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Abstract 

 

Applications of large, heterogeneous datasets in understanding and 

treating pathogenic microbes 

Cory David DuPai, Ph.D. 

The University of Texas at Austin, 2020 

 

Supervisor: Claus O. Wilke 

Co-Supervisor: Bryan W. Davies 

 

Major advances in a myriad of technologies over the past two decades have led to 

a remarkable increase in the generation of biological data. In response to this increase, 

researchers have developed methods to pool and analyze large, heterogeneous datasets for 

novel insights. Here I do just that, leveraging existing data to expand our understanding of 

therapeutic proteins and pathogenic microbes. In Chapter 2 I outline major shortcomings 

in existing viral annotation standards using metadata from all influenza A sequences 

submitted to the GISAID database between 2005 and 2018. I further establish updated 

nomenclature standards to improve annotation accuracy moving forward. In Chapter 3 I 

use published Vibrio cholerae sequencing data to derive a comprehensive gene 

coexpression network. This network provides direct insights into genes influencing 

pathogenicity, metabolism, and transcriptional regulation, further clarifies results from 

previous sequencing experiments in V. cholerae, and expands upon micro-array based 

findings in related gram-negative bacteria. In Chapter 4 I systematically probe all 49,000 

unique beta hairpin substructures contained within the Protein Data Bank to uncover key 
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characteristics correlated with stable beta hairpin structure, including amino acid biases 

and enriched inter-strand contacts. I also establish a set of broad design principles that can 

be applied to the generation of libraries encoding bioactive proteins. These findings 

highlight the untapped potential, promise, and power of pooled analyses using large, 

heterogeneous datasets. 
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Chapter 1:  Introduction 

Microbiology, like most scientific fields, has benefited immensely from the advent of the 

information age and ongoing advancements in technology, data storage, and computer 

processing power over the past twenty years. Alongside steady improvements in 

technologies like nuclear magnetic resonance (NMR) imaging 1–3, mass spectrometry 4,5, 

and various methods of biological microscopy 6–8, the rapid introduction of reliable, cost 

effective high-throughput sequencing platforms 9,10 has created a massive shift in the 

amount of data generated by and available to scientists.  

1.1 THE -OMICS REVOLUTION 

While it took a global team of scientists nearly fifteen years and three billion dollars to 

compile the first full human genome sequence in 2004 11,12, the same feat can now be 

accomplished for under $3000 13 in roughly one day of machine time 14. Individual 

sequencing instruments are able to generate petabytes of data per annum 15, the equivalent 

of roughly a few gigabytes of data for a million bacterial samples per sequencing 

instrument per year. The unprecedented production and availability of high-quality 

sequencing and other biological data have proven a great boon for biologists across all 

disciplines. 

In parallel with the massive growth in microbial -omics data generation, researchers 

have established global efforts to collect and catalog such data in a way that makes them 

practically accessible. Initiatives and databases such as the Global Initiative on Sharing All 

Influenza Data (GISAID) 16, the Sequence Read Archive (SRA) 17, the Protein Data Bank 

(PDB) 18, and GenBank 19 have aggregated hundreds of thousands of samples each. 

Platforms such as these not only archive records but also extend convenient data access to 
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almost any researcher with an internet connection. This broad accessibility encourages 

transparency and reproducibility in published findings and provides further fuel for novel 

pooled analyses using an amalgam of heterogeneous datasets.  

1.2 WHAT DO WE DO WITH ALL THESE DATA? 

Sizable collections of all flavors of microbial -omics data have been successfully leveraged 

for a variety of research efforts. For instance, microbial genetic information encoded in 

Genbank and GISAID is particularly amenable to the large-scale phylogenetic analyses 

which form the backbone of research, surveillance, prevention, and treatment efforts for a 

wide array of pathogens. Complete genome sequences and the phylogenies constructed 

from them power research into microbes ranging from Vibrio cholerae 20 and 

Enterobacteriaceae 21 to influenza viruses 22 and even novel SARS-CoV-2 23. For 

community and microbiome analyses, high quality reference genomes, transcriptomes, and 

proteomes are essential for taxonomic assignment of sequences 24, gene cluster 

identification 25–27, and transcript and protein domain classification 28–31. Transcriptomic 

and genomic sequencing data from the SRA have also been pooled and analyzed to resolve 

a multitude of research questions that may be difficult to answer with single, smaller 

experiments. From datasets of hundreds to hundreds of thousands of samples, aggregated 

SRA data has been applied to the identification of common genetic variants 32, recognition 

of microbiome-based disease signatures 33, and the strengthening differential gene 

expression findings across multiple comparable experiments 34. 

In concert with the growing abundance of protein-related sequencing data, 

structural databases such as PDB represent a vital resource for researchers interested in 

modelling, predicting, and engineering protein structures. The unprecedented availability 

of structural data in PDB and elsewhere has fueled an ongoing revolution in protein 
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structural prediction as accurate protein structures are an essential aspect of any prediction 

pipeline. Whether used simply to train a larger model 35 (ADD MORE) or as an integral 

part of the modelling process itself 36,37, protein modeling approaches rely on high quality 

known structures. Large, diverse libraries of structural data further underly many other 

protein-focused computational resources. From structural alignment and search programs 

38–40 to frameworks aimed at designing novel protein structures 41,42, databases like PDB 

provide the foundation for essential tools to both study and engineer protein molecules. 

In addition to the biological data of interest, most -omics and structural databases 

also collect some amount of metadata tied to each sample or experiment. Such metadata 

are particularly beneficial in tying together large, pooled datasets as they can often provide 

scientifically relevant information that can be used to stratify or classify sample data into 

meaningful groups. This is the case with passaging annotations for viral sequencing data 

43–45, geographic and date/time data for pathogen surveillance 46–49, and growth condition 

information for various microbial samples 50. As microbial researchers increasingly 

recognize the importance and value of sample metadata, metadata specific databases such 

as BacDive 51 have been developed to collate relevant information from a vast array of 

sources into an freely accessible repository. 

1.3 SUMMARY 

Here, I leverage large, heterogeneous datasets to provide novel insights into 

pathogenic microbes and the therapeutics used to treat them clinically. Utilizing metadata 

from influenza A sequences in the GISAID database, I highlight key concerns with existing 

nomenclature procedures and outline guidelines to improve and clarify the sequence 

annotation process (Chapter 2). Next, I develop a comprehensive gene coexpression 

network by employing all published V. cholerae RNA sequencing data contained in the 
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SRA in combination with select transposon insertion and chromatin immunoprecipitation 

sequencing data (Chapter 3). This network ultimately provides insight into the role of 

functionally unannotated genes and identifies novel gene-gene relationships. Finally, I 

exploit published PDB structures to characterize the properties of a protein structural motif, 

the beta hairpin, common to antimicrobial peptides and other bioactive compounds 

(Chapter 4). I use this data to establish a set of principles applicable to the design of protein-

therapeutics and other molecules containing the beta hairpin motif. 
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Chapter 2:  Influenza passaging annotations: What they tell us and why 
we should listen 

2.1 INTRODUCTION 

This work has been previously published in the journal Virus Evolution.1 

 

Thousands of influenza viruses are sequenced annually in a global public health endeavor 

aimed at understanding and combating seasonal epidemics. The constant, steady 

proliferation of sequenced viruses from year to year has both led to more information 

available for vaccine development 52 and allowed researchers to create progressively more 

detailed viral phylogenies in an effort to identify regions under selection 53,54. Increasingly 

sophisticated analyses using sequences from various collaborative influenza databases, 

such as the Influenza Research Database Flu database (IRD) 55 and the Global initiative on 

sharing all influenza data Epiflu (GISAID) database (https://www.gisaid.org), have helped 

identify long-term evolutionary trends in influenza viruses 56–58. While these efforts have 

greatly expanded our understanding of influenza virus evolution and have led to more 

informed vaccine development, they have also highlighted a major stumbling block in 

influenza research as a whole: spurious adaptation signals introduced by cell passaging 

43,59–61.  

Although it has long been known that high levels of passaging and cultivation in 

certain cell types can alter influenza strain phenotype and sequence 62–64, recently it has 

been shown that even low levels of passaging in a wide range of cell types can introduce 

false adaptation signals. Spurious adaptation signals were first identified in egg passaged 
 

1DuPai, C. D. et al. Influenza passaging annotations: what they tell us and why we should listen. Virus 
Evol. 5, (2019). C.D.D. and C.O.W. conceived and designed the analysis pipeline. C.D.D. & C.D.M. 
collected and analyzed the data. C.B.M., R.G., & S.M. provided input on data interpretations and technical 
expertise. C.D.D. wrote the manuscript and designed all figures. All authors edited and revised the 
manuscript. 



 6 

influenza sequences some 25 years ago 63. Since then, similar signals have been shown to 

originate in samples cultivated in a myriad of cell types derived from diverse species and 

tissues, including canine 43,65,66, monkey 43, and hamster 67 cell lines. 

The recent identification of a spurious Zanamivir (influenza neuraminidase 

inhibitor) resistant mutation in MDCK (Mardin Darby Canine Kidney) passaged sequences 

68 highlights that such false signals represent more than just a theoretical concern for the 

influenza research and the larger medical communities. While the Zanamivir example is 

concerning, the impact of such erroneous information on seasonal vaccine development is 

of a potential greater medical threat. False signals complicate downstream analysis and can 

lead to poorly inferred evolutionary trends, which may ultimately result in improper strain 

selection and the development of less effective vaccines. Indeed, recent sub-optimal 

vaccine strains may have passaged isolates to blame, as highlighted by structural and 

biochemical analyses linking the poor performance of vaccines developed from egg-

passaged sequences directly to mutations caused by passaging 69–71. 

While research efforts into other human viruses may also encounter false adaptation 

signals related to cell passaging, the issue is particularly pronounced in influenza virus 

because of the diversity of cell lines used to culture the virus and the seasonal vaccine 

development efforts. In terms of cell line diversity, most other human viruses are solely 

cultured in primate cell lines (e.g., Zika virus or Ebola virus) or in human cell lines (HIV) 

72–74, and these cell lines are likely to produce less significant adaptation signals than the 

broad collection of cell lines in which influenza samples are cultivated. Influenza is also 

unique in that global influenza surveillance efforts are aimed at producing yearly vaccines 

that are likely more influenced by false adaptation signals compared to vaccines or 

treatments developed over longer periods for slower evolving and non-seasonal disease 

agents. 
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With growing focus on the effects of cell passaging on influenza sequencing data, 

it is becoming increasingly important for researchers to clearly understand the 

nomenclature used to annotate passaged sequences. To facilitate this understanding, we 

provide below a clear outline of existing annotation strategies for common sequences in 

the IRD, GISAID, and SIB OpenFluDB (OpenFlu, http://OpenFlu.vital-it.ch/) 

databases, and we propose a standardized approach to annotating isolates. We hope that 

this perspective will catalyze a more systematic approach to creating, storing, and 

analyzing passaging information in the influenza research community, and that this effort 

will ultimately strengthen research efforts that lead to refinements in the seasonal vaccine 

strain selection process. 

2.2 PASSAGING: WE DO IT BECAUSE WE HAVE TO 

Given the growing body of research illuminating issues with cell-passaged influenza 

sequences and the increasing availability of sequences from original clinical specimens, 

one has to ask why passage influenza samples at all? Most influenza research, whether 

the investigation involves vaccine development or not, needs to propagate viruses in vitro 

in order to analyze host characteristics. In an ideal world, clinical specimens would be 

sequenced directly, analyzed, and used to create an accurate model of influenza adaption 

that would inform strain inclusion for vaccine development with little to no bias. This best-

case scenario, however, is impeded by the techniques needed to characterize viruses in 

vitro. 

While it is true that many influenza clinical specimens are directly sequenced 

without passaging, clinical specimens do not typically provide the amount of virologic 

material necessary to perform the standard antigenic assays: the hemagglutination-

inhibition (HI) test, which is essential in strain selection during vaccine development 
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(Figure 2.1) or animal experiments 75,76. Indeed, the HI assay requires a minimum of 

approximately 7 logs of virus per 50uL 77 (8 hemagglutination units/50uL 78), which is 

acquired through one or more rounds of passaging. Additionally, two types of vaccines 

require strains which must be passaged either in eggs or in a qualified MDCK cell line 79,80. 

Thus, while the use of sequences derived from original clinical material represent a 

research ideal, the current reality is that passaged isolates are a necessary step in obtaining 

sufficient antigenic and genetic information for vaccine development; therefore, it is 

important to have a clear understanding of passaging and its effects on viral sequences. 

2.3 PASSAGING NOMENCLATURE 

Currently, the vast majority of influenza sequences are passaged isolates from a menagerie 

of various cell types. This passaging information is indicated via a patchwork of non-

standard nomenclature methods that vary wildly across and even within databases. Indeed, 

the passaging information associated with A (H3N2) samples collected between 2005- 

2018 and stored in OpenFlu, IRD, and GISAID illustrates the haphazard naming and 

numbering strategies for various cell types used to passage isolates (Table 1). In the 

GISAID database alone, MDCK passaged samples are indicated with at least 15 variable 

naming schemes from different institutions. The absence of clear labeling patterns 

combined with the extreme variability in naming conventions across cell types and 

databases create a Gordian knot for researchers seeking to disentangle the effects of 

passaging on influenza sequences. Despite ongoing work to develop tools to parse passage 

history abbreviations any such tool will require constant manual updates to keep pace with 

novel abbreviations introduced by new entries. 

Notwithstanding substantial heterogeneity in approach, all passaging annotations 

aim to provide similar relevant information about the history of the cultivation of an 
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influenza isolate sequence: typically, the type of cell(s) used in passaging, number of 

passages, and cell handling data (movement between laboratories and/or change in 

substrate). This information is then used both to identify factors responsible for false 

adaptation signals and to help distinguish which sequences should be excluded from 

downstream analyses. 

2.3.1 Cell type 

Annotated influenza samples are typically passaged in one or more of only a handful of 

cell types. Annotations generally begin with an indicator of the cell line used, such as SIAT 

for MDCK SIAT cells, E for egg, and PMK for primary monkey kidney (Table 2). These 

indicators are in no way standardized and substantial variation exists for each cell type. 

Figure 2.2 illustrates the frequency of unique labels used to identify sequences passaged at 

least once in a monkey cell line. While these labels are likely similar enough to allow a 

researcher to manually distinguish samples that have been passaged in monkey cell lines 

from those that have not, they are dissimilar enough to make it difficult for an automated 

script to efficiently do the same. In addition, many indicators are vague or ambiguous (i.e. 

X1 or C1 for a sample that has been passaged once in “an unspecified cell line”), and a 

significant portion of influenza A(H3N2) and A(H1N1) samples lack any cell type 

indicator or passaging annotation whatsoever (Figure 2.3A). Although the proportion of 

such unclearly annotated isolates has decreased in recent years, they still accounted for 

roughly one third of all recorded A(H3N2) isolates in 2017 (Figure 2.3B).  

Even though many influenza virus isolates have missing passaging annotations or 

are ambiguously labeled, several studies have successfully identified the impact of 

passaging on sequence fidelity in the most commonly used cell types 43,65–67. For influenza 

A(H3N2) viruses, these studies have shown that MDCK cells expressing human SIAT1 
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produce sequences that differ the least from sequences derived from original clinical 

samples and are now (from 2015 onwards) the predominate cell type used in North 

America to passage isolates as per GISAID records 43,61,66. 

2.3.2 Number of passages 

Passage number, the most uniformly recorded annotation aspect, is consistently indicated 

by a number succeeding a cell type indicator with or without a space between (e.g., 

MDCK2 or MDCK 2). This convention allows researchers to easily parse annotations for 

passage number information, although some confusion arises when cell line names include 

numbers (e.g., MV1LU cells) and when passaging annotations lack clear indicators for all 

cell types (e.g., C 3 + 1). As with cell type, many samples exclude information about 

passage number. This lack of information is represented either explicitly with an X 

following a cell type indicator or implicitly with lack of a number indicating no 

information. 

Due to the reasonably clear and consistent nomenclature currently in use, passage 

number is perhaps the easiest factor to study when focusing on influenza adaptation to cell 

culture. As such, several groups have been able to show that each additional passage has a 

consistent, additive impact on the presence of false adaptation signals in sequenced 

samples. Across the most commonly used cell types, sequences diverge more from original 

clinical specimens as passage number increases 43,62. Since most annotated sequences 

plainly indicate the number of passages it is also easy to consider this trend when inferring 

influenza virus phylogenies or selecting vaccine strains. Researchers can simply favor 

sequences which have been passaged less, although the additive effect of passaging makes 

it difficult to provide an absolute limit on the number of passages acceptable for any given 

cell type. 
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2.3.3 Heterogeneous passaging and cell handling data 

Samples are also often passaged in multiple cell lines and/or cell types. Such passaging is 

commonly indicated by a wide array of symbols, including “and”, blank spaces, “,”, “-”, 

“_”, “;”, and “+”. Cell lines can also be listed with no separation, e.g. M3C3 to indicate 

three passages in MDCK and three in some other cell line, and certain symbols are used by 

some researchers to indicate more information than just passaging, such as “/” indicating 

the transfer of a strain between labs or institutions. This diversity adds another layer of 

difficulty to parsing sample annotations, and it has made it particularly difficult to 

investigate the impact of heterogeneous passaging on sequence fidelity. Consequently, 

most studies lump such samples together and either analyze them as a heterogeneous group 

61 or exclude them altogether 43. Such lumped analyses mean that little can be determined 

about the effects of heterogeneous passaging and freeze–thaw cycles in specific cell lines. 

2.3.4 Database differences 

In an effort to strengthen influenza surveillance efforts, several databases of influenza 

sequences are maintained, the three largest of which are GISAID, IRD, and OpenFlu. Each 

of these databases collects sequences from different sources, although there is a fair amount 

of overlap (see Figure 2.3A) as all include publicly available samples from the International 

Nucleotide Sequence Database Collaboration (INSDC, http://www.insdc.org), stored in the 

National Center for Biotechnology Information’s GenBank repository 19. While each 

database supplements these INSDC samples with user-uploaded sequences, IRD and 

OpenFlu have far fewer user-uploaded data than GISAID, which includes nearly all 

available influenza A(H3N2) and (H1N1) data (Fig. 2.3A). Despite the large amount of 

shared isolate data across databases, each database parses annotations into differently 

named fields. For example, the sequence and metadata for the influenza A(H3N2) isolate 
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A/Zhuhai/964/2008 was uploaded to Genbank on July 24, 2016 with passage indicated as 

“MDCK” under the “lab_host” field of the structured comments. In the corresponding 

GISAID record the passage information is listed correctly under “passage details/history” 

as “MDCK” while in IRD and OpenFlu the same sample is listed as “N/A” and “no 

information” under the fields “Passage History” and “passage”, respectively. The correct 

annotation is present in IRD under “lab host”, a field that cannot be included when 

downloading sample information. The correct annotation is wholly absent from the 

OpenFlu record, even though other records from the same submission did properly import 

the passaging information from GenBank to OpenFlu under the “passage” field. 

Consequently, each database will not only contain some degree of unique samples but also 

divergent nomenclature standards and metadata that can produce conflicting information 

for the same sample. These variations make it difficult for researchers to easily integrate 

and investigate sequences from multiple databases, and they may bring a well annotated 

isolate’s passaging status into question. 

2.3.5 Towards a standard nomenclature 

Because of the great diversity in annotation strategies, it is difficult to effectively establish 

exclusion criteria for passaged influenza sequences. Until the effects of cell passaging are 

better understood it will remain unclear which, if any, cell types produce influenza 

sequences that are truly free from false adaptation signals. We therefore propose the use of 

new standard names for common cell lines (Table 2) and a new universal passage 

annotation convention for all influenza samples (Table 3). These new standards use 

elements from common existing annotations. They were selected for ease of both human 

and machine parsability, while staying as close as possible to existing annotation practices, 

to minimize potential confusion and cost of switching over. The vast majority of existing 
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isolates are passaged in one of the cell lines indicated in Table 2 but adding additional 

names for uncommon or novel cell lines should prove relatively straightforward once initial 

guidelines are established. 

Additionally, we strongly suggest that influenza databases incorporate changes to 

encourage accurate passaging annotation and facilitate passage-focused research. These 

include requiring a passage history field for all sequence submissions, validating that 

passage history entries either match existing standards (for common cell lines) or are 

further explained in another field (uncommon cell lines), and making passage history 

searchable by discrete categories such as Egg, Cell, and Original Clinical Specimen. 

2.4 CONCLUSION 

Making sense of influenza passaging annotations is a daunting task. However, it is 

becoming increasingly important for epidemiologists and vaccine developers to consider 

passage history of isolates when selecting sequences for inclusion in phylodynamic 

analyses or in vaccines. While a clear and definitive understanding of the effects of viral 

passaging in all cell types is a distant end point of current research efforts, awareness within 

the influenza community of the negative impact of cell passaging on sequence fidelity is 

easily and currently attainable and can only improve epidemiological and clinical research 

efforts. This highlights the need for a more standard approach to passage nomenclature 

across influenza researchers and producers of sequence data. As the influenza community 

is looked upon as a model of data sharing for other epidemic viruses 16, we encourage this 

highly collaborative community to work together to enact a new global naming convention 

that further evinces the power and effectiveness of open research. 
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2.5 METHODS 

Annotations were obtained for all (i.e. global) unique, non-laboratory influenza A(H3N2) 

and A(H1N1) isolates collected from humans between Jan 1st 2005 and Nov 8th 2018 and 

uploaded to GISAID, OpenFlu, or IRD by Nov 8th 2018 for A(H3N2) isolates and Nov 12th 

2018 for A(H1N1) isolates. All annotations were first converted to uppercase characters 

and then occurrences of each unique isolate and annotation were counted and manually 

sorted by cell type and passage number. These data were used to generate Figures  2.2 and  

2.3 and all Tables. 
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2.6 FIGURES 

 
Figure 2.1: (Continued on next page) 

Figure 2.1: Hemagglutination inhibition (HI) assay for vaccine development.  
(A) Overview of the HI assay. Hemagglutinin on the surface of viral particles bind red 
blood cells, creating a lattice of blood cells that show up as a diffuse layer at the top of a 
microtiter plate well. When enough antibodies with strong affinity for the viral 
hemagglutinin are present, viral particles are bound and the red blood cells sink, forming 
a small dot at the bottom of the microtiter plate well. (B) Journey of a viral particle, from 
isolation to HI assay. Viral particles are isolated, cell passaged (often multiple times), and 
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then either tested for hemagglutination activity or used to produce antibodies via 
infection of animals with naïve immune systems. 
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Figure 2.2: Word cloud of influenza A(H3N2) sequence annotations. 
This word cloud indicates passaging in one or more cell lines where at least one is a 
primary monkey kidney cell line. Word height corresponds to number of sequences 
exhibiting a given pattern. 
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Figure 2.3: Influenza A sequence isolate counts across three databases, 2005–2018. 
(A) Aggregate isolate data by type. GISAID accounts for the majority of unique isolates 
in both strains, about half of which either lack clear passage information or have been 
passaged in multiple cell lines. Isolate types are defined as follows: “clinical specimen”: 
any unpassaged direct clinical specimen; “single”: passaged in single identified cell line; 
“multiple”: passaged in multiple identified cell lines; “ambiguous”: passaging 
information unclear (may be single unidentified cell line or multiple cell lines with at 
least one line unclear). (B) Yearly isolate data by type. In both analyzed strains there is an 
increase in direct clinical specimen sequences relative to other samples in more recent 
years. Includes unique records across all three databases (GISAID, IRD, Openflu). Isolate 
types are as under (A) except “non-ambiguous” which refers to isolates passaged in one 
or multiple identified cell lines. 
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2.7 TABLES 

Table 2.1: Common influenza A(H3N2) passaging annotation patterns across three 
databases. 

 
T represents type of cell, # represents a single digit number. 
  

Base Pattern No. Cell Lines Example 

CLINICAL SPECIMEN 0 CLINICAL SPECIMEN 

DIRECT 0 DIRECT 

OR 0 OR 

ORIGINAL 0 ORIGINAL 

ORIGINAL  SAMPLE 0 ORIGINAL  SAMPLE 

ORIGINAL SPECIMEN 0 ORIGINAL SPECIMEN 

PI 1 PI 
T 1 MDCK 

T# 1 MDCK1 

T CELLS 1 MDCK CELLS 

P-# 1 P-1 

P# 1 P1 

PASSAGE DETAILS: T# 1 PASSAGE DETAILS: PMK01 

PASSAGE DETAILS: T 1 PASSAGE DETAILS: MDCK 

T# (MM/DD/YYYY) 1 S1 (09/30/2008) 

T# (YYYY-MM-DD) 1 S2 (2008-09-30) 

T # +# 1 MDCK 1 +1 

TT# 1 MDCKMDCK1 

TT# 2 HEPGMDCK1 
T/T# 2 X/C1 

T # +T# 2 MDCK 2 +SIAT1 

T#/T# 2 C1/C2 

T# T# 2 MDCK2 Siat1 

T#/T# (MM/DD/YYYY) 2 C1/S1 (01/04/2015) 
 

No Information 
 

-N/A- No Information -N/A- 
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Table 2.2: Existing naming conventions and suggested standardized names for 
common cell lines used to passage influenza viruses.  

Cell Type Common Existing Annotations Suggested Name 
Egg E# | Egg# | Embryonated Eggs | AM EGG 

Madin-Darby Canine Kidney MDCK# | M# | MDCK CELLS MDCK 
Rhesus Monkey Kidney RMK# | RHMK# | RII | PMK# | PRHMK# RhMK 

Madin-Darby Canine Kidney - SIAT MDCK-SIAT# | S# | SIATMDCK# | SIAT# SIAT 

sss Original | OR | Clinical Specimen | No Passage | 
Primary | Direct | Nasal Swab | CS Original Specimen 

Unknown None |   | -N/A- N/A 
Unknown Cell C# | P# | X# Unknown Cell 

 
The symbol “#” represents a single digit number other than 0. Note, this table does not 
attempt to provide a complete list of all possible cell lines but rather focuses on the most 
common cell types across three databases.  
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Table 2.3: Suggested passaging annotation scheme for influenza isolates. 

Suggested annotation changes Example 

One standardized name per cell line MDCK 

Cell line names should not end in numbers or X SIAT 

Passage number indicated via a number immediately following the cell line SIAT1 

Unknown passage number indicated with an X SIATX 

Intra-lab passaging in multiple cell lines is denoted with + SIAT1+EGG1 

Passaging in multiple cell lines with transfer between labs is denoted with / SIAT1/EGG1 

 
Cell lines should be represented by a standardized name not ending in X or a number. 
This includes SIAT cells which previously were also designated as SIAT1 and should be 
referenced only as SIAT for consistency with the new scheme. Multiple passages in the 
same cell line should be represented by a number (if number is known) or an X (if 
number is not known) immediately following the cell line name. Passages in different cell 
lines should be separated by a plus (+) to indicate intra-lab passaging or a slash (/) to 
indicate transfer between labs.  
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Chapter 3: A comprehensive co-expression network analysis in Vibrio 
cholerae 

3.1 INTRODUCTION 

This work has been previously published in the journal mSystem.1 

 

Since the completion of the first Vibrio cholerae genome sequence in 2000, over a thousand 

V. cholerae isolates have been sequenced 81,82. These sequences has allowed for the 

development of sophisticated phylogeographic models, which emphasize the importance 

of controlling the spread of virulent and antibiotic resistant V. cholerae strains to lower 

disease burden, in addition to fighting endemic local strains 82–86. The integration of 

hundreds of genomes paired with temporal and geographic information into ever growing 

phylogenies enables analyses using selection models to predict future population trends 

and derive biologically meaningful insights into V. cholerae evolution 87,88. By developing 

treatment and vaccination strategies based on phylogenetic models 89, organizations and 

governments can more efficiently leverage limited resources and more effectively prevent 

disease spread in line with the World Health Organization’s goal of eradicating cholera by 

2030 90.  

Alongside advances in genomics research, the V. cholerae and broader bacterial 

biology communities have benefited greatly from other next generation sequencing (NGS) 

technologies. Targeted sequencing experiments have been essential in mapping complex 

virulence pathways, illuminating a novel interbacterial defense system, and expanding our 

knowledge of the role of non-coding RNA (ncRNA) in the vibrio life cycle 91–97. Further 
 

1DuPai, C. D., Wilke, C. O. & Davies, B. W. A Comprehensive Coexpression Network Analysis in Vibrio 
cholerae. mSystems 5, e00550-20 (2020). C.D.D. and C.O.W. conceived and designed the analysis pipeline. 
C.D.D. collected and analyzed the data. B.W.D. provided input on data interpretations and expertise 
pertaining to V. Cholerae genetics. C.D.D. wrote the manuscript and designed all figures. All authors edited 
and revised the manuscript. 
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discoveries such as transcription factor mediated transposon insertion bias 98 and the role 

of cAMP receptor protein in host colonization 99 have benefited from composite research 

strategies utilizing multiple technologies. Similarly, meta-analyses utilizing pooled data 

from multiple experiments are empowered by the increasing availability of high quality 

bacterial NGS datasets.  Expression data is particularly amenable to such pooling and can 

be used to accurately group genes into functional modules based on their co-expression 100. 

In bacteria, weighted gene co-expression network analysis (WGCNA) 101 has been 

successfully used to underscore biologically important genes and gene-gene relationships 

via “guilt-by-association” approaches 102,103. These studies have taken advantage of larger 

and larger heterogeneous microarray datasets to provide novel biological insights via 

existing data. 

Despite major advances in sequencing technologies and research strategies, most 

of the over two dozen existing RNA-seq experiments in V. cholerae have been limited to 

targeted approaches that involve quantifying the differential abundance of genetic material 

across a handful of conditions. Via these approaches, any change in expression observed 

in one experiment is nearly impossible to generalize to other treatment conditions and 

analyses are limited to a few pathways or genes of interest. In contrast, meta-analyses such 

as WGCNA can uncover much broader relationships throughout the entire genome by 

combining information from multiple datasets. As there is no existing co-expression 

analysis in V. cholerae to date, the accumulation of over 300 publicly available RNA-seq 

samples from targeted RNA-seq experiments represents a heretofore untapped resource for 

the cholera community.  

Motivated by the success of pooled genetic sequencing analyses, our current work 

utilizes all publicly available V. cholerae RNA-seq based expression-level data to generate 

a co-expression network. We expand upon existing bacterial WGCNA approaches by 
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integrating broader sequencing data (including ChIP-seq and Tn-seq) and multiple 

annotation platforms into our analysis. Our network ultimately contributes information on 

connections across all V. cholerae genes, including the roughly 1500 predicted but 

functionally un-annotated genetic elements that account for some 37% of the genome. 

More specifically, we implicate new loci in virulence regulation and clearly demonstrate a 

powerful and accurate approach to hypothesis generation via our described network. 

3.2 RESULTS 

To generate our co-expression analysis in V. cholerae, we applied our WGCNA pipeline 

to analyze twenty-seven V. cholerae RNA sequencing experiments deposited in NCBI’s 

Sequence Read Archive (SRA) in addition to two novel experiments. The RNA sequencing 

samples are derived from experiments exploring a range of important V. cholerae processes 

including intestinal colonization, quorum sensing, and stress response. In total, our network 

includes 300 individual RNA-seq samples (Supp. Table S1). All samples were mapped to 

a recently inferred V. cholerae transcriptome derived from the N16961 reference genome 

81,93. This reference was chosen because the majority (293) of samples were collected from 

strains N16961 or the closely related C6706 and A1552.  

Figure 3.1 outlines the process used to generate our co-expression network with a 

small subset of genes. The five included loci are known to be involved in cysteine 

metabolism with VC0384–VC0386 and VC0539–VC0540 falling within two separate 

operons. Following normalization of mapped transcripts (Fig. 3.1A), a weighted gene co-

expression network analysis was performed using WGCNA 101. First, a Pearson correlation 

matrix is calculated for expression levels of all genes (Fig. 3.1B). This correlation matrix 

clearly captures strong relationships between co-expressing genes but can produce 

background noise from un-related gene pairs and underlying gene structures (i.e. operons). 
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We limit this noise by calculating a  topological overlap matrix (TOM) 104 that weights 

pairwise co-expression data based on each gene’s interactions with all other genes (Fig. 

3.1C). In this way, the relationships between genes that fall within the same subnetwork 

are favored while signals from less tightly co-regulated genes are abated, This TOM, after 

filtering for normalized values greater than 0.1, is used to construct an accurate co-

expression network that captures biologically meaningful relationships while minimizing 

background noise (Fig. 3.1D). 

In addition to co-expression data, our network and analyses incorporate information 

from multiple other sources. Our network includes predicted pathway annotations and gene 

functional knowledge from the NCBI Biosystems database as well as the DAVID, Panther, 

and KEGG databases 105–108. Operon structure was inferred using Operon-mapper 109. 

Additionally, importance labels were applied to genes with no known function which have 

been implicated as playing a role in intestinal colonization or in vitro growth via Tn-seq 

based essentiality experiments 94,110. Information from ChIP-seq binding assays and 

microarray results were incorporated in downstream analyses to substantiate network 

derived relationships. By combining all of these data sources we were able to develop and 

analyze an informative network of co-expressing genes that provides both qualitative and 

quantitative information about relationships between transcripts across forty-nine gene-

clusters covering the entire V. cholerae genome (Supp. Data S1, S2). 

3.2.1 A network of novel, unexpected, and informative interactions 

As many functionally related bacterial genes are co-expressed in operons such as VC0384–

VC0386 above, we sought to uncover if operon structure was a contributing factor to our 

network or specific subnetworks. Indeed, gene pairs predicted to fall within the same 

operon did show significantly higher average normalized co-expression than their non-
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operon counterparts (0.186 vs. 0.147, p < 0.001), and some subnetworks, such as the 

Ribosome Related subnetwork (Fig. 3.2A), contain a high proportion of intra-operon gene 

pairs (Supp. Fig. 1). However, across our full network only 0.2% of all co-expressing gene 

pairs fall within the same operon and no subnetwork has a majority of such pairs (Supp. 

Fig. 1). Moreover, our overall network captures information on relationships with the 

roughly one third of unannotated V. cholerae genes (Supp. Fig. 2), providing insight into 

functional roles that are not obvious based on gene homology or known operon structure. 

3.2.2 Genes in known pathways cluster together and contextualize genes of 
unknown function 

As a demonstration of the accuracy of our approach, we have highlighted several clusters 

that recapitulate known interactions between transcripts involved in highly conserved, well 

studied cellular processes (Fig. 3.2). The correct grouping of transcripts encoding 

ribosomal proteins, tRNAs, and amino acid synthesis proteins into significantly co-

expressing subnetworks provides a positive control for our overall network (Fig. 3.2A–C). 

Importantly, our analysis clustered together genes known to be involved in more 

specialized processes such as motility and biofilm formation (Fig. 3.2D, E), with 

corresponding gene ontology (GO) 111 and KEGG 107 pathway terms enriched for genes 

within these subnetworks (Fig. 3.3 and Supp. Table S2).  

In addition to capturing relationships between genes involved in specific pathways, 

our approach can also accurately group genes involved in interconnected processes that 

share overlapping regulation, as seen in the environmental sensing subnetwork (Fig. 3.2F).  

This subnetwork includes high level transcriptional regulators, such as AphA, TfoS, and 

TfoY, with known roles mediating the complex interplay between quorum sensing, natural 

competence, type VI secretion, and other related pathways 112–117. As each of these 
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transcription factors is involved in a multitude of cellular processes and significantly co-

expresses with hundreds of other genes, our analysis describes their closest connections 

under parameters designed to find meaningful relationships that are also manageable to 

interpret. By altering these parameters (significance cut-offs, minimum number of genes 

per cluster, clustering algorithm, etc.) analysis of the overall network can be fine-tuned to 

focus in on specific biological processes or explore the nodes that drive connections 

between processes that are necessary for V. cholerae to adapt and survive in diverse 

environments. 

The subnetworks outlined in Fig. 3.2 support the utility of our analysis in powering 

guilt-by-association based inference of gene function 118. Because each of these gene 

clusters contain co-expressing genes that are involved in the same biological process, it can 

be assumed that unannotated genes in the same cluster are likely involved in the same 

process. Such links, while not definitive on their own, can be used with other data to hint 

at gene functions. For example, genes with known function in Fig. 3.2E are primarily 

involved in biofilm formation 119,120. This clustering of biofilm genes suggests that the few 

genes with no known function in this subnetwork may be involved in the same process. 

Two of these unannotated transcripts, VC1937 and VC2388, are, per GO cellular 

component location labels, “integral membrane components.” Further, the VC2388 locus 

is directly upstream of a Vcr084, a short RNA involved in quorum sensing which is 

essential for biofilm formation 121.  Taken together, this evidence suggests that VC1937 

and VC2388 may play a role in some of the complex membrane restructuring necessary 

for biofilm formation. In facilitating such guilt-by-association approaches to novel 

hypothesis generation, our co-expression network serves as a highly efficient substitute for 

more traditional screening assays. 
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3.2.3 A virulence subnetwork suggests novel gene functions 

While the biofilm associated subnetwork (Fig. 3.2E) presents a relatively simple example 

of the functional insights our co-expression data can yield, the virulence-related 

subnetwork (Fig. 3.4A) represents a more complex case in which genes of known function 

provide clues to the role of unannotated genes. The majority of transcripts in this module 

originate from within the virulence-related ToxR regulon that consists principally of genes 

on the V. cholerae pathogenicity island 1 (VC0809–VC0848) and cholera toxin sub-units 

A and B (ctxAB, VC1456 and VC1457) 122. Other genes in this subnetwork, such as vpsJ, 

VC1806, VC1810, and chitinase, are predominately localized to virulence islands and other 

areas of the genome under tight control of the known virulence regulators ToxR, ToxT, or 

H-NS as determined via ChIP and/or RNA-seq 123–125. Genes in this subnetwork are also 

enriched for virulence related GO and KEGG terms, such as “pathogenesis” and “Vibrio 

cholerae infection” (Fig. 3.3). The clustering of such genes with well-characterized 

interactions into a cohesive subnetwork is further validation of our ability to generate 

accurate co-expression maps of related genes. The association of uncharacterized genes in 

these clusters suggests they may also play a role in V. cholerae virulence and generates 

hypotheses about the function of unknown genes within this module.  

Many of the important transcripts with unknown function are expected to co-

express with known virulence genes because they fall within vibrio pathogenicity island 

(VPI)-1 (VC0810, VC0821–VC0823, VC0842) or VPI-2 (VC1806, VC1810), or are 

proximal to other virulence genes (VC1945) 126,127. However, our analysis also identified 

genes such as VCA0094–VCA0096 which are on a completely different chromosome than 

the rest of the subnetwork and do not neighbor any known virulence elements.  

A major benefit of our approach is that we incorporate additional regulatory data 

such as ChIP and Tn-seq into our co-expression analysis, allowing us to verify the 
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association between VCA0094–VCA0096 and virulence pathways using existing 

experimental data. Tn-seq analysis has previously identified VCA0094 and VCA0095 as 

essential for infection of a rabbit intestine 94, suggesting that these loci play a role in 

virulence. Because transcripts for these genes co-express with genes regulated by ToxT, 

ToxR, and H-NS, we also probed existing ChIP-seq binding datasets 92,99,124 to see if any 

of these well-studied transcription factors bind near the VCA0094–96 loci. While ToxT 

binding was not observed near this site (data not shown), our analysis identified significant 

peaks in the promoter region of VCA0094 for both ToxR and H-NS as calculated via re-

analysis of existing binding data from 124. Both peaks showed a large and significant 

increase in binding affinity (log2 fold change in average occupancy) when compared 

against input controls (Fig. 3.4B). H-NS showed a clear binding peak in the region of the 

VCA0094 promoter that extended in a diffuse manner to the VCA0095 transcription start 

site while ToxR binding covered a similar region but was more diffuse throughout (data 

not shown). Collectively these results indicate virulence related functions for the products 

of the VCA0094–VCA0096 transcripts. Although the exact mechanistic role of these genes 

remains elusive, we have nevertheless demonstrated the ability of our pipeline to generate 

meaningful hypotheses by incorporating existing data from a multitude of sources. 

3.2.4 Co-expression data provides an accurate in silico complement to RNA-seq 

In addition to the guilt-by-association inference described above, co-expression analysis 

can provide a partial substitute or complement to RNA-seq experiments. Novel, 

meaningful genetic relationships can be found in a co-expression network by focusing on 

the transcripts that are co-regulated with a gene of interest. 

We can apply a network-based approach in lieu of new RNA-seq based experiments 

to identify genes which co-express with rpoS (VC0534) and are similarly involved in 
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bacterial stress response. As our network utilizes only RNA-seq based transcriptomics 

studies and none of these studies involves direct manipulation of rpoS, we can compare 

existing microarray data involving an rpoS (VC0534) deletion mutant 128 to determine how 

accurate our approach is. When applying an absolute co-expression cutoff of 0.1, 272 genes 

are identified as having a relationship with rpoS expression in both our network analysis 

and the rpoS mutant microarray data (Fig. 3.5A). This represents nearly two-thirds of genes 

identified as differentially expressed in the original microarray study. While our network 

links far more genes with rpoS than the microarray approach, this is in line with recent 

RNA-seq based work that found that 23% of the E. coli genome is regulated by RpoS 129. 

Additionally, all of the flagella and chemotaxis related proteins highlighted as particularly 

informative in the original study are identified by our analysis (Fig. 3.5B) and relevant 

values (i.e. network co-expression and microarray-derived log fold change in expression) 

for the 273 shared transcripts have a Spearman correlation of -0.516. This accuracy is 

achieved without any direct genetic manipulation of the rpoS locus in the RNA-seq datasets 

used to generate our co-expression network and serves as a testament to the potential utility 

and versatility of our approach. 

Our approach to isolating genetic interactions also has advantages over 

transcriptomics-focused sequencing. As seen in Fig. 3.5A, our network-based analysis 

identifies far more genes associated with rpoS. This is likely because RNA-seq-based 

approaches are can identify a broader range of gene transcripts as they are not limited by 

restrictive microarray probes 130. Separate from differences in underlying technology, co-

expression networks are also more likely to detect genes regulating a target’s expression 

than traditional transcriptomics experiments which largely capture downstream responses 

to changes in a target’s expression 131,132. Thus, a co-expression network can provide an 

alternative perspective to complement or clarify transcriptomics data. 
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3.3 Discussion 

We have successfully constructed the first V. cholerae co-expression network through a 

computationally inexpensive process that is simple, easily expanded upon, and 

straightforward to implement in other organisms. Our network effectively identifies 

canonical gene clusters related to specific molecular pathways or functions, such as those 

corresponding to tRNAs or biofilm proteins. We have also outlined two use-cases for the 

data provided and have shown the accuracy of both approaches using existing data. 

Additionally, we have included relevant network files as well as raw read counts across 

RNA-seq conditions (Supp. Data S1, S2 & Supp. Table S3) alongside all code used in our 

analysis (see Materials and Methods) to encourage broad usage of this data. 

Our results have proven both the utility and accuracy of our approach despite in-

depth analysis limited to a handful of genes across five of the forty-nine observed gene 

clusters. Furthermore, our work with the virulence subnetwork supports previously 

published research loosely implicating genes VCA0094–VCA0096 in virulence and 

virulence related functions. All three transcripts have shown up in screens focusing on 

biofilm development 133, and SOS response 93. From a mechanistic perspective, protein 

homology analysis via NCBI’s Conserved Domain Database 134 indicates that VCA0094 

possesses a DNA-binding transcriptional regulator domain while VCA0096 contains 

domains that implicate it in protein activation via proteolysis. These data combined with 

our novel findings hint at the potential biological importance of this genomic locus. 

When viewed through the lens of a specific gene of interest, co-expression data is 

in large part analogous to the differential expression data produced by RNA-seq 

experiments. While RNA-seq offers finer assay control and can be tailored more exactly 

to suit a specific research question, there are both technical and practical limitations that 

may make such an approach impractical. Whether an experimenter is interested in 
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examining the role of an essential locus or is limited by available resources, our co-

expression analysis presents a fast, free, and faithful alternative for probing genetic 

interactions as outlined in our analysis of rpoS above. 

Major motivations for this work include the successful implementation of bacterial-

focus, microarray-based co-expression networks and the lack of clear functional 

knowledge for a large portion of V. cholerae genes. Besides more simple guilt-by-

association studies 102,103, co-expression networks have helped to elucidate relationships in 

diverse microbial communities 135–138 and enable comparisons across strains and species 

139–141. These works as well as the relative dearth of knowledge about the V. cholerae 

genome (roughly two third of genes are annotated compared to around 86% percent of all 

E. coli genes 142) and the growing abundance of V. cholerae focused NGS data served as 

the impetus for this research. 

The calculated co-expression network, though accurate, could be improved via the 

inclusion of more experiments and more extensive SRA annotations. Our somewhat 

limited pooled dataset consisting of three hundred samples is an order of magnitude off 

from the few thousand samples necessary to derive the most faithful co-expression 

estimates 143. Though sample size will improve as more V. cholerae RNA-seq experiments 

are published, more samples may also increase the risk posed by batch effects which cause 

spurious correlations among genes through technical variation 144,145. The diverse structure 

of our current data helps to minimize the impact of batch effects but this would be offset 

by the future inclusion of larger datasets from single experiments. While automated sample 

clustering methods 146–148 can effectively group overly correlated samples, there is no way 

to know if the correlation is biological (i.e. meaningful) or technical (i.e. noise) in origin. 

Likewise, manual curation of batch annotations is also difficult since few SRA records are 

extensively annotated with detailed experimental conditions (e.g. bacterial growth stage, 
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exact medium used). Thus, careful consideration may be necessary when expanding and 

generalizing this analysis to include future data. 

The mapping of raw reads to a transcriptome derived from a single reference 

genome presents a limitation to our current work. While this approach is reasonable given 

the similarity of the vast majority of included strains to our reference, a more elaborate 

comparative transcriptomic strategy 149,150 would be ideal if more diverse samples are 

included in future analyses. This is especially true when considering the inclusion of 

expression data from clinical samples which are likely to have much more genomic 

variability than the closely related lab cultured strains used to construct our network. On 

the other hand, because comparative transcriptomics requires defining homologous alleles 

across all strains analyzed 151, such an approach would greatly increase the difficulty of 

incorporating strains without an assembled genome.  

In summary, our co-expression network can drive functional hypotheses for 

unannotated genes in V. cholerae. As the Vibrio community steadily adds high quality data 

from increasingly sophisticated sequencing experiments to public databases our imputed 

network can only improve, providing ever deeper insights into the V. cholerae genome. At 

the same time, highly annotated transcript-based co-expression networks can empower 

research with related technologies (e.g. single cell transcriptomics and dual RNA-seq) and 

research into a host of other clinically relevant bacteria, such as Pseudomonas aeruginosa 

or Staphylococcus aureus which have over 2000 and 1400 RNA-seq experiments in SRA 

respectively. 
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3.4 MATERIALS AND METHODS 

3.4.1 Data collection and processing 

All RNA and ChIP sequencing data were downloaded from the Sequence Read Archive 

(SRA)17 and converted to compressed fastq files using the SRA toolkit 

(https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/) (see Table S1 for details on included 

experiments). RNA-seq samples were selected by searching the SRA on Sept 10th, 2019 

for the Organism and Strategy terms “vibrio cholerae” and “rna seq” respectively, resulting 

in 326 initial samples including the 34 novel samples from this publication 

(PRJNA601792). Samples were mapped to a recently inferred V. cholerae transcriptome 

derived from the N16961 reference genome 81,93 using Kallisto version 0.45.1 152. This 

reference was chosen because the majority (293) of samples were collected from strains 

N16961 or the closely related C6706 and A1552. 26 low quality samples with < 50% of 

reads mapping to the reference transcriptome were discarded before further analysis, 

leaving 300 samples used for further analysis.  

For ChIP-seq analysis, accession numbers were identified via the relevant 

publications 92,99,124 and sequences were downloaded from SRA and converted to fastq files 

as above. Raw reads were mapped to the same N16961 reference genome using Bowtie 2 

version 2.3.5.1 153. From this mapping, peaks were identified using MACS2 version 2.1.2 

with an extsize of 225 (various sizes from 150 to 500 were tested with little observable 

difference in peaks identified) 154 and differential binding and significance were calculated 

using DiffBind version 2.12.0 155. 

Processed Tn-seq data were collected directly from published datasets. In vitro 

essentiality and semi-essentiality labels were derived from Chao et al. 2013 Table S1 110, 

with the original labels of domain essential and sick genes replaced with essential and semi-
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essential respectively. We used Table S2 from Fu, Waldor, and Mekalanos 2013 94 to label 

genes involved in host infection, with any gene exhibiting a log2 fold change less than 

negative three deemed essential and any gene with a log2 fold change between negative 

one and negative three deemed semi-essential.  

3.4.2 Network construction 

Figure 3.1 highlights the process used to generate our co-expression network. Kallisto 

derived reads were first imported into R via tximport 156, then normalized using DESeq2 

version 1.24.0 157, resulting in values that are comparable across conditions and 

experiments. Following normalization, a weighted gene co-expression network analysis 

was performed using WGCNA 101. This process is highlighted with a subset of data in 

Figure 3.1 and consists of the sequential calculation of a Pearson correlation matrix, 

adjacency matrix with power ß=6, and, ultimately, topological overlap matrix (TOM) 104 

from normalized gene expression counts across conditions. We further filtered this TOM 

to exclude samples with weighted co-expression <0.1 for all analysis included in the 

Results section.  

Predicted pathway annotations and gene functional knowledge are derived from the 

NCBI Biosystems database as well as DAVID, Panther, and KEGG databases 105–108. Genes 

lacking functional knowledge which are identified as essential or semi-essential in either 

Tn-seq dataset are labeled in network visualizations as “Important Unknown.” Operon 

predictions were inferred using Operon-mapper 109. 

3.4.3 Data availability 

SRA accession numbers and information on included samples can be found in 

Supplementary Table S1. A full, unfiltered network graph is provided in Supplementary 
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File S1 with the corresponding node labels in Supplementary File S2. Raw, un-normalized 

read counts are also provided in Supplementary Table S3. All data analysis and figure 

generation were done using the R programming language, with code available at DOI: 

10.5281/zenodo.3572870. Supplementary Files are available alongside the original 

publication 158. 
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3.5 FIGURES 

 

Figure 3.1: General outline of network construction. 
To explain the overall WGCNA process we have chosen a subset of genes that are 
involved in the same core process, cysteine metabolism. Loci VC0394 – VC0386 are 
predicted to fall within one operon while loci VC0539 and VC0540 in are predicted to be 
in another. (A) Normalized (log2) expression reads for the same genes across multiple 
conditions supply the basis for our co-expression analysis. (B) Correlations are calculated 
from the normalized counts in part A for every pair of genes. (C) An adjacency matrix 
(not shown) is calculated from the correlations in part B and ultimately used to produce a 
topological overlap matrix (TOM) that supplies network edge weights with less noise 
than the raw correlation matrix. While the signal of co-expressing pairs is dampened 
slightly, this step greatly decreases spurious relationships as it favors transcripts which 
co-express with similar sets of genes rather than potentially noisy direct correlations. (D) 
The final network groups transcripts that tightly co-express while indicating what 
pathway they are involved in. In this example, all genes significantly co-express except 
VC0539 and VC0540 despite their co-localization within the same operon. After network 
construction, information is added to label genes based on their function and essentiality 
under virulence and growth conditions.  
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Figure 3.2: Subnetworks recapitulating known results. 
The depicted subnetworks each contain transcripts that are known to be largely involved 
in one or more related biological process(es). For each subnetwork, the nodes represent 
transcripts while the edges represent a co-expression relationship of at least 0.1 between 
transcripts. (A¬–F) Subnetworks involved in the following core processes: ribosome 
related, tRNA transcripts, amino acid synthesis, motility, biofilm, and environmental 
response. For the environmental response subnetwork, nodes corresponding to labelled 
genes of interest are enlarged and outlined in red. 
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Figure 3.3: Significantly enriched GO and KEGG terms for specific subnetworks. 
The indicated terms are significantly enriched within highlighted pathways, with the 
color indicating the significance of said enrichment as determined via the FDR adjusted 
p-value (q-value). The terms are divided by database and, for Gene Ontology (GO) terms, 
GO domain as indicated to the right. 
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Figure 3.4: Virulence related subnetwork. 
(A) This subnetwork contains a majority of genes that are predicted to be involved in 
virulence related pathways, providing clues to the genes with no known functions such as 
those at locus VCA0094–VCA0096. The label PTS subunit IIABC stands for PTS system 
fructose-specific transporter subunit IIABC. (B) Mean binding affinity (log2 fold change 
in occupancy compared to loading control) for different virulence-associated 
transcription factors near the VCA0094–VCA0096 locus. Both H-NS and ToxR show a 
significant binding preference for this region. Error bars indicate standard deviation from 
the mean. 
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Figure 3.5: Comparing RpoS microarray data to co-expressing genes in our WGCNA. 
(A) Overlap of genes with expression pattern related to rpoS expression as identified via 
our network analysis (blue) and existing microarray data (red). The overlapping region 
identifies 272 genes that are common between the two analyses. (B) Breakdown of 
shared genes (overlapping region in A). All of the flagellar and chemotaxis genes 
highlighted as particularly important in the microarray dataset are identified by both 
methods. 
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Chapter 4:  A systematic analysis of the beta hairpin motif in the 
Protein Data Bank 

4.1 INTRODUCTION 

This work has been submitted for publication.1 

 

Beta hairpins, one of the simplest stable protein structural elements, consist of two 

antiparallel beta-sheets joined by a short loop region. Despite their simplicity in form, beta 

hairpins are highly adaptable in function. Beta strands are known to participate in protein–

protein interactions that are often facilitated by specific amino acid orientations159 and beta 

hairpin motifs are no different.160–162 Indeed, these motifs are a core feature in a diverse 

array of bioactive molecules, from large beta barrel proteins that transport cargo through 

cellular membranes163–165 to substantially smaller antimicrobial peptides and peptide 

derivatives.166–168 Whether through self-aggregation,169,170 target binding,171 or 

amphipathic structure formation,164,172 beta hairpin motifs facilitate a range of different 

biological functions. 

In addition to its prevalence in nature, the beta hairpin motif is stable in even small 

structures and extensively adaptable to specific functions, making it a popular choice in 

engineered protein structures. Efforts to design such structures have benefited from several 

decades of research aimed at identifying how beta hairpins form173–175 and what factors 

influence their stability and specific activity.160,176–179 Examples of synthetic proteins that 

have successfully adapted the beta hairpin motif for specialized functions include 

 
1DuPai, C. D., Davies, B. W & Wilke, C. O. A systematic analysis of the beta hairpin motif in the Protein 
Data Bank. Manuscript submitted (2020). C.D.D. and C.O.W. conceived and designed the analysis 
pipeline. C.D.D. collected and analyzed the data. B.W.D. provided input on data interpretations and 
expertise pertaining to bioactive peptides. C.D.D. wrote the manuscript and designed all figures. All 
authors edited and revised the manuscript. 
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hydrogels,167 antimicrobial peptides,180 and various molecules with material science 

applications.166  

Although largely successful, beta hairpin engineering efforts are typically limited 

to testing relatively small libraries involving derivatives of a stable scaffold structure or 

existing protein via peptidomimetics.7,160,162,177,181 With the increasing availability of high 

throughput screening platforms to test for activity in large libraries of de novo 

sequences182–184 there is an obvious need for broader design principles that can be applied 

to the generation of libraries with millions of diverse beta hairpin containing proteins. 

Knowledge of amino acid propensities throughout known beta hairpin sub-structures could 

inform such design principles but existing catalogs are too broadly focused on beta sheets, 

outdated, or limited in scope.174,178,185–188 An up-to-date characterization of amino acid 

distributions at specific positions within beta hairpins does not exist. 

Using a systematic analysis of sequence and structural data from all beta hairpin 

containing proteins in the Protein Data Bank (PDB), we derived key sequence factors and 

patterns common to beta hairpins. Important features include amphipathic faces created by 

the periodic alternation of hydrophilic and hydrophobic amino acids within beta strands, 

the high prevalence of aspartic acid/asparagine caps at the N-terminal end of beta strands, 

and specific residue contacts that are over (e.g. cysteine-cysteine, salt bridges) and under 

(e.g. proline-lysine) represented. These findings give us a broader understanding of 

naturally occurring beta hairpins and will aid future efforts in the design of bioactive 

molecules containing the beta hairpin motif.  

4.2 RESULTS 

To identify and classify motifs we used the following process (see Materials & Methods 

for further detail). We first collected all PDB structures18 and their corresponding amino 
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acid sequences filtered to 90 percent similarity. We then used DSSP-derived secondary 

structure annotations189 to identify potential beta hairpin substructures consisting of two 

antiparallel beta-sheets joined by a short loop region (Fig. 4.1). After determining 

contacting residues between beta strands, we excluded any structures with less than four 

contacts from further analysis. This process identified nearly 50,000 unique beta hairpin 

motifs from some 24,000 independent protein structures. Using these structures, we 

calculated average amino acid frequencies within structural regions and observed amino 

acid contacts between hairpin beta strands. We then classified and divided motif structures 

based on turn length and orientation of beta strand faces. Using these groupings, we 

determined average amino acid frequencies at each position of the beta hairpin motif. 

4.2.1 Secondary structure explains average amino acid frequencies  

It has long been known that different secondary structural elements tend to favor the 

inclusion of certain amino acids over others.186,187,190,191 This is exactly what we see with 

our analysis of beta hairpin motifs (Fig. 4.2), with a clear difference in average amino acid 

frequencies between beta strands, the turn region, and background levels across all 

included protein structures. Our analysis agrees with previous work illustrating a strong 

preference for glycine, asparagine, and aspartic acid in flexible turn regions.186,187 While 

proline is also more common in the turn region than in either beta strand, we see no 

difference in turn region prevalence when compared to background levels. This is in 

contrast to previous findings that saw significant enrichment of proline in turn 

regions.166,192 This lack of proline enrichment and the relatively low average proline 

abundance in the turn region is particularly surprising given the known role of such 

residues in stabilizing beta turns.192,193 
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When looking at amino acid levels in the beta strands, there appears to be little to 

no difference in prevalence between strands. Both strands show an increased occurrence 

of isoleucine, valine, and several other chiefly hydrophobic residues in beta sheet 

structures, supporting previous research.194 Additionally, both strands show a greater 

tolerance for positively charged residues as is commonly observed with anti-parallel beta 

strands as opposed to their parallel counterparts.165,168,195 We further probed for differences 

across domains of life but saw no strong trends in individual amino acids (Supp. Fig. 1A). 

There were, however, taxa specific differences in turn region preference for polar and 

negatively charged amino acids (Supp. Fig. 1B).  

4.2.2 Residue positional biases are linked to flexibility, stability, and 
hydrophobicity 

Beta hairpins, especially those in membrane interacting structures such as beta barrels and 

some antimicrobial peptides, are known to incorporate amphipathic beta sheets that 

periodically alternate between hydrophilic and hydrophobic amino acids, creating two 

distinct faces196,197 (Fig. 4.1). To account for these faces in our analysis, we divided our 

dataset based on the presentation of an initial polar or hydrophobic face for both the N and 

C terminal beta strands (see Materials and Methods). After accounting for these 

amphipathic faces as well as differences in turn region length, clear patterns emerged in all 

regions of the beta hairpin motif (Fig. 4.3). The most obvious pattern observed was the 

alternating preference for charged/polar and hydrophobic residues in both beta strands (Fig. 

4.3A-B). While hydrophobic residues appear to be more favorable in either beta strand on 

average (Fig. 4.2), polar and charged residues are well tolerated when oriented correctly.  

On a more granular level, we further surveyed for differences in amino acid 

frequencies at specific locations within the larger hairpin motif. In contrast to their average 
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beta strand frequencies, hydrophobic amino acids are also less tolerated at the C-terminal 

edge of either beta strand regardless of orientation. In their place, aspartic acid and (to a 

lesser extent) asparagine are over-represented at these loci, with this effect being 

particularly strong for the N-terminal beta strand where the last residue is one of these two 

amino acids in nearly 20% of observed hairpins. This frequency is roughly that observed 

for these two amino acids, on average, in the turn region (Fig. 4.2, Fig. 4.3C), although 

other common turn and cap-associated residues, namely glycine and proline, do not show 

an over-representation at these positions. Interestingly, aspartic acid residues at the C-

terminal end of either beta strand also correlate with increased frequencies of bulky 

aromatic amino acids (i.e. tyrosine, tryptophan, and phenylalanine) at the N-terminally 

adjacent position and a preference for glycine at the first N-terminal strand residue (Supp. 

Fig. 4.2A). 

Although proline showed no enrichment in the average turn region compared to 

background levels (Fig. 4.2), proline frequencies are slightly higher than background in the 

first residue of turns with three to four amino acids and substantially higher than 

background in the second residue of turns with five amino acids (Fig. 4.3C). These findings 

largely agree with existing evidence on the prevalence and importance of prolines in the 

beginning of turn regions198–200 but the nearly four-fold enrichment for residue two prolines 

in hairpin structures with five amino acid long turn regions when compared to background 

levels is particularly surprising. In combination with the fact that over half of all fourth 

residues in five amino acid long turn regions are glycines, these findings suggest that beta 

hairpins with longer turn regions may have very specific physiochemical requirements that 

limit amino acid diversity. 
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4.2.3 Amino acid contacts between strands favor stabilizing interactions 

As the overall beta hairpin structure is stabilized by interactions between the two beta 

strands, we sought to identify enriched amino acid pairings between strands to see if certain 

interactions were more common than expected. Pairings between residues with similar 

electrostatic properties, that is two hydrophobic residues or a polar residue and a 

polar/charged residue, were largely more common than expected (Fig. 4.4, Supp. Fig. 3). 

This data agrees with our previous findings regarding the grouping amino acids into beta 

strand faces based on similar physiochemical properties. In a similar vein to the pairing of 

electrochemically similar residues, oppositely charged residues tended to pair together in 

electrostatically favorable salt bridges that are known to stabilize protein structures.201–204 

Such salt bridges represented some of the most enriched amino acid pairings.  

The most enriched amino acid pairing between beta strands is that of cysteine with 

itself to create a structurally stabilizing di-sulfide bond. Such pairings are often used to 

stabilize engineered peptide structures205,206 and cysteine coupling is so preferential in 

nature that many organisms possess a proteome-wide bias towards even numbers of 

cysteine residues.207 

In contrast to enriched contact pairings, several classes of interactions, typically 

those between electrochemically dissimilar residues, were observed much less than 

expected. The low observance of inter-strand contacts between polar/charged and 

hydrophobic amino acids (Fig. 4.4) is intuitive given the strong repulsive nature between 

such residues which could destabilize overall protein structure. 

4.2.4 Design principles 

Taken altogether, our work provides a strong foundation of general principles that can be 

applied to the design of functionally diverse high throughput beta hairpin libraries (Table 
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1). First, libraries should seek to incorporate beta strands with amphipathic faces as seen 

in our analysis of beta strand positional biases (Fig. 4.3A-B). Second, aspartic acid and 

asparagine should be favored at C-terminal beta strand residues, especially in the beta 

strand preceding the turn region. Next, proline and glycine should be utilized in residues 

two and four of five residue turn regions given their overwhelming enrichment in these 

positions (Fig. 4.3C). Fourth, average secondary-structure amino acid preferences should 

inform design choices, especially within the turn region. While residues in both hairpin 

beta strands show positionally specific frequency deviations from secondary structure 

averages (Fig. 4.2, Fig. 4.3A-B), there is much less deviation within the turn region (Fig. 

4.3C). Lastly, stabilizing interactions should be favored between beta strands. Such 

interactions include salt bridges, disulfide bonds, and the pairing of certain biochemically 

similar residues (i.e. hydrophobic-hydrophobic and polar-polar pairings) (Fig. 4.4). These 

simple guidelines are specific enough to inform design choices while flexible enough to 

allow for applications across broad research areas. 

4.3 DISCUSSION 

By analyzing the composition of beta hairpin motifs across all proteins within the PDB we 

have identified key characteristics of this versatile structure. Expanding on existing 

knowledge of secondary structure biases, we outline the preference for the amphipathic 

orientation of amino acids within beta strands to create two faces with different 

physiochemical properties. We further identify key positional preferences for specific 

amino acids in all regions of the hairpin motif. Lastly, we highlight the importance of 

stabilizing interactions between residues in the N and C terminal beta strands of the hairpin. 

Our results integrate and expand upon existing knowledge of protein amino acid 

biases and intra-protein interactions to provide a systematic framework and novel insights 
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to describe the beta hairpin motif. We find that stable beta hairpin structures tend to possess 

site-specific amino acid preferences and to incorporate amphipathic character in both 

hairpin beta strands. While existing secondary-structure-specific amino acid distributions 

186,187 are accurate and informative, such averages prove inadequate to capture the inherent 

nuances of the beta hairpin motif. For instance, while our analysis finds that an average 

hairpin beta strand would consist of only hydrophobic residues (Fig. 4.2), a beta hairpin 

containing two such average strands without any amphipathic character would be 

statistically improbable (Fig. 4.3A-B) and highly unlikely to fold correctly 179, let alone 

function biologically 168.  

Position-specific amino acid biases need to be considered to help form stable 

protein structures. Our observation that prolines are less enriched in turn regions (Fig. 4.2) 

than previously observed 166,192 is perhaps best explained by the extreme position-specific 

preference of proline residues in turn regions of a given length (Fig. 4.3C). Thus, certain 

proline residues are enriched within and likely to stabilize hairpin turn regions even though 

there is no strong trend when averaged across all turn residues. Outside of the turn region, 

hairpin beta strands also exhibit amino acid biases at key loci as well as a strong proclivity 

to incorporate stabilizing inter-strand contacts. We find that asparagine and aspartic acid 

residues are much more common at the C-terminal end of either hairpin beta strand (Fig. 

4.3A-B, Supp. Fig. 2). These residues may participate in a beta capping phenomenon to 

block the continuation of beta structure into a turn region 174. A beta capping role may also 

explain our observation of an increased prevalence of bulky aromatic residues preceding 

terminal aspartic acids (Supp. Fig. 2) as aromatic residues are known to stabilize beta 

hairpin structures 176,177. Lastly, appropriate contacts between hairpin beta strands are 

imperative to provide structural stability. As an example, we identified cysteine pairings as 

being particularly enriched in beta hairpin substructures (Fig. 4.4). Such pairings have long 
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been used to stabilize engineered peptide structures 205,206, are so preferential in nature that 

many organisms possess a proteome-wide bias towards even numbers of cysteines 207. 

While our analysis of amino acid preferences within beta hairpin secondary 

structures across the domains of life showed no strong differences (Supp. Fig. 1A) there 

were some interesting minor trends as well as a notable difference in turn region 

composition between taxa (Supp. Fig. 1B). Cysteines, which are fairly uncommon across 

proteins in general, appear twice as often in Eukaryotic beta hairpins than in Prokaryotic 

or Archaeaotic beta hairpins. This observation agrees with previous data showing the same 

trend of increasing cysteine occurrence in proteomes of more complex organisms 208–211. 

Of greater note is the inverse relationship between polar and negative amino acid 

propensities within beta hairpin turn regions across taxa. Frequencies for negatively 

charged amino acids within the turn region decrease from Archaea to Bacteria, Eukarya, 

and finally Viruses while polar amino acids show the opposite trend. This difference is 

likely explained by protein adaptations to harsh environments in Archaea/Bacteria 212 that 

are less commonly encountered by Eukaryotic or viral proteins. This trend is not seen in 

either beta strand of the hairpin as turn structures are some of the most accessible protein 

regions 213 and would likely experience more selective pressure in harsh environments than 

less exposed beta strands. 

One major limitation of our approach is that we were only able to establish broad 

general properties of beta hairpins that might influence overall structure or function. This 

is in contrast to prior work that has focused on identifying key design factors for specific 

beta hairpin scaffolds 7,181,198,214 or grouping beta hairpins and related structures into 

increasingly detailed classifications 178,188,200. While the PDB dataset that we analyzed 

could be used to expand upon these highly focused areas of research, the broad applicability 

of our results would be compromised.  
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In combination with prior research efforts, our simple design guidelines (Table 1) 

can be adapted to the creation of large-scale protein or peptide libraries aimed at almost 

any functional purpose, from anticancer drugs to biosensors. For example, beta hairpin 

antimicrobial peptides are known to incorporate multiple disulfide bonds and favor an 

overall net positive charge while still maintaining amphipathic character 168,171. Adapting 

our design principles with these properties in mind would facilitate the construction of a 

library of positively charged, disulfide stabilized peptides with presumptive beta hairpin 

structure to test for antimicrobial activity. 

In summary, our findings are broadly adaptable to creating large libraries of beta 

hairpin containing molecules skewed towards a specific functionality and will help 

engineering efforts keep pace with the ever-expanding capacity of screening assays.  

4.4 MATERIALS AND METHODS 

4.4.1 Identification of beta hairpin substructures 

We defined the beta hairpin motif as an amino acid sequence containing two sets of four 

to fourteen extended beta strand residues joined by one to five turn, bend, or unannotated 

residues. A maximum beta strand length of fourteen was selected based on the typical 

length of beta strands in monomeric beta barrel proteins 215 while the range of turn lengths 

was selected based on prior research into beta hairpins 175. We searched DSSP 189 derived 

secondary structure annotations of all PDB proteins (downloaded from 

https://cdn.rcsb.org/etl/kabschSander/ss.txt.gz on July 22nd 2020) for this motif. We further 

filtered our dataset to include only IDs for representative structures clustered to within 90% 

sequence identity. Clusters were obtained from PDB on July 22nd 2020 using the RESTful 

Web Service Interface (https://www.rcsb.org/pdb/software/rest.do). Further manual 
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filtering was applied to exclude redundant and overly similar hairpin sequences, largely 

from structures of nanobodies, antibodies, and their derivatives. 

4.4.2 Identification of contacting residues 

To ensure that our analyzed motifs possessed the correct beta hairpin 3D structure, we 

filtered our dataset to only include structures in which at least four amino acid side chain 

pairs formed contacts between the N and C terminal beta strands. We defined contacts as 

any pair of residues in which side-chain beta carbons were within 8 Angstroms of one 

another. Determining contacts via the presence of backbone hydrogen bonds produced 

similar results (data not included). To calculate expected contact frequencies, individual 

amino acid frequencies were derived using the relative occurrence of each amino acid 

across all contact pairs. Values for amino acids in a pairing were then multiplied together 

to establish an expected frequency for every possible pairing of amino acids.  

4.4.3 Grouping of beta hairpin substructures 

To characterize the amphipathic faces of each beta strand, solvent accessibility was 

averaged across odd and even numbered amino acid residues with the first amino acid 

being the residue closest to the turn region. Strands in which the odd amino acid residues 

have a higher mean accessibility were categorized as polar while strands with the opposite 

phenotype were categorized as hydrophobic. Solvent accessibility was chosen in lieu of 

hydrophobicity or other metrics as PDB structures contain accessibility information and 

solvent accessibility is known to correlate with hydrophobicity 213. 
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4.4.4 Data and figures 

All data was analyzed in R using the tidyverse family of packages 216 in combination with 

the data.table 217 and seqinr 218 packages. All figures were created using ggplot2 219 and 

cowplot 220. Supplementary Figure 3 additionally utilized the ggseqlogo package 221. All 

processed data, scripts, and Supplementary Files are available at 

https://doi.org/10.5281/zenodo.4069580. 
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4.5 FIGURES 

 

Figure 4.1: General beta hairpin structure. 
Beta hairpins consist of two anti-parallel beta strands (grey arrows) linked with a flexible 
turn region (grey line). Beta strands typically have amphipathic characteristics conferred 
by alternating hydrophobic and hydrophilic residues. Triangles represent amino acid side 
chains for the beta strands, with red indicating hydrophobic and blue indicating 
hydrophilic residues. Solid triangles indicate side chains that are oriented towards the 
viewer while dashed lines indicate side chains with the opposite orientation. 
  



 55 

 

Figure 4.2: Amino acid frequencies by beta hairpin secondary structure region. 
Bars indicate average amino acid frequencies for each amino acid within a given region 
of all beta hairpins. The black dashed line indicates background amino acid frequencies 
for all sites in all proteins containing the beta hairpin motif. N-term and C-term refer to 
the N- and C-terminal beta strands while turn denotes the turn region. 
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Figure 4.3: Amino acid frequencies by beta hairpin residue position. 
Bars indicate average amino acid frequencies for each amino acid at a given position 
across all beta hairpin structures. N-term and C-term refer to the N- and C-terminal beta 
strands while T # denotes a turn region of a given length (e.g. T 3 indicates a three 
residue turn region). Pol refers to beta strands containing a polar face adjacent to the turn 
region, Hydro denotes a hydrophobic face at this position. Beta strand residues are 
numbered from the turn region, with residue 1 representing the residue closest to the turn. 
Turn residues are numbered from N-terminal (residue 1) to C-terminal. 
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Figure 4.4: Grouped differences in observed vs. expected residue contacts. 
Dots represent individual contacting pairs with red, labelled dots indicating contacts that 
are enriched or depleted at least two-fold vs. expected values. Residues are grouped as 
follows: Special refers to cysteine, proline, glycine; Hydrophobic refers to valine, 
leucine, isoleucine, methionine, alanine, tryptophan, tyrosine, phenylalanine; Polar refers 
to glutamine, threonine, serine, asparagine; Charged refers to arginine, histidine, lysine, 
aspartic acid, and glutamic acid. 
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4.6 TABLES 

Table 4.1: Beta hairpin design principles 
Design principles 
1. Incorporate amphipathic beta strand faces 
2. Favor aspartic acid/asparagine at C-terminal beta strand residues 
3. Incorporate T2 proline and T4 glycine in five residue turns 
4. Account for secondary structure biases, especially in the turn region 
5. Favor salt bridges and di-cysteine interactions to provide stability 
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Chapter 5:  Conclusion 

Here I have described applications of large, publicly available datasets to the analysis of 

microbes and the characterization of a protein structural motif relevant to microbe-focused 

therapeutics. I began with a thorough evaluation of nomenclature standards and sequence 

passaging annotation practices for influenza samples across three databases. This work 

highlighted major shortcomings in existing procedures and outline several improvements 

that should be implemented to improve the validity of influenza sample metadata moving 

forward. I next developed a gene coexpression network that provides data on interactions 

across the entire genome of Vibrio cholerae. The resulting network is an invaluable tool 

that not only contextualizes genes of unknown function but also provides fuel for novel 

hypothesis generation and presents a cost-effective analogue to sequencing-based 

transcriptomics approaches. Lastly, by analyzing all beta hairpin-containing protein 

structures contained in the Protein Data Bank I successfully identified key components of 

a biologically common and therapeutically relevant structural motif. I ultimately 

established a set of clear and simple design principles applicable to the development of 

high throughput protein libraries that incorporate beta hairpin substructures. Taken 

altogether, this work underscores the value of biological big data. 

5.1 FUTURE DIRECTIONS 

My work characterizing influenza annotation best practices is an important step towards 

better metadata collection efforts in the future. This is of particular importance as databases 

such as GISAID are expanded to host novel virus data such as that from the ongoing 

COVID-19 pandemic. The accurate and consistent nomenclature practices I outlined in 

Chapter 2 are just as applicable to novel viruses as they are to influenza. 
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Ongoing work within our own group is focused on replicating my coexpression 

network analysis on a dozen other bacteria and collecting the results in an accessible 

webserver. My ultimate hope is that this dataset can be regularly updated as transcriptomics 

data continues to accumulate for more and more bacterial species. 

My analysis of the beta hairpin motif provides an outline for the in-depth 

characterization of other protein structural motifs as well as the foundation for the design 

of a multitude of high throughput protein libraries. Regarding the former, my analysis 

pipeline could be easily altered to identify other motifs of interest based on secondary 

structure and/or amino acid contacts. Concerning the design of protein libraries, our group 

is currently testing the antimicrobial efficacy of two such beta hairpin inspired libraries and 

I foresee other researchers adopting the design principles outlined above as well. 
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