

Copyright

by

Jason Eric Trout

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/395033778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Report Committee for Jason Eric Trout

Certifies that this is the approved version of the following Report:

Testing Safety-Critical Systems using Model-Based Systems

Engineering (MBSE)

APPROVED BY

SUPERVISING COMMITTEE:

Sarfraz Khurshid, Supervisor

Philip Terrall

Testing Safety-Critical Systems using Model-Based Systems

Engineering (MBSE)

by

Jason Eric Trout

Report

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2020

 Dedication

To my wife, Katelyn, thank you for your love and support.

v

Acknowledgements

I would like to thank Dr. Sarfraz Khurshid for his guidance through many courses

at The University of Texas at Austin as well as guidance throughout this report. I would

also like to thank Philip Terrall for his mentorship and serving as a reader for this report.

vi

Abstract

Testing Safety-Critical Systems using Model-Based Systems

Engineering (MBSE)

Jason Eric Trout, M.S.E.

The University of Texas at Austin, 2020

Supervisor: Sarfraz Khurshid

Model-based Systems Engineering (MBSE) provides features for behavioral

analysis, requirements traceability, system architecture, simulation, testing, and

performance analysis that are imperative for the testing of safety-critical systems. In this

report, we present a case study of a simple safety-critical system, and model the system

using UML (Unified Modeling Language), SysML (Systems Modeling Language), and

AADL (Architecture Analysis and Design Language). We then extend the AADL model

with user-defined properties and annexes to augment additional analysis and reporting

capabilities relevant to safety-critical systems. As safety and security expectations grow

in concert with system complexity, MBSE will become increasingly ingrained in the

workflow of the systems and software engineering communities.

vii

Table of Contents

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ...1

Chapter 2: Case Study: Specifications and Initial UML Model ...5

Chapter 3: Case Study: SysML Model ...14

Chapter 4: Case Study: AADL Model ..17

Chapter 5: Extending AADL for Safety Analysis ..23

AADL User-Defined Properties for Generating A SWaP Analysis Report23

AADL Annex Extension For Generating Attack Trees ..28

Chapter 6: Related Work ..32

Chapter 7: Conclusion...33

References ..34

viii

List of Tables

Table 1: Case Study: Capability Requirements Specification6

Table 2: Case Study: Software Requirements Specification...6

Table 3: Case Study: AADL SWaP Analysis Report Plugin Methods/Classes26

Table 4: Case Study: AADL Attack Tree Plugin Methods/Classes30

ix

List of Figures

Figure 1: Case Study: System of Systems (SoS) / Data Flow ..5

Figure 2: Case Study: Signal Processing Unit UML Use Case Diagram8

Figure 3: Case Study: Signal Processing Unit UML Class Diagram9

Figure 4: Case Study: Maintain Temperature UML Sequence Diagram9

Figure 5: Case Study: Maintain Temperature UML Activity Diagram10

Figure 6: Case Study: Process Signal UML Sequence Diagram11

Figure 7: Case Study: Process Signal UML Activity Diagram12

Figure 8: Case Study: Signal Processing Unit SysML Requirements Diagram15

Figure 9: Case Study: Signal Processing Unit SysML BDD16

Figure 10: Case Study: AADL devices.aadl...17

Figure 11: Case Study: AADL integration.aadl ...18

Figure 12: Case Study: AADL data definitions (processes.aadl)19

Figure 13: Case Study: AADL thread definitions (processes.aadl)20

Figure 14: Case Study: AADL SignalProcessor definitions (with latencies).................21

Figure 15: Case Study: AADL Latency Analysis Report ..21

Figure 16: Case Study: AADL swap_properties.aadl ..24

Figure 17: Case Study: AADL devices.aadl with SWaP Properties25

Figure 18: Case Study: AADL integration.aadl Recapitulation25

Figure 19: Case Study: AADL SWaP Analysis Report ...27

Figure 20: Case Study: AADL BNF for the security_specification annex28

Figure 21: Case Study: AADL security_specification annex ...29

Figure 22: Case Study: AADL Attack Tree ...30

1

Chapter 1: Introduction

The typical system/software development life cycle (SDLC) consists of six stages:

planning, analysis, design, implementation, integration/testing, and support/maintenance.

In a waterfall-based SDLC, these stages are performed sequentially, with only one pass

during the lifetime of a specific release of a product. In an iterative / agile-based SDLC,

on the other hand, these stages are performed sequentially, many times during the

lifetime of a specific release of a product, often in scheduled increments known as

sprints.

A waterfall-based SDLC tends to be used more in the creation of safety-critical

systems due to the rigor of analysis and testing requirements requisite for safety

certification. Errors in analysis and design in the waterfall-based SDLC that are detected

during the integration/testing phase tend to be more costly in monetary and scheduling

terms than the more forgiving iterative / agile-based SDL, where errors can be detected

and mitigated rapidly during subsequent product sprints.

 Irrespective of the flavor of SDLC incorporated by an organization, after

requirements are accepted and before an engineer begins implementing a system,

modeling languages are often used during the design phase to document a system’s

architecture. The creation of modeling language-based artifacts is analogous to the

creation of blueprints during the design phase used in manufacturing processes.

UML (Unified Modeling Language), created by Grady Booch, Ivar Jacobson, and

James Rumbaugh at Rational Software in the early to mid-1990s, is a general-purpose

visual modeling language that is used to specify, visualize, construct, and document the

artifacts of a software system (Rumbaugh et al., 2005).

2

UML provides structural diagrams that emphasize entities that must be present in

a system, behavior diagrams that emphasize what must occur in a system, interaction

diagrams that emphasize data and control flow amongst the things in the system, and

implementation diagrams that show the structure of the run-time system.

Whereas the domain of the software engineer is in the implementation phase, the

domain of the systems engineer is in the analysis and integration/testing phase. MBSE

(Model-based systems engineering) extends modeling languages, such as UML, to make

them useful within the domains of systems engineering. MBSE is expected to replace the

document-centric approach that has been practiced by systems engineers in the past and

to influence the future practice of systems engineering by being fully integrated into the

definition of systems engineering processes (INCOSE, 2007). Due to integration/testing

issues having higher cost in a waterfall-based SDLC, MBSE focuses on virtual

integration. From the MBSE artifacts, systems engineers can integrate/test systems and

perform analyses so that major architectural issues can be detected and mitigated before

implementation begins. Two modeling languages that are enabling technologies for

MBSE are SysML (Systems Modeling Language) and AADL (Architecture Analysis and

Design Language).

SysML is a graphical modeling language that can be used to visualize and

communicate the designs of sociotechnical systems on all scales (Delligatti, 2014). It is

used as an architecture modeling language for systems engineering applications, and was

created by the SysML Partners’ SysML Open Source Specification Project in 2013. It

was subsequently adapted and adopted by the Object Management Group (OMG) as

OMG SysML in 2006. SysML is a superset of UML and supports the specification,

analysis, design, and V&V of systems and systems of systems (SoS).

3

SysML introduces SysML extensions, namely: block definition diagrams (BDDs),

which replaces the UML class diagrams, internal block diagrams (IBDs), that replaces the

UML composite structure diagrams, requirements diagrams to document requirements,

and parametric diagrams that permit the analysis of critical parameters. SysML-based

tools such as Cameo Enterprise Architecture by Dassault Systèmes and Enterprise

Architect by Sparx use SysML to allow simulation, testing, and requirements traceability

of a system.

AADL is an architecture description language standardized by SAE (Society of

Automotive Engineering). It focuses on system design specification using rich, formal

semantics that can be used to analyze and generate systems (Delange, 2017). The

architecture can be used either for documentation, for analysis, or for code generation. Its

purpose is V&V and has an underlying specification language. It is more software-

oriented and provides type primitives that can capture processes, threads, and data.

AADL was designed for MBSE and has notation for specification of runtime architecture

of safety-critical and secure software intensive systems.

Our goal in this report is to present a simple case study of a safety-critical system.

We begin in the analysis phase, creating a Capability Requirements Specification (CRS)

followed by a Software Requirements Specification (SRS). We start the design modeling

process using UML and then step back to the analysis phase and show that the CRS and

SRS could have been implemented in a modeling language as well—in this case SysML.

We will integrate requirements and physical hardware specification to our system model.

SysML is a higher-level modeling language in contrast to AADL. AADL allows

lower-level modeling that is typically required of real-time systems. The primary work in

this report is creating AADL user-defined properties and AADL annexes to augment the

4

capabilities of AADL for the design of real-time, safety-critical systems. We will perform

a SWaP (Size, Weight, and Power) analysis on the internal components of a signal

processing unit and perform security analysis by creating an attack tree to show possible

attack paths for our system.

5

Chapter 2: Case Study: Specifications and Initial UML Model

Our case study will involve a safety-critical ADS-B (Automatic Dependent

Surveillance-Broadcast) signal processing unit that will serve as our SUT (System Under

Test). The signal processing unit is part of a greater SoS that serves a hypothetical

customer’s analysis needs.

Figure 1: Case Study: System of Systems (SoS) / Data Flow

We will be using the traditional waterfall-based SDLC. Our focus within this case

study is on the analysis stage. During the analysis phase, the customer-given capability

requirements specification and engineering-derived software requirements specification

are as follows:

Requirement ID Requirement

CRS-1 The signal processing unit shall operate within an environment where

temperatures are within the range of 26°C to 50°C inclusive.

CRS-2 The signal processing unit shall not exceed a width of 10cm.

CRS-3 The signal processing unit shall not exceed a height of 25cm.

CRS-4 The signal processing unit shall not exceed a depth of 20cm.

6

CRS-5 The signal processing unit’s internal components shall not exceed a weight

of 2kg.

CRS-6 The signal processing unit’s internal components shall not exceed a power

of 300W.

CRS-7 The signal processing unit shall transmit extracted ADS-B information over

an existing network to an Analysis Display Processor.

Table 1: Case Study: Capability Requirements Specification

Requirement ID Requirement

SRS-1 The signal processing unit shall not exceed a temperature of 27°C. (Links to

CRS-1).

SRS-2 The signal processing unit shall control redundant fans. (Links to CRS-1).

SRS-3 The signal processing unit shall receive ADS-B at 1090MHz using mode-S

extended squitter of the SSR transponder, with 50KHz of bandwidth. (Links

to CRS-7).

SRS-4 The signal processing unit shall receive ADS-B at 978MHz (UAT), with

1.3MHz of bandwidth. (Links to CRS-7).

SRS-5 The signal processing unit shall process ADS-B signals within an 8ms time

window. (Links to CRS-7).

SRS-6 The signal processing unit shall transmit extracted ADS-B information

using the User Datagram Protocol (UDP) transport. (Links to CRS-7).

Table 2: Case Study: Software Requirements Specification

7

 From the above SRS, the traditional next step in our analytical progression is to

model the software using a modeling language. We will begin using UML, noting some

pitfalls with respect to serving the needs of the systems engineering organization with

discussion of how additional modeling languages, such as SysML and AADL can be used

to mitigate these pitfalls.

We will create the following diagrams: (1) Signal Processing Unit Use Case

Diagram, (2) Signal Processing Unit Class Diagram, (3) Maintain Temperature Sequence

Diagram, (4) Maintain Temperature Activity Diagram, (5) Process Signal Sequence

Diagram, and (6) Process Signal Activity Diagram.

A use case diagram represents a user’s or system’s interaction with the system at a

high-level. For our case study, we have an actor named System Manager that interacts

with the signal processing unit to maintain temperature and process signals.

8

Figure 2: Case Study: Signal Processing Unit UML Use Case Diagram

We also make a signal processing unit class diagram. We have three classes:

SystemManager, TemperatureMaintainer, and SignalProcessor. The SystemManager

delegates method invocations to the TemperatureMaintainer and SignalProcessor classes.

9

Figure 3: Case Study: Signal Processing Unit UML Class Diagram

 The following sequence diagram shows the call flow from the System Manager

actor for maintaining temperature.

Figure 4: Case Study: Maintain Temperature UML Sequence Diagram

10

The following activity diagram shows the actions of the TemperatureMaintainer

connected by control flows that indicate the sequence in which actions are fired. Our

specification states that the temperature must be maintained to be less than or equal to

27°C. Based on our analysis, as long as a single fan is at the following capacities for the

respective temperature ranges, we will be able to meet the set point per the specification.

Two fans are controlled and utilized in case one fan fails.

Figure 5: Case Study: Maintain Temperature UML Activity Diagram

11

The following sequence diagram shows the call flow from the System Manager actor for

processing ADS-B signals.

Figure 6: Case Study: Process Signal UML Sequence Diagram

12

The following activity diagram shows the actions of the SignalProcessor

connected by control flows that indicate the sequence in which actions are fired. Our

specification states we shall process ADS-B signals at both 978MHz and 1090MHz.

Figure 7: Case Study: Process Signal UML Activity Diagram

13

We have produced UML models that will be helpful for software engineers during

the implementation phase; however, there are relevant systems engineering details not

representable with UML. What are the constituent hardware components? What are the

requirements? In the next chapter, we will use SysML to address these issues.

14

Chapter 3: Case Study: SysML Model

In the previous chapter, we created a simple UML model to model the software

for the signal processing unit. We will now look how we could have augmented these

software models with SysML models to address systems engineering activities during the

analysis phase. We will create the following SysML diagrams: (1) Signal Processing Unit

SysML Requirements Diagram, and (2) Signal Processing Unit SysML Block Definition

Diagram. All the diagrams created in the previous chapter are valid SysML as well. We

will not repeat them again in this chapter.

SysML provides a requirements diagram that can be used for capturing

requirements within a system model. Capturing requirements in a system model in

contrast to keeping requirements in a separate system has several benefits. The three most

prominent benefits are that (1) requirements can easily be traced to design-level artifacts,

(2) requirements do not get out of synchronization with design, and (3) requirements

within the system model can still be exported to traditional document artifacts as

necessary. We will take the original document-based CRS and SRS requirements from

the previous chapter and place them in our system model. SRS requirements will be

requirement entities that are associated to CRS requirements through a derive

relationship. This allows the systems engineer to observe CRS and SRS requirements

within the same model without having to trace through cumbersome links in traditional

systems engineering tools.

SysML environments provide a way to trace requirements down to design-level

artifacts and provide checklist functionality and completion analysis that are useful for

providing requirements coverage information to stakeholders.

15

The requirements diagram is as follows:

Figure 8: Case Study: Signal Processing Unit SysML Requirements Diagram

 BDDs (Block Definition Diagrams) replace UML class diagrams in SysML.

BDDs represent a system component such as software or hardware. In our case study, we

will use a BDD to represent the physical hardware of the signal processing unit. We

represent our system as well as its constituent parts as blocks. The parts that make up the

system are represented with composition notations. We also utilize proxy ports to model

16

the interfaces with the external boundary of our system. Proxy ports differ from full ports

in that they are not fully realized—this permits binding of realized physical ports later on

in the analysis process (i.e. if use of a copper-based vs. fiber-based network medium has

not yet been established).

 The BDD for the signal processing unit is as follows:

Figure 9: Case Study: Signal Processing Unit SysML BDD

We have seen that SysML, a superset of UML, allows modeling of systems

engineering activities in a common way to the modeling of software by software

engineers. Systems and software engineers can use the models jointly during the various

phases of the SDLC. What can we do about lower-level requirements, such as timing

requirements? In the next chapter, we will look at using AADL for this type of analysis.

17

Chapter 4: Case Study: AADL Model

We have a requirement specified in our SysML requirements diagram, identified

as SRS-5, that states the signal processing unit shall process ADS-B signals within an

8ms time window. AADL is an architecture and analysis design language created for

modeling real-time systems. It is best suited for modeling processors, memory, processes,

and threads; consequently, it is the ideal modeling language to use for this requirement.

We will use an open source IDE called OSATE that is based on Eclipse for our

development of our AADL model.

In a similar way to modeling our signal processing unit as a SysML BDD in the

previous chapter, AADL allows us to define devices for our system.

The devices.aadl file containing the devices package is as follows:

Figure 10: Case Study: AADL devices.aadl

We also create a system implementation that associates instances to these devices.

This system implementation represents an instantiable model that can be analyzed. For

18

SRS-5, we are specifically interested in performing a latency analysis of the

SignalProcessor process data flows.

The system implementation is as follows:

Figure 11: Case Study: AADL integration.aadl

The subcomponents of the integration package contain the devices that were

represented in our signal processing unit SysML BDD. We also added a SignalProcessor

process implementation. This process has three threads: ReceiveSignalThread,

ParseADSBThread, and SendADSBInfoToAnalysisDataProcessorThread. The

SignalProcessor receives signal information as 112 bits of raw data and outputs a

formatted ADS-B message that is 1KiB in size. We specify the individual thread latency

ranges based on empirical analysis.

19

The AADL definitions of the SignalProcessor process is as follows:

Figure 12: Case Study: AADL data definitions (processes.aadl)

20

Figure 13: Case Study: AADL thread definitions (processes.aadl)

21

Figure 14: Case Study: AADL SignalProcessor definitions (with latencies)

We use the OSATE analysis tools to perform a latency analysis of the signal

processing unit. The generated latency analysis report is as follows:

Figure 15: Case Study: AADL Latency Analysis Report

22

We can see from the latency report that based on our empirical timings for each

thread in the SignalProcessor process, the minimum latency is 3ms; whereas, the

maximum latency is 8ms; hence, the SignalProcessor process is in compliance with the

SRS-5 requirement.

OSATE provides many analysis tools, including fault tree, bus load, and

scheduling analysis. In the next chapter, we will look at implementing additional tools for

OSATE, namely a SWaP Analysis Report tool and a security tool for generating attack

trees that represent potential attack paths within our system.

23

Chapter 5: Extending AADL for Safety Analysis

AADL models can be extended beyond the core AADL language by use of user-

defined properties and annexes. User-defined properties can be specified directly within

the core AADL language, while annexes are more complex and require custom language

parser implementation. We will use both types of AADL extensions with respect to our

case study. All source code for these extensions can be found at

https://github.com/jasontrout/AADL_extensions.

AADL USER-DEFINED PROPERTIES FOR GENERATING A SWAP ANALYSIS REPORT

Embedded computing manufacturers often strive to reduce SWaP with the goal of

creating performant systems with minimal resource footprint. For safety-critical systems,

violating SWaP requirements can result in system instability and general vulnerability.

When performing an architectural analysis, it is imperative that we can perform trades

amongst subcomponents with respect to SWaP easily and accurately. The user-defined

properties functionality of AADL provides a means to achieve this goal.

In our case study, we have the following requirements: (1) The signal processing

unit shall not exceed a width of 10cm, (2) The signal processing unit shall not exceed a

height of 25cm, (3) The signal processing unit shall not exceed a depth of 20cm, (4) The

weight of the internal components of the signal processing unit shall not exceed 2kg, and

(5) The power consumed by the internal components of the signal processing unit shall

not exceed 300W. We will create a property set called swap_properties used exclusively

for SWaP analysis.

The property set swap_properties is defined in a file named swap_properties.aadl.

about:blank

24

Figure 16: Case Study: AADL swap_properties.aadl

The properties are defined in the swap_properties property set are width, height,

depth, weight, and max_power. Each property is assigned a domain type that constrains

the properties to a domain—in our case, to the real numbers. Also, a units type is

optionally assigned to each property. This constrains the units that can be used for these

properties as well as conversion factors amongst other permitted units. The ability to

constrain properties to particular units values as well as provide conversion factors is

convenient and prevents confusion that can occur when working with unitless numbers—

such as one engineer expecting units to be metric and another engineer expecting units to

be imperial.

Our devices file, devices.aadl, contains processor, memory, and device SWaP

properties. We only include width, height, and depth properties to the signal processing

unit chassis. We also have an integration file that ties the system devices together.

25

Figure 17: Case Study: AADL devices.aadl with SWaP Properties

Figure 18: Case Study: AADL integration.aadl Recapitulation

26

We will now create an OSATE plugin to create a SWaP Analysis Report. To

create the plugin, we create an Eclipse plugin project. This project contains a file named

plugin.xml that sets the SWaP Analysis Report menu option as well as its command

binding. We then create a class named SwapAnalysisHandler that extends the abstract

class org.eclipse.core.commands.AbstractHandler. This abstract class has a method

named execute that is overridden and will be invoked when the SWaP Analysis Report

command is initiated by the user.

Methods and classes implemented for the SWaP Analysis Report command are as

follows:

Method/Class Description

SwapAttributes Java Bean class that contains the constituent SWaP properties: weight,

height, depth, and max power.

execute Entry point method for the plugin.

generateCsvReport Method to generate SWaP Analysis Report in a CSV (Comma

Separated Value) format.

getSwapAttributes Method to get the SWaP attributes for the specified property holder.

getSwapProperty Method to get the SWaP property with the specified property name.

getSwapPropertyValue Method to get the SWaP property value with the specified property

name in the specified units.

hasSwapProperties Method to determine if a property holder has SWaP properties.

Table 3: Case Study: AADL SWaP Analysis Report Plugin Methods/Classes

The resulting CSV loaded into Microsoft® Excel® is as follows:

27

Figure 19: Case Study: AADL SWaP Analysis Report

When gathering the SWaP properties, we were able to use an OSATE provided

method PropertyUtils.getScaledNumberValue that permitted us to get property values in

a specified unit irrespective of the units specified in the devices.aadl file. This allows us

to compare SWaP properties more easily per our requirements specification. From the

above report, we see that the dimensions of the signal processing unit chassis are 9cm x

24cm x 19cm, the weight of the signal processing unit internal components is

approximately 0.97kg, and the maximum power utilized by the signal processing unit

internal components is approximately 254W. These SWaP attributes are all within the

allowed range per our requirements specification.

The development of the SWaP Analysis Report plugin demonstrates the power of

user-defined properties in AADL and plugins in OSATE to perform analyses that are

important for safety-critical systems. User-defined properties do not require changes to

the core AADL language. We will now show how the core AADL can be extended with

annex extensions. This will provide a means of providing more expressive syntactical

structure to our model.

28

AADL ANNEX EXTENSION FOR GENERATING ATTACK TREES

AADL annexes extend the core AADL language and require custom language

parser implementation. Annexes are included within models using the annex keyword

along with the custom annex specification language enclosed within {** and **}

delimiters.

Security is of paramount importance in the analysis and design of safety-critical

systems. Attack trees, introduced by Bruce Schneier, are useful conceptual diagrams

showing how an asset or target might be attacked. We will create an annex specification

named security_specification that will allow us to enumerate device, processor, and

memory dependencies in order to create and generate an attack tree that shows the

potential paths for attacking our signal processing unit.

BNF (Backus-Naur Form) notation is a formal mathematical way to describe a

language and consists of a set of terminal symbols, a set of non-terminal symbols, and a

set of production rules of the form (left hand side) := (right hand side). For our

security_specification, we will use the following BNF:

Figure 20: Case Study: AADL BNF for the security_specification annex

29

For our case study integration file, we will add the following AADL annex

security_specification:

Figure 21: Case Study: AADL security_specification annex

We implement an Attack Tree plugin in the same way as we implemented the

SWaP Analysis Report plugin in the last section. For information pertaining to OSATE

plugin creation and structure, please reference the SWaP Analysis Report section

preceding this section.

We parse the security_specification block, build an attack tree using a simple tree

data structure, and then provide a means of generating a graphical report of the attack tree

using the Java Swing graphics library.

30

Methods and classes implemented for the Attack Tree command are as follows:

Method/Class Description

AttackTree Class representing the attack tree.

execute Entry point method for the plugin.

generateAttackTreeReport Method to generate report containing graphical representation of

the attack tree.

parseSpecification Method to parse the security_specification per the BNF.

Table 4: Case Study: AADL Attack Tree Plugin Methods/Classes

The resulting attack tree for the security_specification for our case study results is

as follows:

Figure 22: Case Study: AADL Attack Tree

31

This attack tree is simple. From any given directly exposable device, processor, or

cpu within the system, the subsequent children nodes represent a chain of potential attack

vectors. Please note in the generated tree that the edges have been omitted between

vertices. Edges flow only vertically from the root node to the leaf node of each chain.

We have demonstrated the flexibility that AADL and OSATE provide in

augmenting additional reporting and analytical capabilities to models. There are many

additional applications that could be created, for instance, for DO178C certifiability or

FACE (Future Airborne Capability Environment) conformance requirements that are

often levied on avionics-based safety-critical systems.

32

Chapter 6: Related Work

OSATE is an open source platform for AADL and much work has been

performed by the systems modeling community on extending the modeling language and

modeling tools. We will briefly talk about projects that have been created within this

space, namely: BLESS, a formal specification and verification of behaviors for embedded

systems with software annex, architecture fault modeling with the AADL error-model

annex, and the Cheddar plugin used for real-time scheduling analysis.

BLESS is a Behavioral Interface Specification Language (BISL) and proof

environment for AADL. It is implemented as an AADL annex and introduces notations

for specifying behaviors on component interfaces, defining AADL runtime aware

transition systems that capture the internal behavior of AADL components—[this is

similar to Java Pathfinder (JPF), a model checker for Java bytecode created by NASA

that is part of the Verification and Validation course at The University of Texas at

Austin], and the ability to write assertions to capture important state and event properties

within the transition system notation (Larson et al., 2013).

The AADL error-model annex extends AADL to support architecture fault

modeling and automated safety analysis. It provides a fault propagation ontology to

support architecture fault models—focusing on fault propagation, failure behavior of

individual components, and composite failure of a system in terms of its components

(Delange et al., 2014).

The Cheddar plugin, started in 2002 by Frank Singhoff, is a GPL real-time

scheduling tool/simulator that allows one to model software architectures of real-time

systems and to check schedulability and other performance criteria—the schedulability of

real-time systems can be assessed by feasibility tests or simulations (Singhoff, 2019).

33

Chapter 7: Conclusion

In this report, we created and modeled a simple case study and focused on

extending the reporting and analysis capabilities of AADL. OSATE currently supports

code generation from real-time operating systems such as VxWorks, DeOS, and POK.

While the focus of AADL and OSATE are on real-time systems, this modeling language

and software could also be applied to non-real-time applications that run on consumer

grade operating systems such as Microsoft Windows, macOS, and GNU/Linux.

The creation of an AADL annex for the specification of unit and integration level

testing would also be useful. The annex would allow specification of generated code

coverage requirements (including node coverage, branch coverage, input coverage, and

syntax-based coverage).

While we focused on attack trees for security analysis in AADL, a more

comprehensive security suite would be beneficial. Due to the popularity of IoT (Internet

of Things) and CPSs (cyberphysical systems), security is of ever increasing importance in

systems analysis and software design.

FACE a standard that is becoming increasingly important to the avionics

community. AADL extensions to support FACE data modeling and the auto-generation

of FACE artifacts (Units of Conformance (UoC) and Units of Portability (UoP)) would

be greatly beneficial to the avionics community.

Synchronization of AADL models and software running within a distributed

environment would be of greatly beneficial to DevOps teams. This would allow

specification of desired runtime functionality and subsequent monitoring of actual

software runtime behavior to validate that systems are functioning per the specifications

of the model.

34

References

Delange J., Feller P., "Architecture Fault Modeling with the AADL Error-Model

Annex," 2014 40th EUROMICRO Conference on Software Engineering and Advanced

Applications, Verona, 2014, pp. 361-368, doi: 10.1109/SEAA.2014.20.

Delange, J. (2017). AADL in Practice: Become an Expert in Software

Architecture Modeling and Analysis. Self-published.

Delligatti, L. (2014) SysML Distilled: A Brief Guide to the Systems Modeling

Language. Addison-Wesley Professional.

INCOSE. (2007) Systems Engineering Vision 2020: INCOSE-TP-2004-004-02

2.03.

Larson B.R., Chalin P., Hatcliff J. (2013) BLESS: Formal Specification and

Verification of Behaviors for Embedded Systems with Software. In: Brat G., Rungta

N., Venet A. (eds) NASA Formal Methods. NFM 2013. Lecture Notes in Computer

Science, vol 7871. Springer, Berlin, Heidelberg.

Rumbaugh J., Jacobson I., Booch G. Unified Modeling Language Reference

Manual, The (2nd Edition). Pearson Higher Education.

Singhoff, F. (2019, June 20). Cheddar: an open-source real-time scheduling

tool/simulator. Retrieved May 7, 2020, from http://beru.univ

brest.fr/~singhoff/cheddar/.

