Unconditionally Stable Space-Time Finite Element Method for the Shallow Water Equations

Eirik Valseth and Clint Dawson

The Oden Institute for Computational Engineering and Science
The University of Texas at Austin eirik@utexas.com, clint@oden.utexas.edu

TACCSTER 2020
September 18-19 2020

The Coastal Domain

Galveston Bay bathymetry and example mesh ${ }^{1}$

[^0]
Mathematical Model - The 2D Shallow Water Equations

Find (ζ, \mathbf{u}) such that:

$$
\begin{align*}
& \frac{\partial \zeta}{\partial t}+\boldsymbol{\nabla} \cdot(\zeta \mathbf{u})=0, \text { in } \Omega \times(0, T] \tag{1}\\
& \frac{\partial \mathbf{u}}{\partial t}+\underbrace{\mathbf{u} \cdot(\nabla \mathbf{u})}_{\text {convective }}+\underbrace{\tau_{b} \mathbf{u}}_{\text {friction }}+g \nabla \zeta-\underbrace{\nu \Delta \mathbf{u}}_{\text {viscous }}=\mathbf{f}, \text { in } \Omega \times(0, T]
\end{align*}
$$

Corresponding Space-Time Weak Formulation:

$$
\begin{align*}
& \text { Find }(\zeta, \mathbf{u}, \boldsymbol{\sigma}) \in U\left(\Omega_{T}\right) \text { such that: } \\
& B((\zeta, \mathbf{u}, \boldsymbol{\sigma}),(v, \mathbf{w}, \mathbf{p}))=F(v, \mathbf{w}, \mathbf{p}), \quad \forall(v, \mathbf{w}, \mathbf{p}) \in V\left(\mathcal{P}_{h}\right) \tag{2}
\end{align*}
$$

- Test space $V\left(\mathcal{P}_{h}\right)$ is constructed using the philosophy of the discontinuous Petrov-Galerkin method ${ }^{2}$

[^1]
Remarks

- In the corresponding finite element discretization we use classical continuous basis functions for the trial space, whereas the test space consist of optimal discontinuous functions computed on-the-fly locally on each element that guarantee discrete stability.
- The discontinuous Petrov-Galerkin philosophy leads to a linear system of equations that is symmetric and positive definite.
- Element wise Riesz representers of the approximation error yield error indicators that are employed to drive adaptive mesh refinements in both space and time.
- The discontinuity of the test functions and Riesz representers makes the method well suited for the parallel environment in TACC computers.
- As a verification, consider a purely convective 2D stationary problem with $\Omega=(0,1)^{2}$, $\zeta_{e x}=\cos (x-y \cdot x)$ $u_{e x}^{x}=u_{e x}^{y}=\cos ^{2}(\pi x+y) \sin \left(\pi x^{3}+y \cdot x\right) \sin (\pi x+y)$.

Adaptive Mesh Refinement

[^0]: ${ }^{1}$ S.R. Brus et al. "High-order discontinuous Galerkin methods for coastal hydrodynamics applications". In: Computer Methods in Applied Mechanics and Engineering 355 (2019), pp. 860 -899. ISSN: 0045-7825.

[^1]: ${ }^{2}$ Leszek Demkowicz and Jay Gopalakrishnan. "A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions". In: Numerical Methods for Partial Differential Equations 27.1 (2011), pp. 70-105.

