE 7-10, the Occupancy Category of a structure 

ranges from I to IV with Occupancy Category IV being designated for buildings 

with the greatest importance, such as hospitals or fire stations. Next, the site 

classification of the structure is determined, which references the soil or rock type 

at the site location. Conceptually, soft soils amplify earthquake waves, whereas 

stiff soils reduce earthquake waves. A three-story shear frame defined as a Risk 

Category II structure results in an Importance Factor of 1.0 and a Site Class D, 

representing stiff soil. Typically, Site Class D is assumed unless the authority 

having jurisdiction or geotechnical data confirms otherwise (NEHRP, 2015). In 

general, Site Class D is the most common soil type found in the United States. 

The next step in the ELFP is to determine the site coefficients necessary 

for calculating the seismic response coefficient. The United States Geological 

Survey (USGS) website gives seismic design maps which can be utilized for 

determining specific site coefficients. In accordance with the requirements set 

forth by ASCE 7-10, a Risk Category II structure located in San Luis Obispo, CA 

93407, results in the site parameters shown in Table 1 (Appendix A). 
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Table 1: Site Parameters – San Luis Obispo, CA 

Type Value Description 
SS 1.121 MCER ground motion (for 0.2s period) 
S1 0.427 MCER ground motion (for 1.0s period) 

SMS 1.18 Site-modified spectral acceleration value 
SM1 0.672 Site-modified spectral acceleration value 
SDS 0.786 Numeric design value at 0.2s SA 
SD1 0.448 Numeric design value at 1.0s SA 
SDS D Seismic Design Category 
Fa 1.051 Site amplication factor at 0.2s 
FV 1.572 Site amplication factor at 1.0s 

PGA 0.442 MCEG peak ground acceleration 
 

  The site coefficients are determined with respect to the Design Basis 

Earthquake (DBE) and the Maximum Considered Event (MCE), which refers to 

an earthquake that is expected to occur once in every 500 years and 2500 years, 

respectively. Since the three-story shear frame is designed based on the DBE, 

the critical values for the design are SDS and SD1. SDS and SD1 are the design 

spectral acceleration values at periods of 0.2 seconds and 1.0 seconds, 

respectively. With the SDS and SD1 values, a Simplified Design Response Spectra 

can be developed in accordance with ASCE 7-10.  

 In addition to the site coefficients, the approximate fundamental period 

(Ta) is needed to determine the seismic response coefficient in Equation 3.1. As 

outlined in ASCE7-10, the approximate fundamental period of a structure can be 

determined with Equation 3.2. 

𝑇' = 𝐶(ℎ*+ (Equation 3.2) 
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 Where Ct and x are both determined from Table 12.8-2 in ASCE 7-10, and 

hn refers to the height of the building above the base. For a steel moment 

resisting frame, Ct = 0.028 and x = 0.8, which results in an approximate 

fundamental period of 0.459 seconds for the three-story shear frame. 

 Furthermore, ASCE 7-10 provides an addition equation for calculating the 

fundamental period of a structure, shown by Equation 3.2a below. 

𝑇' = 0.1𝑁 

 Where N refers to the number of stories above the base of the structure. 

ASCE 7-10 permits the use of Equation 3.2a as a replacement to Equation 3.2 

for steel moment resisting frames that are less than 12 stories, with average 

story heights greater than 10 feet. For the three-story shear frame, Equation 3.2a 

results in an approximate fundamental period of 0.3 seconds. Despite the 

applicability of Equation 3.2a, an approximate fundamental period of 0.459 

seconds is used for analysis of the three-story shear frame.  

 The final value necessary to determine the seismic response coefficient is 

the Response Modification Factor, R. The Response Modification Factor 

depends on the type of lateral force resisting system used. Table 12.2-1 in ASCE 

7-10 defines the R value for each type of structural system. Conceptually, certain 

lateral force resisting systems perform better under seismic loads than others. In 

general, the more ductile the system, the better it performs. As a result, a higher 

R value correlates with a more ductile lateral force resisting system and therefore 

a lower seismic design force. An important consideration during design is the 

height limit for specific lateral force resisting systems with regards to the Seismic 

(Equation 3.2a) 
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Design Category (SDC) set forth by ASCE 7-10. As shown by Table 1, a site 

located in San Luis Obispo, CA, is in SDC D. According to ASCE 7-10 Table 

12.2-1, the use of a steel ordinary moment resisting frame in SDC D is not 

permitted (NP), whereas the use of a steel intermediate moment resisting frame 

in SDC D is permitted (P) for structures less than 35 feet in height. Consequently, 

the three-story shear frame is categorized as a steel intermediate moment frame 

with an R value of 4.5. Although an in-depth design of the three-story shear 

frame is not the goal of this study, the use of an intermediate as opposed to an 

ordinary steel moment frame assumes that the frame and its connections are 

designed to be ductile and able to withstand significant inelastic deformation.  

 Next, the seismic response coefficient is determined in accordance with 

ASCE 7-10 through Equation 3.3. 

𝐶$ = 	
𝑆23
(𝑅/𝐼) 

 As previously determined for the three-story shear frame the SDS, R, and I 

value are 0.786, 4.5, and 1.0, respectively, which results in a Cs value of 0.175. 

 In addition to Equation 3.3, ASCE 7-10 establishes upper limits for the 

seismic response coefficient defined by Equations 3.3a and 3.3b, and a lower 

limit of 0.01 for the seismic response coefficient. 

𝐶3 = 	
𝑆29

𝑇(𝑅/𝐼) 	𝑓𝑜𝑟	𝑇 ≤ 𝑇> 

𝐶3 = 	
𝑆29𝑇>
𝑇?(𝑅/𝐼) 	𝑓𝑜𝑟	𝑇 > 𝑇> 

 Where TL represents the long period transition period, which is determined 

from Figure 22-12 in ASCE7-10. For a structure site in San Luis Obispo, CA, the 

(Equation 3.3) 

(Equation 3.3a) 

(Equation 3.3b) 
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TL value is 8 seconds. The results of Equation 3.3a and 3.3b are 0.217 and 

3.789, respectively, which means the CS value obtained from Equation 3.3 

governs. Also, it is important to note that if the S1 value of the site is greater than 

or equal to 0.6g, ASCE 7-10 gives a supplemental lower bound equation for the 

seismic response coefficient. 

 The final step of the ELFP is to determine the total seismic base shear 

and vertically distribute the seismic forces at each story of the shear frame. In 

accordance with Equation 3.1, the calculated seismic weight and seismic 

response coefficient for the three-story shear frame result in a total seismic base 

shear of 49 kips. To vertically distribute the total seismic base shear along the 

height of the three-story shear frame, Equation 3.4 and Equation 3.5 are used.  

𝐶AB = 	
𝑊+ℎ+C

ΣEF9* 	𝑊EℎEC
 

𝐹+ = 𝐶H+𝑉 

 Equation 3.4 and Equation 3.5 consider the seismic weight and height of 

each story in order to distribute the base shear into lateral shears at each level. 

In Equation 3.4, the value of k is dependent on the fundamental period of the 

structure. Since the fundamental period of the three-story shear frame is less 

than 0.5s, according to ASCE 7-10, k is equal to one.  

 The lateral story forces calculated through the ELFP for the one-story, 

two-story, and three-story are shown below in Figure 1, Figure 2, and Figure 3, 

respectively. 

(Equation 3.4) 

(Equation 3.5) 
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Figure 1: One-Story Shear Frame ELFP Results 

 

Figure 2: Two-Story Shear Frame ELFP Results 
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Figure 3: Three-Story Shear Frame ELFP Results 

 In the succeeding sections, matrix structural analysis is applied to the 

above shear frames to determine the lateral displacement response at each 

story. The displacement responses resulting from the ELFP are compared with 

the responses yielded by response spectrum analysis (RSA) in the subsequent 

chapters of this work. 
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(Equation 3.7) 

3.2 Static Mechanics and Finite Element Analysis 

To support the concepts of structural dynamics detailed in future chapters, 

a thorough understanding of static mechanics is necessary. Static Matrix 

Structural Analysis and Finite Element Analysis (FEA) provide many concepts 

applicable to structural dynamics problems. The following sections expand on 

static mechanics theory and serve as a stepping-stone for the dynamic analysis 

of the shear frames under earthquake excitations. 

 The main structural analysis method in matrix structural analysis stems 

from the direct stiffness method. The direct stiffness method uses linear elastic 

constitutive theory to determine the unknowns in statically indeterminate 

structures. The equation for Hooke’s Law in one-dimension is shown below in 

Equation 3.6. 

𝜎 = 𝐸𝜀 

 Hooke’s Law in one-dimension relates the normal stress and strain of an 

element through the use of the Elastic Modulus, E. As shown in Equation 3.6, the 

Elastic Modulus is the result of dividing the stress by the strain. Shown below,  

Hooke’s Law for the direct stiffness method is derived from Equation 3.6. 

			𝜎 = 𝐸𝜀	 

𝜎 = 	
𝐹
𝐴	, 𝜀 = 	

Δ𝐿
𝐿  

	
𝐹
𝐴 = 	

EΔ𝐿
𝐿  

	
𝐹
∆𝑥 = 	

𝐸𝐴
𝐿 = 𝐾 

𝐹 = 𝐾∆𝑥	  

(Equation 3.6) 
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 Although Equation 3.7 is derived from Hooke’s Law in one-dimension, 

Equation 3.7 can also be written in matrix form as shown below in Equation 3.8  

{𝐹} = [𝐾]{𝑢} 

Equation 3.8 denotes linear elastic constitutive theory for multiple 

dimensions, and it is the governing equation behind the direct stiffness method. 

To solve for the unknowns in highly statically indeterminate structures, Equation 

3.8 is applied to each element of the structure through the use of the Finite 

Element Method (FEM). 

The Finite Element Method (FEM) uses partial differential equations and 

boundary conditions to obtain an approximate solution for the displacement at 

nodal points on an element. Despite the complex nature of the mathematics 

involved with Finite Element Analysis (FEA), the FEM is applicable for simple and 

complex structural and mechanical engineering problems.  

For instance, consider a simple multi-member truss problem commonly 

seen in beginner engineering courses. At each element end, the pinned 

connections allow for the large truss to be broken into individual elements. The 

process of breaking the truss into a finite number of individual elements and 

analyzing the forces at each element node to solve the larger truss problem, is a 

simple example of FEA. Although the pinned connections of a truss result in 

solely axial member forces, the direct stiffness method implements the same 

concept to determine the unknown forces and displacements of elements that 

have higher degrees of freedom (DOFs). Despite the simplicity, understanding 

FEA for a truss problem gives a better groundwork for understanding more 

(Equation 3.8) 
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complex engineering problems.  For simple cases, FEA application is possible by 

hand, but as the complexity and number of active DOFs in the system increases, 

computer software is necessary. To obtain the values of the stiffness matrix for a 

beam element two derivations are detailed in the subsequent section. 

3.3 Stiffness Coefficients 

First, the stiffness coefficients can be derived through the principle of 

virtual work by applying a unit displacement at each DOF, while keeping the 

displacements and rotations at the other DOFs equal to zero. The element forces 

and rotations necessary to maintain the shape of the element under the unit 

displacement are referred to as the stiffness coefficients. For a beam element, 

the stiffness matrix is 4x4 to denote the shear displacements and rotations at 

each node. In order to derive the stiffness coefficients using the principle of 

virtual work, Bernuolli-Euler Beam Theory is applied to the beam element. It is 

important to note that linear beam theory relies on two assumptions: that plane 

sections remain plane and normal deformed rotations of the beam are small. 

Linear beam theory states that the moment divided by the moment of inertia and 

elastic modulus is equal to the second derivative of the displacement with 

respect to the distance along the length of the beam. A step-by-step derivation of 

the stiffness coefficients for a beam element using the Bernuolli-Euler Beam 

Theory for small deformations is shown in Appendix B. 

Another method for determining the stiffness coefficients for a beam 

element is to utilize shape functions. A shape function is an interpolation function 

which gives a unique displacement function for each DOF of an element. The 
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use of shape functions allows for numerical integration, which is commonly used 

in FEA to simplify the analysis and produce approximate solutions to complex 

problems. The shape functions are dependent on the number of DOFs at each 

node of an element. For example, the shape functions for a truss element with 

one DOF (axial) at each node are determined through linear interpolation, 

whereas the shape functions for a beam element with two DOFs at each node 

(transverse and rotation) are determined through the use of Lagrange 

Polynomials. Since each beam element has four DOFs, four individual shape 

functions need to be formed to derive the stiffness coefficients. To derive the four 

shape functions for a beam element, the initial displacement function is cubic. A 

step-by-step derivation of the stiffness coefficients for a beam element using the 

FEM and shape functions is shown in Appendix C. 

 The method of virtual work and the use of shape functions to determine 

the stiffness coefficients for a two-dimensional beam element both result in the 

same stiffness matrix, which is shown in Equation 3.9 below. 

𝑘Z = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 			
12𝐸𝐼
𝐿_

				
6𝐸𝐼
𝐿?

−
12𝐸𝐼
𝐿_

			
6𝐸𝐼
𝐿?

			
6𝐸𝐼
𝐿?

				
4𝐸𝐼
𝐿

−
6𝐸𝐼
𝐿?

			
2𝐸𝐼
𝐿

−
12𝐸𝐼
𝐿_

−
6𝐸𝐼
𝐿?

				
12𝐸𝐼
𝐿_

−
6𝐸𝐼
𝐿?

				
6𝐸𝐼
𝐿?

				
2𝐸𝐼
𝐿

−
6𝐸𝐼
𝐿?

			
4𝐸𝐼
𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 In the case of a frame element, the stiffness matrix includes an axial 

degree of freedom at each node, resulting in three DOFs per node and a 6x6 

element stiffness matrix. The previous derivations for the stiffness coefficients of 

a truss and beam element are combined to produce the stiffness matrix for a 

(Equation 3.9) 
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frame element. The stiffness matrix for a frame element is shown in Equation 

3.10 below. 

																			𝑘Z =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 			
𝐸𝐴
𝐿

0 0 −
𝐸𝐴
𝐿

			0 			0

			0 			
12𝐸𝐼
𝐿_

			
6𝐸𝐼
𝐿?

			0 −
12𝐸𝐼
𝐿_

			
6𝐸𝐼
𝐿?

			0 			
6𝐸𝐼
𝐿?

			
4𝐸𝐼
𝐿

			0 −
6𝐸𝐼
𝐿?

			
2𝐸𝐼
𝐿

−
𝐸𝐴
𝐿

			0 			0 			
𝐸𝐴
𝐿

			0 			0

			0 −
12𝐸𝐼
𝐿_

−
6𝐸𝐼
𝐿?

			0 			
12𝐸𝐼
𝐿_

−
6𝐸𝐼
𝐿?

			0 			
6𝐸𝐼
𝐿?

			
2𝐸𝐼
𝐿

			0 −
6𝐸𝐼
𝐿?

			
4𝐸𝐼
𝐿 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 By definition, the beams in a shear frame are rigid, resulting in only a 

lateral DOF at each story level. As a result, the stiffness matrix of a shear frame 

has the same number of rows and columns as DOFs. Although the properties of 

a shear frame simplify the analysis, an element by element approach is still 

applicable and exemplified in the following section.  

3.4 Matrix Structural Analysis 

As referenced in the above sections, the stiffness coefficients were 

derived on an element-by-element basis in local coordinates. In order to 

determine the unknown displacements of a frame structure, each element is 

analyzed individually and transformed from the local element domain to the 

global element domain through vector calculus. Equation 3.11 shown below is 

used to transform the element stiffness matrix from local to global coordinates. 

𝐾Z = 𝐵Zg𝑘Z𝐵Z 

 Where Be represents the element transformation matrix. The element 

transformation matrix for a frame element is shown below in Equation 3.12. 

(Equation 3.10) 

(Equation 3.11) 
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𝐵Z =

⎣
⎢
⎢
⎢
⎢
⎡
			𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 			0 0 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 			0 0 0
			0 0 1 			0 0 0
			0 0 0 				𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
			0 0 0 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
			0 0 0 			0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

 Through Equations 3.11 and 3.12, the element stiffness matrix is 

transformed from the local domain to the global domain. The transformation 

matrix uses sin and cos to relate the positions of each element in the structure. 

For example, consider the one-story shear frame in Figure 1, each element 

stiffness matrix in the local domain is determined through Equation 3.10, without 

accounting for the horizontal and vertical orientations of the beam and columns, 

respectively. Through the transformation matrix, the stiffness matrix of each 

individual element is transformed to the global domain in accordance with its 

position in the system. As a result, a global stiffness matrix is developed which 

represents the entire structure.  

 To exemplify the process of performing matrix structural analysis by hand, 

a step-by-step example for determining the lateral deflection of the one-story 

shear frame in Figure 1 is shown in Appendix D.  

3.5 ELFP Results and Discussion 

In combination with the hand-calculation shown in Appendix D, the lateral 

deflections at each story for the two-story and three-story shear frame shown in 

Figure 2 and Figure 3, respectively, are calculated using matrix structural 

analysis in MATLAB. The results for the lateral deflections of the three shear 

frames at each story are presented in Table 2. 

 

(Equation 3.12) 
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Table 2: Lateral Deflections - ELFP 

 Floor Level Deflections 

 U1 (in.) U2 (in.) U3 (in.) 
One-Story 0.1542 N/A  N/A  
Two-Story 0.3470 0.5607 N/A  

Three-Story 0.5398 0.9796 1.2195  
 

Additionally, ASCE 7-10 defines requirements for the scaling of the lateral 

deflection values obtained from the ELFP. In accordance with ASCE 7-10 

Section 12.8.6, for a structure in SDC D, the deflections calculated from elastic 

analysis must be scaled by the deflection amplification factor and importance 

factor of the structure. The scaling factor is shown by Equation 3.13 below. 

Δ = 	
𝐶2𝑢
𝐼Z

 

 Where CD is the deflection amplification factor, u is the calculated lateral 

deflection from elastic analysis, and I is the importance factor. Similar to the R 

factor determined earlier, the deflection amplification factor is dependent on the 

lateral force resisting system under analysis. For steel intermediate moment 

resisting frames, such as the one-story, two-story, and three-story shear frames, 

the CD value is equal to four. Also, as previously determined, the importance 

factor of the three shear frames is equal to one. Applying Equation 3.13 to the 

lateral deflection values in Table 2 results in the design deflection values shown 

in Table 3 on the following page. 

 

 

 

(Equation 3.13) 
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Table 3: Scaled Lateral Deflections - ELFP 

 Design Floor Deflections 

 U1 (in.) U2 (in.) U3 (in.) 
One-Story 0.6168 N/A  N/A  
Two-Story 1.3880 2.2428 N/A  

Three-Story 2.1592 3.9184 4.8780 
 

 Lastly, Abaqus, a finite element analysis software, is used to visualize the 

unfactored deflected shapes of the three shear frames. The deflected shape for 

the one-story, two-story, and three-story shear frames subject to the lateral 

forces calculated using the ELFP are shown below in Figure 4, Figure 5, and 

Figure 6, respectively. 

 

Figure 4: One-Story Shear Frame Deflected Shape - ELFP  
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Figure 5: Two-Story Shear Frame Deflected Shape - ELFP 

 

Figure 6: Three-Story Shear Frame Deflected Shape - ELFP 

 As shown in the above figures, the values for the displacements slightly 

vary from the results obtained from the exact MATLAB analysis. The slight 

discrepancies are due to the seed size and element type chosen in the Abaqus 
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model. Despite the differences, each Abaqus plot serves as a great visualization 

tool for understanding the behavior of the three shear frames under lateral loads.  

3.6 Summary 

 The subsequent chapters in this study analyze the three shear frames 

using dynamic analysis. The principles of mechanics and the analysis methods 

detailed herein are applied throughout this study to determine the dynamic 

responses of the shear frames. Furthermore, the lateral forces and displacement 

values calculated through the ELFP and matrix structural analysis are compared 

with the results obtained from modal analysis in the subsequent chapters of this 

study. 
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4. Modal Response Spectrum Analysis 
 
 In this chapter, the principles of structural dynamics are introduced and 

applied to the one-story, two-story, and three-story shear frames. The results 

obtained throughout this chapter serve as a basis for applying time-history 

analysis (THA) to the shear frames. Although the ELFP serves as a code-based 

method for seismic design, it is important to consider the limitations of the ELFP. 

First, the ELFP attempts to simulate dynamic seismic loads through static lateral 

forces. Despite the fact that the ELFP produces displacements in the shear 

frames, horizontal ground accelerations are by nature dynamic and 

unpredictable. Secondly, the ELFP only considers the first natural frequency of 

vibration of the system. For most systems, the first natural frequency of vibration 

is the most impactful, but when considering systems with Multiple Degrees of 

Freedom (MDOF) such as the two-story and three-story shear frame, the natural 

frequencies of vibration for the higher DOFs impact the response. In a Single 

Degree of Freedom System (SDOF), the first and only fundamental period of 

vibration defines a system’s response. 

4.1 Dynamic Analysis 

Structural dynamics applies the principles of structural analysis touched 

on in the previous chapter, to structures subject to time-dependent (dynamic) 

loads. A time-dependent load refers to any load that is a function of time. For 

example, earthquake ground accelerations, wind loads, or cars travelling across 

a bridge are all time-dependent loads. In areas of high seismicity, such as 

California, the dynamic responses of structures under earthquake ground 
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motions serve as a critical portion of a structure’s design. Failure to perform 

dynamic analysis on a structure in California will increase the probability of its 

failure under dynamic loading. 

 Obviously, structural dynamics is very broad and carries many different 

engineering applications, so it is important to consider the type of system under 

analysis. Before beginning a dynamic analysis, it is important to consider whether 

the system is a SDOF or MDOF system, whether the system is damped or 

undamped, and what type of dynamic load is applied to the system.  

 First, as prefaced, the number of DOFs in the system governs the 

dynamic analysis performed on the system. Secondly, whether the system is 

damped or undamped defines the equation of motion used in the dynamic 

analysis. Realistically, every real-world physical system will have damping effects 

due to the connections and materials used, but in some analysis cases the 

effects of damping are ignored. Also, systems can include classical or 

nonclassical damping mechanisms. Although viscous damping is typically 

assumed, in the succeeding chapters of this work, friction spring dampers (FSDs) 

are detailed and included in the THA of the three shear frames. Thirdly, the 

process of dynamic analysis relies heavily on the type of dynamic loading applied 

to the system. For the three shear frames, the dynamic load is a result of 

horizontal earthquake ground accelerations, but if periodic loads, impulse loads, 

harmonic excitations, or free vibrations are applied, the process of dynamic 

analysis varies significantly. Additionally, the dynamic response of a system 

depends on the rate of the loading relative to the system frequencies.  
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(Equation 4.2) 

 The basis for the governing equation of motion used in structural 

dynamics derives from Newton’s Second Law of Motion, which states force is 

equal to the product of mass and acceleration. To derive the governing equation 

of motion using Newton’s Second Law of Motion, a free-body diagram (FBD) of a 

SDOF system is drawn and a simple summation of the forces is performed 

resulting in Equation 4.1.  

𝑚ü + 𝑐u̇ + 𝑘𝑢 = 𝑝(𝑡) 

 Where mü is the mass multiplied by the acceleration, cu̇ is the damping 

coefficient multiplied by the velocity, ku is the stiffness multiplied by the 

displacement, and p(t) is the dynamic forcing function. Understanding how each 

product of Equation 4.1 effects the vibrations of a system is critical for dynamic 

analysis. A quick analysis of Equation 4.1 shows that each product results in 

consistent units allowing for them to be summed together. Equation 4.1 is also 

applicable for MDOF systems. The governing equation of motion in matrix 

notation is shown below in Equation 4.2.  

𝑀ü + 𝐶u̇ + 𝐾𝑢 = 𝑃(𝑡) 

 Where the mass, damping coefficients, and stiffness coefficients are 

matrices, and the forcing function is a vector. For the one-story shear frame, the 

scalar form of the governing equation shown in Equation 4.1 is applicable, but for 

the two-story and three-story shear frames, Equation 4.2 is necessary. 

 One of the primary goals of structural dynamics is to determine the natural 

frequencies and periods of vibration of the structure. The naturally period of 

vibration refers to the period that the system will oscillate at naturally due to its 

(Equation 4.1) 
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stiffness and mass properties. From the natural frequency, the natural period of 

vibration can be calculated through Equation 4.3.  

𝑇* = 	
2𝜋
𝑤*

 

 Where Tn is the natural period of vibration, and wn is the natural frequency 

of vibration. In a SDOF system, the natural and fundamental period of vibration 

are the same, but for a MDOF system, the fundamental period of vibration refers 

to the largest natural period of vibration of the system.  

 Generally, a primary goal of seismic design is to prevent the structural 

system from oscillating at its natural period and vibrating at its natural frequency. 

If the dynamic loading function and the natural frequency of a structural system 

are in harmony, the oscillations will be amplified, resulting in a system that is in 

resonance. When a system is in resonance, the displacements and forces are at 

a maximum, significantly increasing the response. Consequently, systems in 

resonance are more likely to endure significant damages or even collapse under 

the dynamic loading. In order to calculate the natural frequency of vibration for a 

SDOF system, Equation 4.4 is used.  

𝑤* = 	x
𝑘
𝑚 

 Where k is the stiffness of the system, and m is the mass of the system. 

The formerly derived stiffness coefficients are used to determine the stiffness of a 

system. Although the entire stiffness matrix for a frame element is derived in 

Chapter 3, only the stiffness coefficients for lateral or shear displacements are 

(Equation 4.3) 

(Equation 4.4) 
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applicable for shear frames. The hand calculations for the natural frequency and 

period of vibration for the SDOF system in Figure 7 are shown below.  

 

Figure 7: One-Story Shear Frame Dynamic Model  

𝑚9 	= 	
𝑊
𝑔 =

80𝑘𝑖𝑝𝑠

386.4 𝑖𝑛𝑠?
= 0.20704

𝑘𝑖𝑝𝑠
𝑖𝑛 𝑠? 

𝐾 = 2𝐾9 = 2 ∗
12𝐸𝐼
𝐿_ =

24(29000𝑘𝑠𝑖)(300𝑖𝑛�)
(132𝑖𝑛)_ = 90.78

𝑘𝑖𝑝𝑠
𝑖𝑛 	 

𝑤* = 	x
𝑘
𝑚 =	�

90.78 𝑘𝑖𝑝𝑠𝑖𝑛
0.20704 𝑘𝑖𝑝𝑠𝑖𝑛 𝑠?

= 20.94
𝑟𝑎𝑑
𝑠 	 

𝑇* = 	
2𝜋
𝑤*

=
2𝜋

20.94 𝑟𝑎𝑑𝑠
= 0.3001𝑠 

For a MDOF system, the governing equation of motion for an undamped 

system in free vibration is used to derive Equation 4.5. Equation 4.5 is a 

generalized eigen value problem and relates the stiffness and mass matrices of 

the system with its matrix of mode shapes. 

[𝐾 − 𝑤?𝑀]𝜙 = 0 (Equation 4.5) 
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 Where K, M, and f are the stiffness, mass, and mode shape matrices, 

respectively. To determine the natural frequencies of a MDOF system, properties 

of linear algebra are applied to Equation 4.5 (Goode & Annin, 2007). First, in 

order to solve Equation 4.5, each side of the equation must be multiplied by the 

inverse of [K – w2M] to separate the two matrices. Consider the case shown 

below in which [K – w2M]-1 is multiplied on each side of Equation 4.5. 

[𝐾 − 𝑤?𝑀]�9[𝐾 − 𝑤?𝑀]𝜙 = [𝐾 − 𝑤?𝑀]�90 

𝜙 = [𝐾 − 𝑤?𝑀]�90 

 The result of multiplying each side by [K – w2M]-1 is a trivial solution, 

meaning a solution of only zeros. Obviously, a constant solution of all zeros for 

Equation 4.5 serves no purpose, which means the inverse of the matrix,            

[K – w2M], must not exist if Equation 4.5 is to produce a nontrivial solution. Recall 

from linear algebra that the inverse of a matrix does not exist if and only if the 

determinant of that matrix is equal to zero. Therefore, the determinant of            

[K – w2M] must be equal to zero in order for Equation 4.5 to yield a nontrivial 

solution.  

 By definition, the linear algebra proof used to obtain a nontrivial solution is 

an eigenvalue problem. The eigenvalues resulting from Equation 4.6 shown 

below are equal to the squared natural periods of vibration of the system. To 

conceptually understand the eigenvalue problem, the properties of Equation 4.5 

and Equation 4.6 are analyzed. In both of the equations, the stiffness and mass 

matrices are known system properties; therefore, there are explicit values of 

each squared natural frequency that result in a nontrivial solution. The validity of 
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(Equation 4.6) 

Equation 4.6 relies on the values of the squared natural frequencies, which by 

definition means they are eigenvalues. In Equation 4.6 shown below, the squared 

natural periods of vibration are substituted with a lambda (l), which is commonly 

used in linear algebra to denote eigenvalues. Also, since the mass and stiffness 

matrices are symmetric, and the stiffness matrix is positive definite, the 

eigenvalues (l) will be strictly positive.  

𝑑𝑒𝑡[𝐾 − 𝜆𝑀] = 0 

 In the cases of the MDOF two-story and three-story shear frame, Equation 

4.6 is applicable. Figure 8, shown below, displays a model of the two-story shear 

frame, which is used for calculating the natural frequencies and periods of the 

system.  

 

Figure 8: Two-Story Shear Frame Dynamic Model 

In order to complete dynamic analysis on a MDOF system, a properly 

defined model is critical for maintaining consistency throughout the calculations. 

Without a defined model, the various stiffness and mass values, as well as the 
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responses at each DOF lack context. With reference to Figure 8, the hand 

calculations for determining the natural frequencies and periods of vibration for 

the two-story shear frame are shown below.  

𝑚9 = 	
𝑊9

𝑔 =
100𝑘𝑖𝑝𝑠

386.4 𝑖𝑛𝑠?
= 0.25880

𝑘𝑖𝑝𝑠
𝑖𝑛 𝑠? 

𝑚? = 	
𝑊?

𝑔 =
80𝑘𝑖𝑝𝑠

386.4 𝑖𝑛𝑠?
= 0.20704

𝑘𝑖𝑝𝑠
𝑖𝑛 𝑠? 

𝑀 = �0.25880 0
0 0.20704�

𝑘
𝑖𝑛 𝑠

?	 

𝐾9 = 𝐾? =
12𝐸𝐼
𝐿_ =

12(29000𝑘𝑠𝑖)(300𝑖𝑛�)
(132𝑖𝑛)_ = 45.39

𝑘
𝑖𝑛 

𝐾 =	 �2𝐾9 + 2𝐾? −2𝐾9
−2𝐾? 			2𝐾?

� = �181.57 −90.78
−90.78 				90.78�

𝑘
𝑖𝑛 

det[𝐾 − 𝜆𝑀] = 0	 

𝑑𝑒𝑡 �181.57 − 𝜆0.25880 −90.78
−90.78 90.78 − 𝜆0.20704� = 0 

𝑅𝑒𝑐𝑎𝑙𝑙:	 det(𝐴) = 	 |𝐴| = �𝑎 𝑏
𝑐 𝑑� = 𝑎𝑑 − 𝑐𝑏 

(181.57 − 𝜆0.25880)(90.78 − 𝜆0.20704) − (−90.78)? = 0 

0.0536𝜆? − 61.087𝜆 + 8241.73 = 0 

𝜆9 = 156.36, 	𝜆? = 983.70 

𝑤*9 = 	�𝜆9 = 12.51
𝑟𝑎𝑑
𝑠 	, 𝑤*? = �𝜆? = 31.36

𝑟𝑎𝑑
𝑠  

𝑇*9 = 	
2𝜋
𝑤*9

= 0.5025𝑠	, 𝑇*? =
2𝜋
𝑤*?

= 0.2003𝑠 

 For systems with high numbers of active DOFs, the application of 

numerical tools significantly reduces the computational effort of the eigen value 
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problem (Kasper & Hall, 2018). Thus, for the three-story shear frame, the natural 

periods and frequencies are calculated using MATLAB code. Figure 9, shown 

below, exhibits the model of the three-story shear frame. In addition to Figure 9, 

the results of the dynamic analysis are shown in Table 4. 

 

Figure 9: Three-Story Shear Frame Dynamic Model 

Table 4: Three-Story Shear Frame Dynamic Results  

 Tn1 (s) wn1 (rad/s) Tn2 (s) wn2 (rad/s) Tn3 (s) wn3 (rad/s) 
One-Story 0.3001 20.94 N/A N/A N/A N/A 
Two-Story 0.5025 12.51 0.2003 31.36 N/A N/A 

Three-Story 0.7123 8.82 0.2584 24.32 0.1835 34.24 
 
 Once the natural frequencies and periods of vibration are calculated, the 

mode shapes or eigenvectors in Equation 4.5 are calculated. In modal analysis, 

the mode shapes represent the deformed shape of the system at each natural 
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frequency. Simply put, the mode shapes represent the natural deformation 

pattern of a system during free vibration. As evidenced in Equation 4.5, the mode 

shapes are dependent on the mass and stiffness properties of the system. When 

using Equation 4.5 to calculate the mode shapes, it is important to consider the 

rank-deficiency of the equation. As shown by the hand calculations for the two-

story shear frame below, each mode shape calculation contains two equations, 

but both equations yield the exact same result. Consequently, Equation 4.5 is 

rank-deficient by one. One method for resolving the issue of rank-deficiency is to 

set the first value in each mode equal to one. Additionally, making the 

eigenvector a unit vector results in a solution, which is generally applied in 

MATLAB when solving the eigenvalue problem. The process of setting the first 

value equal to one simply normalizes the values of the mode shapes to a 

reference value of one. An example of how to calculate the mode shapes by 

hand for the two-story shear frame, shown in Figure 8, using Equation 4.5 is 

presented below.  

[𝐾 − 𝜆E𝑀] �
𝜙9E
𝜙?E

� = �181.57 − 𝜆E0.25880 −90.78
−90.78 90.78 − 𝜆E0.20704

� �𝜙9E𝜙?E
� = �00� 

1.		𝐹𝑖𝑟𝑠𝑡	𝑀𝑜𝑑𝑒	𝑆ℎ𝑎𝑝𝑒:	𝜆E = 156.36 

�181.57 − (156.36)0.25880 −90.78
−90.78 90.78 − (156.36)0.20704� �

𝜙99
𝜙?9

� = �00� 

�			141.10 −90.78
−90.78 			58.41� �

𝜙99
𝜙?9

� = �00� 

141.10𝜙99 − 90.78𝜙?9 = 0 

−90.78𝜙99 + 58.41𝜙?9 = 0 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒	𝑡ℎ𝑒	𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠:	𝜙99 = 1 
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141.10 − 90.78𝜙?9 = 0 →	𝜙?9 = 1.554 

−90.78 + 58.41𝜙?9 = 0 →	𝜙?9 = 1.554 

𝜙9 = �𝜙99𝜙?9
� = � 1

1.554� 

2.		𝑆𝑒𝑐𝑜𝑛𝑑	𝑀𝑜𝑑𝑒	𝑆ℎ𝑎𝑝𝑒:	𝜆E = 983.70 

�181.57 − (983.70)0.25880 −90.78
−90.78 90.78 − (983.70)0.20704� �

𝜙9?
𝜙??

� = �00� 

�−73.01 −90.78
−90.78 −112.89� �

𝜙9?
𝜙??

� = �00� 

−73.01𝜙9? − 90.78𝜙?? = 0 

−90.78𝜙9? − 112.89𝜙?? = 0 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒	𝑡ℎ𝑒	𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠:	𝜙9? = 1 

−73.01 − 90.78𝜙?? = 0 →	𝜙?? = 1.554 

−90.78 − 112.89𝜙?? = 0 →	𝜙?? = 1.554 

𝜙? = �𝜙9?𝜙??
� = � 1

−0.804� 

𝜙 = � 1 			1
1.554 −0.804� 

 Once again, implementing MATLAB code significantly simplifies the 

computing process of calculating the mode shapes. The modes shapes of the 

two-story and three-story shear frame are calculated in MATLAB and shown in 

Table 5 on the following page.  
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Table 5: Matrix of Mode Shapes  

 Matrix of Mode Shapes 

Two-Story 𝜙 = �−1.1479 −1.5957
−1.7841 			1.2834� 

Three-Story 𝜙 = �
−0.6993 			1.4865 −1.0794
−1.2435 			0.4671 			1.4490
−1.5119 −1.3398 −0.8656

� 

 
 In Table 5, each column of the matrix represents a mode shape of the 

system. It is important to note the differences between the matrix of mode 

shapes produced from hand calculations and MATLAB. As previously stated, due 

to the rank-deficiency, the first value in each mode shape is normalized to one 

when calculating by hand. On the contrary, the MATLAB results are normalized 

in accordance with Equation 4.7 below.  

1 = 	�𝜙Eg𝑀𝜙E 

 Where fi is the vector of mode shapes and M is the mass matrix. To 

understand the principle behind normalization, the results from MATLAB are 

normalized to one by dividing each column by the first value in the respective 

column. The process of normalizing the MATLAB results to one for the two-story 

shear frame is shown below. 

𝜙 = �−1.1479 −1.5957
−1.7841 			1.2834� → Matlab	Results 

1. Divide	the	first	mode	shape	by	the	first	value	in	the	column 

𝜙9 = 	±

−1.1479
−1.1479
−1.7841
−1.1479

² = � 1
1.554� 

(Equation 4.7) 
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2. Divide	the	second	mode	shape	by	the	first	value	in	the	column 

𝜙? = ±

−1.5957
−1.5957
1.2834
−1.5957

² = � 			1
−0.804� 

  From the calculation above, it is clear to see that normalizing the 

MATLAB results yields mode shapes that are identical with the mode shapes 

obtained through the hand calculations. Furthermore, Table 6 presents the 

normalized matrix of mode shapes for the two-story and three-story shear frame, 

which are used to determine the modal participation factors in the subsequent 

section. 

Table 6: Normalized Matrix of Mode Shapes 

 Normalized Matrix of Mode Shapes 

Two-Story 𝜙 = �1.000 				1.000
1.554 		−0.804� 

Three-Story 𝜙 = �
1.000 			1.000 					1.000
1.778 			0.314 		−1.342
2.162 −0.901 					0.802

� 

  

4.2 Response Spectrum Analysis 

Given the properties of the systems (I, E, Tn, fn), response spectrum 

analysis (RSA) is used to determine the maximum responses of each individual 

shear frame. In seismic design, it is common to use specific earthquake 

response spectrums, but in this study, a simplified design response spectrum is 

developed and applied to the shear frames. Section 11.4.5 of ASCE 7-10 

provides a process for developing a simplified design response spectrum based 
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off of site-specific quantities. Figure 10, shown below, which was taking directly 

from ASCE 7-10, shows the parameters for creating a simplified design 

spectrum.  

 

Figure 10: ASCE 7-10 Simplified Design Spectrum 

(Source: ASCE 7-10) 

In this study, the site-specific quantities for San Luis Obispo, CA, shown in 

Table 1 and Appendix A, are used to create a design response spectrum for the 

three shear frames. The design response spectrum for a site location in San Luis 

Obispo, CA is shown in Figure 11 below.  

 

Figure 11: Simplified Design Spectrum – San Luis Obispo, CA 93407 
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(Equation 4.8) 

 The design response spectrum shown in Figure 11 is developed in 

MATLAB and adheres to the ASCE 7-10 standards shown in Figure 10. It is 

important to note that the site-specific quantities assume 5% damping. Now that 

the design response spectrum for San Luis Obispo, CA, is developed, the 

maximum displacement response is calculated for the shear frames. The 

simplified design response spectrum detailed in ASCE 7-10, and shown by 

Figure 10, is not applicable to all structures. In many cases, an exact response 

spectrum is required, but this is not the case for the shear frames analyzed 

herein.  

It is important to consider that the equations for determining the 

displacement response through the design response spectrum use the pseudo 

spectral accelerations. Since the shear frames are considered to be undamped, 

the pseudo spectral accelerations are assumed to be the same as the spectral 

accelerations, which are used in Figure 11. In addition, it is important to note that 

determining the system responses from the pseudo spectral accelerations yields 

the most accurate results when compared with other factors such as velocity. To 

calculate the relative displacements from the design response spectrum, 

Equation 4.8 is applied.  

𝑃𝑆³ = 𝑤?𝑆2 

 Where PSA is the pseudo spectral acceleration, w2 is the squared natural 

period of vibration, and SD is the relative displacement.  

 Due to the orthogonality of the modes of vibration, the simplified design 

response spectrum can be applied to SDOF and MDOF systems. For MDOF 
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(Equation 4.9) 

(Equation 4.10) 

systems, such as the two-story and three-story shear frames, the responses at 

each mode are calculated and then combined to produce a maximum 

displacement response. According to ASCE 7-10, the permitted modal 

combination methods are the Square-Root-of-Sum-of-Squares (SRSS) method, 

the Complete Quadratic Combination (CQC) method, and the modified Complete 

Quadratic Combination (CQC-4) method.  

The governing formula for combining the modal responses using the 

SRSS and CQC methods is shown in Equation 4.9 below. 

𝑅´³B = 	�µµ𝜌E·𝑅E𝑅·

*

·F9

*

EF9

 

 Where RMAX is the maximum modal response, rij is the modal correlation 

coefficient, which gives an indication of the interactions between modes i and j, 

and Ri and Rj are the spectral responses at modes i and j, respectively. 

When combining the modal responses using the SRSS method, the 

correlation coefficient is either one, when i is equal to j, or zero, when i is not 

equal to j. The general formula for the SRSS method is shown in Equation 4.10 

below.  

𝑅´³B = 	�µ𝑅E?
*

EF9

 

Furthermore, the maximum displacement response using the SRSS 

method is shown in Equation 4.11 on the following page. 
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(Equation 4.11) 

(Equation 4.12) 

|𝑢|¸'+ = �µ(|𝜙EΓE𝐷E|)?
*

EF9

 

 Where fi is the mode shape vector, Gi is the modal participation factor, and 

Di is the maximum displacement response at mode i. The modal participation 

factor is a scalar quantity that shows the impact that each individual mode has on 

the dynamic response of a MDOF system. The larger the modal participation 

factor, the greater the impact the mode has on the system’s response. For 

example, consider the SDOF one-story shear frame. Since there is only one 

mode of vibration, the single mode would be responsible for 100% of the 

system’s response resulting in a modal participation factor of one. Equation 4.12 

shows one of the many ways that the modal participation is calculated.  

ΓE =
𝜙Eg𝑃
𝜇E

 

 Where fiT is the transpose of the normalized mode shape vector, P is the 

load distribution, and µi is the generalized mass. For a uniform horizontal ground 

motion, P is equal to M1, which is the mass matrix multiplied by a vector of all 

ones and represents a unit acceleration at each DOF. Conceptually, when a 

system is subject to ground motions, the lumped mass at each DOF acts laterally 

and is the driving force of a system’s response. The numerator in Equation 4.12 

is referred to as the generalized load. The generalized mass and generalized 

load refer to mass and stiffness matrices that are in modal coordinates. Equation 

4.13 provides a method for transforming the mass matrix from physical to modal 

coordinates, resulting in the generalized mass. 
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(Equation 4.13) 𝜇E = 	𝜙Eg𝑀𝜙E 

 The process for obtaining the modal participation factors for the two-story 

shear frame is shown below.  

𝜇9 = 	 [1.000 1.554] �0.25880 0
0 0.20704� �

1.000
1.554� = 0.75878 

𝜇? = 	 [1.000 −0.804] �0.25880 0
0 0.20704� �

			1.000
−0.804� = 0.39263 

𝑃 = 𝑀1 = �0.25880 0
0 0.20704� �

1
1� = 	 �

0.25880
0.20704� 

𝜙9g𝑃 = [1.000 1.554] �0.258800.20704� = 0.58054 

𝜙?g𝑃 = [1.000 −0.804] �0.258800.20704� = 0.09234 

Γ9 =
𝜙9g𝑃
𝜇9

=
0.58054
0.75878 = 0.7650 

Γ? =
𝜙?g𝑃
𝜇?

=
0.09234
0.39263 = 0.2350 

 In addition to the two-story shear frame, the modal participation factors for 

the three-story shear frame are calculated using MATLAB code. The results for 

the modal participation factors for the two-story and three-story shear frames are 

shown below in Table 7. 

Table 7: Modal Participation Factors  

 G1 G2 G3 

Two-Story 0.7650 0.2350 N/A 
Three-Story 0.5705 0.3392 0.0903 

 

Lastly, to calculate the maximum displacement response using Equation 

4.9, ASCE 7-10 Section 12.9.2 states that the values must be scaled in 



                                                      

 

42 

 

accordance with the type of lateral force resisting system used. As detailed in 

Chapter 3, the shear frames are steel ordinary moment resisting frames with      

R = 4.5, Ie = 1.0, and Cd = 4.0.  

In accordance with the design response spectrum in Figure 11, and the 

natural periods of vibration in Table 4, the spectral accelerations are individually 

determined for each mode of the one-story, two-story, and three-story shear 

frames. The spectral accelerations are found by simply inputting the natural 

periods of vibration into the design response spectrum in Figure 11 and finding 

the corresponding spectral acceleration values. The results of the spectral 

acceleration values are shown in Table 8. 

Table 8: Spectral Accelerations 

 Tn1 (s) SA1 (g) Tn2 (s) SA2 (g) Tn3 (s) SA3 (g) 
One-Story 0.3001 0.787 N/A N/A N/A N/A 
Two-Story 0.5025 0.787 0.2003 0.787 N/A N/A 

Three-Story 0.7123 0.630 0.2584 0.787 0.1835 0.787 
 
 With the spectral accelerations in Table 8, the SRSS method is applied to 

the shear frames to determine the maximum displacement response at each 

DOF. The hand-calculations for the two-story shear frame using the SRSS 

method, along with the results, which are presented in Table 9, are shown on the 

following page.  

𝑆29 = 	
𝑆³9
𝑤*9?

=
0.786𝑔 ¼386.4 𝑖𝑛𝑠?½

¼12.51 𝑟𝑎𝑑𝑠 ½
? = 1.9431" 

𝐷9 = 𝑆29 ∗

𝐶¿
𝐼Z
𝑅
𝐼Z

= (1.9431”) ∗
4
1
4.5
1
= 1.7272”	 
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𝑆2? = 	
𝑆³?
𝑤*??

=
0.786𝑔 ¼386.4 𝑖𝑛𝑠?½

¼31.36 𝑟𝑎𝑑𝑠 ½
? = 0.3092” 

𝐷? = 𝑆2? ∗

𝐶¿
𝐼Z
𝑅
𝐼Z

= (0.3092”) ∗
4
1
4.5
1
= 0.2749”	 

|𝑢|9´³B = �(𝜙99Γ9𝐷9)? + (𝜙9?Γ?𝐷?)?  

|𝑢|9´³B = 	�(1.000 ∗ 0.7650 ∗ 1.7272)? + (1.000 ∗ 0.2350 ∗ 0.2749)? 

|𝑢|9´³B = 1.3229” 

|𝑢|?´³B = �(𝜙?9Γ9𝐷9)? + (𝜙??Γ?𝐷?)?  

|𝑢|?´³B = 	�(1.554 ∗ 0.7650 ∗ 1.7272)? + (−0.804 ∗ 0.2350 ∗ 0.2749)? 

|𝑢|?´³B = 2.0543” 

 
Table 9: Displacement Response – SRSS  

 u1(max) (in.) u2(max) (in.) U3(max) (in.) 
One-Story 0.6168 N/A N/A 
Two-Story 1.3229 2.0543 N/A 

Three-Story 1.5872 2.8172 3.4308 
 

  In the SRSS hand-calculations for the two-story shear frame, the 

maximum displacement response is specific to each mode or DOF, but the uMAX 

variable in Equation 4.11 does not have a subscript to denote the maximum 

response of each specific DOF. Although the notation in Equation 4.11 is 

adequate because fi and u are vectors, Equation 4.14 better illustrates how the 

SRSS method yields individual responses at each DOF. 
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(Equation 4.14) 

(Equation 4.15) 

(Equation 4.16) 

	�
|𝑢9|´³B
|𝑢?|´³B

� = �µ(|𝜙EΓE𝐷E|)?
*

EF9

= xÁ�𝜙99𝜙?9
� Γ9𝐷9Â

?
+ Á�𝜙9?𝜙??

� Γ?𝐷?Â
?
 

 In general, for SDOF systems, the modal combination methods are 

unnecessary. For example, the modal participation factor and mode shape vector 

are both equal to one for the one-story shear frame, which results in a maximum 

displacement that is equal to the maximum displacement response of the 

singular mode. Although unnecessary, the modal combination methods are self-

consistent, and still yield the correct answer if applied to a SDOF system. 

In addition to the SRSS method, other modal combination methods, such 

as the Complete Quadratic Combination (CQC) method, are used to determine 

the maximum modal response. Unlike the SRSS method, which assumes values 

of one or zero, the CQC method calculates the correlation coefficients through 

Equation 4.15 below (Wilson et al., 1981).  

𝜌E· = 	
8�𝜁*𝜁¸(𝜁* + 𝑟𝜁¸)𝑟9.Ä

(1 − 𝑟?)? + 4𝜁*𝜁¸𝑟(1 + 𝑟)? + 4(𝜁*? + 𝜁¸? )𝑟?
 

Where rij is the correlation coefficient between modes i and j, zn is the 

damping coefficient for mode n, zm is the damping coefficient for mode m, and r is 

equal to wj divided by wi. Furthermore, Equation 4.15 reduces to Equation 4.16 

for systems with constant damping. 

𝜌E· = 	
8𝜁?(1 + 𝑟)𝑟9.Ä

(1 − 𝑟?)? + 4𝜁?𝑟(1 + 𝑟)? 

 Typically, when the natural frequencies of a system are well-spaced, the 

correlation coefficients are small. For example, consider Figure 12, which shows 
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the relationship between the correlation coefficient and the ratio of natural 

frequencies (Chopra, 1995). 

 

Figure 12: CQC Method Correlation Coefficient Relationship 

(Source: Chopra 1995) 

 In Figure 12, the correlation coefficients are denoted as rin and bin, 

respectively, where i and n are the modes. As shown, the correlation coefficients 

are relatively small unless the ratio of the natural frequencies is high. For 5% 

damping, a natural frequency ratio of 75% still yields a correlation coefficient less 

than 0.2. Consequently, when the natural frequency ratios are small, the 

interaction between modes is small, and the CQC method essentially reduces to 

the SRSS method. On the contrary, when the natural frequencies are closely 

spaced, such as in three-dimensional structures or irregular structures, the 

correlation coefficient amplifies, and the CQC method yields better results. 

  Now, using Equation 4.9 in combination with Equation 4.16, the hand-

calculations for the two-story shear frame using the CQC method, along with the 

results, which are presented in Table 10, are shown below.  
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𝑟99 = 	
𝑤9*
𝑤9*

=
12.51 𝑟𝑎𝑑𝑠
12.51 𝑟𝑎𝑑𝑠

= 1 

𝑟9? = 	
𝑤?*
𝑤9*

=
31.36 𝑟𝑎𝑑𝑠
12.51 𝑟𝑎𝑑𝑠

= 2.5068 

𝑟?9 = 	
𝑤9*
𝑤?*

=
12.51 𝑟𝑎𝑑𝑠
31.36 𝑟𝑎𝑑𝑠

= 0.3989 

𝑟?? = 	
𝑤?*
𝑤?*

=
31.36 𝑟𝑎𝑑𝑠
31.36 𝑟𝑎𝑑𝑠

= 1 

𝜌99 = 𝜌?? = 	
8(0.05)?(1 + 1)19.Ä

(1 − 1?)? + 4(0.05)?(1)(1 + 1)? = 1 

𝜌9? = 	
8(0.05)?(1 + 2.5068)2.50689.Ä

(1 − 2.5068?)? + 4(0.05)?(2.5068)(1 + 2.5068)? = 0.00985 

𝜌?9 =
8(0.05)?(1 + 0.3989)0.39899.Ä

(1 − 0.3989?)? + 4(0.05)?(0.3989)(1 + 0.3989)? = 0.00985 

𝑅99 = 	𝜙99Γ9𝐷9 = (1.000)(0.7650)(1.7272) = 1.32131" 

𝑅9? = 	𝜙9?Γ?𝐷? = (1.000)(0.2350)(0.2749) = 0.06459" 

𝑅?9 = 	𝜙?9Γ9𝐷9 = (1.554)(0.7650)(1.7272) = 2.05344" 

𝑅?? = 	𝜙??Γ?𝐷? = (−0.804)(0.2350)(0.2749) = −0.05193" 

𝑢´³B = 	x�
𝜌99𝑅99𝑅99 + 𝜌9?𝑅99𝑅9? + 𝜌?9𝑅9?𝑅99 + 𝜌??𝑅9?𝑅9?
𝜌99𝑅?9𝑅?9 + 𝜌9?𝑅?9𝑅?? + 𝜌?9𝑅??𝑅?9 + 𝜌??𝑅??𝑅??

� = �1.3236"2.0538"� 

|𝑢|9´³B = 1.3236” 

|𝑢|?´³B = 2.0538” 
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(Equation 4.17) 

(Equation 4.18) 

Table 10: Displacement Response - CQC 

 u1(max) (in.) u2(max) (in.) U3(max) (in.) 
One-Story 0.6168 N/A N/A 
Two-Story 1.3236 2.0538 N/A 

Three-Story 1.5882 2.1874 3.4300 
 

 Similar to the SRSS method, the maximum response variable in Equation 

4.9, Rmax, for the CQC method does not have a subscript to denote the maximum 

response at each DOF. Although Equation 4.9 is adequate, Equation 4.17 better 

clarifies how the CQC method yields the maximum responses at each DOF. 

𝑅ÅÆÇÈ = 	�µµ𝜌E·𝑅ÅE𝑅Å·

*

·F9

*

EF9

 

Where a refers to the DOF at which the response occurs. Equation 4.17 is 

derived from the hand-calculations of the two-story shear frame using the CQC 

method. Through analysis of the individual components of the summation for the 

response at each DOF, Equation 4.17 was developed to better illustrate the 

relationship between the modes, i and j, and the DOF, a, which is not shown by 

Equation 4.9. 

Lastly, although not permitted by ASCE 7-10, the Absolute Sum (ABS) 

method is used to combine the modal responses. The general formula for the 

ABS method is shown below in Equation 4.18.  

𝑅´³B = 	µ|𝑅E|
*

EF9
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The ABS method assumes that the peak responses at each mode are 

positive and occur at the same time. Generally, the ABS method results in the 

highest peak total response. The results of the ABS method are shown below in 

Table 11. 

Table 11: Displacement Response - ABS 

 u1(max) (in.) u2(max) (in.) U3(max) (in.) 
One-Story 0.6168 N/A N/A 
Two-Story 1.3859 2.1056 N/A 

Three-Story 1.7049 2.8640 3.5376 
 

4.3 RSA Results and Discussion 

 First, the maximum modal displacement responses obtained from the 

SRSS, CQC, and ABS method are compared. The percent difference of the CQC 

and ABS results when compared with the SRSS results for the two-story and 

three-story shear frame are shown on the following page in Table 12 and Table 

13, respectively.  

Table 12: Two-Story Modal Combination Results 

 SRSS CQC ABS CQC Diff. ABS Diff. 
u1 1.3229” 1.3236” 1.3859” 0.0529% 4.7623% 
u2 2.0543” 2.0538” 2.1056” 0.0243% 2.4972% 

 

Table 13: Three-Story Modal Combination Results 

 SRSS CQC ABS CQC Diff. ABS Diff. 
u1 1.5872” 1.5882” 1.7049” 0.0630% 7.4156% 
u2 2.8172” 2.8174” 2.8640” 0.0071% 1.6612% 
u3 3.4308” 3.4300” 3.5376” 0.0233% 3.1130% 

 



                                                      

 

49 

 

For both the two-story and three-story shear frame, the SRSS and CQC 

results are extremely similar and vary by less than a percent for the response at 

each DOF. The similarity in response between the two methods is due to the 

well-spaced modes of the shear frames. As mentioned previously, the CQC 

method essentially reduces to the SRSS method when the ratios of the 

fundamental frequencies are small.  

As expected, the ABS method yields the highest peak response at each 

DOF. Although the peak responses are higher, the ABS method results are still 

within 10% of the SRSS results. Furthermore, the average difference between 

the ABS and SRSS results increases for the three-story shear frame. In the 

subsequent chapters of this study, analysis is performed to further analyze the 

impacts of frame height on the accuracy of the modal combination methods.  

Secondly, the results of the ELFP and RSA are compared. The percent 

difference of the SRSS, CQC, and ABS results when compared with the ELFP 

results for the two-story and three-story shear frame are shown in Table 14 and 

Table 15, respectively. 

Table 14: Two-Story ELFP and RSA Comparison 

 SRSS Diff. CQC Diff. ABS Diff. 
u1 4.6902% 4.6398% 0.1513% 
u2 8.4047% 8.4270% 6.1174% 

 

Table 15: Three-Story ELFP and RSA Comparison 

 SRSS Diff. CQC Diff. ABS Diff. 
u1 26.4913% 26.4450% 21.0402% 
u2 28.1033% 28.0982% 26.9089% 
u3 29.6679% 29.6843% 27.4785% 
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In every instance, the ELFP yields larger displacement responses than 

RSA. For the two-story shear frame, the difference between each modal 

combination method and the ELFP are below 10%. Furthermore, the response 

for the first DOF yielded by the ABS method closely resembles the ELFP. For the 

three-story shear frame, regardless of combination method, the ELFP yields 

displacement responses that are 20% than RSA. As a whole, the ELFP results in 

the most conservative displacement response. 

Lastly, it is interesting to consider the effects of using modal analysis to 

calculate the first natural period as opposed to Equation 3.2 given by ASCE 7-10, 

which is used to approximate the fundamental period in the ELFP. Table 16 

compares the first natural period of vibration for the three shear frames when 

calculated using dynamic analysis as opposed to Equation 3.2. 

Table 16: Fundamental Period Comparison – ELFP and RSA 

 ELFP  
Tn1 (s) 

Dynamic 
 Tn1 (s) 

Percent 
Difference 

One-Story 0.1907 0.3001 36.45% 
Two-Story 0.3220 0.5025 35.92% 

Three-Story 0.4592 0.7123 35.53% 
 

In each case, the ELFP produces a first natural period of vibration that is 

over 35% less than the natural period calculated through dynamic analysis. To 

show the effects of the smaller period, the ELFP is used to analyze the three-

story shear frame using the natural period calculated through dynamic analysis. 

For the three-story shear frame, dynamic analysis resulted in a first natural 

period of 0.7123 seconds, whereas for the same shear frame, Equation 3.2 

produces a first natural period of 0.4592 seconds. If 0.7123 seconds replaces the 
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approximate fundamental period in the ELFP, the design base shear decreases. 

The reason for this decrease is due to the upper limit of the seismic response 

coefficient shown by Equation 3.3a. Since Equation 3.3a yields a seismic 

response coefficient value of 0.1401, Equation 3.3a governs. Consequently, the 

smaller response coefficient reduces the total base shear. The deflection results 

obtained from the ELFP when using a natural period of 0.7123 seconds are 

shown in Table 17 below. Also, the percent difference of the SRSS, CQC, and 

ABS results when compared with the ELFP results when using a fundamental 

period of 0.7123 seconds are shown in Table 18. 

Table 17: ELFP Results – Tn = 0.7123s 

U1 1.7512” 
U2 3.2412” 
U3 4.1088” 

 
Table 18: Three-Story ELFP and RSA Comparison - Tn = 0.7123s 

 SRSS Diff. CQC Diff. ABS Diff. 
u1 9.3650% 9.3079% 2.6439% 
u2 13.0816% 13.0754% 11.6377% 
u3 16.5012% 16.5206% 13.9019% 

 

Interestingly, even with the reduced seismic response coefficient due to 

the larger fundamental period, the ELFP deflection results for the three-story 

shear frame are still larger than the RSA results. Although larger, when using the 

period calculated through dynamic analysis, the ELFP yields responses that 

more closely resemble the RSA results.  

 In conclusion, the ELFP yields more conservative results than RSA for the 

two-story and three-story shear frame. Additionally, the SRSS and CQC methods 



                                                      

 

52 

 

result in very similar results. The results obtained through RSA are compared 

with the results of the THA performed in the subsequent chapter of this thesis.
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5. Linear Time History Analysis 
 
 In the previous chapters, static and dynamic analysis methods were used 

to perform seismic analysis on the shear frames. In both static and dynamic 

methods of seismic analysis, the seismic forces imposed on a system are 

estimated. Although the methods covered thus far are effective, the 

unpredictable nature of earthquake ground motions makes it nearly impossible to 

determine the exact response of a system. In THA, the acceleration records from 

past earthquakes are used to determine the analytical response of a system. 

Even though every earthquake in history is unique, past earthquake records can 

indicate the acceleration records of future earthquakes. In this chapter, THA is 

used to determine the response of each shear frame and compared with the 

results obtained through dynamic analysis.  

5.1 Earthquake Ground Motions 

 In order to obtain past earthquake ground motion records, various 

databases can be accessed online through organizations such as COSMOS and 

PEER. Each organization provides different earthquake records, as well as 

different tools for analysis. In this chapter, MATLAB code is written and used for 

analysis of the ground motions obtained from COSMOS and PEER.  

 Typically, the ground motion records for a specific earthquake include two 

horizontal and one vertical acceleration record. For each of the earthquakes used 

in this chapter, the two horizontal acceleration records are given perpendicular to 

one another, and each horizontal record is given in degrees with respect to the 

cardinal directions. In many cases, the record is labeled as 00, 90, 180, 270, and 
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360, indicating that the acceleration records were recorded parallel with either 

the North-South (N-S) or East-West (E-W) cardinal directions. For example, the 

acceleration records for the El Centro Earthquake on 5/18/1940 give two 

horizontal components, 00 and 90, referring to the N-S and E-W directions, 

respectively. On the other hand, the Kern County Earthquake on 7/21/1952 gives 

the horizontal components, 21 and 111. In this case, the accelerations were 

recorded 21 degrees east of north and 111 degrees west of south. Although the 

direction of the accelerations may impact the sign of the maximum response, the 

main interest is the absolute value of the response. For this reason, as long as 

the horizontal components are perpendicular to one another, accurate THA can 

be performed. The vertical component of the ground motion record is commonly 

denoted as UP. 

 In addition, the earthquake accelerations can be either corrected or 

uncorrected. If uncorrected, the accelerations are the exact recording of the 

seismograph at the time of the earthquake. Although uncorrected data can be 

useful, the reading of the seismograph can be impacted by vibrations not caused 

by the earthquake, such as noise or the seismograph itself. Through analysis, the 

uncorrected reading is corrected to represent solely the vibrations caused by the 

earthquake.  

 Even though the purpose of this chapter is not to design the shear frames, 

it is important to consider the scaling of the acceleration records. For every 

record, the location of the seismograph reading plays a role on the acceleration 
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recordings. To exemplify this idea, the earthquake ground motion records from 

the Northridge Earthquake are taken from two different station locations.  

Each of the earthquakes chosen for THA analysis in this chapter occurred 

in California. Table 19 shown below summarizes each earthquake recording. In 

addition, Table 20 denotes the damages caused by each of the five earthquakes. 

Table 19: Earthquake Ground Motion Records 

Earthquake Station Hypocenter 
Distance Magnitude 

El Centro 
5/18/1940 

El Centro, CA 
Station Array #9 12.2 km MW = 6.9 

ML = 7.1 
Kern County 
7/21/1952 

Taft, CA 
USGS Sta. 1095 36.2 km MW = 7.3 

ML = 7.5 
San Luis Obispo 

11/22/1952 
San Luis Obispo, CA 

USGS, Sta. 1083 70.3 km MW = 6.0 
ML = 6.2 

Loma Prieta 
10/17/1989 

Corralitos, CA 
CSMIP Sta. 57007 2.8 km MW = 6.9 

ML = 7.1 
Northridge (1) 

1/17/1994 
Los Angeles, CA 
USC Sta. 5303 12.9 km MW = 6.7 

ML = 6.9 
Northridge (2) 

1/17/1994 
Tarzana, CA 

Cedar Hill Nursery A 16.7 km MW = 6.7 
ML = 6.9 

 
Table 20: Earthquake Damages 

Earthquake Approximate 
Damage  

Human 
Deaths 

Human 
Injuries 

Imperial Valley (1940) $6,000,000 9 20 
Kern County (1952) $60,000,000 12 200 

San Luis Obispo (1952) 0 0 0 
Loma Prieta (1989) $6,000,000,000 63 3,800 
Northridge (1994) $25,000,000,000 57 9,000 

 
As shown above, each of the California earthquakes used for analysis had 

magnitudes larger than or equal to 6.0. Per USGS, any earthquake with a 

magnitude greater than 6.0 “may be destructive in highly populated areas,” which 
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is an important point to consider. The only earthquake shown above that didn’t 

result in monetary damages or human deaths was the San Luis Obispo 

Earthquake in 1952. The main reason for this was the location of the epicenter. 

Unlike the other earthquakes, the San Luis Obispo earthquake occurred in 

Cambria, CA, a lowly populated town on the central coast of California. For this 

reason, the San Luis Obispo Earthquake is rarely studied. On the other hand, the 

Loma Prieta and Northridge Earthquakes had devastating impacts due to their 

proximity to San Francisco and Los Angeles, respectively. Although the 

consequences of the earthquakes vary, it is still interesting to analyze the 

differences in Peak Ground Acceleration (PGA). With the scaled acceleration 

records obtained from COSMOS for the earthquakes shown in Table 19, the 

accelerograms are created in MATLAB. The accelerograms for each direction of 

the 1994 Northridge Earthquake, recorded by USC Sta. 53003, are shown in the 

figures below. The remaining accelerograms are presented in Appendix E.  
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Figure 13: Northridge EQ 00 – USC Sta. 5303 (PGA = -0.4529g) 

 
Figure 14: Northridge EQ 90 – USC Sta. 5303 (PGA = -0.3257g) 
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Figure 15: Northridge EQ UD – USC Sta. 5303 (PGA = 0.8005g) 

5.2 Time History Analysis Methods 

 As mentioned previously, the purpose of this chapter is to develop 

displacement time histories for the one-story, two-story, and three-story shear 

frame under past earthquake ground motions. Even though it produces the 

analytical solutions for the maximum displacements of the shear frames, due to 

its complexity, the THA in this chapter is only feasible to perform with MATLAB. 

Although MATLAB code is generated and used, it is still critical to understand the 

principles of THA.  

 In order to perform THA, the governing equation of motion shown in 

Chapter 4 is expanded to include the presence of time-dependent loads. Despite 

the fact that the modal analysis shown in Chapter 4 produces natural periods and 

frequencies that have units of time, the generalized eigenvalue problem 
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(Equation 5.1) 

(Equation 5.2) 

considers an at-rest system in free vibration. In THA, initial displacement and 

velocity conditions are present, resulting in a different form of the governing 

equation of motion. Through the use of the governing equations of motion for 

damped and undamped systems, as well as the Euler relation, the following 

equations are derived. 

𝑢(𝑡) = 𝑢É𝑐𝑜𝑠𝑤*𝑡 +
u̇É
𝑤*

𝑠𝑖𝑛𝑤*𝑡 

𝑢(𝑡) = 𝑒�ÊËÌ((𝑢É𝑐𝑜𝑠𝑤2𝑡 +
u̇É + 𝜉𝑤*𝑡

𝑤2
𝑠𝑖𝑛𝑤2𝑡)	 

 Where uo is the initial displacement and u̇0 is the initial velocity. Although 

the derivation of Equation 5.1 and Equation 5.2 is not shown, plenty of literature 

is available on the topic (Kasper and Hall, 2018).  

 The two equations shown above represent the steady state response of a 

system with initial velocities and displacements. To understand the incorporation 

of the initial displacements and velocities, it is important to consider how THA 

uses the acceleration records of past earthquakes to obtain the response of a 

system. Each acceleration value is given with respect to a time or time-step. 

Typically, the time-steps range between 0.005 seconds and 0.02 seconds. For 

each of the six ground motion records shown in Table 19, the time-step is 0.02 

seconds. In other words, throughout the duration of each earthquake, an 

acceleration value is given at an interval of 0.02 seconds. Conceptually, whether 

the time-steps are small or large, linear interpolation can be assumed between 

the values at each time-step. Consider one of the earthquake records shown in 

Table 19 with a time-step of 0.02 seconds. At a time of 0.00 seconds, the system 
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(Equation 5.3) 

is at rest and the linear interpolation between 0.00 seconds and 0.02 seconds 

would not include the presence of an initial displacement or initial velocity. Now 

consider the next time-step between 0.02 seconds and 0.04 seconds. During the 

first time-step, the system incurred a specific displacement and velocity which 

now must be included to determine the response of the system during the 

second time-step. This process repeats itself for the entire duration of the 

earthquake record.  

 In addition to the steady-state response, the transient response of the 

system under the ground motion accelerations must be included. For a system 

subject to earthquake ground motions, the accelerations act as arbitrary forcing 

functions by base excitation. Unlike a harmonic forcing function, determining the 

response of a system due to the periodic ground motion accelerations requires 

integration, which inevitably increases the complexity. For the response of linear 

systems subject to arbitrary time-varying loads, Duhamel’s integral is used.  

𝑢(𝑡) = 	
1

𝑚𝑤2
Î 𝑝(𝜏)𝑒�ÊËÌ((�Ð)𝑠𝑖𝑛𝑤2(𝑡 − 𝜏)𝑑𝜏
(

Ñ
 

 Duhamel’s integral for an undamped SDOF system can be obtained by 

simply replacing the damped natural frequency, wD, with the natural frequency of 

vibration wn, and setting the damping ratio to zero in Equation 5.3. Equation 5.3 

can be combined with Equation 5.2 to produce the total response of a damped 

SDOF system subject to initial displacements, velocities, and arbitrary time-

varying loads. 
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(Equation 5.4) 
𝑢(𝑡) = 𝑒�ÊËÌ((𝑢É𝑐𝑜𝑠𝑤2𝑡 +

𝑢É + 𝜉𝑤*𝑡
𝑤2

𝑠𝑖𝑛𝑤2𝑡

+	
1

𝑚𝑤2
Î 𝑝(𝜏)𝑒�ÊËÌ((�Ð)𝑠𝑖𝑛𝑤2(𝑡 − 𝜏)𝑑𝜏
(

Ñ
	 

  Since it is applicable to any type of arbitrary loading, it is useful to 

consider Equation 5.4 for a system subject to earthquake ground accelerations. 

Consider a sample ground acceleration shown in Figure 16. 

 

Figure 16: Typical Acceleration Record  

Figure 16 replicates a typical earthquake acceleration record that can be 

found in An Introduction to Applied Structural Dynamics (Kasper & Hall, 2018). 

For the first line in Figure 16, the transient response is characterized by two 

arbitrary loads. First, at ti, a constant arbitrary load, Pi, is applied. Secondly, from 

Pi to Pi+1, a sloped arbitrary load is applied. For the first case, the forcing function 

in Duhamel’s integral, is simply replaced with the constant force Pi. On the other 

hand, the forcing function for the sloped portion is dependent on time. The two 

arbitrary loading conditions along with the effects of the initial conditions are used 

to define the response of the system at each time-step. The following equations 

show the results of Duhamel’s integral for the two loading conditions. 
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(Equation 5.5) 

(Equation 5.7) 

(Equation 5.8) 

(Equation 5.6) 

																			𝑢(𝑡)ÒÉ*$('*( = 	
𝑃E
𝑘 −

𝑃E
𝑘 𝑒

�ÊËÌ((𝑐𝑜𝑠𝑤2𝑡 +
𝜉

�1 − 𝜉?
𝑠𝑖𝑛𝑤2𝑡) 

𝑢(𝑡)$ÓÉÔZ¿ = 	
𝑃E
𝑘 Á𝑡 −

2𝜉
𝑤*
Â +

𝑃E
𝑘 Á

2𝜉
𝑤*
Â 𝑒�ÊËÌ(𝑐𝑜𝑠𝑤2𝑡 +

𝑃E
𝑘
(2𝜉? − 1)

1
𝑤2

𝑒�ÊËÌ(𝑠𝑖𝑛𝑤2𝑡 

 

 Although Duhamel’s integral can be solved for ground motions, it is still 

important to consider the complexity of solving for the analytical solution. For 

example, consider Duhamel’s integral for the constant initial load, Pi. Even with a 

constant force, Duhamel’s integral requires integration by parts, and for the 

sloped portion where the arbitrary load is dependent on time, Duhamel’s integral 

is even more complex. Despite the complexity, Equations 5.5 and 5.6 replace 

Duhamel’s integral in Equation 5.4, resulting in a further simplified equation for 

the total response.  

 Finally, due to the use of a constant time interval, the equation for the total 

displacement response can be written in recursive form as shown below.  

𝑢EÕ9 = 𝐴9𝑢E + 𝐴?𝑢E + 𝐴_𝑃E + 𝐴�𝑃EÕ9 

𝑢EÕ9 = 𝐵9𝑢E + 𝐵?𝑢E + 𝐵_𝑃E + 𝐵�𝑃EÕ9 

 Recursive form is used to define sequences in such a way that the next 

term in the sequence is defined by the previous term in the sequence. In 

accordance with the definition, the An and Bn values are all constants in which the 

value of A1 is dependent on the value of B1, and the value A2 is dependent on the 

value of B2, etc. Although not shown in this chapter, the constant values An and 

Bn can be calculated, resulting in an analytical solution for the displacement 

response of linear systems with damping coefficients less than one. Obviously, 
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(Equation 5.9) 

(Equation 5.10) 

producing an analytical solution for the displacement time history of a system 

requires significant effort.  

 To simplify the process, numerical solutions of the displacement time 

history can often replace the analytical solution. In general, numerical analysis 

attempts to simplify complex problems through approximations, in turn resulting 

in a numerical or approximate solution. In the case of numerical solutions, it is 

always important to ensure that the solution is accurate enough to replace the 

analytical solution. Although there are plenty of avenues for obtaining a 

numerical solution for the displacement time history of a system subject to 

earthquake excitations, the Newmark-beta Method is applied in this chapter to 

produce numerical solutions. 

 The Newmark-beta Method takes a multi-step approach when solving for 

the response history of a system. A multi-step approach takes progressive steps 

and uses the information from previous steps to gain efficiency in solving for a 

solution. The Newmark-beta method defines the displacement and velocity 

responses of a system through the following two equations.  

𝑢EÕ9 = 𝑢E + Δ𝑡𝑢E + (Δ𝑡)? Á
1
2 − 𝛽Â𝑢E + 𝛽

(Δ𝑡)?𝑢EÕ9 

𝑢EÕ9	 = 𝑢E + (1 − 𝛾)Δ𝑡𝑢E + 𝛾Δ𝑡𝑢EÕ9 

 The values for beta and gamma in the above equations are chosen 

parameters. The stability and accuracy of the Newmark-beta Method is 

completely reliant on the selection of beta and gamma. In terms of the Newmark-

beta Method, instability results in a divergent solution, whereas stability refers to 

the fact that the chosen parameters do not significantly hinder the accuracy of 
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the solution at any given time step. Stability can be achieved through a variety of 

beta and gamma values and combinations, but the use of beta=1/4 and 

gamma=1/2 results in an unconditionally stable solution. In general, 2beta > 

gamma> ½ results in stable solutions for linear structural dynamics applications, 

no matter the time step. Although this relationship results in stability, the overall 

accuracy of the solution is still important. Even if beta and gamma are chosen to 

ensure stability, the most accurate solution is not always achieved through 

parameters that guarantee stability. In general, the number one goal of the 

Newmark-beta Method is to achieve solutions that are the most accurate and in 

turn stable, so it is important to not confine the values of beta and gamma to 

stability. All in all, the accuracy of the Newmark-beta Method relies heavily on the 

size of the time step. Obviously, as the time step gets smaller, the results of the 

Newmark-beta method will converge with the analytical solution, essentially 

mimicking integration.  

In this chapter, the Newmark-beta Method is used to produce numerical 

solutions, but it is important to consider the following relationships that the 

Newmark-beta Method has with other numerical methods. 

1. If beta=1/4 and gamma=1/2 the Newmark-beta Method is identical to the 

Average Acceleration Method (AAM). 

2. If beta=1/6 and gamma=1/2 the Newmark-beta Method is identical to the 

Linear Acceleration Method (LAM).  

3. If beta=0 and gamma=1/2 the Newmark-beta Method is identical to the 

Central Difference Method.  
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Throughout the rest of this chapter, analytical and numerical solutions are 

obtained through THA using MATLAB, which shows the relative accuracy of 

various beta and gamma parameters, as well as the numerical solutions in 

general.  

5.3 Displacement Time History 

Using the acceleration records and accelerograms in Section 5.1, the 

displacement time histories of specific systems can be developed. As proved by 

the equations in Section 5.2, the displacement time history of a SDOF system 

solely relies on the natural period of vibration and the damping ratio. For each of 

the earthquakes detailed earlier in this chapter, various periods and damping 

ratios were used to develop displacement time history graphs. Although each 

earthquake is analyzed, only the displacement time histories for the Northridge 

Earthquake (USC Sta. 5303) are shown in this chapter. The Loma Prieta 

Earthquake (CSMIP Sta. 57007) displacement time histories are shown in 

Appendix F. 

First, displacement time histories are produced using natural periods of 

0.30, 0.50, 1.00, 2.50, and 5.00 seconds. For each of the values, a uniform 

damping ratio of 0.05 (5%) is used in order to exemplify the impact that the 

natural period has on the displacement response of a system. The displacement 

time histories for the Northridge Earthquake are shown for each period in the 

figures below. Also, Table 21 tabulates the maximum response at each natural 

period value for the five earthquakes.  
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Figure 17: Northridge 00 (Tn = 0.3001s) Displacement Time History 

 

 
Figure 18: Northridge 00 (Tn = 0.50s) Displacement Time History 
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Figure 19: Northridge 00 (Tn = 1.00s) Displacement Time History 

 
Figure 20: Northridge 00 (Tn = 2.50s) Displacement Time History 
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Figure 21: Northridge 00 (Tn = 5.00s) Displacement Time History 
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Table 21: Maximum Response at Varying Natural Periods 

Damping Ratio (x ) = 0.05 (5%) 
Earthquake Tn (s) UMAX (in.) Time (s) 

El Centro 
00 

0.30 0.623 2.62 
0.50 2.016 2.40 
1.00 5.033 4.40 
2.50 10.803 5.72 
5.00 7.347 28.84 

Kern County 
111 

0.30 0.353 6.64 
0.50 0.845 6.76 
1.00 1.552 3.94 
2.50 3.528 4.94 
5.00 6.313 41.00 

SLO 
324 

0.30 0.114 2.56 
0.50 0.182 2.30 
1.00 0.588 9.78 
2.50 0.568 24.64 
5.00 0.502 15.62 

Loma Prieta 
00 

0.30 1.874 3.12 
0.50 3.456 2.76 
1.00 3.802 3.04 
2.50 7.545 7.08 
5.00 6.335 6.40 

Northridge 
00 

0.30 1.121 6.04 
0.50 3.363 4.64 
1.00 7.973 7.74 
2.50 17.94 10.22 
5.00 15.63 6.88 

 
 From the figures and results above, two major relationships between the 

displacement time history and natural period can be drawn. First, as shown in the 

figures, no matter the earthquake, a system has a tendency to vibrate at its 

natural period. Secondly, as shown in Table 21, the maximum displacement 

response of the system increases with the period in the range of 0.30 to 2.50 

seconds for all of the earthquakes except the San Luis Obispo Earthquake, but 
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decreases between the periods of 2.50 and 5.00 seconds. From this, it can be 

concluded that the displacement response of a system increases with the period 

for small periods, but at a certain point, this relationship no longer holds true. 

Although it is not a definitive relationship, a majority of systems, including the 

one-story, two-story, and three-story shear frame have natural periods well below 

2.50 seconds.  

 The next point of analysis is the effect of the damping ratio on the 

displacement time history of the system. In this case scenario, the natural period 

is held constant at 0.30 seconds, which is the natural period for the SDOF one-

story shear frame calculated in Chapter 3. With a constant period of 0.30 

seconds, the displacement time histories for each earthquake are developed with 

damping ratios of 0.00, 0.025, 0.050, 0.075, and 0.1000. Once again, the 

displacement time histories for the Northridge Earthquake are shown in the 

figures on the subsequent pages, followed by Table 22 which tabulates the 

maximum response for each value of the damping ratio for the five earthquakes. 

The displacement time histories for the Loma Prieta Earthquake are shown in 

Appendix G. 
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Figure 22: Northridge 00 (x = 0.00) Displacement Time History 

 
Figure 23: Northridge 00 (x = 0.025) Displacement Time History 
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Figure 24: Northridge 00 (x = 0.050) Displacement Time History 

 
Figure 25: Northridge 00 (x = 0.075) Displacement Time History 
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Figure 26: Northridge 00 (x = 0.100) Displacement Time History 
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Table 22: Maximum Response at Varying Damping Ratios 

Natural Period (Tn) = 0.30s 
Earthquake x UMAX (in.) Time (s) 

El Centro 
00 

0.00 1.848 30.36 
0.025 0.726 2.62 
0.050 0.623 2.62 
0.075 0.534 2.62 
0.100 0.462 2.32 

Kern County 
111 

0.00 1.366 12.76 
0.025 0.471 6.62 
0.050 0.353 6.64 
0.075 0.312 6.64 
0.100 0.285 6.64 

SLO 
324 

0.00 0.287 30.32 
0.025 0.154 3.00 
0.050 0.114 2.56 
0.075 0.0974 1.68 
0.100 0.0889 1.68 

Loma Prieta 
00 

0.00 2.791 3.26 
0.025 2.262 3.26 
0.050 1.874 3.12 
0.075 1.610 3.12 
0.100 1.393 3.12 

Northridge 
00 

0.00 2.160 7.96 
0.025 1.434 6.04 
0.050 1.121 6.04 
0.075 0.923 5.56 
0.100 0.816 5.56 

 
From the figures and results above, it is clear to see the relationship 

between the displacement response and damping ratio. As the damping ratio 

increases, the maximum response of the system decreases. Conceptually, this 

relationship makes sense. A higher damping ratio indicates that a higher 

percentage of the energy is dissipated, inevitably resulting in a lessened 

response. An interesting point of analysis is the change in the maximum 
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response as the damping ratio is increased. As the results in Table 22 show, the 

increase in damping ratio does decrease the maximum response, but the 

relationship is not necessarily linear. Figure 27 below plots the damping ratio 

versus the maximum displacement response.  

 

Figure 27: Damping Ratio versus Maximum Displacement Response 

 Although Figure 27 appears to show a somewhat linear relationship 

between the increase in the damping ratio and the decrease in the maximum 

displacement response, it is clear that there is curvature in the trendlines. Using 

the best fit line for each earthquake in Figure 27, the most accurate 

characterization of the relationship is a second order polynomial (parabola). In 

addition to the analytical response, the AAM (b=1/2, g=1/4) and LAM 

(b=1/2, g=1/6) are used to determine the maximum response of systems with the 

various natural periods and damping ratios. The displacement time history 
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graphs of the Loma Prieta and Northridge Earthquakes using the AAM and LAM 

at the five periods with a 5% damping ratio and the five damping ratios with a 

period of 0.30 seconds are developed. The displacement time histories using the 

AAM and LAM are presented in Appendix H and Appendix I, respectively. Also, 

Table 23 and Table 24 on the subsequent pages tabulate the maximum 

displacement responses for the five earthquakes using the numerical methods, 

along with the percent difference with the analytical maximum displacement 

response.  

As shown in the figures in Appendix H and I, the Average Acceleration 

Method (AAM) and the Linear Acceleration Method (LAM) both produced 

displacement time histories very similar to the analytical analysis case. When 

analyzing Table 23 and Table 24 there is no consistent correlation between the 

damping ratio, natural period, and accuracy of the numerical solution. Although a 

direct relationship isn’t formed, the average percent error for each analysis 

shows the overall accuracy of each method. If the five earthquakes are analyzed 

together, the AAM and LAM result in average percent errors of 0.195% and 

0.291% for varying periods and 0.827% and 0.546% for varying damping ratios, 

respectively. Even though approaching the five earthquakes as a whole shows 

the AAM being more accurate for varying periods and the LAM more accurate for 

varying damping ratios, the earthquakes should be analyzed one by one to 

compare the general accuracy of the numerical methods. Outliers such as the El 

Centro 00 case without damping can significantly skew the data when analyzing 

the earthquakes together. 
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Table 23: Numerical Max Displacement Response with Varying Damping 

Natural Period (Tn) = 0.30s 

Earthquake x UMAX 
(in.) 

UMAX 
(in.) 
AAM 

% 
Difference 

UMAX 
(in.) 
LAM 

% 
Difference 

El Centro 
00 

0.00 1.848 1.707 7.630 1.777 3.842 
0.025 0.726 0.727 0.152 0.727 0.165 
0.050 0.623 0.623 0.016 0.623 0.016 
0.075 0.534 0.534 0.037 0.534 0.019 
0.100 0.462 0.466 0.909 0.467 1.017 

Kern 
County 111 

0.00 1.366 1.351 1.105 1.358 0.586 
0.025 0.471 0.473 0.446 0.472 0.255 
0.050 0.353 0.358 1.303 0.357 1.133 
0.075 0.312 0.312 0.032 0.312 0.096 
0.100 0.285 0.285 0.105 0.285 0.070 

SLO 
324 

0.00 0.287 0.280 2.441 0.283 1.220 
0.025 0.154 0.155 0.975 0.153 0.325 
0.050 0.114 0.115 0.701 0.115 0.858 
0.075 0.0974 0.098 0.670 0.098 0.886 
0.100 0.0889 0.089 0.045 0.089 0.068 

Loma Prieta 
00 

0.00 2.791 2.808 0.609 2.808 0.609 
0.025 2.262 2.281 0.858 2.283 0.946 
0.050 1.874 1.872 0.107 1.873 0.053 
0.075 1.610 1.608 0.112 1.610 0.025 
0.100 1.393 1.391 0.129 1.393 0.036 

Northridge 
00 

0.00 2.160 2.136 1.102 2.149 0.509 
0.025 1.434 1.443 0.621 1.441 0.488 
0.050 1.121 1.126 0.410 1.124 0.268 
0.075 0.923 0.923 0.065 0.923 0.065 
0.100 0.816 0.817 0.094 0.817 0.089 
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Table 24: Numerical Max Displacement Response with Varying Period 

Damping Ratio (x ) = 0.05 (5%) 

Earthquake x UMAX 
(in.) 

UMAX (in.) 
AAM 

% 
Difference 

UMAX (in.) 
LAM 

% 
Difference 

El Centro 
00 

0.30 0.623 0.623 0.016 0.623 0.016 
0.50 2.016 2.031 0.729 2.031 0.749 
1.00 5.033 5.040 0.135 5.040 0.145 
2.50 10.803 10.804 0.009 10.805 0.019 
5.00 7.347 7.348 0.014 7.348 0.015 

Kern 
County 111 

0.30 0.353 0.358 1.303 0.357 1.133 
0.50 0.845 0.844 0.083 0.845 0.032 
1.00 1.552 1.553 0.077 1.554 0.097 
2.50 3.528 3.531 0.077 3.531 0.082 
5.00 6.313 6.341 0.002 6.314 0.003 

SLO 
324 

0.30 0.114 0.115 0.701 0.115 0.858 
0.50 0.182 0.184 0.840 0.184 0.956 
1.00 0.588 0.587 0.003 0.588 0.009 
2.50 0.568 0.569 0.040 0.569 0.042 
5.00 0.502 0.502 0.000 0.502 0.002 

Loma 
Prieta 00 

0.30 1.874 1.872 0.107 1.873 0.053 
0.50 3.456 3.453 0.087 3.546 2.601 
1.00 3.802 3.800 0.055 3.801 0.024 
2.50 7.545 7.545 0.007 7.545 0.001 
5.00 6.335 6.336 0.021 6.336 0.022 

Northridge 
00 

0.30 1.121 1.126 0.410 1.124 0.268 
0.50 3.363 3.359 0.119 3.361 0.054 
1.00 7.973 7.976 0.038 7.978 0.058 
2.50 17.94 17.940 0.000 17.945 0.028 
5.00 15.63 15.630 0.000 15.629 0.006 

 
In order to show the accuracy of each method for each earthquake, Table 

25 shows the average percent error of each case. As shown in Table 25, the 

average percent error for the LAM when the period is kept constant is more 

accurate for each earthquake case when compared with the AAM. On the other 

hand, with a constant damping ratio, the AAM produces more accurate results for 
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the El Centro, San Luis Obispo, and Loma Prieta Earthquakes. All in all, besides 

the El Centro Earthquake with constant damping, the average percent error is 

under one percent for all of the analysis cases. For the El Centro Earthquake, the 

relatively larger percent error can be attributed to the undamped case. Later in 

this chapter, the comparisons drawn in this section can be used to estimate the 

accuracy of the numerical methods for the three shear frames with varying 

periods and damping ratios.  

Table 25: Average Percent Difference of Numerical Methods 

 Average Percent Error 
Earthquake Constant Damping (0.050) Constant Period (0.30s) 
El Centro  

00 
AAM 0.181% AAM 1.749% 
LAM 0.189% LAM 1.102% 

Kern County 
111 

AAM 0.308% AAM 0.598% 
LAM 0.269% LAM 0.428% 

San Luis Obispo 
324 

AAM 0.317% AAM 0.966% 
LAM 0.373% LAM 0.671% 

Loma Prieta 
00 

AAM 0.055% AAM 0.363% 
LAM 0.540% LAM 0.334% 

Northridge 
00 

AAM 0.113% AAM 0.458% 
LAM 0.083% LAM 0.284% 

 

5.4 Analytical Response Spectrum Analysis 

 Although the individual analyses of each earthquake in Section 5.3 led to 

maximum displacements for each earthquake for systems with various natural 

periods and damping ratios, developing specific displacement, velocity, and 

acceleration time histories for every case scenario is not ideal. In order to simplify 

this process, analytical response spectrums can be created for each earthquake. 

Similar to the simplified design response spectrum developed using ASCE 7-10 
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for a site in San Luis Obispo, CA, 93407 in Chapter 4, an analytical response 

spectrum plots the maximum response with respect to the natural period of 

vibration. Since the maximum response of a system is reliant solely on the 

natural period and damping ratio, response spectrums are an efficient way to 

study the impacts of specific earthquake ground motions on a wide range of 

systems.  

 Consider the simplified design response spectrum in Chapter 4. Through 

the use of the Design Basis Earthquake (DBE) the simplified design response 

spectrum is developed, and in turn the maximum displacement response for 

each shear frame was calculated. In the case of THA, specific earthquakes are 

analyzed, allowing for the development of analytical response spectrums. In 

general, the pseudo-acceleration (PSa), pseudo-velocity (PSv), and spectral 

(maximum) displacement response spectrums are of particular importance when 

studying the effects of specific earthquake ground motions. In each response 

spectrum case, the spectrums show the maximum response of a SDOF system 

for each natural period, and through the orthogonality of the modes, the 

spectrums can be applied to MDOF systems to determine their maximum 

response. 

 First, consider the development of PSa spectrums for each of the five 

earthquakes outlined in this chapter. As previously mentioned, the forces induced 

on a structure are a result of the horizontal ground accelerations resulting from 

earthquakes. The PSa response spectrums for the five earthquakes with various 

damping ratios are developed through the use of MATLAB code. The PSa 
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(Equation 5.11) 

response spectrum for the Northridge Earthquake is shown by Figure 28 below, 

and the remaining PSa spectrums are displayed in Appendix J. 

 
Figure 28: Pseudo-Acceleration Spectrum – Northridge 00 (USC Sta. 5303) 

 
 Secondly, consider the development of the PSv spectrums for the five 

earthquakes. The PSv spectrums are useful for determining the kinetic energy of 

a wide range of systems with respect to their natural period. When considering 

the governing equation of motion, a PSv spectrum shows the effects of damping 

on the dissipation of the kinetic energy in systems subject to dynamic loading. 

The PSa and PSv are related through Equation 5.11 shown below.  

𝑃𝑆𝑎 = 𝑤*𝑃𝑆𝑣 

 Through the relationship shown in Equation 5.11, the PSv spectrums for 

the five earthquakes with various damping ratios are developed in MATLAB. The 
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(Equation 5.12) 

PSv response spectrum for the Northridge Earthquake is shown by Figure 29 

below, and the remaining PSv spectrums are displayed in Appendix K. 

 
Figure 29: Pseudo-Velocity Spectrum – Northridge 00 (USC Sta. 5303) 

 Finally, the spectral displacement response spectrum for the five 

earthquakes can be created either through the PSa spectrums and Equation 4.8 

or the PSv spectrums and Equation 5.12 shown below.  

𝑃𝑆𝑣 = 𝑤*𝑆𝑑 

 Using Equation 5.12, the maximum displacement response spectrums for 

the five earthquakes with various damping ratios are developed in MATLAB. The 

spectral displacement response spectrum for the Northridge Earthquake is 

shown by Figure 30 below, and the remaining spectral displacement spectrums 

are displayed in Appendix L.  
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Figure 30: Max Displacement Spectrum – Northridge 00 (USC Sta. 5303) 

 For the response spectrums shown above, the maximum response at 

each natural period and damping ratio is identical to the maximum response 

produced for each individual analytical analysis case in Section 5.3. When 

considering the effects of the natural periods and damping ratios on the 

maximum response, the same connections are drawn as in Section 5.3. First, 

each response spectrum shows that a higher damping ratio results in a lessened 

response, whether it is pseudo-acceleration, pseudo-velocity, or displacement. 

Next, the displacement spectrums for each earthquake show how at small 

periods the maximum displacement increases with the natural period, but at a 

certain point the maximum displacement response no longer increases with the 

period. For instance, consider the maximum displacement spectrum for the 

Northridge earthquake shown in Figure 30. For period between 0 and 1.35 
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seconds, the maximum displacement response increases with the period, but 

after periods of 1.35 seconds the relationship no longer holds true. For each level 

of damping, a system with a natural period of 1.35 seconds will have a maximum 

displacement response that is a few inches larger than the maximum 

displacement response of a system with a natural period of 1.5 seconds. 

Obviously, the relationship between the natural period and the maximum 

displacement response is entirely dependent on the earthquake under analysis. 

 In the next section of this chapter, the response spectrums for the five 

earthquakes are used to determine the maximum displacement responses of the 

MDOF shear frames using various modal combination methods, and the results 

are compared with the analytical and numerical solutions. Although the response 

spectrums shown above and in the appendices are used for analysis, the 

principle behind PSa and PSv spectrums can be exemplified by comparing them 

with the spectral acceleration (Sa) and velocity (Sv) spectrums, respectively. As 

briefly noted in Chapter 4, for systems with low damping ratios, the pseudo 

values are assumed to be the same as the spectral values for acceleration and 

velocity, allowing Equation 5.11 and 5.12 to be used to relate the various 

response spectrums. Obviously, using the equations above significantly 

simplifies the process of developing the response spectrums and allows for the 

complex integration to be avoided. In general, most civil engineering structures 

have damping ratios less than 20% which allows for the pseudo spectrums to be 

used. In order to compare the PSa and Sa values with one another, the two 

acceleration responses for the Northridge earthquake at 5% damping are shown 
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in Figure 31 below. Additionally, the PSa and Sa spectrums for the Northridge 

Earthquake at 2.5%, 7.5%, and 10% damping are shown in Appendix M. 

 
Figure 31: PSa and Sa (5% Damping) – Northridge 00 (USC Sta. 5303) 

As shown by Figure 31 and the figure in Appendix M, as the damping ratio 

increases, the error of the pseudo-acceleration spectrums also increases. For the 

2.5% damping case, the two accelerations are nearly identical, whereas for the 

10% damping case, the error between the two spectrums is more noticeable. 

Furthermore, this relationship is exemplified in Figure 32 by plotting the ratio of 

the PSa divided by the Sa for periods ranging between 0 and 20 seconds. 
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Figure 32: PSa/Sa Ratio – Northridge 00 (USC Sta. 5303) 

 Figure 32 further shows how the increase in damping ratio decreases the 

accuracy of the PSa values. For long periods (14 seconds and above), the PSa 

values are much less accurate, and increasing the damping ratio by 2.5% 

amplifies the inaccuracy by over 10%.  

 To further study the general trends of PSa response spectrums, the PSa 

values can be normalized by the peak ground acceleration (PGA). By 

normalizing the PSa spectrum, the acceleration response caused by earthquake 

ground motions is shown regardless of the specific PGA. The normalized 

pseudo-acceleration response spectrums are shown in the figures below for the 

Loma Prieta and Northridge earthquakes.  
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Figure 33: PSa Spectrum Normalized to PGA – Loma Prieta 00  

 
Figure 34: PSa Spectrum Normalized to PGA – Northridge 00 (USC Sta.) 

Although the normalized spectrums are still unique to the specific 

earthquake, similar trends between the two spectrums can be established. In 
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both cases, the peak PSa value occurs at a natural period that is less than 0.5 

seconds. After the peak, the PSa values trend downwards. At periods greater 

than 2 seconds, the values decrease directly with an increase in the natural 

period and the level of damping has a lessened effect. At periods greater than 3 

seconds, the PSa values are nearly identical regardless of the damping ratio.  

Similarly, the PSv spectrums can also be normalized by the peak ground 

velocity (PGV). Although effective, the normalized PSv spectrums are more 

difficult to establish trends for when compared with the normalized PSa 

spectrums. For this reason, the normalized PSv spectrums for the five 

earthquakes are developed. The normalized PSv spectrums for the Loma Prieta 

and Northridge Earthquakes are shown below in Figure 35 and 36, respectively.  

 
Figure 35: PSv Spectrum Normalized to PGV – Loma Prieta 00 
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Figure 36: PSv Spectrum Normalized to PGV – Northridge 00 (USC Sta.) 

 The normalized PSv spectrums for the remaining earthquakes are 

presented in Appendix N. Evidenced by the figures, the PSv spectrums are more 

dependent on the specific earthquake under analysis. Despite this, all five of the 

earthquakes have peak PSv values that occur at periods less than 2 seconds. 

Although this trend can be established, a 2 second range is not as precise as the 

0.5 second range shown by the normalized PSa spectrums. Another more 

obvious trend shown by the normalized spectrums is that at higher periods, the 

PSv values decrease with an increase in natural period.  

 Lastly, from the normalized PSa and PSv spectrums a relationship 

between the peak PSa values and PGA and peak PSv values and PGV can be 

developed. Although a sample size of five earthquakes is too small to establish a 

definitive relationship, through research, design spectrums have been developed 

that attempt to characterize the elastic response of systems subject to any 
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earthquake ground motion. Through the analysis of a large number of 

earthquakes, a generic elastic design spectrum can be developed, which can 

then be scaled to the PGA and PGV values of specific earthquakes and used in 

structural design. Although not covered in this thesis, generic elastic design 

spectrums are useful tools that can further simplify the process of seismic 

analysis. 

5.5 Response Analysis of MDOF Shear Frames 

 In conjunction with the previous chapters, the three systems of interest are 

the one-story, two-story, and three-story shear frame. Through the application of 

THA, the analytical maximum displacement response for each shear frame due 

to the five earthquake ground motions is determined. For each earthquake and 

shear frame, damping ratios of 0.025, 0.050, 0.075, and 0.10 are applied for 

analysis. The analytical solutions for each shear frame, earthquake, and damping 

ratio are then compared with the results obtained from the Absolute Sum (ABS), 

Square-Root-of-the-Sum-of-Squares (SRSS), and Complete Quadratic 

Combination (CQC) modal combination methods. The analytical displacement 

response spectrums for each earthquake developed in Section 5.4 are used for 

each modal combination method in this section. In the subsequent section, 

Section 5.6, the analytical maximum displacement responses are compared with 

the results obtained from the modal combination methods when the numerical 

displacement response spectrums are used. 

 An important consideration is the fact that the one-story shear frame is a 

SDOF system. In Section 5.3, the analytical and numerical displacement time 
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histories were developed for a SDOF system with a natural period of 0.3001s. 

For this reason, the analysis completed in Section 5.3 represents the response of 

the one-story shear frame for each earthquake and damping ratio. Obviously, for 

SDOF systems, modal combination methods are not necessary, making the 

primary focus of this section and Section 5.6 the MDOF two-story and three-story 

shear frame.  

 First, the analytical maximum displacement responses resulting from the 

five earthquake ground motions are determined for the two-story shear frame. 

From the analytical response spectrums developed in Section 5.4, the maximum 

displacement at each natural period of the two-story shear frame is found and 

shown in Table 26 below.  

Table 26: Maximum Displacement Response for Two-Story Shear Frame 

U1MAX (in) for Tn1 = 0.5025s 

(x) El Centro  Kern  SLO Loma 
Prieta Northridge 

0 2.9186 2.4828 0.2295 5.5881 4.4235 
0.025 2.4219 0.9033 0.2008 3.7572 3.8230 
0.050 2.0474 0.8489 0.1847 3.4680 3.3663 
0.075 1.8694 0.7856 0.1705 3.1923 2.9768 
0.100 1.7185 0.7193 0.1590 2.9379 2.6479 

U2MAX (in) for Tn2 = 0.2003s 

(x) El Centro  Kern  SLO Loma 
Prieta Northridge 

0 0.6283 0.5047 0.1477 0.4649 0.6335 
0.025 0.3277 0.2111 0.0825 0.4128 0.4749 
0.050 0.2551 0.1644 0.0605 0.3910 0.4142 
0.075 0.2251 0.1343 0.0485 0.3786 0.3845 
0.100 0.2055 0.1170 0.0411 0.3692 0.3531 
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 Next, MATLAB code is developed to find the displacement time history at 

each DOF of the two-story shear frame when it is subject to the five earthquake 

ground motions.  

The first earthquake ground motion applied to the two-story shear frame is 

the Imperial Valley – El Centro Earthquake which took place on 5/18/1940. The 

ground motion was recorded by Station Array #9 in the 00 (N-S) direction. The 

record shows a PGA of 0.348 g, a PGV of 13.169 inches per second, and a PGD 

of 4.278 inches. Figure 37 below shows the analytical displacement history for 

each DOF and a damping of 5%. In addition to Figure 37, the analytical 

displacement histories for the El Centro Earthquake at 2.5%, 7.5%, and 10% 

damping are shown in Appendix O.  

 
Figure 37: Two-Story El Centro 00 Displacement History (x  = 0.05) 
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The analytical maximum displacement response at each DOF for the El 

Centro 00 ground motion is now compared with the SRSS, CQC, and ABS 

methods shown below in Table 27, Table 28, and Table 29, respectively.  

Table 27: Two-Story El Centro 00 SRSS Method 

El Centro 00 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

0.025 1.8128” 2.9506” 1.8544” 0.0229 2.8803” 0.0238 
0.050 1.5939” 2.4746” 1.5674” 0.0167 2.4348” 0.0161 
0.075 1.4582” 2.2008” 1.4311” 0.0186 2.2231” 0.0101 
0.100 1.3469” 2.0252” 1.3155” 0.0233 2.0437” 0.0091 

 

Table 28: Two-Story El Centro 00 CQC Method 

El Centro 00 CQC Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
0.025 1.8128” 2.9506” 1.8541” 0.0228 2.8805” 0.0238 
0.050 1.5939” 2.4746” 1.5668” 0.0171 2.4354” 0.0159 
0.075 1.4582” 2.2008” 1.4298” 0.0195 2.2248” 0.0106 
0.100 1.3469” 2.0252” 1.3135” 0.0248 2.0453” 0.0099 

 
Table 29: Two-Story El Centro 00 ABS Method 

El Centro 00 ABS Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
0.025 1.8128” 2.9506” 1.9298” 0.0645 2.9416” 0.0030 
0.050 1.5939” 2.4746” 1.6262” 0.0202 2.4826” 0.0032 
0.075 1.4582” 2.2008” 1.4830” 0.0170 2.2653” 0.0293 
0.100 1.3469” 2.0252” 1.3629” 0.0119 2.0821” 0.0281 
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The second earthquake ground motion applied to the two-story shear 

frame is the Kern County Earthquake which took place on 7/21/1952. The ground 

motion was recorded by USGS Station 1095 in the 111 (S69E) direction. The 

record shows a PGA of 0.179 g, a PGV of 6.974 inches per second, and a PGD 

of 3.603 inches. Figure 38 below shows the analytical displacement history for 

each DOF and a damping of 5%. In addition to Figure 38, the analytical 

displacement histories for the Kern County Earthquake at 2.5%, 7.5%, and 10% 

damping are shown in Appendix P. 

 
Figure 38: Two-Story Kern County 111 Displacement History (x  = 0.05) 
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The analytical maximum displacement response at each DOF for the Kern 

County 111 ground motion is now compared with the SRSS, CQC, and ABS 

methods shown below in Table 30, Table 31, and Table 32, respectively. 

Table 30: Two-Story Kern County 111 SRSS Method 

Kern County 111 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

0.025 0.7021” 1.0752” 0.6930” 0.0130 1.0748” 0.0003 
0.050 0.6533” 1.0041” 0.6506” 0.0042 1.0098” 0.0057 
0.075 0.6010” 0.9273” 0.6018” 0.0013 0.9344” 0.0077 
0.100 0.5555” 0.8574” 0.5510” 0.0081 0.8556” 0.0021 

 

Table 31: Two-Story Kern County 111 CQC Method 

Kern County 111 CQC Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
0.025 0.7021” 1.0752” 0.6928” 0.0132 1.0749” 0.0002 
0.050 0.6533” 1.0041” 0.6510” 0.0035 1.0095” 0.0054 
0.075 0.6010” 0.9273” 0.6026” 0.0026 0.9338” 0.0071 
0.100 0.5555” 0.8574” 0.5221” 0.0060 0.8546” 0.0032 

 
Table 32: Two-Story Kern County 111 ABS Method 

Kern County 111 ABS Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
0.025 0.7021” 1.0752” 0.7430” 0.0582 1.1158” 0.0378 
0.050 0.6533” 1.0041” 0.6880” 0.0532 1.0404” 0.0362 
0.075 0.6010” 0.9273” 0.6326” 0.0524 0.9595” 0.0347 
0.100 0.5555” 0.8574” 0.5778” 0.0401 0.8774” 0.0233 
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The third earthquake ground motion applied to the two-story shear frame 

is the San Luis Obispo Earthquake which took place on 11/22/1952. The ground 

motion was recorded by USGS Station 1083 in the 324 (N36W) direction. The 

record shows a PGA of 0.054 g, a PGV of 1.322 inches per second, and a PGD 

of 0.315 inches. Figure 39 below shows the analytical displacement history for 

each DOF and a damping of 5%. In addition to Figure 39, the analytical 

displacement histories for the San Luis Obispo Earthquake at 2.5%, 7.5%, and 

10% damping are shown in Appendix Q. 

 
Figure 39: Two-Story SLO 324 Displacement History (x  = 0.05) 
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The analytical maximum displacement response at each DOF for the San 

Luis Obispo 324 ground motion is now compared with the SRSS, CQC, and ABS 

methods shown below in Table 33, Table 34, and Table 35, respectively. 

Table 33: Two-Story SLO 324 SRSS Method 

San Luis Obispo 324 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

0.025 0.1557” 0.2408” 0.1548” 0.0053 0.2393” 0.0064 
0.050 0.1395” 0.2267” 0.1420” 0.0179 0.2199” 0.0304 
0.075 0.1238” 0.2114” 0.1309” 0.0572 0.2029” 0.0404 
0.100 0.1161” 0.1952” 0.1220” 0.0511 0.1892” 0.0308 

 
Table 34: Two-Story SLO 324 CQC Method 

San Luis Obispo 324 CQC Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
0.025 0.1557” 0.2408” 0.1549” 0.0049 0.2392” 0.0066 
0.050 0.1395” 0.2267” 0.1421” 0.0190 0.2197” 0.0309 
0.075 0.1238” 0.2114” 0.1312” 0.0594 0.2027” 0.0415 
0.100 0.1161” 0.1952” 0.1224” 0.0546 0.1888” 0.0325 

 
Table 35: Two-Story SLO 324 ABS Method 

San Luis Obispo 324 ABS Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
0.025 0.1557” 0.2408” 0.1730” 0.1115 0.2543” 0.0562 
0.050 0.1395” 0.2267” 0.1555” 0.1148 0.2310” 0.0188 
0.075 0.1238” 0.2114” 0.1418” 0.1452 0.2119” 0.0019 
0.100 0.1161” 0.1952” 0.1313” 0.1311 0.1968” 0.0082 
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The fourth earthquake ground motion applied to the two-story shear frame 

is the Loma Prieta Earthquake which took place on 10/17/1989. The ground 

motion was recorded by CSMIP Station 57007 in the 00 (N-S) direction. The 

record shows a PGA of 0.630 g, a PGV of 21.731 inches per second, and a PGD 

of 3.756 inches. Figure 40 below shows the analytical displacement history for 

each DOF and a damping of 5%. In addition to Figure 40, the analytical 

displacement histories for the Loma Prieta Earthquake at 2.5%, 7.5%, and 10% 

damping are shown in Appendix R. 

 
Figure 40: Two-Story Loma Prieta 00 Displacement History (x  = 0.05) 
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The analytical maximum displacement response at each DOF for the 

Loma Prieta 00 ground motion is now compared with the SRSS, CQC, and ABS 

methods shown below in Table 36, Table 37, and Table 38, respectively. 

Table 36: Two-Story Loma Prieta 00 SRSS Method 

Loma Prieta 00 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

0.025 2.7789” 4.5491” 2.8759” 0.0349 4.4680” 0.0178 
0.050 2.5699” 4.1830” 2.6546” 0.0330 4.1241” 0.0141 
0.075 2.3685” 3.8430” 2.4437” 0.0318 3.7963” 0.0122 
0.100 2.1820” 3.5403” 2.2492” 0.0308 3.4939” 0.0131 

 
Table 37: Two-Story Loma Prieta 00 CQC Method 

Loma Prieta 00 CQC Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
0.025 2.7789” 4.5491” 2.8756” 0.0348 4.4682” 0.0178 
0.050 2.5699” 4.1830” 2.6556” 0.0333 4.1233” 0.0143 
0.075 2.3685” 3.8430” 2.4459” 0.0327 3.7946” 0.0126 
0.100 2.1820” 3.5403” 2.2528” 0.0325 3.4909” 0.0140 

 
Table 38: Two-Story Loma Prieta 00 ABS Method 

Loma Prieta 00 ABS Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
0.025 2.7789” 4.5491” 2.9713” 0.0692 4.5453” 0.0008 
0.050 2.5699” 4.1830” 2.7447” 0.0680 4.1972” 0.0034 
0.075 2.3685” 3.8430” 2.5311” 0.0686 3.8672” 0.0063 
0.100 2.1820” 3.5403” 2.3342” 0.0698 3.5629” 0.0064 
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The final earthquake ground motion applied to the two-story shear frame 

is the Northridge Earthquake which took place on 1/17/1994. The ground motion 

was recorded by USC Station 5303 in the 00 (N-S) direction. The record shows a 

PGA of 0.453 g, a PGV of 24.081 inches per second, and a PGD of 7.011 

inches. Figure 40 below shows the analytical displacement history for each DOF 

and a damping of 5%. In addition to Figure 41, the analytical displacement 

histories for the Northridge Earthquake at 2.5%, 7.5%, and 10% damping are 

shown in Appendix S. 

 
Figure 41: Two-Story Northridge 00 Displacement History (x  = 0.05) 

 
 
 

 



  

 

101 

 

The analytical maximum displacement response at each DOF for the 

Loma Prieta 00 ground motion is now compared with the SRSS, CQC, and ABS 

methods shown below in Table 39, Table 40, and Table 41, respectively. 

Table 39: Two-Story Northridge 00 SRSS Method 

Northridge 00 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

0.025 2.8977” 4.5733” 2.9267” 0.0100 4.5464” 0.0059 
0.050 2.5590” 4.0387” 2.5771” 0.0071 4.0033” 0.0088 
0.075 2.2585” 3.5621” 2.2740” 0.0091 3.5402” 0.0061 
0.100 2.0157” 3.1621” 2.0273” 0.0058 3.1491” 0.0041 

 
Table 40: Two-Story Northridge 00 CQC Method 

Northridge 00 CQC Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
0.025 2.8977” 4.5733” 2.9270” 0.0101 4.5462” 0.0059 
0.050 2.5590” 4.0387” 2.5781” 0.0075 4.0024” 0.0090 
0.075 2.2585” 3.5621” 2.2812” 0.0100 3.5384” 0.0066 
0.100 2.0157” 3.1621” 2.0308” 0.0075 3.1462” 0.0050 

 

Table 41: Two-Story Northridge 00 ABS Method 

Northridge 00 ABS Method 
Maximum Displacement Response 

(x) U1MAX 
Analytical 

U2MAX 

Analytical 
U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
0.025 2.8977” 4.5733” 3.0362” 0.0478 4.6353” 0.0136 
0.050 2.5590” 4.0387” 2.6725” 0.0444 4.0808” 0.0104 
0.075 2.2585” 3.5621” 2.3676” 0.0483 3.6121” 0.0140 
0.100 2.0157” 3.1621” 2.1086” 0.0461 3.2151” 0.0167 
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As shown in the tables above, the SRSS and CQC results were 

considerably accurate and similar to one another. With the exception of the San 

Luis Obispo 324 ground motion, all of the errors for the SRSS and CQC methods 

were below 5%. As mentioned previously, the SRSS and CQC results should 

closely resemble one another for the two-story shear frame since the frequencies 

and modes are well spaced for the two-story shear frame. Surprisingly, the SRSS 

and CQC methods did not always produce conservative maximum displacement 

results. For instance, in the case of the Loma Prieta 00 and Northridge 00 ground 

motions, the maximum response at the first DOF was higher than the analytical 

response, but the maximum response at the second DOF was lower than the 

analytical response. Similarly, for the El Centro 00 ground motion, for smaller 

damping ratios (0.025 and 0.050) the maximum response at both DOFs was 

lower than the analytical, but for higher damping ratios the responses were 

larger. From the SRSS and CQC results for the five earthquakes, there is no 

distinct relationship between the damping ratio and accuracy of the two methods. 

In some cases, the methods are more accurate for higher damping ratios, but in 

other cases lower damping ratios produce more accurate results. With the 

exception of the Kern County 111 ground motion, the average accuracy of each 

method was the highest for the SRSS method and lowest for the ABS method. 

Although the SRSS method yields more accurate results for four of the five 

earthquakes when compared with the CQC method, the difference between the 

two is essentially negligible. As a whole, the ABS method produces the most 

inaccurate and inconsistent results, but the inaccuracy is mainly due to the first 
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DOF response. For all five earthquakes, the ABS method produced maximum 

responses at the second DOF that are comparable with the SRSS and CQC 

results. In the case of the Loma Prieta 00 and Northridge 00 ground motions, the 

ABS method actually yields the most accurate maximum displacement 

responses for the second DOF. On the other hand, the maximum responses 

produced by the ABS method for the first DOF were considerably more 

inaccurate. When analyzing the accuracy of the ABS method for the five 

earthquakes, it is evidenced that a higher peak ground displacement (PGD) 

results in a more accurate maximum response for the second DOF. For each 

modal combination, the San Luis Obispo 324 ground motion resulted in the most 

inaccurate results.  

 In addition to the two-story shear frame, the three-story shear frame is 

subjected to the five earthquake ground motions and analyzed. Once again, the 

maximum displacement response at each natural period of the three-story shear 

frame is determined using the displacement response spectrums developed in 

Section 5.4. The values of the maximum displacement response for each natural 

period are shown in Table 42 on the next page.  
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Table 42: Max Displacement Response for Three-Story Shear Frame 

U1MAX (in) for Tn1 = 0.7123s 
(x) El Centro Kern SLO Loma Prieta Northridge 
0 5.2402 2.0184 0.5398 19.023 12.0120 

0.025 3.4714 1.4042 0.4772 8.4947 6.6122 
0.050 3.0091 1.2254 0.4247 5.6722 4.9610 
0.075 2.7346 1.0670 0.3807 4.2121 4.4655 
0.100 2.5457 0.9363 0.3434 3.3294 4.0458 

U2MAX (in) for Tn2 = 0.2584s 

(x) El Centro Kern SLO Loma Prieta Northridge 
0 1.8851 0.9702 0.2383 4.0358 1.3942 

0.025 0.7253 0.3040 0.1035 1.4318 0.7192 
0.050 0.5834 0.2362 0.0741 1.2525 0.6081 
0.075 0.4874 0.2112 0.0663 1.1167 0.5592 
0.100 0.4147 0.1974 0.0596 0.9985 0.5252 

U3MAX (in) for Tn3 = 0.1835s 
(x) El Centro Kern SLO Loma Prieta Northridge 
0 0.3769 0.6739 0.0977 0.7632 0.6333 

0.025 0.2644 0.1577 0.0729 0.3898 0.4277 
0.050 0.2321 0.1256 0.0569 0.3583 0.3698 
0.075 0.2088 0.1063 0.0464 0.3394 0.3245 
0.100 0.1913 0.0919 0.0391 0.3253 0.2917 

 
 Following the same process for the three-story shear frame as the two-

story shear frame, MATLAB code is generated, and the displacement histories 

for each DOF are developed for the five earthquakes. The displacement time 

history for each earthquake and 5% damping is shown below. Additionally, the 

analytical displacement histories at 2.5%, 7.5%, and 10% damping for the El 

Centro, Kern County, San Luis Obispo, Loma Prieta, and Northridge Earthquake 

are shown in Appendix T, Appendix U, Appendix V, Appendix W, and Appendix 

X, respectively. Also, tables are generated to compare the analytical response 

with the results of the three modal combination methods and shown below.   
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Figure 42: Three-Story El Centro 00 Displacement History (x  = 0.05) 

 

Table 43: Three-Story El Centro 00 Analytical Maximum Response 

El Centro 00 Analytical Maximum Response 
(x) U1MAX  U2MAX  U3MAX  

0.025 1.8967” 3.4508” 4.4514” 
0.050 1.6564” 2.9930” 3.8199” 
0.075 1.4454” 2.7563” 3.4648” 
0.100 1.3523” 2.5682” 3.2172” 
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Table 44: Three-Story El Centro 00 SRSS Method 

El Centro 00 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

U3MAX 

SRSS 
U3 Error 
SRSS 

0.025 1.9959” 0.0523 3.5227” 0.0209 4.2874” 0.0368 
0.050 1.7284” 0.0434 3.0535” 0.0181 3.7158” 0.0273 
0.075 1.5690” 0.0855 2.7749” 0.0067 3.3762” 0.0256 
0.100 1.4593” 0.0791 2.5831” 0.0058 3.1425” 0.0232 

 

Table 45: Three-Story El Centro 00 CQC Method 

El Centro 00 CQC Method 
Maximum Displacement Response  

(x) U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
U3MAX 

CQC 
U3 Error 

CQC 
0.025 1.9965” 0.0526 3.5229” 0.0209 4.2870” 0.0369 
0.050 1.7302” 0.0436 3.0539” 0.0179 3.7144” 0.0277 
0.075 1.5663” 0.0836 2.7741” 0.0065 3.3786” 0.0249 
0.100 1.4552” 0.0761 2.5820” 0.0054 3.1460” 0.0221 

 
Table 46: Three-Story El Centro 00 ABS Method 

El Centro 00 ABS Method 
Maximum Displacement Response  

(x) U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
U3MAX 

ABS 
U3 Error 

ABS 
0.025 2.2505” 0.1865 3.6311” 0.0523 4.5225” 0.0160 
0.050 1.9363” 0.1690 3.1433” 0.0480 3.9072” 0.0228 
0.075 1.7444” 0.2068 2.8515” 0.0345 3.5370” 0.0208 
0.100 1.6103” 0.1908 2.6500” 0.0318 3.2805” 0.0197 

 
 



  

 

107 

 

 
Figure 43: Three-Story Kern County 111 Displacement History (x  = 0.05) 

 

Table 47: Three-Story Kern County 111 Analytical Maximum Response 

Kern County 111 Analytical Maximum Response 
(x) U1MAX  U2MAX  U3MAX  

0.025 0.8224” 1.4413” 1.6956” 
0.050 0.6998” 1.2501” 1.4918” 
0.075 0.6115” 1.0855” 1.3069” 
0.100 0.5524” 0.9471” 1.1613” 
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Table 48: Three-Story Kern County 111 SRSS Method 

Kern County 111 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

U3MAX 

SRSS 
U3 Error 
SRSS 

0.025 0.8079” 0.0177 1.4251” 0.0112 1.7345” 0.0230 
0.050 0.7038” 0.0057 1.2435” 0.0052 1.5132” 0.0143 
0.075 0.6130” 0.0024 1.0828” 0.0025 1.3177” 0.0082 
0.100 0.5384” 0.0252 0.9502” 0.0033 1.1564” 0.0042 

 

Table 49: Three-Story Kern County 111 CQC Method 

Kern County 111 CQC Method 
Maximum Displacement Response  

(x) U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
U3MAX 

CQC 
U3 Error 

CQC 
0.025 0.8081” 0.0174 1.4251” 0.0112 1.7343” 0.0228 
0.050 0.7043” 0.0064 1.2438” 0.0050 1.5126” 0.0139 
0.075 0.6140” 0.0041 1.0833” 0.0020 1.3165” 0.0074 
0.100 0.5408” 0.0208 0.9506” 0.0037 1.1546” 0.0057 

 
Table 50: Three-Story Kern County 111 ABS Method 

Kern County 111 ABS Method 
Maximum Displacement Response  

(x) U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
U3MAX 

ABS 
U3 Error 

ABS 
0.025 0.9185” 0.1168 1.4761” 0.0241 1.8363” 0.0830 
0.050 0.7906” 0.1297 1.2836” 0.0268 1.5927” 0.0677 
0.075 0.6900” 0.1283 1.1179” 0.0298 1.3883” 0.0623 
0.100 0.6095” 0.1034 0.9821” 0.0369 1.2219” 0.0522 
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Figure 44: Three-Story SLO 324 Displacement History (x  = 0.05) 

 

Table 51: Three-Story SLO 324 Analytical Maximum Response 

SLO 324 Analytical Maximum Response 
(x) U1MAX  U2MAX  U3MAX  

0.025 0.2776” 0.4833” 0.5899” 
0.050 0.2455” 0.4276” 0.5206” 
0.075 0.2199” 0.3822” 0.4647” 
0.100 0.1993” 0.3454” 0.4182” 
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Table 52: Three-Story SLO 324 SRSS Method 

San Luis Obispo 324 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

U3MAX 

SRSS 
U3 Error 
SRSS 

0.025 0.2746” 0.0109 0.4843” 0.0021 0.5894” 0.0009 
0.050 0.2437” 0.0076 0.4310” 0.0079 0.5244” 0.0073 
0.075 0.2184” 0.0067 0.3863” 0.0106 0.4700” 0.0113 
0.100 0.1970” 0.0117 0.3485” 0.0089 0.4240” 0.0137 

 
Table 53: Three-Story SLO 324 CQC Method 

San Luis Obispo 324 CQC Method 
Maximum Displacement Response  

(x) U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
U3MAX 

CQC 
U3 Error 

CQC 
0.025 0.2746” 0.0108 0.4843” 0.0022 0.5893” 0.0010 
0.050 0.2435” 0.0083 0.4310” 0.0078 0.5245” 0.0076 
0.075 0.2180” 0.0083 0.3862” 0.0104 0.4703” 0.0119 
0.100 0.1964” 0.0146 0.3483” 0.0085 0.4244” 0.0149 

 
Table 54: Three-Story SLO 324 ABS Method 

San Luis Obispo 324 ABS Method 
Maximum Displacement Response  

(x) U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
U3MAX 

ABS 
U3 Error 

ABS 
0.025 0.3139” 0.1308 0.5039” 0.0428 0.6254” 0.0602 
0.050 0.2726” 0.1102 0.4457” 0.0422 0.5506” 0.0577 
0.075 0.2439” 0.1092 0.3989” 0.0435 0.4931” 0.0611 
0.100 0.2197” 0.1021 0.3595” 0.0407 0.4446” 0.0631 
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Figure 45: Three-Story Loma Prieta 00 Displacement History (x  = 0.05) 

 

Table 55: Three-Story Loma Prieta 00 Analytical Maximum Response 

Loma Prieta 00 Analytical Maximum Response 
(x) U1MAX  U2MAX  U3MAX  

0.025 4.8740” 8.5326” 10.4702” 
0.050 3.1231” 5.6895” 7.0080” 
0.075 2.2875” 4.2036” 5.1920” 
0.100 1.8109” 3.3218” 4.1082” 
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Table 56: Three-Story Loma Prieta 00 SRSS Method 

Loma Prieta 00 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

U3MAX 

SRSS 
U3 Error 
SRSS 

0.025 4.8710” 0.0006 8.6194” 0.0102 10.4866” 0.0016 
0.050 3.2641” 0.0452 5.7562” 0.0117 7.0067” 0.0002 
0.075 2.4330” 0.0636 4.2751” 0.0170 5.2065” 0.0028 
0.100 1.9297” 0.0656 3.3796” 0.0174 4.1179” 0.0024 

 

Table 57: Three-Story Loma Prieta 00 CQC Method 

Loma Prieta 00 CQC Method 
Maximum Displacement Response  

(x) U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
U3MAX 

CQC 
U3 Error 

CQC 
0.025 4.8720” 0.0004 8.6196” 0.0102 10.4857” 0.0015 
0.050 3.2606” 0.0440 5.7551” 0.0115 7.0099” 0.0003 
0.075 2.4260” 0.0605 4.2728” 0.0165 5.2129” 0.0040 
0.100 1.9187” 0.0595 3.3761” 0.0163 4.1280” 0.0048 

 
Table 58: Three-Story Loma Prieta 00 ABS Method 

Loma Prieta 00 ABS Method 
Maximum Displacement Response  

(x) U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
U3MAX 

ABS 
U3 Error 

ABS 
0.025 5.3675” 0.1012 8.8177” 0.0334 10.9434” 0.0452 
0.050 3.6934” 0.1826 5.9314” 0.0425 7.4050” 0.0566 
0.075 2.8126” 0.2296 4.4333” 0.0546 5.5612” 0.0711 
0.100 2.2676” 0.2522 3.5235” 0.0607 4.4353” 0.0796 
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Figure 46: Three-Story Northridge 00 Displacement History (x  = 0.05) 

 

Table 59: Three-Story Northridge 00 Analytical Maximum Response 

Northridge 00 Analytical Maximum Response 
(x) U1MAX  U2MAX  U3MAX  

0.025 3.7329” 6.6570” 8.1737” 
0.050 2.8026” 4.9819” 6.1317” 
0.075 2.5363” 4.5046” 5.5146” 
0.100 2.3060” 4.0825” 4.9833” 

 
 

 

 

 



  

 

114 

 

Table 60: Three-Story Northridge 00 SRSS Method 

Northridge 00 SRSS Method 
Maximum Displacement Response  

(x) U1MAX 
SRSS 

U1 Error 
SRSS 

U2MAX 

SRSS 
U2 Error 
SRSS 

U3MAX 

SRSS 
U3 Error 
SRSS 

0.025 3.7806” 0.0128 6.7087” 0.0078 8.1586” 0.0019 
0.050 2.8381” 0.0127 5.0336” 0.0104 6.1218” 0.0016 
0.075 2.5550” 0.0074 4.5308” 0.0058 5.5105” 0.0007 
0.100 2.3153” 0.0040 4.1050” 0.0055 4.9927” 0.0019 

 
Table 61: Three-Story Northridge 00 CQC Method 

Northridge 00 CQC Method 
Maximum Displacement Response  

(x) U1MAX 
CQC 

U1 Error 
CQC 

U2MAX 

CQC 
U2 Error 

CQC 
U3MAX 

CQC 
U3 Error 

CQC 
0.025 3.7812” 0.0129 6.7088” 0.0078 8.1581” 0.0019 
0.050 2.8365” 0.0121 5.0329” 0.0102 6.1234” 0.0014 
0.075 2.5577” 0.0084 4.5323” 0.0061 5.5074” 0.0013 
0.100 2.3198” 0.0060 4.1074” 0.0061 4.9877” 0.0009 

 
Table 62: Three-Story Northridge 00 ABS Method 

Northridge 00 ABS Method 
Maximum Displacement Response  

(x) U1MAX 
ABS 

U1 Error 
ABS 

U2MAX 

ABS 
U2 Error 

ABS 
U3MAX 

ABS 
U3 Error 

ABS 
0.025 4.0551” 0.0863 6.8366” 0.0270 8.4064” 0.0285 
0.050 3.0701” 0.0954 5.1426” 0.0323 6.3316” 0.0326 
0.075 2.7667” 0.0909 4.6292” 0.0276 5.7022” 0.0340 
0.100 2.5128” 0.0897 4.1958” 0.0277 5.1718” 0.0378 
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As shown by the results above, a majority of the trends established for the 

two-story shear frame also hold true in the case of the three-story shear frame. 

The SRSS and CQC results were not only very similar, but also the methods 

produced even more accurate results with the increase in DOFs. On the contrary, 

the ABS method results decreased in accuracy for the three-story shear frame. 

Once again, the ABS method yields very inaccurate responses for the first DOF. 

The accuracy of the ABS method did increase for the second and third DOFs 

relative to the first, but in this case, the results of the maximum response at the 

second and third DOFs are less accurate than the respective SRSS and CQC 

responses. Similar to the two-story shear frame case, the SRSS and CQC results 

for the El Centro 00 ground motion produced responses that were both larger 

and smaller than the analytical response. In the two-story case, the damping ratio 

was the main factor that influenced the variation in results, but in the three-story 

shear frame case, the SRSS and CQC methods produced higher maximum 

displacement responses for the first and second DOF, whereas the maximum 

responses were lower than the analytical responses for the third DOF. Finally, a 

few of the earthquake analyses for the three-story shear frame show a trend 

between the damping ratio and accuracy of the SRSS and CQC methods. For 

the El Centro 00 ground motion, the accuracy of the responses at the second 

and third DOFs increase with an increase in damping ratio. Also, for the Kern 

County 111 ground motion the accuracy of the responses at the third DOF 

increase in accuracy with an increase in damping ratio. On the other hand, the 
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San Luis Obispo 324 ground motion resulted an opposite relationship between 

the accuracy of the response at the third DOF and the damping ratio.  

In conclusion, for both the two-story and three-story shear frame, the 

SRSS and CQC yield extremely accurate results. When compared with one 

another, the SRSS method was more accurate than the CQC method, but the 

difference is miniscule. On the contrary, the ABS method proves to be inaccurate 

and inconsistent. Although some of the ABS method results were accurate, the 

method never produces consistently accurate solutions for the responses at each 

DOF.  

5.6 Numerical Response Analysis of MDOF Shear Frames 

 In this section, the maximum displacement responses of the shear frames 

are calculated through the use of the numerical displacement response 

spectrums. In Section 5.3, the displacement response spectrums were 

developed using two numerical methods, the Average Acceleration Method 

(AAM) and the Linear Acceleration Method (LAM). With the displacement 

response spectrums developed using the AAM and LAM, and the various modal 

combination methods, the maximum displacement response for the MDOF shear 

frames is determined.  

 First, the two-story shear frame is subjected to the Loma Prieta 00 and 

Northridge 00 ground motions and analyzed using the AAM and LAM response 

spectrums. The results are compared with the analytical response obtained 

through THA, in order to analyze the accuracy of each method. Table 63 and 
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Table 64 shown below tabulate the error of each method for the Loma Prieta and 

Northridge Earthquake. 

Table 63: Two-Story Loma Prieta 00 Numerical Spectrum Error 

Loma Preita 00 Two-Story  

x 
U1MAX 

SRSS 
Err. 

U2MAX 

SRSS 
Err. 

U1MAX 

CQC 
Err. 

U2MAX 

CQC 
Err. 

U1MAX 

ABS 
Err. 

U2MAX 

ABS 
Err. 

AAM – 0.025 0.0341 0.0186 0.0342 0.0186 0.0691 0.0013 
LAM – 0.025 0.0347 0.0180 0.0348 0.0180 0.0697 0.0007 
AAM – 0.050 0.0321 0.0149 0.0325 0.0151 0.0671 0.0027 
LAM – 0.050 0.0327 0.0143 0.0331 0.0145 0.0681 0.0033 
AAM – 0.075 0.0309 0.0130 0.0318 0.0135 0.0681 0.0056 
LAM – 0.075 0.0314 0.0125 0.0323 0.0129 0.0687 0.0062 
AAM – 0.100 0.0314 0.0126 0.0331 0.0134 0.0710 0.0072 
LAM – 0.100 0.0319 0.0120 0.0337 0.0129 0.0716 0.0078 

 
Table 64: Two-Story Northridge 00 Numerical Spectrum Error 

Northridge 00 Two-Story  

x 
U1MAX 

SRSS 
Err. 

U2MAX 

SRSS 
Err. 

U1MAX 

CQC 
Err. 

U2MAX 

CQC 
Err. 

U1MAX 

ABS 
Err. 

U2MAX 

ABS 
Err. 

AAM – 0.025 0.0098 0.0062 0.0099 0.0662 0.0481 0.0135 
LAM – 0.025 0.0104 0.0055 0.0105 0.0056 0.0486 0.0141 
AAM – 0.050 0.0062 0.0097 0.0066 0.0099 0.0434 0.0095 
LAM – 0.050 0.0067 0.0091 0.0071 0.0093 0.0440 0.0101 
AAM – 0.075 0.0088 0.0064 0.0098 0.0069 0.0479 0.0137 
LAM – 0.075 0.0094 0.0058 0.0103 0.0063 0.0485 0.0143 
AAM – 0.100 0.0056 0.0043 0.0073 0.0052 0.0458 0.0165 
LAM – 0.100 0.0061 0.0038 0.0079 0.0047 0.0464 0.0171 

 
 As shown by the tables above, all three of the modal combination methods 

with either the AAM or LAM produce reasonably accurate maximum responses. 

For the Loma Prieta and Northridge Earthquakes, the AAM ABS results are more 

accurate than the LAM results. Although there are slight differences in the AAM 
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and LAM responses for the two-story shear frame, the difference is small. 

Furthermore, as evidenced by the tables, the displacement response at the first 

DOF may be more accurate for the LAM, but this is balanced by the AAM’s more 

accurate displacement response at the second DOF.  

 In addition to the two-story shear frame, the three-story shear frame is 

also analyzed. As shown by the tables on the following pages, the accuracy of 

the AAM and LAM increase for the three-story shear frame in comparison to the 

two-story shear frame. Once again, the difference between the AAM and LAM 

results are negligible. For example, the AAM and LAM yield identical responses 

when the three-story shear frame is subjected to the Loma Prieta 00 ground 

motion with a damping coefficient of 0.050 and the Northridge 00 ground motion 

with a damping coefficient of 0.075. 

Interestingly, in some cases using the numerical displacement response 

spectrums resulted in more accurate results than the analytical displacement 

response spectrum. For example, when solving for U1MAX using the SRSS 

method and a damping coefficient of 0.025, both the AAM and LAM produce 

more accurate results than the analytical spectrum. All in all, both of the 

numerical methods are adequate for performing accurate analysis. Although this 

may be the case for the systems studied in this thesis, it is important to note that 

the specific properties of a shear frame likely play a role in the results. 
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Table 65: Three-Story Loma Prieta 00 SRSS Numerical Error 

Loma Prieta 00 Three-Story SRSS 

x U1MAX 

SRSS Err. 
U2MAX 

SRSS Err. 
U3MAX 

SRSS Err. 
AAM – 0.025 0.0001 0.0107 0.0021 
LAM – 0.025 0.0001 0.0105 0.0020 
AAM – 0.050 0.0494 0.0158 0.0039 
LAM – 0.050 0.0494 0.0158 0.0039 
AAM – 0.075 0.0647 0.0180 0.0038 
LAM – 0.075 0.0648 0.0181 0.0039 
AAM – 0.100 0.0661 0.0176 0.0026 
LAM – 0.100 0.0663 0.0178 0.0028 

 
Table 66: Three-Story Northridge 00 SRSS Numerical Error 

Northridge 00 Three-Story SRSS 

x U1MAX 

SRSS Err. 
U2MAX 

SRSS Err. 
U3MAX 

SRSS Err. 
AAM – 0.025 0.0128 0.0078 0.0018 
LAM – 0.025 0.0131 0.0081 0.0015 
AAM – 0.050 0.0142 0.0118 0.0002 
LAM – 0.050 0.0144 0.0120 0.0000 
AAM – 0.075 0.0103 0.0087 0.0021 
LAM – 0.075 0.0103 0.0087 0.0021 
AAM – 0.100 0.0075 0.0090 0.0054 
LAM – 0.100 0.0077 0.0092 0.0055 
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Table 67: Three-Story Loma Prieta 00 CQC Numerical Error 

Loma Prieta 00 Three-Story CQC 

x U1MAX 

CQC Err. 
U2MAX 

CQC Err. 
U3MAX 

CQC Err. 
AAM – 0.025 0.0004 0.0107 0.0020 
LAM – 0.025 0.0003 0.0106 0.0018 
AAM – 0.050 0.0513 0.0161 0.0032 
LAM – 0.050 0.0513 0.0161 0.0031 
AAM – 0.075 0.0701 0.0188 0.0019 
LAM – 0.075 0.0701 0.0189 0.0020 
AAM – 0.100 0.0768 0.0192 0.0011 
LAM – 0.100 0.0769 0.0194 0.0010 

 
Table 68: Three-Story Northridge 00 CQC Numerical Error 

Northridge 00 Three-Story CQC 

x U1MAX 

CQC Err. 
U2MAX 

CQC Err. 
U3MAX 

CQC Err. 
AAM – 0.025 0.0131 0.0078 0.0019 
LAM – 0.025 0.0134 0.0081 0.0016 
AAM – 0.050 0.0153 0.0119 0.0006 
LAM – 0.050 0.0155 0.0121 0.0004 
AAM – 0.075 0.0127 0.0090 0.0013 
LAM – 0.075 0.0128 0.0090 0.0013 
AAM – 0.100 0.0120 0.0095 0.0038 
LAM – 0.100 0.0121 0.0097 0.0040 
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Table 69: Three-Story Loma Prieta 00 ABS Numerical Error 

Loma Prieta 00 Three-Story ABS 

x U1MAX 

ABS Err. 
U2MAX 

ABS Err. 
U3MAX 

ABS Err. 
AAM – 0.025 0.1038 0.0343 0.0466 
LAM – 0.025 0.1037 0.0342 0.0464 
AAM – 0.050 0.1870 0.0467 0.0608 
LAM – 0.050 0.1870 0.0466 0.0608 
AAM – 0.075 0.2310 0.0557 0.0723 
LAM – 0.075 0.2311 0.0558 0.0724 
AAM – 0.100 0.2539 0.0612 0.0804 
LAM – 0.100 0.2540 0.0614 0.0808 

 
Table 70: Three-Story Northridge 00 ABS Numerical Error 

Northridge 00 Three-Story CQC 

x U1MAX 

ABS Err. 
U2MAX 

ABS Err. 
U3MAX 

ABS Err. 
AAM – 0.025 0.0870 0.0271 0.0288 
LAM – 0.025 0.0874 0.0274 0.0291 
AAM – 0.050 0.0982 0.0339 0.0345 
LAM – 0.050 0.0984 0.0341 0.0348 
AAM – 0.075 0.0938 0.0306 0.0369 
LAM – 0.075 0.0939 0.0306 0.0370 
AAM – 0.100 0.0932 0.0313 0.0413 
LAM – 0.100 0.0934 0.0315 0.0415 
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6. Analysis of Midrise Buildings 
 
 To further compare seismic analysis methods, the Equivalent Lateral 

Force Procedure (ELFP), modal response spectrum analysis (RSA), and time 

history analysis (THA) methods are applied to midrise shear frames up to ten 

stories in height. The material properties and frame dimensions remain 

consistent with the former analyses, where each story has a lateral stiffness of 

90.78 kips per inch, and floor and roof weights equal to 100 kips and 80 kips, 

respectively. Also, each analysis case assumes constant 5% damping. The 

analysis in this chapter allows for a deeper understanding of the accuracy and 

consistency of seismic analysis methods.  

6.1 ELFP and RSA Comparison  

 First, the ELFP and RSA methods are applied to shear frames up to ten 

stories using the formerly developed Design Basis Earthquake (DBE) for San 

Luis Obispo, CA 93407. Once again, when applying RSA to the shear frames, 

the maximum responses of each mode are combined through the Absolute Sum 

(ABS), Square-Root-of-the-Sum-of-Squares (SRSS), and Complete Quadratic 

Combination (CQC) methods. In this study, the goal is not to design the 

individual members of each shear frame, so the scaling of response values is of 

little importance as long as consistency is maintained between the methods. 

Accordingly, the RSA results herein are divided by 4.5 to account for the 

response modification factor (R), detailed in Chapter 3, which reduces the ELFP 

results by a factor of 4.5.  
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 In previous chapters, the response parameter of interest is the lateral 

displacement response at each DOF. Along with the displacement response, the 

maximum base shear response is analyzed in this chapter. In RSA, the 

maximum base shear is calculated by using modal combination methods to 

combine the total base shear resulting from each mode of vibration. The 

maximum base shear results of the ELFP and RSA are shown below in Table 71.  

Table 71: Maximum Base Shear Response ELFP versus RSA 

Number of 
Stories 

VELFP 
(kips) 

VABS 
(kips) 

VSRSS 
(kips) 

VCQC 
(kips) 

2 31.50 31.45 30.02 30.04 
3 49.00 39.93 36.10 36.14 
4 65.59 43.49 37.06 37.11 
5 69.31 46.79 37.69 37.77 
6 72.38 50.10 38.31 38.42 
7 75.00 53.37 38.93 39.07 
8 78.30 56.10 39.40 39.58 
9 79.38 57.89 39.60 39.80 

10 81.24 59.65 39.78 40.01 
 

As shown by Table 71, the SRSS and CQC methods yield very similar 

results, and as the number of stories increases the difference in results between 

the two methods and the ELFP increases.  Figure 47 exhibits the relationship 

between the ELFP and RSA methods by plotting the maximum base shear 

against the number of stories.  
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Figure 47: Base Shear Results ELFP versus RSA 

 Since the SRSS and CQC methods yield similar results, Figure 47 only 

shows the CQC trend. As displayed by Figure 47, the ELFP base shear results 

are considerably higher than the RSA results. For the two-story shear frame, the 

results are similar regardless of method used. For shear frames with two to four 

stories, the ELFP base shear response significantly increases with each 

additional story. Between four to ten stories, the base shear results of the ELFP 

and ABS method increase with story height at a similar rate, whereas the CQC 

base shear results barely increase with each additional story. Although the rate 

at which the base shear increases with number of stories is more pronounced for 

the ELFP in all cases, for shear frames above four stories, the rate decreases 

and is more comparable with the rate of the RSA results. The pronounced rate is 

due to the formerly detailed seismic response coefficient (Cs). For shear frames 
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up to three stories, the Cs value for the ELFP remains constant and is governed 

by Equation 3.3. For shear frames that are four stories or higher, the Cs value for 

the ELFP is instead governed by the ASCE 7-10 upper bound equation shown by 

Equation 3.3a. For example, the Cs values for the three-story and four-story 

shear frame are 0.175 and 0.173, respectively. Although the difference between 

the two equations is small for the four-story shear frame, as the stories increase, 

the fundamental period of the shear frame increases, and Equation 3.3a yields 

smaller Cs values. Furthermore, the maximum lateral displacements are also 

analyzed. The displacement results of the ELFP and RSA methods and the 

response reduction (RR) of each modal combination method as a percentage of 

the ELFP response are shown in the tables below. 

Table 72: Two-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.3470” 0.3465” 0.3309” 0.3307” 0.14% 4.64% 4.68% 
U2 0.5607” 0.5264” 0.5135” 0.5136” 6.11% 8.42% 8.40% 

 
Table 73: Three-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.5398” 0.4398” 0.3981” 0.3977” 18.52% 26.25% 26.32% 
U2 0.9796” 0.7237” 0.7044” 0.7044” 26.12% 28.09% 28.10% 
U3 1.2195” 0.8962” 0.8578” 0.8580” 26.51% 29.67% 29.64% 

 

Table 74: Four-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.7225” 0.4790” 0.4088” 0.4082” 33.70% 43.41% 43.50% 
U2 1.3662” 0.8190” 0.7565” 0.7562” 40.05% 44.63% 44.65% 
U3 1.8524” 1.0282” 1.0053” 1.0054” 44.49% 45.73% 45.72% 
U4 2.1023” 1.2000” 1.1255” 1.1259” 42.92% 46.46% 46.44% 
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Table 75: Five-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.7635” 0.5154” 0.4161” 0.4152” 32.49% 45.50% 45.62% 
U2 1.4722” 0.8913” 0.7858” 0.7851” 39.46% 46.62% 46.67% 
U3 2.0711” 1.1546” 1.0841” 1.0839” 44.25% 47.65% 47.67% 
U4 2.5054” 1.3500” 1.2930” 1.2933” 46.12% 48.39% 48.38% 
U5 2.7202” 1.5135” 1.3933” 1.3940” 44.36% 48.78% 48.76% 

 
Table 76: Six-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.7973” 0.5518” 0.4233” 0.4220” 30.79% 46.92% 47.07% 
U2 1.5541” 0.9656” 0.8077” 0.8065” 37.87% 48.03% 48.10% 
U3 2.2297” 1.2719” 1.1349” 1.1343” 42.95% 49.10% 49.13% 
U4 2.7835” 1.4574” 1.3946” 1.3945” 47.64% 49.90% 49.90% 
U5 3.1749” 1.6699” 1.5752” 1.5757” 47.40% 50.39% 50.37% 
U6 3.3633” 1.8375” 1.6615” 1.6625” 45.37% 50.60% 50.57% 

 
Table 77: Seven-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.8262” 0.5879” 0.4304” 0.4288” 28.85% 47.91% 48.10% 
U2 1.6211” 1.0347” 0.8262” 0.8246” 36.18% 49.03% 49.13% 
U3 2.3533” 1.3633” 1.1727” 1.1716” 42.07% 50.17% 50.21% 
U4 2.9914” 1.6135” 1.4637” 1.4632” 46.06% 51.07% 51.09% 
U5 3.5041” 1.7607” 1.6937” 1.6939” 49.75% 51.66% 51.66% 
U6 3.8600” 2.0010” 1.8537” 1.8546” 48.16% 51.98% 51.95% 
U7 4.0278” 2.1712” 1.9301” 1.9315” 46.09% 52.08% 52.05% 
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Table 78: Eight-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.8625” 0.6180” 0.4360” 0.4341” 28.35% 49.45% 49.67% 
U2 1.7000” 1.0958” 0.8410” 0.8389” 35.54% 50.53% 50.65% 
U3 2.4764” 1.4572” 1.2024” 1.2007” 41.16% 51.45% 51.51% 
U4 3.1779” 1.7456” 1.5155” 1.5145” 45.07% 52.31% 52.34% 
U5 3.7793” 1.9211” 1.7781” 1.7778” 49.17% 52.95% 52.96% 
U6 4.2556” 2.1072” 1.9857” 1.9862” 50.48% 53.34% 53.33% 
U7 4.5819” 2.3342” 2.1298” 2.1310” 49.06% 53.52% 53.49% 
U8 4.7332” 2.5042” 2.1984” 2.2001” 47.09% 53.55% 53.52% 

 
Table 79: Nine-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.8744” 0.6377” 0.4385” 0.4363” 27.07% 49.85% 50.11% 
U2 1.7283” 1.1364” 0.8498” 0.8473” 34.25% 50.83% 50.98% 
U3 2.5414” 1.5268” 1.2231” 1.2211” 39.92% 51.87% 51.95% 
U4 3.2930” 1.8285” 1.5546” 1.5532” 44.47% 52.79% 52.83% 
U5 3.9628” 2.0744” 1.8421” 1.8415” 47.65% 53.51% 53.53% 
U6 4.5302” 2.2051” 2.0831” 2.0832” 51.32% 54.02% 54.02% 
U7 4.9749” 2.4406” 2.2727” 2.2735” 50.94% 54.32% 54.30% 
U8 5.2763” 2.6531” 2.4033” 2.4047” 49.72% 54.45% 54.42% 
U9 5.4140” 2.8240” 2.4650” 2.4669” 47.84% 54.47% 54.43% 

 
Table 80: Ten-Story Frame ELFP versus RSA 

 ELFP ABS SRSS  CQC  %RRABS %RRSRSS  %RRCQC  
U1  0.8949” 0.6571” 0.4408” 0.4382” 26.57% 50.75% 51.03% 
U2 1.7811” 1.1764” 0.8570” 0.8541” 33.95% 51.88% 52.05% 
U3 2.6451” 1.5819” 1.2396” 1.2371” 40.19% 53.13% 53.23% 
U4 3.4704” 1.9015” 1.5853” 1.5835” 45.21% 54.32% 54.37% 
U5 4.2390” 2.1986” 1.8924” 1.8913” 48.13% 55.36% 55.38% 
U6 4.9306” 2.3797” 2.1588” 2.1584” 51.74% 56.22% 56.22% 
U7 5.5239” 2.5077” 2.3815” 2.3818” 54.60% 56.89% 56.88% 
U8 5.9961” 2.7628” 2.5559” 2.5569” 53.92% 57.37% 57.36% 
U9 6.3231” 2.9785” 2.6753” 2.6769” 52.89% 57.69% 57.66% 
U10 6.4800” 3.1463” 2.7314” 2.7336” 51.45% 57.85% 57.82% 
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As shown by the above tables, the ELFP yields conservative lateral 

displacement results in each case. Similarly, the displacements are plotted 

against the number of stories. The ten-story result is shown in Figure 48 below.  

 

Figure 48: Ten-Story Displacement Results ELFP versus RSA 

 The ELFP results for shear frames with more than three stories show a 

parabolic trend between lateral displacements and number of stories. The 

parabolic trend can be attributed to the ELFP’s method for distributing forces 

outlined in ASCE 7-10. As shown by Equation 3.4, the vertical force distribution 

depends on the height of each story which is raised to a constant value k. For the 

two-story and three-story shear frame, k is equal to 1, resulting in a linear 

relationship. On the contrary, for story heights above three stories, the k value 

increases with each additional story. Consequently, the parabolic trend is more 

noticeable as the number of stories increases.  

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

La
te

ra
l D

is
pl

ac
em

en
t (

in
ch

es
)

Number of Stories 

ELFP CQC ABS



                                       

 

129 

 

6.2 RSA and THA Comparison 

 In this section, RSA and THA are applied to shear frames up to ten 

stories, and the results are compared. First, the shear frames are subject to the 

1994 Northridge Earthquake ground motions in the 00 direction (N-S). The 

maximum base shear results of the RSA and THA are shown below in Table 81.  

Table 81: Total Base Shear Response Northridge 00 

Number of 
Stories 

VTHA 

(kips) 
VABS 

(kips) 
VSRSS 
(kips) 

VCQC 
(kips) 

2 232.31 242.61 233.95 234.03 
3 252.34 278.13 257.02 256.87 
4 305.26 342.97 291.68 292.11 
5 271.17 341.22 269.40 270.03 
6 396.22 472.15 376.44 377.24 
7 248.12 359.83 251.41 252.59 
8 255.51 359.82 243.63 244.96 
9 396.83 514.26 374.52 375.88 

10 341.20 539.88 374.49 376.24 
 

 Unlike the relationship between the ELFP and RSA, the base shear 

results when the shear frames are subject to the Northridge Earthquake ground 

motion record do not necessarily increase with number of stories.  To visualize 

the results in Table 81, the total base shear is plotted against the number of 

stories in Figure 49. 
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Figure 49: Northridge Base Shear Results RSA versus THA 

 As shown by Figure 49, the relationship between base shear and number 

of stories is not linear. For instance, the six-story shear frame yields a larger 

base shear than the seven-story and eight-story shear frame, despite the fact it 

has less seismic reactive weight. The heightened base shear response of the six-

story shear frame is due to the nature of the ground motion. Even though the 

fundamental period of the frames increases with each additional story, a higher 

fundamental period doesn’t necessarily correlate to a higher displacement 

response. In this case, the fundamental period of the six-story shear frame 

correlates to a larger displacement response than the fundamental period of the 

seven-story or eight-story shear frame. Furthermore, this is exemplified by the 

Northridge Earthquake maximum displacement spectrum developed in Section 

5.3. As a whole, the displacement spectrum trends upwards with small 
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fundamental periods, but the upward trend is characterized by a jagged 

displacement response for small variations in period. Moreover, the dependence 

of the base shear response on the nature of the ground motion is shown by 

applying the 1989 Loma Prieta ground motion in the 00 direction (N-S) to the 

shear frames. The base shear results are shown in Table 82 below.  

Table 82: Total Base Shear Response Loma Prieta 00  

Number of 
Stories 

VTHA 

(kips) 
VABS 

(kips) 
VSRSS 
(kips) 

VCQC 
(kips) 

2 233.30 249.16 240.98 241.07 
3 280.06 334.65 295.61 295.95 
4 214.71 237.18 176.47 177.11 
5 146.34 237.41 163.19 164.11 
6 143.03 260.85 163.68 165.17 
7 166.09 236.11 134.81 136.84 
8 174.15 267.87 153.11 155.26 
9 164.66 278.53 151.89 154.59 

10 251.41 336.40 180.80 184.05 
 

 Once again, the increase in story height doesn’t necessarily correlate with 

an increase in base shear response. Although the SRSS and CQC methods 

produce very similar results, the SRSS produces slightly more accurate results 

when the two methods overestimate the base shear response. Similarly, the 

CQC method yields slightly more accurate results when the two methods 

underestimate the base shear response. Figure 50 exhibits the relationship 

between base shear response and number of stories under the Loma Prieta 

ground motion.  
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Figure 50: Loma Prieta Base Shear Results RSA versus THA 

 As shown by Figure 50, the relationship between base shear and number 

of stories significantly varies depending on the nature of the ground motion. 

When the frames are subject to the Loma Prieta ground motion, the three-story 

shear frame yields the peak base shear response, whereas the ten-story shear 

frame yields the peak base shear response when the Northridge Earthquake is 

applied. In both earthquake cases, the ABS method overestimates the base 

shear response regardless of system. When comparing the RSA results for both 

earthquakes, Figure 49 and 50 display that the SRSS and CQC methods yield 

more accurate results when the Northridge Earthquake is applied to the frames. 

Consider the previously developed maximum displacement spectrums for the 

Northridge and Loma Prieta Earthquakes (Section 5.3 and Appendix L). In 

comparison, the Loma Prieta displacement spectrum is more jagged. In 
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accordance with literature, the SRSS and CQC methods tend to yield errors in 

the range of 10% to 30% when a jagged response spectrum characterized by 

one ground motion is used (Chopra, 1995). Generally, the response spectrums 

used for seismic design are smooth curves developed from the analysis of 

numerous ground motions and system responses.  

In addition to the total base shear, the maximum lateral displacement 

responses resulting from RSA and THA are analyzed. The responses of each 

shear frame due to the Northridge Earthquake are presented by the tables below.  

Table 83: Two-Story Frame RSA versus THA - Northridge  

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  2.5590” 2.6725” 2.5781” 2.5771” 4.44% 0.75% 0.71% 
U2 4.0387” 4.0808” 4.0024” 4.0033” 1.04% 0.90% 0.88% 

 
Table 84: Three-Story Frame RSA versus THA - Northridge  

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  2.8026” 3.0701” 2.8355” 2.8381” 9.54% 1.17% 1.27% 
U2 4.9819” 5.1426” 5.0325” 5.0336” 3.23% 1.02% 1.04% 
U3 6.1317” 6.3316” 6.1245” 6.1218” 3.26% 0.12% 0.16% 

 

Table 85: Four-Story Frame RSA versus THA - Northridge 

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  3.3264” 3.7734” 3.2131” 3.2084” 13.44% 3.40% 3.55% 
U2 5.9882” 6.4502” 5.9391” 5.9360” 7.72% 0.82% 0.87% 
U3 7.7357” 8.0477” 7.8906” 7.8913” 4.03% 2.00% 2.01% 
U4 8.4943” 9.4468” 8.8416” 8.8456” 11.21% 4.09% 4.14% 
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Table 86: Five-Story Frame RSA versus THA - Northridge  

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  2.9871” 3.7588” 2.9617” 2.9676” 25.83% 0.85% 0.65% 
U2 5.4263” 6.4854” 5.5717” 5.5781” 19.52% 2.68% 2.80% 
U3 7.5011” 8.2171” 7.6617” 7.6648” 9.54% 2.14% 2.18% 
U4 9.3795” 9.5975” 9.1454” 9.1432” 2.32% 2.50% 2.52% 
U5 10.4151” 10.8573” 9.8745” 9.8675” 4.25% 5.19% 5.26% 

 

Table 87: Six-Story Frame RSA versus THA - Northridge  

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  4.3646” 5.2011” 4.1505” 4.1467” 19.17% 4.90% 4.99% 
U2 7.9531” 9.3075” 7.9606” 7.9533” 17.03% 0.09% 0.00% 
U3 10.9681” 12.3598” 11.2173” 11.2101” 12.69% 2.27% 2.21% 
U4 13.2327” 14.2489” 13.7961” 13.7939” 7.68% 4.26% 4.24% 
U5 14.8001” 16.3803” 15.5799” 15.5847” 10.68% 5.27% 5.30% 
U6 15.5643” 17.8917” 16.4262” 16.4345” 14.95% 5.54% 5.59% 

 
Table 88: Seven-Story Frame RSA versus THA - Northridge  

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  2.7332” 3.9638” 2.7696” 2.7694” 45.03% 1.34% 1.33% 
U2 5.0302” 6.9040” 5.2864” 5.2809” 37.25% 5.09% 4.98% 
U3 6.7433” 8.8844” 7.4484” 7.4390” 31.75% 10.46% 10.32% 
U4 8.8446” 10.4221” 9.2491” 9.2419” 17.84% 4.57% 4.49% 
U5 10.4216” 11.1865” 10.6827” 10.6825” 7.34% 2.51% 2.50% 
U6 11.9642” 12.8329” 11.7035” 11.7102” 7.26% 2.18% 2.12% 
U7 12.7832” 14.0757” 12.2063” 12.2152” 10.11% 4.51% 4.44% 
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Table 89: Eight-Story Frame RSA versus THA - Northridge  

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  2.8146” 3.9637” 2.6851” 2.6837” 40.83% 4.60% 4.65% 
U2 5.4790” 6.9728” 5.1491” 5.1543” 27.26% 6.02% 5.93% 
U3 7.7750” 9.0906” 7.3203” 7.3305” 16.92% 5.85% 5.72% 
U4 9.4471” 10.8269” 9.2007” 9.2098” 14.61% 2.61% 2.51% 
U5 10.4323” 11.8492” 10.7867” 10.7900” 13.58% 3.40% 3.43% 
U6 12.0193” 12.9002” 12.0526” 12.0491” 7.33% 0.28% 0.25% 
U7 13.0710” 14.3617” 12.9465” 12.9393” 9.87% 0.95% 1.01% 
U8 13.8692” 15.5252” 13.3798” 13.3722” 11.94% 3.53% 3.58% 

 
Table 90: Nine-Story Frame RSA versus THA - Northridge 

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  4.3717” 5.6649” 4.1268” 4.1256” 29.59% 5.59% 5.62% 
U2 8.4442” 10.2801” 8.0593” 8.0550” 21.74% 4.56% 4.61% 
U3 11.9138” 13.9325” 11.6910” 11.6821” 16.94% 1.87% 1.94% 
U4 14.7868” 16.9275” 14.9629” 14.9504” 14.48% 1.19% 1.11% 
U5 17.1319” 19.5586” 17.8121” 17.8018” 14.17% 3.97% 3.91% 
U6 18.8388” 21.1723” 20.1750” 20.1725” 12.39% 7.09% 7.08% 
U7 20.1774” 23.2169” 22.0001” 22.0050” 15.06% 9.03% 9.06% 
U8 21.3533” 25.0397” 23.2339” 23.2436” 17.26% 8.81% 8.85% 
U9 21.9865” 26.4720” 23.8092” 23.8213” 20.40% 8.29% 8.34% 

 
Table 91: Ten-Story Frame RSA versus THA - Northridge  

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  3.7585” 5.9471” 4.1288” 4.1253” 58.23% 9.85% 9.76% 
U2 7.0239” 10.8212” 8.0662” 8.0613” 54.06% 14.84% 14.77% 
U3 9.7648” 14.6194” 11.7185” 11.7083” 49.71% 20.01% 19.90% 
U4 13.3028” 17.6834” 15.0417” 15.0256” 32.93% 13.07% 12.95% 
U5 16.4768” 20.5662” 17.9998” 17.9835” 24.82% 9.24% 9.14% 
U6 19.2038” 22.3994” 20.5579” 20.5486” 16.64% 7.05% 7.00% 
U7 21.5058” 23.7465” 22.6826” 22.6831” 10.42% 5.47% 5.47% 
U8 23.6864” 26.0274” 24.3342” 24.3426” 9.88% 2.74% 2.77% 
U9 25.5164” 28.0080” 25.4580” 25.4715” 9.76% 0.23% 0.18% 
U10 26.3674” 29.4761” 25.9837” 25.9998” 11.79% 1.46% 1.39% 
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As expected, the ABS method results are the most inaccurate and 

inconsistent. Also, the SRSS and CQC methods continue to yield comparable 

results with one another. For the shear frames with four or fewer stories, the 

SRSS and CQC methods produce errors less than 5%. The greatest errors occur 

for the modal combination methods at the nine-story and ten-story shear frames. 

In general, the errors tend to increase with increase in number of stories. To 

further analyze the trend, the displacements are plotted against the number of 

stories for the ten-story shear frame in Figure 51 below.  

 

Figure 51: Northridge Displacement Results RSA versus THA 

 Although the displacement error of the CQC and SRSS results is small for 

the ninth and tenth story, the two methods overestimate the displacement 

responses for the intermediate stories, where the peak errors occur at the third 

story. Despite the errors, the SRSS and CQC still yield reasonably accurate 

results.  
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6.3 Special Building Cases 

 Thus far, the SRSS and CQC methods yield very similar results. The 

accuracy in the two methods is primarily due to the symmetry of the shear 

frames. For symmetric structures with gradually spaced modes, the correlation 

coefficients are relatively small, and the CQC method essentially reduces to the 

SRSS method. Generally, the two methods yield adequate results for two-

dimensional structures; on the contrary, literature shows the application of the 

methods to three-dimensional structures can result in vastly different results due 

to mass irregularities (Wilson et al., 1981). Consider the five-story shear frame 

shown below in Figure 52. 

 

Figure 52: Five Story Shear Frame with Irregular Properties 

 The five-story shear frame shown above exhibits consistent mass and 

stiffness properties until the roof, where the mass and stiffness are considerably 

reduced. The reduction in stiffness and mass at the roof level represents a light 

appendage, which may occur in special cases (Chopra, 1995). Applying the 

same properties used throughout this study to the five-story shear frame with a 
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light appendage results in the natural periods (Tn), natural frequencies (wn), and 

spectral displacements (Sd) shown in Table 92. 

Table 92: Five-Story Frame with Irregular Properties 

Mode Tn (s) wn (rad/s) Sd (in.) 
1 0.9938 6.3224 8.0439 
2 0.9307 6.7511 7.1912 
3 0.3355 18.8427 1.5952 
4 0.2177 28.8636 0.4949 
5 0.1775 35.4050 0.3227 

 

The spectral displacements in Table 92 are representative of the 

Northridge Earthquake. Evidently, the irregular distribution of mass and stiffness 

properties results in closely spaced first and second modes. Consequently, the 

correlation coefficient for the first and second modes is much higher. The 

correlation coefficients for modes i and j of the five-story shear frame are shown 

below in Table 93.  

Table 93: Correlation Coefficients 

Mode j = 1 j = 2 j = 3 j = 4 j = 5 
i = 1 1 0.6986 0.0065 0.0027 0.0019 
i = 2 0.6986 1 0.0076 0.0031 0.0021 
i = 3 0.0065 0.0076 1 0.0502 0.0226 
i = 4 0.0027 0.0031 0.0502 1 0.1918 
i = 5 0.0019 0.0012 0.0226 0.1918 1 

  

Despite the essentially negligible correlation coefficients for higher modes, 

the closely spaced first and second mode results in a correlation coefficient of 

0.6986. To analyze the impacts of the interacting modes on the response, the 

Northridge Earthquake is applied to the five-story shear frame and the 
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displacement and base shear results are presented in Table 94 and Table 95, 

respectively. 

Table 94: Irregular Five-Story Frame Displacements - Northridge 

 THA ABS SRSS  CQC  EABS ESRSS  ECQC  
U1  3.307” 3.917” 2.380” 3.074” 18.46% 28.02% 7.03% 
U2 6.036” 6.750” 3.390” 5.707” 11.83% 27.27% 5.43% 
U3 7.992” 8.406” 5.874” 7.652” 5.17% 26.51% 4.25% 
U4 9.127” 10.045” 6.705” 8.718” 10.06% 26.53% 4.48% 
U5 42.552” 144.65” 102.80” 57.882” 239.9% 141.6% 36.03% 

 

Table 95: Irregular Five-Story Frame Base Shear – Northridge 

Method Vb (kips) Error 
THA 300.17 0% 
ABS 355.58 18.46% 

SRSS 216.06 28.02% 
CQC 279.05 7.03% 

 

 Both the SRSS and CQC methods underestimate the displacement 

response at the first four floors and overestimate the response at the fifth floor. 

Furthermore, the two methods also underestimate the total base shear result of 

the five-story shear frame. On average, the CQC method yields displacement 

responses and base shear responses that are approximately five and four times 

as accurate as the SRSS results, respectively. Although for the displacement at 

the fifth floor the CQC is still nearly four times as accurate as the SRSS method, 

the degree of error is considerably higher than the other four stories. The 

increased error is due to the spectral displacement value obtained from the 

Northridge Earthquake displacement spectrum. Even though the mass and 

stiffness properties are significantly reduced at the roof level, the fifth natural 
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frequency is still 35.41 radians per second. In comparison, when the mass and 

stiffness properties aren’t reduced, the fifth natural frequency is 36.16 radians per 

second. The relatively unchanged natural frequency results in an overestimate of 

the displacement response at the roof level when applying modal combination 

methods.  

All in all, the application of a light appendage to the five-story shear frame 

evidences the limitations of the SRSS method. The analysis proves that the 

presence of closely spaced modes significantly hinders the accuracy of the 

SRSS method. As a result, the CQC proves to be a more reliable method than 

the SRSS method. Even though the SRSS method yields good results 

throughout this thesis, its application is limited by structural irregularities. 

Therefore, regardless of the system, the CQC method should be used over the 

SRSS method.  

6.4 Conclusion 

 From the analyses in this chapter, conclusions are drawn regarding the 

accuracy and application of various seismic analysis methods. First, although the 

ELFP is permitted by ASCE 7-10 for the shear frames, RSA should still always 

be performed. Despite the added level of complexity, RSA is still relatively simple 

and yields considerably more accurate results than the ELFP. The slight increase 

in complexity yields results that are typically multiple times more accurate. If 

solely the ELFP is applied, the structure will be inefficiently designed, resulting in 

an increase in time, materials, and costs.  
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 Secondly, the ABS method is inconsistent and unreliable. As stated by 

ASCE 7-10, the ABS method isn’t a permitted modal combination for seismic 

analysis. Even though the analyses herein exhibit the inadequacies of the ABS 

method, when comparing it to the ELFP, the ABS method yields more accurate 

results than the ELFP, which is a permitted method of seismic analysis. This 

further exemplifies the need to use RSA when performing seismic analysis.  

 Lastly, the results in Section 5.4 exhibit the limitations of the SRSS 

method. Although the mass and stiffness properties are specifically chosen to 

result in closely spaced modes, three-dimensional structures are more likely to 

have modal interactions. In turn, when applying RSA to a system, the CQC 

method should always be chosen for combining modal responses.  

 Obviously, when possible, THA analysis should be performed. In many 

cases, such as the analyses in Chapter 5, RSA yields good results and can 

replace THA. On the contrary, the results in this chapter show that the accuracy 

of the modal combination methods in RSA can be significantly hindered by the 

nature of the ground motion and system properties.  
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7. Friction Spring Dampers 
 
 In this chapter, the effects of friction spring dampers (FSDs) on the 

response of the two-story and three-story shear frame are analyzed. The 

dynamic response of each shear frame is determined through the application of 

nonlinear time history analysis (NTHA).  

7.1 Classical and Nonclassical Damping 

 In the previous chapters, classical damping is assumed for the shear 

frames. In general, classical damping is appropriate to assume for systems with 

evenly distributed damping properties. Thus far, Rayleigh damping has been 

applied to the shear frames. Rayleigh damping allows for the application of 

modal analysis to damped systems and is defined by the following equation.  

 𝐶 = 	𝛼𝑀 + 	𝛽𝐾   (Equation 7.1) 

 The Rayleigh damping model shown by Equation 7.1 uses the scalars a 

and b to express the damping matrix as a linear combination of the mass and 

stiffness matrices. Equation 7.1 maintains the orthogonality conditions of the 

modes, allowing for the application of modal analysis to MDOF damped systems. 

The damping ratio, z, is related to a and b through the equations shown below. 
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 Where wi and wj are the natural frequencies of modes i and j, respectively, 

and Equations 7.3 and 7.4 assume a constant damping ratio for all modes. Note 

that the equations above can be expanded based on the number of DOFs in the 

system.  

Although supplemental damping mechanisms are often used to dissipate 

energy, all dynamic systems illicit some level of damping for a number of 

reasons, such as the material properties, member connections, or even air 

resistance on the structure as it oscillates. In ASCE 7-10, damping ratios for steel 

buildings under wind loading are between 1% and 2%. For seismic applications, 

ASCE 7-10 suggests a damping ratio of 5% to be used for most structures. The 

reason for the higher assumed damping ratio in seismic analysis is because 

structures under earthquake loading are expected to respond inelastically, 

whereas an elastic response is expected due to wind loading. Furthermore, 

welded steel structures with a working stress below half of the yield point and 

above half of the yield point are recommended to have damping ratios between 

2% and 3% and 5% to 7%, respectively (Chopra, 1995).  

Generally, classical damping refers to structures with viscous damping 

effects. Although the exact effects resulting from viscous dampers are difficult to 

model, Rayleigh damping provides an accurate and relatively simple method for 

modelling the damping in structural systems with fairly consistent damping 

properties. On the contrary, the application of classical damping models is still 

limited, and a nonclassical damping model is often necessary. For example, for 

structures with special energy dissipating devices, nonclassical damping is 
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necessary (Chopra, 1995). In this study, friction spring dampers (FSDs) are 

added to the shear frames. The FSDs follow a nonclassical damping model, and 

nonlinear time history analysis (NTHA) must be applied to solve for the dynamic 

response of each system. The theory and application behind the FSDs and 

NTHA are detailed in the subsequent sections of this chapter.  

7.2 Nonlinear Time History Analysis 

The NTHA herein is performed in SAP2000, which provides a built-in 

function for modelling the FSDs. This section serves as a brief description of 

NTHA as it applies to systems with FSDs. A broader explanation of NTHA is 

readily available in a majority of structural dynamics and seismic engineering 

textbooks. Unlike velocity-dependent viscous dampers, the energy dissipation 

properties of the FSDs are displacement-dependent. The governing equation of 

motion is modified to include the effects of the FSDs and shown below.  

																																																			𝑀ü + 𝑘(𝑢 − 𝑢Ñ)(𝑡) = 𝑃(𝑡)         (Equation 7.5) 

 Where k is the stiffness of the FSDs at each instant of time, u0(t) is the 

initial displacement, u(t) is the displacement, and P(t) is the forcing function 

which is equal to the product of the mass and horizontal ground accelerations,     

-müg(t).  

  Since the stiffness, displacements, and accelerations are all time-

dependent quantities, numerical analysis methods must be used to solve for the 

dynamic response of the system. In SAP2000, several numerical methods are 

available for use, including the formerly detailed Newmark-beta Method. For 

each analysis case, the Newmark-beta method parameters reflect the Average 
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Acceleration Method (AAM). Recall that the Average Acceleration Method results 

in unconditionally stable solutions and yields good results for the classically 

damped two-story and three-story shear frames when THA is applied. Also, 

research proves that the AAM is still unconditionally stable for SDOF and MDOF 

systems with nonlinear damping models (Li et al., 2006). 

7.3 Introduction to Friction Spring Dampers 

 The FSDs detailed herein consist of steel rings which dissipate energy 

through friction forces and elastic forces that develop as they move relative to 

one another. In this study, the dimensions and specifications of the FSDs are 

based on steel rings that are manufactured by the German company, 

RINGFEDER®. A generic model of the FSDs is available on the RINGFEDER® 

website and shown in Figure 53 below.  

 

Figure 53: Friction Spring Damper Ring Assembly 

Source: RINGFEDER® Damper Technology Catalog 
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 As shown by Figure 53, the FSDs consist of inner and outer rings that are 

in series with one another. When the FSDs are subject to an axial compressive 

force, sliding occurs and friction forces develop along the mating surfaces of the 

inner and outer rings. Since the contact surfaces of the rings have wedged faces, 

the interface friction caused by the axial compressive force expands the outer rings 

radially and contracts the inner rings inwardly. The expansion and contraction of 

the outer and inner rings, respectively, results in an axial deflection along the 

length of the ring assembly. As the FSDs are loaded and unloaded, significant 

energy is dissipated each cycle in order to overcome the friction and deformation 

forces in the ring assembly.  

 In comparison to other damping mechanisms, the FSDs hold many 

advantages. First, the concentric distribution of the friction forces results in self-

centering damping effects. Secondly, the implementation of FSDs into a structural 

system does not significantly hinder the scope of a project. The only materials 

required to construct the FSDs are the steel rings, and no major accommodations 

are needed to implement them into a structural system. When considering 

mechanisms that elicit similar levels of damping, the FSDs are much easier to 

involve into a structure’s design. Also, the passive nature of the FSDs results in 

less maintenance and no external power source is necessary to center the effects 

of the damping or to achieve high levels of damping.   

7.4 Mechanics of Friction Spring Dampers 

 The hysteric energy dissipation of the FSDs is defined by the force-travel 

diagram shown by Figure 54. The force-travel diagram represents a cycle of the 
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FSD response, which includes a loading and unloading phase of the ring 

assembly. The force-travel diagram represents each phase of the FSD response 

in a clockwise manner starting at the origin (Point A), where the force and 

displacement are equal to zero.  

 

Figure 54: Force-Travel Diagram of FSDs without Preloading Force 

 The first part of the diagram, shown by Line AB, denotes the loading 

phase of the ring assembly. As mentioned previously, as the FSDs are axially 

loaded in compression, friction forces develop at the mating surfaces, and the 

outer and inner rings are forced to expand and contract. During the loading 

phase, the expansion and contraction of the rings along with the friction forces 

between the rings combine to dissipate energy. Since the friction forces are 

proportional to the forces required to expand and contract the rings, a linear 

relationship is maintained between the spring force and deformation in 

accordance with Hooke’s Law. The peak force, F, and the maximum ring 

deformation, Stot, occur at Point B, which is the instant in which the external force 

overcomes the dissipative forces in the ring assembly. The linear relationship 
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along Line AB is defined by the loading stiffness, K1. The vertical portion of the 

diagram, shown by Line BC, is the transition phase between the loading 

(compression) and unloading (decompression) phases. At the transition point 

between the two phases, the friction forces at the interfaces of the rings also 

transition. In the loading phase, the friction force contributes to the dissipation of 

energy, but at the start of the unloading phase, the friction force counteracts the 

dissipation of energy. During the vertical phase, F is reduced by the 

counteractive friction force, and the decompression of the ring assembly starts 

once the friction force is overcome at Point C. The force at Point C is the recoil 

force, FR, which is typically around a third of the peak force, F. Lastly, the 

unloading phase occurs along Line CA. Although the friction force counteracts 

the forces caused by the expansion and contraction of the rings, the relationship 

maintains linearity, and is characterized by the unloading stiffness, K2. At the 

completion of the unloading phase, the ring assembly returns to its initial state.  

Generally, the FSDs are subject to a preloading or precompression force, 

F0, with typical values in the range of 5% to 10% of the ring’s bearing capacity. In 

order to avoid damaging the lubricating film along the mating faces of the rings, 

the precompression force should not exceed half of the maximum force, F. It is 

recommended to apply a preloading force to the ring assembly because it helps 

to maintain the orientation of the rings and prevents the separation of the 

individual ring components. If preloaded, the rings will not start to slide relative to 

one another unless the axial compressive force applied to the ring assembly is 
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larger than the precompression force, F0. The effects of applying a preloading 

force on the response of the FSDs is illustrated by Figure 55 below.  

 

Figure 55: Force-Travel Diagram of FSDs with Preloading Force 

 As evidence by Figure 55, the preloading force shortens the loading and 

unloading phases of the FSD response. Instead of transitioning at force and 

displacement values of zero, the transition between the loading and unloading 

stages occurs when the difference between the two is equal to the preloading 

force. Additionally, the preloading force results in an initial displacement, S0. As 

previously mentioned, the FSDs only activate if the external force is greater than 

the preloading force. Consequently, FSDs provide no energy dissipation under 

service loads. Although the primary effects of the FSDs occur under axially 

compression, the ring assemblies exhibit damping effects bidirectionally. As a 

result, the cyclic response relies on the dissipative properties of the FSDs under 

compression and tension. Whether an external compressive or external tensile 

force is applied to the ring assembly, the FSDs follow the same hysteric damping 

model detailed above. The bidirectional force-travel diagram of the FSD 
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response is shown in Figure 56. Figure 56 represents the entire cyclic response 

of the FSDs when a preloading force is applied to the ring assembly.  

 

Figure 56: Cyclic Response of FSDs with a Preloading Force 

7.5 Modeling and Analysis in SAP2000 

 This section covers the development and analysis of the two-story and 

three-story shear frame in SAP2000. A preliminary analysis is completed on the 

shear frames to determine where to implement the FSDs in each system. First, 

the FSDs were modelled horizontally at each story level, which slightly reduces 

the response of the system. Secondly, the FSDs were placed vertically at the two 

base columns and diagonally between each floor above the base. The second 

model decreases most of the system responses if modal damping is present, but 

also produces vastly inconsistent results. Thirdly, the FSDs are placed diagonally 

at each story level, including the base level, which yields the best results when 

compared with the other two cases. As a result, the third case is used to model 
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the two-story and three-story shear frame. The SAP2000 model of the three-story 

shear frame is shown in Figure 6.5 on the following page.  

 

Figure 57: SAP2000 Model of Three-Story Shear Frame 

 The FSDs are represented by the green diagonal links between adjacent 

levels. Next, the stiffness values (K1, K2, K0), the type and number of rings, and 

the preload are specified for the FSDs. In this study, the FSDs are designed 

based on a target stiffness of the ring assembly during the loading phase. 

Accordingly, K1 is set equal to 10%, 25%, 50%, and 100% of the lateral stiffness 

of each individual floor, 90.78 kips per inch. The loading and unloading 

stiffnesses are defined by Equation 7.6 and Equation 7.7, respectively (Hill, 

1995). 

𝐾9 =
2𝜋𝐸 ∗ 𝑡𝑎𝑛(𝛽 + 𝜌)𝑡𝑎𝑛𝛽

𝑛 ¼𝐷Ñ9𝐴9
+ 𝐷Ñ?𝐴?

½
 (Equation 7.6) 
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𝐾? =
2𝜋𝐸 ∗ 𝑡𝑎𝑛(𝛽 − 𝜌)𝑡𝑎𝑛𝛽

𝑛 ¼𝐷Ñ9𝐴9
+ 𝐷Ñ?𝐴?

½
 

 Where E is the Modulus of Elasticity, r is the friction angle where tan(r) is 

equal to the friction coefficient between rings, b is the angle of the wedge face 

between rings, n is the number of rings, and D, a, and b are all geometric 

properties of the rings where the inner and outer rings have subscript of 1 and 2, 

respectively. RINGFEDER® gives several options for steel rings, evidenced by 

Figure 58 which was taken from their product catalog. 

 

Figure 58: RINGFEDER® Steel Ring Specification Table 

Source: RINGFEDER® Damper Technology Catalog 

(Equation 7.7) 
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 Type 40000 rings with individual stroke displacements, se, of 0.299 inches, 

are chosen for this study. To determine the number of springs for each analysis 

case, K1 is set equal to the target loading stiffness in Equation 7.6. The number 

of springs is rounded up to the nearest whole number, and K1 is solved for. Next, 

with the whole number of rings necessary to obtain the target stiffness, Equation 

7.7 is used to determine the unloading stiffness, K2. The total ring deflection, Stot, 

is calculated by multiplying the number of rings by the individual stroke 

displacement, se, of the Type 40000 rings. Lastly, the preloading displacement, 

S0, is taken as 20% of Stot, and the preloading stiffness, K0, is taken as 10 times 

the loading stiffness. Table 96 shows the results for each target stiffness. 

Table 96: Ring Design Parameters 

Case % Kstory n K0 (k/in) K1 (k/in) K2 (k/in) Stot (in) S0 (in) 

1 10% 150 90.40 9.04 2.98 44.85 8.97 
2 25% 60 226.00 22.60 7.45 17.94 3.59 
3 50% 30 452.00 45.20 14.90 8.97 1.79 
4 100% 15 904.00 90.39 29.80 4.49 0.90 

 

 As shown by Figure 57, the FSDs are input into SAP2000 as links, and in 

the drop dawn menu for link type, the “Damper – Friction Spring” option is 

selected. The values in Table 96 are input for the directional properties of the 

link. Note that K0 and Stot are the “initial (Nonslipping) Stiffness” and the “Stop 

displacement” inputs, respectively. The inputs to model the FSDs for Case 1, 

where the loading stiffness is approximately 10% of the story stiffness, are shown 

by Figure 59.  
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Figure 59: SAP 2000 FSD Property Input Box  

 Next, a user defined function is created by uploading the ground motion 

record for the earthquake(s) of interest. Additionally, the function definition tool 

allows for a time-step to be chosen. Finally, a load case is defined which applies 

NTHA to determine the dynamic response of the systems. In the upper right 

corner of the load case definition box, the load case type, analysis type, and 

solution type are defined as time integration, nonlinear, and direct integration, 

respectively. Also, the Newmark Method is selected for the time integration. 
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Figure 60 shows an example of the load case definition box for the 1994 

Northridge Earthquake.  

 

Figure 60: SAP2000 Load Case Definition Box for NTHA  

 The ground motion records of the same five earthquakes used earlier in 

this study are individually applied to the shear frames. The two-story and three-

story shear frame with FSDs designed for each target loading stiffness, shown in 

Table 96, are subject to each of the five earthquakes, and the Average 

Acceleration Method (AAM) is applied to determine the dynamic response from 

NTHA. First, the dynamic response is determined considering solely the damping 

effects from the FSDs. Secondly, the dynamic response is determined when 1% 

modal damping is combined with the damping effects of the FSDs. The 1% 



   

 

156 

 

modal damping is a conservative estimate for the constant damping properties of 

steel frames. Lastly, the same NTHA is used to find the dynamic response of the 

systems without any damping effects and 5% modal damping without the 

presence of FSDs in SAP2000, where both cases serve as a reference point for 

determining the efficiency of the FSDs.  

7.6 Two-Story Shear Frame Results 

 The maximum lateral displacement response at the height of the first 

story, U1, and the roof, U2, of the two-story shear frame with FSDs for each of the 

five earthquakes are shown in the following tables.  

Table 97: Two-Story Response with FSDs - 1940 El Centro EQ 

 1940 El Centro EQ Record (00 Direction) 
 FSDs with x = 0 FSDs with x = 0.01 

% Kstory U1  U2 U1  U2 
10% 1.651” 2.599” 1.257” 1.862” 
25% 0.869” 1.333” 0.821” 1.280” 
50% 0.665” 0.869” 0.615” 0.814” 

100% 0.318” 0.432” 0.306” 0.415” 
 

Table 98: Two-Story Response with FSDs – 1952 Kern County EQ 

 1952 Kern County EQ Record (111 Direction) 
 FSDs with x = 0 FSDs with x = 0.01 

% Kstory U1  U2 U1  U2 
10% 1.173” 1.900” 0.623” 0.956” 
25% 0.778” 1.142” 0.649” 0.993” 
50% 0.360” 0.538” 0.272” 0.434” 

100% 0.247” 0.377” 0.244” 0.374” 
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Table 99: Two-Story Response with FSDs – 1952 San Luis Obispo EQ 

 1952 San Luis Obispo EQ Record (324 Direction) 
 FSDs with x = 0 FSDs with x = 0.01 

% Kstory U1  U2 U1  U2 
10% 0.434” 0.692” 0.322” 0.513” 
25% 0.135” 0.214” 0.124” 0.197” 
50% 0.155” 0.250” 0.115” 0.187” 

100% 0.098” 0.161” 0.080” 0.132” 
 

Table 100: Two-Story Response with FSDs – 1989 Loma Prieta EQ 

 1989 Loma Prieta EQ Record (00 Direction) 
 FSDs with x = 0 FSDs with x = 0.01 

% Kstory U1  U2 U1  U2 
10% 2.347” 3.505” 2.279” 3.415” 
25% 1.861” 2.586” 1.786” 2.450” 
50% 1.484” 1.894” 1.339” 1.743” 

100% 1.335” 1.720” 1.269” 1.651” 
 

Table 101: Two-Story Response with FSDs - 1994 Northridge EQ 

 1994 Northridge EQ Record (00 Direction) 
 FSDs with x = 0 FSDs with x = 0.01 

% Kstory U1  U2 U1  U2 
10% 3.449” 5.124” 3.142” 4.627” 
25% 1.420” 1.958” 1.333” 1.832” 
50% 1.544” 1.974” 1.324” 1.756” 

100% 0.481” 0.608” 0.466” 0.582” 
 

 For all of the cases except for the Kern County Earthquake 25% case with 

1% modal damping and the Northridge Earthquake 50% case with 0% modal 

damping, an increase in the loading stiffness of the FSDs decreases the lateral 

displacement response. The energy dissipation of the FSDs is reliant on both the 

stiffness and total deflection properties of the ring assemblies. As the stiffness of 
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the FSDs increase, the total deflection decreases. Consequently, increasing the 

spring stiffness doesn’t necessarily decrease the maximum displacement 

response, as shown by the two outlying cases. The reason for the increase in 

response under the Northridge Earthquake between the 25% and 50% cases is 

shown by the figures below.   

 

Figure 61: Force-Travel Two-Story Lower FSD Northridge - Case 2 (25%) 

 

Figure 62: Force-Travel Two-Story Upper FSD Northridge - Case 2 (25%) 
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Figure 63: Force-Travel Two-Story Lower FSD Northridge - Case 3 (50%) 

 

Figure 64: Force-Travel Two-Story Upper FSD Northridge - Case 3 (50%) 

 In both Case 2 and Case 3, the lower (first-story) FSDs, shown by Figure 

63 and 64, yield the expected cyclic hysteric response, but the upper (second-

story) FSDs yield less symmetric responses. In Case 2 where the FSDs are 25% 

of the story lateral stiffness, the upper FSD starts to respond hysterically and the 

cyclic response is only slightly asymmetric, which is shown by Figure 62. On the 
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contrary, in Case 3, even though the hysteric response of the upper FSD is more 

developed than in Case 2, the application of negative forces results in more 

pronounced deflections, which is evidenced by Figure 64. Although not shown in 

this chapter, the force-travel diagrams of each FSD in the two-story shear frame 

under the El Centro, Kern County, Loma Prieta, and Northridge earthquakes are 

presented in Appendix Y. 

 Furthermore, the application of 1% modal damping reduces the 

displacement response in each analysis when compared with the respective 

analysis where no modal damping is present. The addition of modal damping 

tends to cause a larger reduction in the maximum displacement response for 

FSDs with lower stiffness values. On the contrary, FSDs with higher stiffnesses 

generally yield similar maximum displacement responses with or without modal 

damping. Although the maximum responses are similar, the main difference 

between the 0% and 1% modal damping cases is evidenced by the displacement 

time histories. Consider the displacement time histories at each story resulting 

from the Northridge Earthquake with FSD stiffnesses equal to a 100% of the 

story stiffness having 0% and 1% modal damping. Figure 65 and Figure 66 on 

the following page present the displacement time histories with and without 

modal damping. 
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Figure 65: Northridge EQ DTH Case 4 - 0% Modal Damping 

 

Figure 66: Northridge EQ DTH Case 4 – 1% Modal Damping 
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In both figures, the first floor and second floor DTHs are represented by 

the blue and green plots, respectively. Although the maximum displacement 

response is similar, Figure 66 shows that in the presence of modal damping, the 

frame displacements reach zero approximately 45 seconds into the ground 

motion, whereas without modal damping, the frames continue to displace for the 

entire 60 seconds. Even though the displacements at the tail end of Figure 65 

are relatively small, as the stiffness of the FSDs decrease, the amplitude of the 

DTH increases. This trend remains consistent for each FSD stiffness case. 

 Next, the results of the analyses with FSDs are compared with the results 

in the absence of FSDs where 0% and 5% modal damping are assumed. The 

results are compared in the following tables. Note that a negative percentage 

means the FSDs yielded a larger maximum displacement comparatively.  

Table 102: Two-Story Maximum Response Reduction - El Centro 00 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1  U2 U1  U2 

FSDs  
& 

x = 0 

10% 55.91% 55.26% -2.17% -3.59% 
25% 76.79% 77.05% 46.22% 46.87% 
50% 82.24% 85.04% 58.85% 65.36% 

100% 91.51% 92.56% 80.33% 82.77% 

FSDs 
& 

x = 1% 

10% 66.44% 67.95% 22.22% 25.79% 
25% 78.07% 77.97% 49.18% 48.98% 
50% 83.58% 85.98% 61.94% 67.54% 

100% 91.83% 92.86% 81.07% 83.48% 
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Table 103: Two-Story Maximum Response Decrease – Kern County 111 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1  U2 U1  U2 

FSDs  
& 

x = 0 

10% 8.72% 4.81% -83.42% -87.56% 
25% 39.49% 42.79% -21.59% -12.73% 
50% 71.95% 73.03% 43.64% 46.85% 

100% 80.75% 81.12% 61.33% 62.79% 

FSDs 
& 

x = 1% 

10% 51.53% 52.11% 2.61% 5.64% 
25% 49.49% 50.28% -1.49% 2.02% 
50% 78.87% 78.26% 57.54% 57.17% 

100% 80.99% 81.24% 61.80% 63.04% 
 

Table 104: Two-Story Maximum Response Decrease – SLO 324 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1  U2 U1  U2 

FSDs  
& 

x = 0 

10% -129.25% -121.53% -204.49% -206.74% 
25% 28.51% 31.50% 5.05% 5.15% 
50% 18.00% 19.77% -8.91% -11.09% 

100% 48.37% 48.48% 31.43% 28.66% 

FSDs 
& 

x = 1% 

10% 74.97% 74.32% 49.71% 49.41% 
25% 34.74% 36.91% 13.32% 12.64% 
50% 39.12% 40.24% 19.14% 17.26% 

100% 57.57% 57.74% 43.64% 41.48% 
 

Table 105: Two-Story Maximum Response Decrease – Loma Prieta 00 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1  U2 U1  U2 

FSDs  
& 

x = 0 

10% 43.55% 46.96% 7.12% 15.77% 
25% 55.24% 60.87% 26.36% 37.85% 
50% 64.31% 71.34% 41.27% 54.48% 

100% 67.89% 73.97% 47.17% 58.66% 

FSDs 
& 

x = 1% 

10% 45.19% 48.32% 9.81% 17.93% 
25% 57.05% 62.92% 29.32% 41.12% 
50% 67.80% 73.62% 47.01% 58.11% 

100% 70.92% 75.02% 52.16% 60.32% 
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Table 106: Two-Story Maximum Response Decrease – Northridge 00 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory  U1  U2 U1  U2 

FSDs  
& 

x = 0 

10% 6.23% 0.31% -29.36% -28.94% 
25% 58.83% 61.91% 43.20% 50.73% 
50% 55.23% 61.60% 38.24% 50.33% 

100% 86.06% 88.18% 80.76% 84.71% 

FSDs 
& 

x = 1% 

10% 8.90% 9.98% -25.68% -16.43% 
25% 61.35% 64.36% 46.68% 53.90% 
50% 68.16% 73.43% 47.61% 57.80% 

100% 86.48% 88.68% 81.35% 85.35% 
 

In each analysis case, except for the San Luis Obispo (SLO) Earthquake, 

the presence of the FSDs reduces the maximum displacement response when 

compared with the undamped case. For the SLO Earthquake, FSDs with 10% of 

the story stiffness significantly increase the maximum displacement. Clearly, in this 

case, the FSDs actually add energy to the system. The addition in energy is a 

result of the FSDs exhibiting a negative lateral stiffness on the shear frame due to 

the P-D effects. Negative stiffness occurs when the displacement increases while 

the force decreases. Recall that the SLO Earthquake in the 324 direction has a 

PGA of 0.05394g, which is considerably smaller when compared with the other 

four earthquakes in this study. The small PGA results in a small external force, 

which prevents the hysteric damping cycle from occurring. In compression, the 

external force transferred to the FSDs never overcomes the preloading force, and 

the rings remain stationary at their initial displacement (S0 = 8.97”). Consequently, 

due to the large initial displacement, when the FSDs are loaded, the axial forces 

transferred to the ring assembly create second order moments. The P-D effects 



   

 

165 

 

occur throughout the entire dynamic loading of the system due to the external force 

not being large enough to elicit sliding in the ring assemblies. Although only Case 

1 results in an increase in total response when compared with the undamped 

frame, P-D effects occur for each stiffness case under the SLO Earthquake, but 

the impacts are less pronounced due to smaller initial displacements that 

essentially work as moment arms. In practical applications, the stiffness and 

displacement relationship of the FSDs should be balanced to avoid undesirable 

responses. Despite its very specific application, the design procedure for Self-

Centering-Energy-Absorbing-Rocking-Core-Systems (SCENARIO Systems), a 

new type of lateral force resisting system, provides specific design criteria for 

avoiding the development of negative stiffness in the FSDs due to  P-D effects (Hu 

et al., 2019). As mentioned previously, the force-travel diagrams for the upper and 

lower links in the two-story shear frame for each analysis case are presented in 

Appendix Y. 

 Finally, the average response reduction, range (minimum to maximum 

value), and standard deviation (SD) of each FSD stiffness case is analyzed for the 

two-story shear frame. The tables below show the statistical results gathered from 

the El Centro, Kern County, Loma Prieta, and Northridge Earthquakes. Due to the 

relatively high inconsistency and inaccuracy of the responses, coupled with the 

inactivity of the FSDs, the responses from the SLO Earthquake analysis cases are 

omitted. First, Table 107 and Table 108 show the statistical results when 

comparing the two-story shear frame responses when FSDs (including either 0% 

or 1% damping) are present with the responses when the system is undamped.  
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Table 107: FSD Percentage Reduction of Undamped Two-Story 

Kstory 
% 

U1,MEAN 
% 

RANGEU1 

% 
SDU1 

% 
U2,MEAN 

% 

RANGEU2 

% 

SDU2

% 
10% 28.60 6.23 - 55.91 21.59 26.83 0.31 – 55.26 24.50 
25% 57.59 39.49 – 76.79 13.26 60.65 31.50 – 77.05 12.14 
50% 68.43 55.23 – 82.24 9.93 72.75 61.60 – 85.04 8.33 

100% 81.55 67.89 – 91.51 8.76 83.96 73.97 – 92.56 7.06 
 

Table 108: FSD Percentage Reduction of Undamped Two-Story 

Kstory 
% 

U1,MEAN 
% 

RANGEU1 

% 
SDU1 

% 
U2,MEAN 

% 

RANGEU2 

% 

SDU2

% 
10% 43.01 8.90 – 74.97 21.15 44.59 9.98 – 67.95 21.29 
25% 61.49 49.49 – 78.07 10.47 63.88 50.28 – 77.97 9.81 
50% 74.60 67.80 – 83.58 6.83 77.82 73.43 – 85.98 5.09 

100% 82.56 70.92 – 91.83 7.73 84.45 75.02 – 92.86 6.85 
 

 As shown by the tables above, the higher the stiffness of the FSDs, the 

greater average response reduction. For FSD stiffnesses above 10%, the 

difference in results when 0% versus 1% damping is applied are small. The 

largest increase in reduction percentage is between the 10% and 25% stiffness 

cases. In general, the addition of 1% damping to the damping effects of the FSDs 

slightly reduces the range and standard deviation of the maximum displacement 

responses. Next, the same results are compared with the results obtained for the 

two-story shear frame with 5% modal damping.  
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Table 109: FSD Percentage Reduction of 5% Damped Two-Story 

Kstory 
% 

U1,MEAN 
% 

RANGEU1 

% 
SDU1 

% 
U2,MEAN 

% 

RANGEU2 

% 

SDU2

% 
10% -26.95 - 83.4 – 7.12 35.25 -26.08 - 87.6 – 15.77 38.88 
25% 23.54 - 21.6 – 46.22 27.14 30.68 - 12.7 – 50.73 25.50 
50% 45.50 38.24 – 58.85 7.94 54.25 46.85 – 65.36 6.96 

100% 67.40 47.17 – 80.33 14.07 72.23 58.66 – 84.71 11.62 
 

Table 110: FSD Percentage Reduction of 5% Damped Two-Story 

Kstory 
% 

U1,MEAN 
% 

RANGEU1 

% 
SDU1 

% 
U2,MEAN 

% 

RANGEU2 

% 

SDU2

% 
10% 2.24 - 25.7 – 22.22 17.58 8.23 - 16.4 – 25.79 15.95 
25% 30.93 - 1.49 – 49.18 20.22 36.51 2.02 – 53.90 20.42 
50% 53.53 47.01 – 61.94 6.41 60.15 57.17 – 67.54 4.28 

100% 69.09 52.16 – 81.35 12.59 73.05 60.32 – 85.35 11.43 
 

 As shown by Table 6.14, if the FSDs elicit the only damping effects in the 

system, the 10% FSD stiffness case is typically less effective than 5% constant 

modal damping. On the contrary, the other 10% and 25% FSD stiffness cases in 

Table 109 and Table 110 show positive average percent reductions. Although 

three out of four of the lower FSD stiffness cases perform better than the 5% 

damping on average, the range values show that the comparative efficiency is 

dependent on the earthquake. Finally, Table 109 and Table 110 display that the 

50% and 100% stiffness cases yield the best results. First, the 50% stiffness case 

reduces the 5% damping response between 38.24% and 58.85% with solely the 

FSDs and between 47.01% and 61.94% with the FSDs combined with 1% modal 

damping.  Secondly, the 100% stiffness case reduces the 5% damping response 

between 47.17% and 80.33% (FSDs only) and between 52.26% and 81.35% 
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(FSDs and 1% damping). Clearly, the FSDs are effective in reducing the maximum 

displacement response of the two-story shear frame, with the best results 

occurring at higher FSD stiffness. 

7.7 Three-Story Shear Frame Results 

 The analysis performed in the previous section is now applied to the three-

story shear frame. First, the maximum lateral displacement responses of the 

three-story shear frame with FSDs are compared with the maximum responses 

when 0% and 5% modal damping are assumed. The maximum reduction percent 

for each case is shown in the tables below.  

Table 111: Three-Story Maximum Response Reduction - El Centro 00 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1 U2 U3 U1 U2 U3 

FSDs 
& 

x = 0 

10% 1.62% 7.71% 14.60% -28.57% -21.10% -15.28% 
25% 35.85% 42.43% 49.31% 16.16% 24.46% 31.57% 
50% 68.20% 73.85% 76.78% 58.44% 65.69% 68.66% 

100% 76.55% 80.16% 82.51% 69.36% 73.97% 76.39% 

FSDs 
& 

x = 1% 

10% 6.58% 11.67% 18.01% -22.09% -15.91% -10.68% 
25% 36.82% 42.63% 49.18% 17.43% 24.73% 31.39% 
50% 64.15% 68.98% 73.26% 53.15% 59.30% 63.90% 

100% 76.82% 80.73% 82.89% 69.71% 74.71% 76.90% 
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Table 112: Three-Story Maximum Response Reduction – Kern County 111 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1 U2 U3 U1 U2 U3 

FSDs 
& 

x = 0 

10% 19.16% 8.80% 7.12% -85.64% -80.30% -83.65% 
25% 30.29% 29.61% 31.59% -60.09% -39.16% -35.25% 
50% 72.23% 71.23% 71.22% 36.23% 43.12% 43.09% 

100% 71.28% 71.55% 73.30% 34.04% 43.76% 47.21% 

FSDs 
& 

x = 1% 

10% 38.59% 30.07% 31.12% -41.04% -38.26% -36.19% 
25% 36.39% 34.51% 35.59% -46.09% -29.47% -27.35% 
50% 73.92% 72.65% 72.50% 40.11% 45.92% 45.62% 

100% 72.02% 71.69% 73.37% 35.74% 44.04% 47.35% 
 

Table 113: Three-Story Maximum Response Reduction – SLO 324  

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1 U2 U3 U1 U2 U3 

FSDs 
& 

x = 0 

10% -14.95% -13.0% -14.7% -50.63% -45.2% -47.1% 
25% 13.89% 12.67% 9.05% -12.84% -12.2% -16.6% 
50% 43.81% 39.86% 38.31% 26.37% 22.73% 20.90% 

100% 66.70% 61.90% 58.45% 56.36% 51.05% 46.72% 

FSDs 
& 

x = 1% 

10% 84.99% 82.85% 82.56% 65.53% 66.10% 65.52% 
25% 46.02% 41.34% 38.66% 29.26% 24.64% 21.35% 
50% 52.12% 48.71% 46.67% 37.26% 34.10% 31.62% 

100% 96.92% 64.86% 61.74% 95.96% 54.85% 50.95% 
 

Table 114: Three-Story Maximum Response Reduction – Loma Prieta 00 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1 U2 U3 U1 U2 U3 

FSDs 
& 

x = 0 

10% 70.09% 70.97% 71.64% -0.22% 8.31% 12.47% 
25% 77.14% 77.57% 77.91% 23.41% 29.14% 31.83% 
50% 81.10% 80.83% 81.93% 36.68% 39.44% 44.23% 

100% 84.29% 83.70% 85.10% 47.35% 48.52% 54.00% 

FSDs 
& 

x = 1% 

10% 72.33% 73.12% 73.74% 7.28% 15.08% 18.94% 
25% 78.65% 78.19% 78.64% 28.46% 31.11% 34.09% 
50% 81.64% 81.32% 82.44% 38.47% 40.99% 45.82% 

100% 84.69% 84.19% 85.59% 48.70% 50.05% 55.53% 
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Table 115: Three-Story Maximum Response Reduction - Northridge 00 

  Undamped (x = 0) 5% Damping (x = 0.05) 
Case Kstory U1 U2 U3 U1 U2 U3 

FSDs 
& 

x = 0 

10% 71.43% 70.54% 69.55% 16.69% 16.97% 14.47% 
25% 65.71% 64.48% 66.81% 0.00% -0.11% 6.77% 
50% 76.04% 75.35% 77.46% 30.13% 30.54% 36.67% 

100% 78.68% 78.35% 79.97% 37.82% 38.98% 43.73% 

FSDs 
& 

x = 1% 

10% 70.74% 68.18% 67.73% 14.68% 10.33% 9.34% 
25% 70.34% 69.60% 71.84% 13.50% 14.32% 20.89% 
50% 81.21% 80.76% 82.22% 37.03% 39.22% 45.11% 

100% 79.56% 79.34% 81.01% 40.41% 41.77% 46.65% 
  

Similar to the two-story shear frame, when the FSDs are the sole damping 

mechanisms in the three-story shear frame, the 10% FSD stiffness case 

energizes the system resulting in maximum displacement responses that are 

larger than the undamped case. The P-D effects cause the system to exhibit 

negative stiffness properties for the SLO Earthquake; consequently, the results 

are excluded from future analysis in this section. Each stiffness case for the 

Loma Prieta and Northridge Earthquake yields good results and reduces the 

undamped response between 70% to 90% and 65% to 85%, respectively. On the 

other hand, the 50% stiffness case for the El Centro and Kern County 

Earthquake reduce the undamped response twice as much as the 25% stiffness 

case. The first and second floor FSD force-travel diagrams for the 25% and 50% 

stiffness cases for the El Centro Earthquake are shown by the figures below.  
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Figure 67: Force-Travel Three-Story Lower FSD El Centro - Case 2 (25%) 

 

 

Figure 68: Force-Travel Three-Story Middle FSD El Centro - Case 2 (25%) 
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Figure 69: Force-Travel Three-Story Lower FSD El Centro - Case 3 (50%) 

 

 

Figure 70: Force-Travel Three-Story Middle FSD El Centro – Case 3 (50%) 
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 The force-travel diagrams evidence that both the FSDs in Case 2 and 

Case 3 are subject to the same force, but the FSDs in Case 3 displace 

approximately half as much, which reduces the responses to about 50% of each 

Case 2 response. Obviously, doubling the stiffness doesn’t always result in half 

the displacement. For example, the 50% and 100% case reduce the undamped 

response by 68.20% and 76.55%, respectively. The force-travel diagrams for 

each FSD in the three-story shear frame subject to the El Centro, Kern County, 

Loma Prieta, and Northridge Earthquakes are displayed in Appendix Z. With 

regards to Appendix Z, a majority of the third story (upper) FSDs remain inactive. 

The upper FSDs remain primarily inactive simply due to the distribution of forces 

caused by the diagonal FSDs. For each stiffness case, the preloading force is 

approximately 81.1 kips, which is calculated by multiplying K1 by S0. In order for 

the third story FSD to activate, the external axial compressive force must exceed 

81.1 kips. Considering the fact that the lateral forces are distributed to two 

additional FSDs, the third story FSD requires a relatively large earthquake to be 

activated. The maximum axial force imposed by each earthquake occurs when 

the stiffness of the FSDs are at a maximum (Case 4 – 100% story lateral 

stiffness). The maximum and minimum forces and displacements representative 

of the 100% FSD stiffness case are shown for the Kern County and Loma Prieta 

Earthquake below in Table 116. 
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Table 116: Max/Min Force-Travel Quantities Case 4 (Kern & Loma EQs) 

  Loma Prieta 00 Kern County 111 
  U (in.) F (kips) U (in.) F (kips) 

First Story 
FSD 

Maximum 0.8156 154.8 0.3457 112.3 
Minimum -1.3160 -200.0 -0.2764 -106.1 

Second 
Story FSD 

Maximum 0.4623 122.9 0.1588 95.45 
Minimum -1.0330 -174.5 -0.1630 -95.82 

Third 
Story FSD 

Maximum 0.1766 97.06 0.0668 60.28 
Minimum -0.2820 -106.6 -0.0865 -78.15 

 
 As shown by Table 116, the maximum absolute value of the axial 

compressive force on the third story FSD is 78.15 kips for the Kern County 

Earthquake, which is too small to overcome the preloading force. Despite the fact 

that the Loma Prieta PGA is nearly 3.5 times the Kern County PGA, the 

maximum force in the third story FSD only increases by 36%, further showing 

that a large earthquake is necessary to activate the FSD at the third story. Next, 

the average displacement reduction and standard deviation are analyzed. 

Table 117: FSD Average Percentage Reduction of Undamped Three-Story 

  Undamped (x = 0) 
Case Kstory U1,MEAN U2,MEAN U3,MEAN SDU1 SDU2 SDU3 

FSDs 
& 

x = 0 

10% 40.58% 39.51% 40.73% 30.82% 31.25% 29.99% 
25% 52.25% 53.52% 56.41% 19.70% 18.66% 17.58% 
50% 74.39% 75.32% 76.85% 4.76% 3.51% 3.80% 

100% 77.70% 78.44% 80.22% 4.66% 4.42% 4.39% 

FSDs 
& 

x = 1% 

10% 47.06% 45.76% 47.65% 26.97% 25.79% 23.64% 
25% 55.55% 56.23% 58.81% 19.17% 18.15% 17.28% 
50% 75.23% 75.93% 77.60% 7.09% 5.28% 4.73% 

100% 78.27% 78.99% 80.71% 4.58% 4.57% 4.54% 
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Table 118: FSD Average Percentage Reduction of 5% Three-Story 

  5% Damping (x = 0.05) 
Case Kstory U1,MEAN U2,MEAN U3,MEAN SDU1 SDU2 SDU3 

FSDs 
& 

x = 0 

10% -24.44% -19.03% -18.00% 38.86% 38.08% 39.68% 
25% -5.13% 3.58% 8.73% 32.84% 27.06% 27.36% 
50% 40.37% 44.70% 48.16% 10.75% 12.96% 12.18% 

100% 47.14% 51.31% 55.33% 13.71% 13.51% 12.71% 

FSDs 
& 

x = 1% 

10% -10.29% -7.19% -4.65% 22.46% 21.47% 21.12% 
25% 3.33% 10.17% 14.76% 29.05% 23.66% 24.80% 
50% 42.19% 46.36% 50.11% 6.42% 7.87% 7.96% 

100% 48.64% 52.64% 56.61% 13.02% 13.09% 12.22% 
  

The average reduction in the undamped maximum displacement response 

yields the best results at the 50% and 100% FSD stiffness values. The high 

stiffness cases reduce the results between 70% to 80% and maintain consistently 

small standard deviations. Lastly, at higher stiffnesses, the FSDs are more 

effective in decreasing the maximum displacement response than 5% modal 

damping. 

7.8 Conclusion 

 Although the results are specific to shear frames with diagonally braced 

FSDs, conclusions and recommendations are drawn regarding the systems. 

First, models with FSDs should include some level of constant modal damping. 

As shown earlier, the FSDs converge much quicker if 1% modal damping is 

assumed. For practical applications, 1% modal damping is safe to assume for 

most structures simply based off of material properties. Secondly, the rings need 

to be designed to avoid the effects of negative lateral stiffness. Generally, one 

should avoid designing ring assemblies that are extremely stiff and have small 
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displacement properties or that are very flexible and have large displacement 

properties. The FSDs should be designed with target stiffness values that result 

in moderate displacements, in turn preventing unwanted effects such as negative 

stiffness.  Lastly, at higher stiffness levels, the FSDs generally outperform 5% 

modal damping. As a whole, the FSDs with stiffnesses set to 50% of the story 

lateral stiffness yield the best results. In most cases, the largest jump in response 

reduction occurs at the 50% FSD stiffness case. Also, the 50% and 100% FSD 

stiffness cases produce comparable results with one another, despite the huge 

increase in stiffness. In the preliminary design phase of structures with FSDs, 

setting the loading stiffness equal to 50% of the lateral story stiffness is a great 

reference point. All in all, the FSDs prove to be efficient damping devices which 

can provide high levels of damping while maintaining a relatively simple and 

reliable design. 
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8. Conclusion 

 This thesis researched and compared seismic analysis methods and the 

response of systems with classical and nonclassical damping models. A wide 

range of systems were considered and the results and responses of each were 

evaluated. To generate the results, MATLAB code and SAP2000 models were 

developed. Throughout this thesis, the methods, theory, and results are 

thoroughly detailed and discussed. To conclude, the leading results, 

recommendations, and conclusions are reiterated and summarized herein. 

 First, it is recommended to always supplement the ELFP with dynamic 

seismic analysis methods. Generally, RSA yielded system responses 30% to 

50% lower than the ELFP. The ELFP overestimated the system responses 

without exception, and the conservative nature of the results was more 

pronounced as the height of the frames increased. 

 Secondly, in most cases, RSA yielded very accurate results when using 

the SRSS and CQC methods to combine modal responses. For structures with 

irregular mass and stiffness distributions, both the SRSS and CQC methods 

underestimated the responses, but the CQC results were over four times as 

accurate as the SRSS results. Consequently, it is recommended to solely use the 

CQC method in RSA, because its application is not limited by irregular systems 

with closely spaced frequencies. Furthermore, the ABS method generated the 

most inaccurate and inconsistent results. Although inaccurate, the ABS method 

typically yielded better, less conservative results than the ELFP results.  
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 Thirdly, both the AAM and LAM produced very accurate results that were 

generally within 1% of the analytical results. The difference in accuracy of the two 

methods was negligible, and in the analyses performed, neither method proved 

to be substantially more accurate.  

 Lastly, the FSDs were effective in decreasing the response of the shear 

frames. The best results occurred at stiffnesses equal to 50% of the story lateral 

stiffness, and typically reduced the peak response of the systems with 5% modal 

damping by 40% to 60%. Also, the inclusion of 1% damping with the FSDs 

benefited the responses of the systems by quickening the energy dissipation. 

When analyzing systems with FSDs, a low-level of modal damping should be 

included to better estimate the performance of the dampers. In some cases, the 

FSDs were not activated or negative lateral stiffness effects were exhibited in the 

ring assemblies, displaying the importance of proper design.  

 In conclusion, the analyses completed in this thesis focused on seismic 

analysis and its importance in structural engineering. Throughout this research, 

trends were developed, and suggestions for improvement were discussed. Each 

analysis in this study served a specific purpose. Numerous analyses were 

completed on diverse systems to display the tendencies of specific systems and 

to develop relationships between the dynamic response of the system, the 

accuracy of seismic analysis methods, and the system parameters and 

properties. 



                                                                                                  

 

179 

 

References 

(ASCE 7-10) American Society of Civil Engineers. Minimum Design Loads for 
Buildings and Other Structures. ASCE, 2010.  

(Chopra, 1995) Chopra, A. K. Dynamics of Structures: Theory and Applications 
to Earthquake Engineering. Englewood Cliffs, NJ: Prentice-Hall, 1995. 

(Cobum et al., 1992) Cobum, A.W., Spence, R.J.S, & Pomonis, A. Factors 
determining human casualty levels in earthquakes: Mortality prediction in 
building collapse. Earthquake Engineering 10th World Conference, 
Balkema, Rotterdam, 1992. 

(COSMOS) COSMOS. COSMOS Strong-Motion Virtual Data Center, 
www.strongmotion.org/. 

(FEMA P-1050) NEHRP (National Earthquake Hazards Reduction Program) 
Recommended Seismic Provisions for New Buildings and Other Structures. 
FEMA, 2015. 

(Goode & Annin, 2007) Goode, S.W., & Annin, S. Differential Equations and 
Linear Alegbra. Prentice Hall, 2007. 

(Gurara, 2018) Gurara, G. Nonlinear Dynamic Analysis of a Single-Story Frame 
with Friction Spring Damper in SAP2000. Thesis. California Polytechnic 
State University, San Luis Obispo, 2018. 

(Hill, 1995) Hill, K. E. The Utility of Ring Springs in Seismic Isolation Systems. 
Ph.D Thesis. Department of Mechanical Engineering, University of 
Canterbury; 1995. 

(Hu et al., 2019) Hu, S., Wang, W., & Qu, B. Seismic Evaluation of Low-Rise 
Steel Building Frames with Self-Centering Energy-Absorbing Rigid Cores 
Designed Using a Force-Based Approach. Engineering Structures, vol. 204, 
2019. 

(Hughes, 2012) Hughes, T. J. R. The Finite Element Method Linear Static and 
Dynamic Finite Element Analysis. Dover Publications, 2012. 

(Kasper & Hall, 2018) Kasper, E.P. & Hall, G.J. An Introduction to Applied 
Structural Dynamics. Second Edition, 2018. 

(Kelly & Chambers, 2000) Kelly, T.E. & Chambers, J.D. Analysis Procedures for 
Performance Based Design. 12th World Conference on Earthquake 
Engineering, New Zealand Society for Earthquake Engineering, Upper Hutt, 
New Zealand, 2000. 



                                                                                                  

 

180 

 

(Li et al., 2006) Li. Y., Wu, B., & Ou, J. Stability of average acceleration method 
for structures with nonlinear damping. Earthquake Engineering and 
Engineering Vibration, 2006. 

(Maghdid, 2002) Maghdid, D. Stability and accuracy of Newmark’s method. 
Thesis. 2002. doi: 10.13140. 

(MATLAB) The MathWorks, Inc., MATLAB 2018b. Natick, Massachusetts, United 
States, 2018. 

(Nichols & Beavers, 2008) Nichols, J. M., & Beavers, J.E. World Earthquake 
Fatalities from the Past: Implications for the Present and Future. Natural 
Hazards Review, vol. 9, no. 4, 2008. 

(PEER) Welcome to the PEER Ground Motion Database. PEER Ground Motion 
Database - PEER Center, ngawest2.berkeley.edu/. 

(RINGFEDER®) Ringfeder® Power Transmission GMBH. (2019). 2019 Damping 
Technology Catalog. Germany, 2019. 

(SAP2000) CSI. SAP2000: Integrated Structural Analysis & Design Software. 
Computer and Structures, Inc., 2018. 

(Shrestha, 2019) Shrestha, S. A Comparative Study of Equivalent Lateral Force 
Method and Response Spectrum Analysis in Seismic Design of Structural 
Frames. Thesis. Southern Illinois University, Carbondale, 2019. 

(Statista Research Department, 2016) Statista Research Department. Deaths 
Due to Earthquakes Worldwide 2000-2015. Statista, 30 Sept. 2016, 
www.statista.com/statistics/263108/global-death-toll-due-to-earthquakes-
since-2000/. 

(USGS) U.S. Geological Survey. USGS.gov | Science for a Changing World, 
www.usgs.gov/. 

 (Wilson et al., 1981) Wilson, E. L., Kiureghian, A.D., & Bayo, E.P. A 
Replacement for the SRSS Method in Seismic Analysis. Earthquake 
Engineering & Structural Dynamics, vol. 9, no. 2, 1981.



                                                                                                  

 

181 

 

Appendices 

Appendix A: Site Parameters – San Luis Obispo, CA, 93407 
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Appendix B: Stiffness Coefficient Derivation – Beam Theory 

1.  Model a beam element and number the degrees of freedom at the nodes 

 

Step 2 

2. Solve for element forces at each DOF caused by the unit displacement 

and make a cut in the beam element to derive the equation for the 

moment with respect to the distance along the length of the beam. 

 

𝑀 =	−𝐾?9 + 𝐾99𝑥 

3. Plug the moment equation into the linear beam theory equation. 

𝑑?𝑢
𝑑𝑥? = 	

−𝐾?9 + 𝐾99𝑥
𝐸𝐼  

4. Integrate the second order differential equation given by linear beam 

theory to obtain a function for the rotations of the beam element. 

Î
𝑑?𝑢
𝑑𝑥? 𝑑𝑥 =

𝑑𝑢
𝑑𝑥 = 	𝜃 

𝜃 = 	
𝑥
𝐸𝐼 Á−𝐾?9 +	

1
2𝐾99𝑥

?Â + 𝐶9 

5. Integrate the function for the rotations of the beam element to obtain a 

function for the transverse displacement of the beam element. 
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𝑢 = Î𝜃𝑑𝑥 = 	Î
𝑑𝑢
𝑑𝑥 = 	Î

𝑥
𝐸𝐼 (−𝐾?9 +

1
2𝐾99𝑥

? + 𝐶9)𝑑𝑥 

𝑢 = 	
𝑥?

𝐸𝐼 Á−
1
2𝐾?9 +

1
6𝐾99𝑥Â + 𝐶9𝑥 + 𝐶? 

6. Determine boundary conditions for the beam element. 

𝑢9(𝑥 = 0) = 1 

𝜙9(𝑥 = 0) = 0 

7. Plug in boundary conditions to solve for C1 and C2. 

𝜃9 = 0 = 	
(0)
𝐸𝐼 Þ−𝐾?9 +

1
2𝐾99

(0)ß + 𝐶9 

𝐶9 = 0 

𝑢9 = 1 = 	
(0)?

𝐸𝐼 Þ−
1
2𝐾?9 +

1
6𝐾99

(0)ß + (0)𝑥 + 𝐶? 

𝐶? = 1 

8. Plug in the C1 and C2 values into the deflection and rotation equations for 

the beam element. 

𝜙9 = 	
𝑥
𝐸𝐼 (−𝐾?9 +	

1
2𝐾99𝑥) 

𝑢9 = 	
𝑥?

𝐸𝐼 Á−
1
2𝐾?9 +

1
6𝐾99𝑥Â + 1 

9. Use the rotation and deflection equations to substitute and solve for K11 

and K21. 

𝐾99 = 	
12𝐸𝐼
𝑥_ = 	

12𝐸𝐼
𝐿_  

𝐾?9 = 	
6𝐸𝐼
𝑥? = 	

6𝐸𝐼
𝐿?  
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10.  Use equilibrium to solve for the remaining stiffness coefficients K31 and 

K41. 

				𝐾?9 + 𝐾�9 = 0 

𝐾�9 = 	−𝐾?9 

		𝐾�9 = 	−
6𝐸𝐼
𝐿?  

				𝐾99 + 𝐾_9 = 0 

𝐾_9 = 	−𝐾99 

𝐾_9 = 	−
12𝐸𝐼
𝐿_  

11.  Repeat the process of applying unit displacements at each degree of   

freedom and solve for the element forces to assemble the 4x4 stiffness 

matrix for the beam element. 
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Appendix C: Stiffness Coefficient Derivation – Shape Functions 

1. Model a beam element and establish the DOFs at each node. 

 

2. Establish a transverse displacement function and rotation function for a 

beam element. Since a beam element has 4 DOFs, a cubic function is 

used. 

𝑣(𝑥) = 𝐶Ñ + 𝐶9𝑥 + 𝐶?𝑥? + 𝐶_𝑥_ 

𝜙(𝑥) = 𝑣à(𝑥) = 𝐶9 + 2𝐶?𝑥 + 3𝐶_𝑥? 

3. Establish boundary conditions to determine the unknown C values. 

1. 𝑣(𝑥 = 0) = 𝑣9 

		2. 𝜙(𝑥 = 0) = 	𝜙9 

3. 𝑣(𝑥 = 𝐿) = 𝑣? 

		4. 𝜙(𝑥 = 𝐿) = 	𝜙? 

4. Plug the boundary conditions into the transverse displacement and 

rotation functions shown in Step 2. 

1. 𝑣9 = 𝐶Ñ + 𝐶9(0) + 𝐶?(0)? + 𝐶_(0)_ 

𝑣9 = 𝐶Ñ 

2. 𝜙9 = 𝐶9 + 2𝐶?(0) + 3𝐶_(0)? 

𝜙9 = 𝐶9 

3. 𝑣? = 𝑣9 + 𝜙9(𝐿) + 𝐶?(𝐿)? + 𝐶_(𝐿)_ 

𝐶?𝐿? + 𝐶_𝐿_ = 𝑣? − 𝑣9 − 𝜙9𝐿 
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4. 𝜙? = 𝜙9 + 2𝐶?(𝐿) + 3𝐶_(𝐿)? 

2𝐶?𝐿 + 3𝐶_𝐿? = 𝜙? − 𝜙9 

5. Put the equations for v1 and v2 into matrix form. 

�𝐿
? 𝐿_
2𝐿 3𝐿?

� �𝐶?𝐶_
� = �𝑣? − 𝑣9 − 𝜙9𝐿𝜙? − 𝜙9

� 

6. Rearrange the matrices to solve for the unknowns C2 and C3. 

á
				
3
𝐿?

−
1
𝐿

−
2
𝐿_

			
1
𝐿?

â �𝑣? − 𝑣9 − 𝜙9𝐿𝜙? − 𝜙9
� = �𝐶?𝐶_

� 

á

3𝑣?
𝐿?

−
3𝑣9
𝐿?

−
2𝜙9
𝐿

−
𝜙?
𝐿

−
2𝑣?
𝐿_ +

2𝑣9
𝐿_ +

𝜙9
𝐿? +

𝜙?
𝐿?

â = �𝐶?𝐶_
� 

7. Plug the C values into the cubic displacement function and rearrange to 

obtain the shape functions which are Hermitian Polynomials for a beam 

element. 

𝑣(𝑥) = 𝑣9 Þ1 −
3𝑥?

𝐿? +
2𝑥_

𝐿_ ß + 𝜙9 Þ𝑥 −
2𝑥?

𝐿 +
𝑥_

𝐿?ß + 𝑣? Þ
3𝑥?

𝐿? −
2𝑥_

𝐿_ ß + 𝜙? Þ
𝑥_

𝐿? +
𝑥?

𝐿 ß 

𝑁9(𝑥) = 1 −
3𝑥?

𝐿? +
2𝑥_

𝐿_  

𝑁?(𝑥) = 𝑥 −
2𝑥?

𝐿 +
𝑥_

𝐿?  

𝑁_(𝑥) = 	
3𝑥?

𝐿? −
2𝑥_

𝐿_  

𝑁�(𝑥) =
𝑥_

𝐿? +
𝑥?

𝐿  
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8. Take the second derivative of each shape function. 

𝑑?𝑁9
𝑑𝑥? =

6
𝐿? +

12𝑥
𝐿_  

𝑑?𝑁?
𝑑𝑥? =

6𝑥
𝐿? −

4
𝐿 

𝑑?𝑁_
𝑑𝑥? =

6
𝐿? −

12𝑥
𝐿_  

𝑑?𝑁�
𝑑𝑥? =

6𝑥
𝐿? +

2
𝐿 

9. Determine each stiffness coefficient using the equation shown below. 

𝐾³ã = Î
𝑑?𝑁'(𝑥)
𝑑𝑥?

>

Ñ
𝐸𝐼
𝑑?𝑁ä(𝑥)
𝑑𝑥? 𝑑𝑥 

10. Assemble the stiffness matrix for a beam element. 
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Appendix D: Matrix Structural Analysis – One Story Shear Frame 

1. Establish node, element, and DOF numbers and map the DOFs in the 

local and global domain with respect to the element number. As previously 

mentioned, by definition, a shear frame would have a single lateral DOF at 

each story level, but to exemplify the process of matrix structural analysis, 

3 DOFs at each node are maintained. 

 
 

Element Local DOF Global DOF 

1 

1 1 
2 2 
3 3 
4 4 
5 5 
6 6 

2 

1 4 
2 5 
3 6 
4 7 
5 8 
6 9 

3 

1 7 
2 8 
3 9 
4 10 
5 11 
6 12 
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2. Determine the stiffness coefficients and assemble the local element 

stiffness matrix for each element using Equation 2.8. 

𝑘Z9 = 𝑘Z_ =

⎣
⎢
⎢
⎢
⎢
⎡
			6590.9 0 0 −6590.9 0 0
			0 45.4 2995.9 			0 −45.4 2995.9
			0 2995.9 263636.4 			0 −2995.9 131818.2

−6590.9 0 0 				6590.9 0 0
			0 −45.4 −2995.9 			0 45.4 −2995.9
			0 2995.9 131818.2 			0 −2995.9 263636.4⎦

⎥
⎥
⎥
⎥
⎤

 

𝑘Z? =

⎣
⎢
⎢
⎢
⎢
⎡
		4833.3 0 0 −4833.3 0 0
			0 17.9 1611.1 			0 −17.9 1611.1
			0 2995.9 193333.3 			0 −1611.1 96666.6

−4833.3 0 0 				4833.3 0 0
			0 −17.9 −1611.11 			0 17.9 −1611.1
			0 1611.1 96666.6 			0 −1611.1 193333.3⎦

⎥
⎥
⎥
⎥
⎤

 

3. Form the transformation matrix for each element based off of the 

element’s orientation with respect to the horizontal using Equation 2.10. 

𝐵Z9 = 𝐵Z_ =

⎣
⎢
⎢
⎢
⎢
⎡
			0 1 0 0 			0 0
−1 0 0 0 			0 0
			0 0 1 0 			0 0
			0 0 0 0 −1 0
			0 0 0 1 			0 0
			0 0 0 0 			0 1⎦

⎥
⎥
⎥
⎥
⎤

 

𝐵Z? =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎤

 

4. Use Equation 2.9 to transform each element stiffness matrix from local to 

global coordinates. 

5. Sum the global element stiffness matrixes to obtain the 12x12 global 

stiffness matrix of the one-story shear frame. 
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6. Assemble the global nodal force vector and unknown displacement vector. 

𝐹 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
0
0
0
0
0
0
0
14
0
0
0
0 ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

      𝑢 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
𝑢9
𝑢?
q9
𝑢�
𝑢Ä
q?
𝑢ì
𝑢í
q_
𝑢9Ñ
𝑢99
q� ⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

7. Use Equation 2.6 to find the unknown displacement values. 

{𝐹} = [𝐾]{𝑢} 

[𝐾]�9{𝐹} = {𝑢} 

𝑢 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

0
0
0
0

0.1542"
0
0

0.1542"
0
0
0
0 ⎭

⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

 

8. From the unknown displacement vector, pull out the lateral displacement 

value of the one-story shear frame at the roof level. 

𝑢Ä = 𝑢í = 0.1542" 
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Appendix E: Accelerograms 

 

Figure 71: Imperial Valley EQ 00 (PGA = 0.3484g) 

 

Figure 72: Imperial Valley EQ 90 (PGA = 0.2142g) 
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Figure 73: Imperial Valley EQ UD (PGA = -0.2104g) 

 
Figure 74: Kern County EQ 21 (PGA = 0.1557g) 
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Figure 75: Kern County EQ 111 (PGA = 0.1794g) 

 
Figure 76: Kern County EQ UD (PGA = 0.1049g) 
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Figure 77: San Luis Obispo EQ 234 (PGA = -0.0361g) 

 
Figure 78: San Luis Obispo EQ 324 (PGA = 0.05394g) 
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Figure 79: San Luis Obispo EQ UD (PGA = -0.02692g) 

 
Figure 80: Loma Prieta EQ 00 (PGA = 0.6216g) 
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Figure 81: Loma Prieta EQ 90 (PGA = 0.4786g) 

 
Figure 82: Loma Prieta EQ UD (PGA = 0.4396g) 
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Figure 83: Northridge EQ 00 – Cedar Hill Nursery A (PGA = -0.9899g) 

 
Figure 84: Northridge EQ 90 – Cedar Hill Nursery A (PGA = 1.779g) 



                                                                                                  

 

198 

 

 
Figure 85: Northridge EQ UD – Cedar Hill Nursery A (PGA = 1.048g) 
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Appendix F: Displacement Time Histories – 5% Damping 

 
Figure 86: Loma 00 (Tn = 0.3001s) Displacement Time History 

 
Figure 87: Loma 00 (Tn = 0.50s) Displacement Time History 
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Figure 88: Loma 00 (Tn = 1.00s) Displacement Time History 

 
Figure 89: Loma 00 (Tn = 2.50s) Displacement Time History 
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Figure 90: Loma 00 (Tn = 5.00s) Displacement Time History 
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Appendix G: Displacement Time Histories – Tn = 0.30s  

 
Figure 91: Loma 00 (x = 0.00) Displacement Time History 

 
Figure 92: Loma 00 (x = 0.025) Displacement Time History 
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Figure 93: Loma 00 (x = 0.050) Displacement Time History 

 
Figure 94: Loma 00 (x = 0.075) Displacement Time History 
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Figure 95: Loma 00 (x = 0.100) Displacement Time History 
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Appendix H: Average Acceleration Method Time Histories 

 
Figure 96: Loma 00 (Tn = 0.50s) Average Acceleration Method 

 
Figure 97: Loma 00 (Tn = 1.00s) Average Acceleration Method 
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Figure 98: Loma 00 (Tn = 2.50s) Average Acceleration Method 

 

 
Figure 99: Loma 00 (Tn = 5.00s) Average Acceleration Method 
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Figure 100: Loma 00 (x = 0.00) Average Acceleration Method 

 
Figure 101: Loma 00 (x = 0.025) Average Acceleration Method 
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Figure 102: Loma 00 (x = 0.050) Average Acceleration Method 

 
Figure 103: Loma 00 (x = 0.075) Average Acceleration Method 
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Figure 104: Loma 00 (x = 0.100) Average Acceleration Method 

 
Figure 105: Northridge 00 (Tn = 0.50s) Average Acceleration Method 
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Figure 106: Northridge 00 (Tn = 1.00s) Average Acceleration Method 

 
Figure 107: Northridge 00 (Tn = 2.50s) Average Acceleration Method 
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Figure 108: Northridge 00 (Tn = 5.00s) Average Acceleration Method 

 
Figure 109: Northridge 00 (x = 0.00) Average Acceleration Method 
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Figure 110: Northridge 00 (x = 0.025) Average Acceleration Method 

 
Figure 111: Northridge 00 (x = 0.050) Average Acceleration Method 
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Figure 112: Northridge 00 (x = 0.075) Average Acceleration Method 

 
Figure 113: Northridge 00 (x = 0.100) Average Acceleration Method 
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Appendix I: Linear Acceleration Method Time Histories 

 
Figure 114: Loma 00 (Tn = 0.50s) Linear Acceleration Method 

 
Figure 115: Loma 00 (Tn = 1.00s) Linear Acceleration Method 
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Figure 116: Loma 00 (Tn = 2.50s) Linear Acceleration Method 

 
Figure 117: Loma 00 (Tn = 5.00s) Linear Acceleration Method 

 



                                                                                                  

 

216 

 

 
Figure 118: Loma 00 (x = 0.00) Linear Acceleration Method 

 
Figure 119: Loma 00 (x = 0.025) Linear Acceleration Method 
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Figure 120: Loma 00 (x = 0.050) Linear Acceleration Method 

 
Figure 121: Loma 00 (x = 0.075) Linear Acceleration Method 
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Figure 122: Loma 00 (x = 0.100) Linear Acceleration Method 

 
Figure 123: Northridge 00 (Tn = 0.50s) Linear Acceleration Method 
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Figure 124: Northridge 00 (Tn = 1.00s) Linear Acceleration Method 

 
Figure 125: Northridge 00 (Tn = 2.50s) Linear Acceleration Method 
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Figure 126: Northridge 00 (Tn = 5.00s) Linear Acceleration Method 

 
Figure 127: Northridge 00 (x = 0.00) Linear Acceleration Method 
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Figure 128: Northridge 00 (x = 0.025) Linear Acceleration Method 

 
Figure 129: Northridge 00 (x = 0.050) Linear Acceleration Method 
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Figure 130: Northridge 00 (x = 0.075) Linear Acceleration Method 

 
Figure 131: Northridge 00 (x = 0.100) Linear Acceleration Method 
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Appendix J: Pseudo-Acceleration Response Spectrums 

 
Figure 132: Pseudo-Acceleration Spectrum – El Centro 00 

 
Figure 133: Pseudo-Acceleration Spectrum – Kern County 111 
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Figure 134: Pseudo-Acceleration Spectrum – San Luis Obispo 324 

 
Figure 135: Pseudo-Acceleration Spectrum – Loma Prieta 00 
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Appendix K: Pseudo-Velocity Response Spectrums 

 
Figure 136: Pseudo-Velocity Spectrum – El Centro 00 

 
Figure 137: Pseudo-Velocity Spectrum – Kern County 111 
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Figure 138: Pseudo-Velocity Spectrum – San Luis Obispo 324 

 
Figure 139: Pseudo-Velocity Spectrum – Loma Prieta 00 
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Appendix L: Spectral Displacement Response Spectrums 

 
Figure 140: Maximum Displacement Spectrum – El Centro 00 

 
Figure 141: Maximum Displacement Spectrum – Kern County 111 
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Figure 142: Maximum Displacement Spectrum – San Luis Obispo 324 

 
Figure 143: Maximum Displacement Spectrum – Loma Prieta 00 
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Appendix M: PSa versus Sa Response Spectrums 

 
Figure 144: PSa and Sa (2.5% Damping) – Northridge 00 (USC Sta. 5303) 

 
Figure 145: PSa and Sa (7.5% Damping) – Northridge 00 (USC Sta. 5303) 
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Figure 146: PSa and Sa (10% Damping) – Northridge 00 (USC Sta. 5303) 
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Appendix N: Normalized PSv Response Spectrums 

 
Figure 147: PSv Spectrum Normalized to PGV – El Centro 00 

 
Figure 148: PSv Spectrum Normalized to PGV – Kern County 111 
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Figure 149: PSv Spectrum Normalized to PGV – San Luis Obispo 324 
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Appendix O: Two-Story Displacement History – El Centro 

 
Figure 150: Two-Story El Centro Displacement History (x  = 0.025) 

 
Figure 151: Two-Story El Centro Displacement History (x  = 0.075) 
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Figure 152: Two-Story El Centro Displacement History (x  = 0.10) 
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Appendix P: Two-Story Displacement History – Kern County 

 
Figure 153: Two-Story Kern Displacement History (x  = 0.025) 

 
Figure 154: Two-Story Kern Displacement History (x  = 0.075) 
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Figure 155: Two-Story Kern Displacement History (x  = 0.10) 
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Appendix Q: Two-Story Displacement History – SLO 

 
Figure 156: Two-Story SLO Displacement History (x  = 0.025) 

 
Figure 157: Two-Story SLO Displacement History (x  = 0.075) 
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Figure 158: Two-Story SLO Displacement History (x  = 0.10) 
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Appendix R: Two-Story Displacement History – Loma Prieta 

 
Figure 159: Two-Story Loma Displacement History (x  = 0.025) 

 
Figure 160: Two-Story Loma Displacement History (x  = 0.075) 
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Figure 161: Two-Story Loma Displacement History (x  = 0.10) 
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Appendix S: Two-Story Displacement History - Northridge 

 
Figure 162: Two-Story Northridge Displacement History (x  = 0.025) 

 
Figure 163: Two-Story Northridge Displacement History (x  = 0.075) 
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Figure 164: Two-Story Northridge Displacement History (x  = 0.10) 
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Appendix T: Three-Story Displacement History – El Centro 

 
Figure 165: Three-Story El Centro Displacement History (x  = 0.025) 

 
Figure 166: Three-Story El Centro Displacement History (x  = 0.075) 
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Figure 167: Three-Story El Centro Displacement History (x  = 0.10) 
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Appendix U: Three-Story Displacement History – Kern County 

 
Figure 168: Three-Story Kern Displacement History (x  = 0.025) 

 
Figure 169: Three-Story Kern Displacement History (x  = 0.075) 
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Figure 170: Three-Story Kern Displacement History (x  = 0.10) 
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Appendix V: Three-Story Displacement History - SLO 

 
Figure 171: Three-Story SLO Displacement History (x  = 0.025) 

 
Figure 172: Three-Story SLO Displacement History (x  = 0.075) 
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Figure 173: Three-Story SLO Displacement History (x  = 0.10) 
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Appendix W: Three-Story Displacement History – Loma Prieta 

 
Figure 174: Three-Story Loma Displacement History (x  = 0.025) 

 

Figure 175: Three-Story Loma Displacement History (x  = 0.075) 
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Figure 176: Three-Story Loma Displacement History (x  = 0.10) 
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Appendix X: Three-Story Displacement History - Northridge 

 
Figure 177: Three-Story Northridge Displacement History (x  = 0.025) 

 
Figure 178: Three-Story Northridge Displacement History (x  = 0.075) 
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Figure 179: Three-Story Northridge Displacement History (x  = 0.10) 
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Appendix Y: Two-Story FSD Force-Travel Diagrams 

 

Figure 180: Force-Travel Two-Story Lower FSD Loma 10% 

 

Figure 181: Force-Travel Two-Story Upper FSD Loma 10% 
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Figure 182: Force-Travel Two-Story Lower FSD Loma 25% 

 

Figure 183: Force-Travel Two-Story Upper FSD Loma 25% 
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Figure 184: Force-Travel Two-Story Lower FSD Loma 50% 

 

Figure 185: Force-Travel Two-Story Upper FSD Loma 50% 
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Figure 186: Force-Travel Two-Story Lower FSD Loma 100% 

 

Figure 187: Force-Travel Two-Story Upper FSD Loma 100% 
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Figure 188: Force-Travel Two-Story Lower FSD Northridge 10% 

 

Figure 189: Force-Travel Two-Story Upper FSD Northridge 10% 
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Figure 190: Force-Travel Two-Story Lower FSD Northridge 25% 

 

Figure 191: Force-Travel Two-Story Lower FSD Northridge 25% 
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Figure 192: Force-Travel Two-Story Lower FSD Northridge 50% 

 

Figure 193: Force-Travel Two-Story Upper FSD Northridge 50% 
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Figure 194: Force-Travel Two-Story Lower FSD Northridge 100% 

 

Figure 195: Force-Travel Two-Story Upper FSD Northridge 100% 
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Figure 196: Force-Travel Two-Story Lower FSD El Centro 10% 

 

Figure 197: Force-Travel Two-Story Upper FSD El Centro 10% 

 



                                                                                                  

 

262 

 

 

Figure 198: Force-Travel Two-Story Lower FSD El Centro 25% 

 

Figure 199: Force-Travel Two-Story Upper FSD El Centro 25% 
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Figure 200: Force-Travel Two-Story Lower FSD El Centro 50% 

 

Figure 201: Force-Travel Two-Story Upper FSD El Centro 50% 
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Figure 202: Force-Travel Two-Story Lower FSD El Centro 100% 

 

Figure 203: Force-Travel Two-Story Upper FSD El Centro 100% 
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Figure 204: Force-Travel Two-Story Lower FSD Kern 10% 

 

Figure 205: Force-Travel Two-Story Upper FSD Kern 10% 
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Figure 206: Force-Travel Two-Story Lower FSD Kern 25% 

 

Figure 207: Force-Travel Two-Story Upper FSD Kern 25% 
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Figure 208: Force-Travel Two-Story Lower FSD Kern 50% 

 

Figure 209: Force-Travel Two-Story Upper FSD Kern 50% 
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Figure 210: Force-Travel Two-Story Lower FSD Kern 100% 

 

Figure 211: Force-Travel Two-Story Lower FSD Kern 100% 
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Appendix Z: Three-Story FSD Force-Travel Diagrams 

 

Figure 212: Force-Travel Three-Story Lower FSD Loma 10% 

  

Figure 213: Force-Travel Three-Story Middle FSD Loma 10% 
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Figure 214: Force-Travel Three-Story Upper FSD Loma 10% 

 

Figure 215: Force-Travel Three-Story Lower FSD Loma 25% 
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Figure 216: Force-Travel Three-Story Upper FSD Loma 25% 

 

Figure 217: Force-Travel Three-Story Lower FSD Loma 50% 
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Figure 218: Force-Travel Three-Story Middle FSD Loma 50% 

 

Figure 219: Force-Travel Three-Story Upper FSD Loma 50% 
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Figure 220: Force-Travel Three-Story Lower FSD Loma 100% 

 

Figure 221: Force-Travel Three-Story Middle FSD Loma 100% 
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Figure 222: Force-Travel Three-Story Upper FSD Loma 100% 

 

Figure 223: Force-Travel Three-Story Lower FSD Northridge 10% 
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Figure 224: Force-Travel Three-Story Middle FSD Northridge 10% 

 

Figure 225: Force-Travel Three-Story Upper FSD Northridge 10% 
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Figure 226: Force-Travel Three-Story Lower FSD Northridge 25% 

 

Figure 227: Force-Travel Three-Story Middle FSD Northridge 25% 
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Figure 228: Force-Travel Three-Story Upper FSD Northridge 25% 

 

Figure 229: Force-Travel Three-Story Lower FSD Northridge 50% 
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Figure 230: Force-Travel Three-Story Middle FSD Northridge 50% 

 

Figure 231: Force-Travel Three-Story Upper FSD Northridge 50% 
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Figure 232: Force-Travel Three-Story Lower FSD Northridge 100% 

 

Figure 233: Force-Travel Three-Story Middle FSD Northridge 100% 
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Figure 234: Force-Travel Three-Story Upper FSD Northridge 100% 

 

Figure 235: Force-Travel Three-Story Lower FSD El Centro 10% 
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Figure 236: Force-Travel Three-Story Middle FSD El Centro 10% 

 

Figure 237: Force-Travel Three-Story Upper FSD El Centro 10% 
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Figure 238: Force-Travel Three-Story Lower FSD El Centro 25% 

 

Figure 239: Force-Travel Three-Story Middle FSD El Centro 25% 
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Figure 240: Force-Travel Three-Story Upper FSD El Centro 25% 

 

Figure 241: Force-Travel Three-Story Lower FSD El Centro 50% 
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Figure 242: Force-Travel Three-Story Middle FSD El Centro 50% 

 

Figure 243: Force-Travel Three-Story Upper FSD El Centro 50% 
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Figure 244: Force-Travel Three-Story Lower FSD El Centro 100% 

 

Figure 245: Force-Travel Three-Story Middle FSD El Centro 100% 
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Figure 246: Force-Travel Three-Story Upper FSD El Centro 100% 

 

Figure 247: Force-Travel Three-Story Lower FSD Kern 10% 
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Figure 248: Force-Travel Three-Story Middle FSD Kern 10% 

 

Figure 249: Force-Travel Three-Story Upper FSD Kern 10% 
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Figure 250: Force-Travel Three-Story Lower FSD Kern 25% 

 

Figure 251: Force-Travel Three-Story Middle FSD Kern 25% 

 



                                                                                                  

 

289 

 

 

Figure 252: Force-Travel Three-Story Upper FSD Kern 25% 

 

Figure 253: Force-Travel Three-Story Lower FSD Kern 50% 
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Figure 254: Force-Travel Three-Story Middle FSD Kern 50% 

 

Figure 255: Force-Travel Three-Story Upper FSD Kern 50% 
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Figure 256: Force-Travel Three-Story Lower FSD Kern 100% 

 

Figure 257: Force-Travel Three-Story Middle FSD Kern 100% 

 



                                                                                                  

 

292 

 

 

Figure 258: Force-Travel Diagram Upper FSD Kern 100% 

 

 

 

 

 

 

 

 

 

 
 
 

 

 


