
Copyright

by

Christos George Bampis

2018



The Dissertation Committee for Christos George Bampis
certifies that this is the approved version of the following dissertation:

Perceptual Video Quality and Quality of Experience for

Adaptive Video Streaming

Committee:

Alan C. Bovik, Supervisor

Joydeep Ghosh

Haris Vikalo

Wilson Geisler

Zhi Li



Perceptual Video Quality and Quality of Experience for

Adaptive Video Streaming

by

Christos George Bampis

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2018



Dedicated to my family and friends.



Acknowledgments

I would like to thank those that have helped me in completing this dis-

sertation. I am indebted to my advisor Alan C. Bovik for inspiring, supporting

and guiding me throughout those years. For the past four years, I have always

felt that I can count on him for advice and research ideas. He has truly become

a role model for me as a researcher and an academic. I am very grateful to Zhi

Li, who has been actively involved in this dissertation and has played a pivotal

role in my academic progress for the past three years. Further, I would like

to acknowledge the contributions of Ioannis Katsavounidis, Anush K. Moor-

thy, Anne Aaron, Te-Yuan Huang, Chaitu Ekanadham and the entire Video

Algorithms and Streaming Client teams at Netflix, whose help and financial

support has greatly contributed to this work. In addition, a thank you to my

PhD committee: Joydeep Ghosh, Haris Vikalo, Wilson Geisler and Zhi Li for

providing valuable comments and feedback to this work.

I am deeply grateful to my undergraduate advisor and mentor at NTUA

Petros Maragos. He was the first one to introduce me to the areas of Image

Processing and Computer Vision and excited my research interests since then.

Appreciation is due to Mia Markey for advising me during my first PhD year

and to Marios Pattichis for his career advice during this last year. I would like

to express my gratitude to Gowri Somanath and Oscar Nestarez for supporting

v



my first summer internship at Intel, which gave me valuable work experience.

Also, I want to thank all the people from UT Austin who have volunteered to

participate in the experimental studies described herein; their help has been

very important for completing this work.

I would also like to thank my friends and labmates at LIVE: Todd,

Zeina, Janice, Deepti, Leo, Lark and Praful whose advice and encouragement

was plentiful. I was also very happy during my PhD journey to meet the

newer members of LIVE, Xiangxu, Meixu, Yize, Somdyuti and Sungsoo. I am

thankful to all of my friends with whom I have shared all those valuable mo-

ments in life: John, Dimitris, Spiros, Michael, Nick, Oddyseus and Alexander

and those that I met since I arrived to the US: Petri, Todd, Orestis, Ioakeim,

Antonis, Jason, Stefanos and Vassilina.

I would like to thank my whole family and especially my parents George

and Penelope and my sister Valia for being there for me always, both in good

and bad times. I feel indebted to my grandfather Christos and my grandmother

Stavroula for their love during my childhood years. I will always remember

them. I want to thank everyone with whom I have crossed paths until now,

since they have greatly determined me as person. This last word of acknowl-

edgment I have saved for my greatest passion: poetry. It has always been my

escape route.

vi



Perceptual Video Quality and Quality of Experience for

Adaptive Video Streaming

Publication No.

Christos George Bampis, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Alan C. Bovik

We live in a world where images and videos dominate our everyday lives.

Every day, an enormous amount of video data is being shared in social media

and consumer applications, while video streaming is becoming a new form of

digital entertainment. Large-scale video streaming on demand has become

possible thanks to numerous engineering achievements in fields such as video

compression, high-speed computation and display technologies. Nevertheless,

the skyrocketing needs for bandwidth and network resources consumed by

video applications challenges modern video content delivery.

Since the available bandwidth resources are limited, streaming service

providers have to mediate between operation costs, bandwidth efficiency and

maximizing user quality of experience. However, these goals are inherently

conflicting and require knowledge of how user quality of experience is affected

by the network-induced changes in video quality. Being able to understand

vii



and predict user quality of experience and perceptually optimize rate alloca-

tion, can have significant effects in better network utilization, reduced costs for

service providers and improved user satisfaction. The goal of this dissertation

is to study and predict user quality of experience in video streaming applica-

tions, by exploiting perceptual video quality and human behavioral responses

to streaming-related video impairments.

To this end, I present the details of three large-scale video subjective

studies which target video streaming under multiple viewing conditions, such

as display device, session duration, content characteristics and network/buffer

conditions. By analyzing how humans react to changes in visual quality and

streaming video impairments, I also design numerous video quality and quality

of experience prediction models that can be used to evaluate the overall and

the continuous-time perceived video quality. Throughout this dissertation, my

goal is to perceptually optimize various stages of the video streaming pipeline,

such as video encoding and video quality control as well as client-based rate

adaptation. Ultimately, I envision that the outcome of this dissertation can

be useful for video streaming applications at global scale.
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Chapter 1

Introduction

1.1 Perceptual Video Quality Assessment and Quality
of Experience in Adaptive Video Streaming

Global mobile data traffic grew 74% and mobile video traffic accounted

for 55 percent of total mobile data traffic in 2015 [9]. According to the Cisco

Visual Networking Index and global mobile data traffic forecast, mobile data

traffic will grow 8-fold from 2015 to 2020, which constitutes a compound annual

growth rate of 53%. Adding to the delivery over fixed networks, this large

and growing volume of mobile video data, video streaming providers such as

Netflix, Youtube and Hulu are processing, storing and delivering vast amounts

of video data on a daily basis.

Given the exploding use of mobile video devices and the tremendous

network bandwidth demands of streaming users, the biggest challenge in video

content delivery is to create better network-aware strategies to improve end-

users’ quality of experience (QoE). QoE is a measure of the delight or annoy-

ance of a customer’s experiences with a service, and being able to accurately

predict it could enable providers to offer better video streaming services. In

this direction, HTTP Adaptive Streaming (HAS) is perhaps the most com-

mon method being used by content providers as a way of dealing with network
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fluctuations.

In mobile video streaming applications, available network resources are

not always sufficient for high-quality video streaming. For example, Netflix

recently expanded its video streaming services to many countries around the

world [1], such as India, where the available bandwidth is sometimes low.

Due to network fluctuations and bandwidth limitations, client rate adapta-

tion methods may lead to frequent quality switching [125] which corresponds

to changes in the encoding resolution and/or bitrate, leading to compression

and scaling artifacts. Meanwhile, when the available bandwidth is low and

the client buffer is emptied, start-up delays and/or stalling (or rebuffering)

events occur. Given that HAS uses TCP as the transfer protocol, HAS appli-

cations are resilient to video quality degradations related to packet loss, such

as glitches and other transient artifacts [33, 40, 107, 131].

These network-related video impairments in HAS applications adversely

affect end-user quality of experience (QoE) ubiquitously; hence studying QoE

has become a major priority of streaming video companies, network providers

and video QoE researchers. For example, to better account for fluctuat-

ing bandwidth conditions, industry standard HTTP-based adaptive streaming

protocols have been developed [19, 30, 61, 82, 103, 104, 135] that divide stream-

ing video content into chunks, represented at various quality levels; whereby

the quality level (or representation) to be played at any given time is se-

lected based on the estimated network condition and/or buffer capacity. These

adaptation algorithms seek to reduce the frequency and number of rebuffer-
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ing events, while minimizing occurrences of low video quality and/or frequent

quality switches, all of which can significantly and adversely affect viewer QoE

[50, 149, 150]. Being able to predict end users’ QoE resulting from these adjust-

ments could lead to perceptually-driven network resource allocation strategies

that would deliver streaming content of higher quality to clients, while being

cost effective for providers. To this end, a number of QoE predictors have

been developed, but they do not always capture the interplay between video

quality and stalling.

While the motivation for perceptually-driven models is obvious, QoE

prediction is still far from being an easy task. The early (front-end) human

visual system (HVS) is complex and driven by non-linear processes that are

not yet completely understood. Moreover, there are also cognitive factors that

influence perceived QoE, adding further layers of complexity, complicating the

analysis of human subjective data and the design of QoE prediction models.

For example, QoE is affected by recency: more recent QoE experiences of-

ten have a higher impact on currently perceived QoE [56]. QoE studies can

be divided into two categories: retrospective QoE and continuous-time QoE

studies. In studies of retrospective QoE, subjects provide a single score de-

scribing their overall QoE on an entire video, after it finishes playing. Studies

of continuous-time QoE involve the real-time measurement of each subject’s

current QoE, which may be triggered by changes in video quality or streaming

and by short or long term memory effects.

In this thesis, my goal is to cover various aspects of studying and pre-
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dicting user QoE in adaptive video streaming, such as collecting and analyzing

human opinion scores on videos afflicted by streaming-related impairments and

designing QoE prediction models. My ultimate goal is to inject principles of

visual neuroscience and human behavior modeling into the video data resource

allocation strategies.

1.2 Contributions

In this dissertation, I propose a number of research efforts towards bet-

ter understanding subjective and predicting QoE for modern adaptive stream-

ing applications. These contributions can be broadly classified into two main

categories:

1.2.1 Analysis of Subjective Quality of Experience

I designed three large video quality and quality of experience databases:

LIVE-NFLX Video Quality of Experience database (Chapter 2), VMAF+

video quality database (Chapter 5) and LIVE-NFLX-II Video Quality of Ex-

perience database (Chapter 6). These three databases are used to study the

effects of streaming-related impairments to subjective video quality and QoE,

design better video quality assessment and QoE prediction models and take

a first step towards perceptually optimizing various components of adaptive

video streaming architectures, such as video encoding and quality control on

the server and rate adaptation and video quality measurements on the client

device. These databases capture multiple effects of actual streaming condi-
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tions, such as multiple viewing devices (mobile, laptop, television), long- or

short-term viewing sessions, realistic and/or actual network conditions and

buffer state representations, rate adaptation policies. These databases inves-

tigate how the content characteristics afflict the video streaming user expe-

rience hence they include multiple content types (action, drama, anime and

cartoon), lightning conditions (dark and light scenes) and in-source distortions

(film grain noise, low resolution video capture).

1.2.2 Quality of Experience Prediction Modeling

By collecting subjective video data, it is possible to devise QoE pre-

diction models. Towards this end, this thesis describes the Video ATLAS

(Chapter 3), the G-NARX and G-RNN QoE (Chapter 4) prediction models

and the SpEED-QA, ST-VMAF and E-VMAF video quality assessment mod-

els (Chapter 5). The former approaches exploit statistical models of videos

and images to predict visual quality, while the latter target a more general

scenario where video quality measurements (such as ST-VMAF) are combined

with rebuffering and memory-related measurements to predict retrospective

and continuous-time quality of experience.

Specifically, the proposed VQA models (SpEED-QA, ST-VMAF and E-

VMAF), rely on the statistics of video frames and frame differences to extract

rich spatial and temporal information sensitive to the presence of spatial and

temporal quality degradations. By extracting these perceptually-motivated

video quality features, I train multiple regression models to predict perceptual
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video quality.

To predict retrospective (overall) quality of experience, I propose Video

ATLAS: a feature-based approach to making retrospective HAS-QoE predic-

tions when the videos are afflicted by both bitrate changes and stalling. A

unique feature of this approach is that it combines perceptually-driven VQA

modeling together with stalling and memory information into a single QoE re-

sponse. The proposed model is scalable, i.e. it can also incorporate additional

inputs, if they can improve the performance.

I also propose a variety of recurrent dynamic neural networks that con-

duct continuous-time subjective QoE prediction (G-NARX and G-RNN). By

formulating the problem as one of time-series forecasting, I train a variety of

recurrent neural networks and non-linear autoregressive models to predict QoE

using several recently developed subjective QoE databases (inclduing the ones

introduced in this thesis). These models combine multiple, diverse neural net-

work inputs such as predicted video quality scores, rebuffering measurements,

and data related to memory and its effects on human behavioral responses.

Instead of finding a single time-series prediction model, I propose and evaluate

ways of aggregating different models into a forecasting ensemble that delivers

improved results with reduced forecasting variance.
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Chapter 2

Study of Temporal Effects on Subjective

Video Quality of Experience

2.1 Introduction

HTTP adaptive streaming is being increasingly deployed by network

content providers such as Netflix and YouTube. By dividing video content

into data chunks encoded at different bitrates, a client is able to request the

appropriate bitrate for the segment to be played next based on the estimated

network conditions. However, this can introduce a number of impairments, in-

cluding compression artifacts and rebuffering events which can severely impact

an end-user’s quality of experience (QoE). Given that the end goal of every

content provider is to maximize the end-user’s QoE while mediating param-

eters to accommodate network changes and changing bandwidth, subjective

modelling of streaming video QoE becomes an important objective.1

Subjective testing is an established way of measuring QoE under differ-

ent scenarios and settings. Many successful studies have been developed using

1This chapter appears in the paper: C. G. Bampis, Z. Li, A. K. Moorthy, I. Katsavounidis,
A. Aaron and A. C. Bovik, “Study of Temporal Effects on Subjective Video Quality of
Experience”, IEEE Transactions on Image Processing, vol. 26, no. 11, pp. 5217-5231,
2017. Christos George Bampis has designed the subjective study, carried out the subjective
experiment and studied the subjective data collected from the experiment.
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short video sequences of 10-15 seconds (or even less) as in [45, 83, 100, 131].

However, these studies do not reflect typical video streaming situations, where

subjects view videos that could be minutes long. Hence, it is not possible to

analyze long-term memory effects as they relate to critical factors affecting

subjective QoE such as the recency effect [56].

Longer video sequences were considered in [145], where video delivery

over HAS was simulated on tablet devices. The authors studied combinations

of bitrate changes and rebuffering events, but their analysis was limited to 6

sequences, 3 playout scenarios and 26 subjects. Longer video sequences were

also used in [51], using video contents ranging from 30 to 60 sec. The authors

studied the effect of rebuffering events as a function of location and density in

a video sequence. However, temporal ratings were not collected, hence their

analysis was based only on a final summary rating (retrospective score). As

we will show later, retrospective ratings tend to be affected by recency biases.

The study of temporal pooling techniques in [136] also included longer video

sequences, and concluded that current temporal pooling strategies are mostly

effective on short videos. On the long videos they used, simple mean pooling

was found to be superior to all other methods. However, they only used two

video contents in their analysis.

In all previous studies, playout patterns were chosen without consider-

ing the role of bandwidth usage. Generally, subject rejection strategies have

been based only on retrospective scores or conducted on a per frame basis.

We argue that such methodologies are inappropriate when gathering temporal
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scores, particularly when studying the complex temporal effects that affect

subjective QoE.

To sum up, previous efforts suffer from at least one of the following:

1. a small number of contents, playout patterns or number of subjects

2. a lack of practical network or buffer constraints on the subjective test

design

3. use of short video sequences that do not capture long term temporal

effects

4. not including both temporal and retrospective QoE scores

5. not deploying temporal subject rejection methods

Here, we describe a set of experiments that we conducted to gather

data that will help us develop tools to create perceptually optimized network

allocation protocols. We conducted experiments to measure subjective QoE

in a typical mobile video streaming setting, where the human subjects were

exposed to diverse real-world content, realistic network conditions and client-

based strategies, while viewing video sequences of durations of at least one

minute, displayed on a small mobile screen at low bitrates.

The outcome of these experiments is the new LIVE-Netflix mobile VQA

database, which consists of 112 distorted videos evaluated by over 55 human

subjects on a mobile device. The publicly available video content as well as
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metadata for all of the videos in the new database can be found at http:

//live.ece.utexas.edu/research/LIVE NFLXStudy/nflx index.html. The

distorted videos were generated from 14 video contents of spatial resolution

1080p at 24, 25 and 30 fps by imposing a set of 8 different playout pat-

terns including: dynamically changing H.264 compression rates, rebuffering

events and mixtures of both. While more recent compression standards such

as H.265/HEVC and VP9 are currently being developed, H.264 is currently

the most widely used format. Further, while H.265 achieves higher efficiency

than H.264 does, it is not conceptually different from H.264: it uses the same

motion-compensated/transform/lossless entropy coding hybrid model and es-

sentially the same coding tools. Therefore, coding artifacts are perceptually

similar among these two codecs; we thus expect the results of this study to

apply to H.265-based streaming, with appropriately lowered encoding bitrates.

The database contains 11 different types of content provided by Netflix

(drama, action, comedy, anime etc.) and 3 publicly available video contents

from the Consumer Digital Video Library (CDVL) [2]. To provide a more

realistic viewing experience, the audio track was included and played without

distortion when the subjects viewed each sequence. Figure 2.1 shows an exam-

ple of the type of impairments introduced on the videos in the LIVE-Netflix

Dataset.

Given the lack of available subjective datasets driven by practical net-

work constraints or streaming client strategies, our goal was to design a dataset

of significant practical value. Hence, we designed the LIVE-Netflix dataset
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Figure 2.1: Network impairment simulation using H.264 compression (left)
and rebuffering events (right). The red box indicates a compression artifact.

based on playout scenarios that are common when streaming under practi-

cal bandwidth constraints and buffer size limitations. We also gathered both

continuous and retrospective QoE scores towards achieving a more complete

understanding of how humans combine different aspects of temporal percep-

tion into a single, overall impression of QoE. We believe that this work offers

the possibility to bring human behavior modeling in this context closer to tra-

ditional video quality assessment (VQA) research. To both demonstrate the

value of the database, as well to provide an engineering comparison of practi-

cal worth, we evaluated various state-of-the-art VQA algorithms and temporal

pooling strategies on the new database. We also extensively studied temporal

effects on subject QoE by analyzing the collective and per video impairment

behavior of the subjects.

Our analysis led us to draw various observations. First, we observed

that rebuffering severely affected subject QoE regardless of the content. There-

fore, subjects tended to prefer transient bitrate drops over rebuffering on low

complexity contents, even when the selected bitrate was low. However, a con-
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stant low bitrate - to avoid rebuffering - was not tolerated by subjects. Finally,

the gathered subjective data strongly manifested known QoE phenomena such

as the recency effect (more recent video segments have a disproportionate ef-

fect on perceived visual quality) and the non-linearity of human responses,

but it also challenges the use of retrospective scores or global subject rejection

methodologies for QoE assessment on long videos.

The rest of this Chapter is organized as follows. Section 2.2 describes

the dataset design, the encoding pipeline and the source contents used. Section

2.3 presents the subjective testing methodology, and Section 2.4 discusses the

processing of subjective scores and the proposed subject rejection method.

Sections 2.5 and 2.6 analyze the collected retrospective and continuous QoE

scores, while Section 2.7 explores the cognitive aspects of subjective QoE in

light of the collected human data. Section 2.8 analyzes the performance of

various VQA algorithms and Section 2.9 gives conclusions.

2.2 Subjective assessment of mobile video quality

2.2.1 Network Assumptions and Buffer Limitations

When designing resource allocation strategies, content providers seek to

answer the question: given a fixed amount of network resources, which strategy

delivers the highest possible QoE? We consider here the tradeoffs that occur

on end-users’ QoE when mediating between rebuffering events and bitrate

reduction under a mobile low bitrate regime. To do so, we designed a set

of realistic playout patterns, assuming the same network resources and same
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buffer limitations. To simulate realistic network conditions, we used a channel

with time-varying capacity, shown in Fig. 2.2. The available bandwidth starts

at 250 kbps, followed by a temporary bandwidth drop to 100 kbps of duration

d = 22.2167 seconds until the bandwidth recovers to its previous 250 kbps

value. This simple example of a bandwidth drop can be used as a building

block to simulate models of more complex network conditions. Using this

available bandwidth model, we derived eight test patterns based on the premise

that the average playout rate of the client side cannot exceed that of the

average bandwidth. The only exception to this rule is when the client uses

some of the available buffer. Next, we discuss the buffer usage aspects of the

designed patterns.
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Figure 2.2: Available bandwidth model used in the LIVE-Netflix dataset. All
of the test sequences were designed to consume the same amount of network
resources (bandwidth).
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To ensure the practical worth of the derived sequences, it is necessary

to take into account the available buffer size. As shown in [61], a buffer-based

strategy can be a simple and useful way to reduce the number of rebuffering

events and bitrate switches that occur. Clearly, there are three possibilities:

1. The (instantaneous) playout rate is smaller than the (instantaneous) avail-

able bandwidth; the buffer is being filled with more data.

2. The playout rate is larger than the available bandwidth; the buffer is being

emptied.

3. The playout rate is equal to the available bandwidth; the buffer state does

not change over time.

Given our network assumption, we also considered a specific initial

buffer state for streaming, where the buffer of size B0 was filled with video

chunks encoded at 250 kbps. We further assumed two possible initial buffer

states: B0 = 1333 kbits or B0 = 0 kbit. The former scenario corresponds

to “steady state” streaming where the initial buffer is filled, while the latter

assumes that there is no initial buffer available. All patterns were designed so

that the buffer is emptied at the end of the bandwidth drop shown in Fig. 2.2.

2.2.2 Playout Patterns

Based on the aforementioned network scenario and possible values for

B0, we simulated the following client approaches (see also Fig. 2.3 for an

overview):
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Figure 2.3: Playout patterns used in the subjective study. First row: patterns
#0 until #3, second row: patterns #4 until #7. The horizontal axis corre-
sponds to frame indices while the vertical corresponds to the instantaneous
playout bitrate in kbps.
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0. A constant encoding bitrate of 500 kbps. This playout pattern assumes

an impairment-free network condition where the bandwidth is sufficient

to allow such a playout rate by the client. In this case, the buffer is not

used at all. This pattern is the only one that does not satisfy the band-

width and buffer constraints. Although we included this pattern among

the viewed playout patterns, it did not serve as a “hidden reference”

[131].

1. One video chunk encoded at 250 kbps followed by an 8 sec. stall, fol-

lowed by another 250 kbps chunk (see Fig. 2.4). The client drains the

buffer completely before the rebuffering event occurs. Before the avail-

able bandwidth recovers, the client decides to resume playback after the

8 second rebuffer. By the end of the pattern, the buffer is emptied.

2. A single video chunk of R2 = 160 kbps. The client side is very conserva-

tive throughout the video playback by always picking a playout rate of

R2, so that there is no rebuffering and the available buffer is depleted.

3. One video chunk encoded at 195 kbps, followed by a 4 sec. stall, followed

by another 195 kbps chunk. Here, the client strategy is to reduce the

rebuffering duration by half (4 sec.), by using a lower encoding bitrate.

As before, during the rebuffering event, the client has a zero playout rate

but an encoding bitrate of 100 kbps (equal to the available bandwidth)

which allows the buffer level to partially recover and then be used to

stream at 195 kbps before bandwidth recovers (see also Fig. 2.4).
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4. One video chunk encoded at 250 kbps followed by a 66 kbps chunk, fol-

lowed by another 250 kbps chunk. This playout pattern is an alternative

to pattern #1, where the client tries to avoid any rebuffering events by

switching to a lower playout rate (66 kbps) than the available bandwidth

(100 kbps) during the bandwidth drop.

By removing the assumption on the availability of the buffer on the

client side (B0 = 0), a second set of playout patterns can also be simulated.

This set of patterns is likely to deliver lower QoE scores to subjects since more

severe impairments have to be introduced to deal with the bandwidth drop.

5. One video chunk at 250 kbps, followed by a 6.66 sec. rebuffering event,

followed by a chunk at 250 kbps, followed by another 6.66 sec. rebuffering

event, followed by the last 250 kbps chunk. In pattern #5, the unavail-

ability of the buffer leads to rebuffering. By filling some of the buffer,

the client is able to play out for a small interval of time at 250 kbps

until the buffer is depleted. This leads to the rebuffering event, which

is followed by a recovery at 250 kbps playout over a small time interval

until the bandwidth also recovers.

6. One video chunk at 250 kbps, followed by a 8.33 sec. rebuffering event,

followed by a chunk at 160 kbps, then a final video chunk at 250 kbps.

Here, the client seeks to avoid a second rebuffering event by a gradual

bitrate recovery.
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7. One video chunk at 250 kbps is followed by a chunk at 100 kbps and then

another chunk encoded at 250 kbps. Here it is assumed that the client is

immediately able to adjust to the network conditions by using a playout

rate that is always equal to the available bandwidth/encoding bitrate.

This pattern may be the least practical among all the considered playout

patterns. However, it is of interest to be able to study the subjective

data resulting from such an “ideal” client reaction.

In the Appendix, we give an example of how some of the previous parame-

ters were specified. Note that the original video sequences were of different

durations, and that the playout patterns (of a given content) may also be of

different durations because of delays introduced by rebuffering events.

2.2.3 Encoding Pipeline

We developed an encoding pipeline that generates the different parts

of the final video and appropriately concatenates them based on an encoding

map that indicates the time intervals of every quality level, the location and

the duration of each rebuffering event. First, the source video stream (in H.264

format) was decoded, yielding an uncompressed raw .yuv file. The encoding

map was then used to split the .yuv file in a frame-accurate manner, yielding

.yuv chunks.

Meanwhile, the final frame of a video chunk immediately before a re-

buffering event was used to generate a rebuffering video chunk. A customized
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Figure 2.4: Left: Blue denotes the playout pattern #3 while red denotes the
available bandwidth. The green areas correspond to buffer consumption while
the yellow area indicates the buffer build-up. B0 corresponds to the available
buffer at the beginning of the bandwidth drop, while B’ corresponds to the
amount of buffered data being filled, then consumed by the client. Right:
Available buffer level over time for playout pattern #3, [t1 t2]: buffer drainage,
[t2 t3]: buffer build-up, [t3 t4]: buffer drainage.

“loading”, or spinning wheel, icon was overlaid on that frame and appropri-

ately animated to simulate the desired video rebuffering effect. For playback

purposes, and in order to match the rendering device resolution, all YUV

frames were first upsampled to 1920×1080. An MP4 file was then created by

lightly compressing these frames at CRF [121] (constant-rate-factor) value of

10. A more detailed description of the encoding pipeline that we used can be

found in the Appendix.

2.2.4 Source Contents

A set of 14 video test contents were used containing a wide variety of

spatiotemporal characteristics. Of the 14 contents, 11 belong to the Netflix
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Figure 2.5: Some frames from the LIVE-Netflix dataset. From left to right:
ElFuente and Chimera sequences from the dataset.

catalog of titles including action scenes, drama, adventure, anime and car-

toons. The remaining 3 contents were obtained from the publicly available

Consumer Digital Video Library (CDVL) [2]. A few frames from the video

sequences are shown in Fig. 2.5. The test contents have a variety of frame

rates and resolutions. For example, the ElFuente sequence has 4K resolution

(4096x2160) and a frame rate of 60 fps, whereas most of the videos from the

Netflix catalog have 1080p (1920x1080) resolution and frame rates of either

24, 25 or 30 fps. To deal with this difference, the ElFuente sequence was

downscaled to 1080p and the frame rate was converted from 60 fps to 30 fps.

Measurements of spatial and temporal complexity give a rough idea of

the content variety in a subjective database [161]. Let Fn denote the lumi-

nance channel of a video frame at time n and (i, j) the spatial coordinates of

this frame. Next, consider the following simple Spatial Information (SI) and

Temporal Information (TI) metrics [64]:

SI = max
n

{
stdi,j[Sobel(Fn)]

}
, TI = max

n

{
stdi,j[Mn(i, j)]

}
where Mn(i, j) = Fn(i, j)− Fn−1(i, j), stdi,j(.) denotes the standard deviation

over all pixels (i, j) and max
n

denotes the maximum over all frames. As shown
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in Fig. 2.6, the video content we use widely spans the SI-TI space [64].
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Figure 2.6: Spatial Information (SI) plotted against Temporal Information
(TI) for the 14 video test contents in the LIVE-Netflix dataset.

2.3 Subjective Testing

2.3.1 Subjective Study Design

A single-stimulus continuous quality evaluation study [63] was con-

ducted over a period of three weeks at The University of Texas at Austin’s

LIVE subjective testing lab. We collected subjective data from 56 subjects

and a total of 4928 continuous scores together with the corresponding retro-

spective scores. Visual fatigue is an important consideration when designing

subjective studies, so we split the study into three sessions, spaced by at least

24 hours to minimize subject fatigue [63]. Each session contained video con-

tent at most 35 minutes long, and the overall duration of each session was
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about 45 minutes.

Due to necessary limitations on the duration of a subjective study,

video QoE studies invariably must limit the number of different contents that

are shown. When using longer video sequences, this is even more challenging.

Driven by a desire to deploy as diverse and large set of contents as possible,

we employed the following strategy. Each subject was assigned 11 contents (of

the 14) in a circular fashion e.g. if subject i as assigned contents 1 through 11,

then subject i+1 watched contents 2 through 12. This could result in a slightly

different number of temporal and retrospective scores per content, but given

the large number of subjects, we deemed this to be a statistically insignificant

difference. All 8 playout patterns for these 11 contents were displayed to

the subject only once. In order to remove any memory effects, we randomly

shuffled the contents and the corresponding playout patterns while ensuring

that the same content was not consecutively displayed to a subject in any

session.

Android Studio was used to modify an earlier version of the human

subject interface used in [100], which was made available to us by the authors.

Using the previously described encoding pipeline, the generated .mp4 files

were displayed on a Samsung S5 mobile device with a 1080p resolution and

5.1” screen size. This device had no problems playing the videos which were

stored locally on an external SD card. The use of an external SD card did

not introduce any latency when displaying the videos. The mobile device was

not calibrated, but the brightness level was held constant at approximately
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75% of maximum throughout the study. The sampling rate on the continuous

scores was such that one score was measured per frame. Given the different

frame rates of the input sequences, we parameterized the number of samples

per video content depending on each video’s frame rate.

2.3.2 Subjective Testing Walkthrough

Here we describe subjective testing procedure as it occurred during the

first (training) session of each subject. Once seated, each subject was briefly

instructed regarding the subjective testing process. They were asked to rate

both their continuous and their overall QoE based on everything that they

viewed on the screen. They were also asked not to make QoE judgments based

on the level of interestingness of the video content or the audio quality. To

remove any rating biases, the subjects were informed that there were no right or

wrong answers in the experiment. No formal visual acuity test was performed,

but the subjects verbally verified that they had normal or corrected-to-normal

acuity. If a subject normally used corrective lenses when watching videos, they

were asked to use them during the study.

Then, the subjects were introduced to the interface and the different

video impairments they would be exposed to. Three different video contents,

each with a different playout pattern were displayed as each subject became fa-

miliar with the testing interface. These contents were the same for all subjects

but were not among the test contents used to gather the subjective data. After

the first session, no training videos were shown, since subjects were assumed
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to be adequately familiar with the testing procedure and interface.

The video sequences were displayed one after the other and a continuous

scale rating bar was displayed at the bottom of the mobile device screen. The

ratings on the continuous (Likert) scale ranged from 0 (Bad) to 5 (Excellent).

After each video finished, the subjects were asked to give an overall rating

of their QoE using the same rating bar. Then, a screen prompt allowed the

subjects to take a short break before they could initiate the playout of the

next video. Examples of these steps can be seen in Fig. 2.7.

Figure 2.7: Subjective testing interfaces. Left: continuous QoE scoring; Right:
retrospective scoring.

2.4 Post Processing of Subjective Scores

2.4.1 Normalization of Subjective Scores

Following the subjective data collection, z-score normalization [131] was

applied on a per session and per subject basis to account for differences in the

use of the rating scale by each subject, for each of the 3 viewing sessions.

Let sijk(t) and fijk denote the continuous scores and the retrospective score

assigned by subject i to video j during session k and let t denote the frame
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number. Note that the set of all j videos viewed by subject i may not have been

exactly the same for another subject i′. Consider the following operations:

ŝijk(t) =
sijk(t)− µs,ik

σs,ik
, f̂ijk(t) =

fijk − µf,ik
σf,ik

(2.1)

where µs,ik, µf,ik are the mean continuous and retrospective scores assigned

to all videos at session k of subject i and σs,ik, σf,ik are the corresponding

standard deviations. Since the generated video patterns are of different du-

ration because of the introduction of rebuffering events, computing temporal

Differential Mean Opinion Scores (DMOS) was not possible.

2.4.2 Subject Rejection using Continuous Scores

Using the subjective data in the form of z-scores, the next step was

to apply subject rejection strategies to identify potential outliers in the rating

process. In video quality studies with longer videos, it is possible that subjects

demonstrate less motivation and/or attention on some videos than on others.

While subject rejection is not a sophisticated model of human attention, we

think that it is sufficient to filter out inattentive subjective responses. In

a recent work, a model of subjective consistency and bias was proposed for

recovering improved subjective scores in the retrospective QoE setting [80].

We believe that subject rejection methodologies based only on retro-

spective scores are questionable for the following two reasons. First, if some

subject is rejected based on only a single score per video but then is also dis-

carded from all other video sequences he or she viewed (as is typically done),
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such a strict rejection criterion may needlessly reduce the amount of data. In

our case, applying subject rejection only on the retrospective scores as sug-

gested in [63, 131] led to 7 subjects being marked as outliers. Since we focused

on the temporal effects of subjective QoE, we considered it sensible to enrich

the subject rejection strategy by taking into account the temporal dimension

of subjective QoE.

In our preliminary design of temporal subject rejection schemes, we

experimented with simple heuristics. First, we applied the frame-to-frame

equivalent of retrospective score rejection [38, 63, 131] which yielded inconsis-

tent results. We believe this was due to the fact that introducing both dynamic

bitrate changes and rebuffering events led to more complex subject reactions

with different response and lag times. An alternative approach is to apply a

simple thresholding method: discard subjects that are un-responsive during

any rebuffering event. However, we encountered instances where subjects did

not react to a rebuffering event but were very unforgiving of a second rebuffer-

ing. This observation led us to avoid using such simple ad hoc methods.

We instead deployed a more sophisticated dynamic time warping (DTW)

[32] strategy on the subjective ratings to identify similarities in aligned tempo-

ral subject responses. Subjects that were completely un-responsive during a

time period where most of the other subjects reacted were noted. To demon-

strate the usefulness of the DTW approach to study and identify inconsistent

temporal behavior among subjects, consider the examples shown in Fig. 2.8.

Both examples depict the most and the least consistent human raters of a
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Figure 2.8: Temporal ratings with the highest (blue) and the lowest (purple)
degree of consistency for two playout patterns in a given video content. Left:
pattern #5; Right: pattern #7. The red dots denote the start of a video
impairment (rebuffer or compression) while the green dots the end of the im-
pairment. The dashed lines mark the time interval (in frames) used in the
DTW.

given video sequence, one with two rebuffers and one with a bitrate drop to

100 kbps. In the first case, it is clear that the least consistent subject did not

react to any of the rebuffering events, whereas the most consistent subject had

a more predictable QoE reaction. Similar behavior occurs in the second case:

the subject marked with blue lowered the QoE during the bitrate drop, while

the least consistent subject had a highly unreliable QoE reaction: during the

bitrate drop, the recorded QoE increased.

We now define the input to the DTW. Consider subject i and the

temporal rating waveform sij, where j denotes a video content using one of

the 8 playout patterns. Our main focus was occurrences of rebuffering or

compression events since those are the key aspects that determine subjective
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QoE. Therefore, we trimmed the sij waveforms by selecting the time interval

between the first video impairment (rebuffer or bitrate change) that took place

until the last one occured. To capture the temporal behavior when normal

playback (playout rate of 250 kbps) resumed, we lengthened this time interval

by 4 seconds. An example of a considered time interval can be seen in Fig.

2.8. We set the DTW window size to be 10% of sij. Similar values of the

window size ranging between 5% and 10% yielded similar results.

We collected all warped distances between subjects i and k, i.e., dik =

DTW(sij, skj), where dik denotes the temporal misalignment between subjects

i and k. This is a measure of dis-similarity: a large dik could mean that

subject i reacted very rapidly to some stimuli whereas subject k reacted more

slowly. Subject ratings having large distances from most of the others can

be thought of as unreliable. As we have already explained, however, only per

video rejection decisions were made, i.e., if subject i had unreliable ratings on

some video j it did not imply rejection of all the other subject’s ratings. To

eliminate biases introduced by the individuality of subject scoring strategies,

each subject’s continuous rating waveform was linearly scaled independently

to cover the range [0, 1].

Computing the DTW warped distances, dik yielded a matrix D = [dik]

describing the temporal misalignments between all subjects that viewed video

j. Since the DTW distance is symmetric, we computed only the upper tri-

angular part of the matrix and set the diagonal entries to 0. Then, the sum

of the DTW distances across the rows (or columns) of D may be considered
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to be a measure of how unreliable a subject is: a large accumulated distance

implies a subject whose responses were consistently mis-aligned with respect

to other subjects when rating the same video.
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Figure 2.9: Distribution of accumulated DTW distances computed on one test
video. The rightmost subjects have a higher chance of being outliers.

In Fig. 2.9, the distribution of accumulated DTW distances is shown

for one of the test videos. The horizontal axis corresponds to the sum of the

rows in D, while the vertical axis indicates the number of subjects having the

corresponding DTW distance. The distribution of accumulated distances is

skewed to the right, making outlier identification more challenging. A standard

technique is to apply Tukey’s boxplot [152] rule, i.e., mark all observations

that are smaller than or that exceed 1.5IQR as outliers, where IQR is the

interquartile range Q3-Q1 where Q1 is the 25th percentile and Q3 the 75th

percentile. However, this rule assumes an underlying normal distribution. To

address the skewness of the data distribution, we can either transform the data

using an appropriate transformation (e.g. a Box-Cox [129] transformation) or
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use an adjusted boxplot technique like the one in [62]. We used the adjusted

boxplot method. Then, an observation is considered to be an outlier if it lies

outside the interval:

[Q1 − hl(MC)IQR Q3 − hu(MC)IQR] (2.2)

where hl and hu are functions of the medcouple (MC), which is a skewness

measure [62]. We used the exponential model proposed in [62] i.e. hl =

1.5 exp
{
αMC

}
and hu = 1.5 exp

{
βMC

}
, where α and β are weighting factors.

We picked α = −4 (default value) and β = −1 since the DTW distributions

are right skewed, and a small value of β produced a more robust estimator.

Using this skewness-driven boxplot, we identified potential outliers on each

test video and removed them from the collected data.

2.5 Analysis of Retrospective Scores

We next discuss how we analyzed the subject scores using retrospective

scores. First, we considered the overall distribution of the retrospective MOS

before z-scoring. Figure 2.10a shows the distribution of raw retrospective

MOS. It can be observed that the scores varied over the interval [1.5, 4.5],

hence the entire scale [0, 5] was not used. However, the subjects were not

prompted to use the entire scale, since this could introduce bias. Instead they

were allowed to give their natural responses. Also, note that patterns #1 to

#7 were given similar MOS scores, while pattern #0 was consistently rated

higher by subjects (over all contents). This not surprising since this pattern
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assumes a rebuffering-free scenario where the encoding bitrate is a constant

500 kbps.

In typical streaming applications, subjects are exposed to long video

sequences, and events that occur early on may have less effect on the overall

rating given by a subject. This is known as the “recency effect” [56] where

recent events more heavily influence the current perception of one’s viewing

experiences.
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Figure 2.10: a) Raw MOS for all 8 patterns. Only pattern #0 is significantly
different from the other 7. b) Scatter plot of the frame-averaged continuous
scores (horizontal axis) against the retrospective MOS (vertical axis) for all
test videos.

To examine these biases further, we conducted a preliminary statistical

analysis to determine whether the playout patterns were actually (retrospec-

tive) scored differently by the subjects. We verified that the score distribu-

tions were not very skewed, then applied the Wilcoxon ranksum test [139]

(using significance level α = 0.05). We observed that, in many cases, the
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statistical comparisons between the retrospective scores assigned to playout

patterns yielded statistically insignificant differences. This could be explained

by recency (latest experiences matter for retrospective evaluations) and the

duration neglect effect [56]: subjects may lower their temporal scores if a long

lasting video impairment occurs. However, even if they did recall the duration

of an impairment, they tended to be insensitive to its duration when making

retrospective QoE evaluations. Also, note that, by the time the subjects were

asked to give an overall evaluation of each test video, more than 15 or 20 sec-

onds of the 250 kbps playout had occurred. Given the tendency of subjects to

evaluate videos based on more recent experiences, the test videos were possibly

rated in response to the most recent video behavior.

If one is seeking a simple and direct QoE analysis, then it would seem

desirable to obtain a single QoE value for each test video. Since the retro-

spective scores are affected by recency and duration neglect, we used simple

frame averaging on the temporal scores to obtain a summary rating of each

test video. Unfortunately, averaging continuous subjective scores without first

applying temporal alignment does not account for the temporal QoE behav-

ior of each subject (such as subject response delays). However, the DTW is

appropriate only for pairwise time-series alignment, and may not produce an

output having the same duration as the original waveforms. In our search for

a recency-insensitive summary rating, we found that simple averaging corre-

lated well with the retrospective scores, as seen in Fig. 2.10b. This observation

aligns with two previous subjective studies: one where the test videos lasted
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only 10 seconds [131] and one with longer videos [136].

Apart from frame averaging, we were also interested in explicitly cap-

turing the subjective responses due to the impairments caused by the available

bandwidth drop. In order to study those time intervals where the only visual

impairments were due to the available bandwidth drop, we applied the follow-

ing protocols: on patterns #1, #4, #5, #6 and #7, we applied averaging on

all frames after the available bandwidth drop occurs. By contrast, on patterns

#2 and #3, where there was heavier compression even prior to the bandwidth

drop, all the frames were used. Since pattern #0 was impairment-free, we did

not include it in the comparisons.

Using the averaged scores as the summary ratings, we compared the

playout patterns of each content as shown in Fig. 2.11. Clearly, the ratings

given to patterns #5 and #6, which belong to the second category, where

no buffer was utilized, were statistically inferior to those of the patterns from

the first category (#1 to #4), since the available buffer was zero and fewer

bits were spent; hence there were more frozen frames due to rebuffering events

and/or lower bitrate values. By comparing pattern #4 with #2 we observed

that a consistently low bitrate value (to avoid rebuffering), as in the “conser-

vative” client strategy #2, was not tolerated by subjects. Further, subjects

preferred a long rebuffering (#1) if it meant better quality elsewhere rather

than the combination of a short rebuffering event combined with an interme-

diate recovery bitrate (#3).

An important aspect of the interactions between rebuffering and com-
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pression is whether there exists a “compression threshold”, i.e., a bitrate level

below which rebuffering will be preferred over a highly compressed stream.

Clearly, this “threshold” may be different across contents depending on the

content’s spatio-temporal complexity. Here, we can perform such a compar-

ison directly, since both playback states (normal playback at a much lower

bitrate as in #4 and playback interruption as in #1) are equalized in terms of

bandwidth usage.

By comparing rebuffering with transient bitrate drops (see first row

and fourth column of Fig. 2.11) we found that the outcome of the statistical

comparison depended on the level of content complexity. Out of the 14 con-

tents, subjects preferred a very low bitrate in 4 of them, rebuffering in 3 and

for the remaining 7, the statistical test yielded a statistical equivalence betwen

#1 and #4. Notably, all 4 contents where subjects preferred #4 were slow

motion scenes (e.g. a dialogue between actors) and/or low spatial complexity

scenes, while the 3 contents where rebuffering was preferred were contents of

either high spatial complexity (as in the ElFuente fountain scene) or high tem-

poral complexity (e.g. a fight scene rich in motion); hence they required more

bits to be encoded. This observation strongly highlights the trade-off between

rebuffering and compression artifacts in perceived QoE.

Notably, pattern #7 had the best performance among patterns in the

second category (B0 = 0) and was comparable to #2 and #3. Again, this

shows that subjects preferred transient bitrate drops. Surprisingly, #7 used

fewer bits than #2 and #3 but yielded similar QoE. While #7 assumed an
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ideal client that could immediately adapt to the network conditions, this com-

parison demonstrates the merits of QoE-aware network policies: using fewer

bits does not always mean that perceived quality is lower. However, we also

observed that patterns #5 and #6 were statistically indistinguishable over all

contents. This brings up another aspect of the subjective test’s design: apart

from recency, allocating the same number of bits under these circumstances

could signify a similar retrospective QoE or summary rating. This underlines

the need to exploit the temporal aspects of QoE, since retrospective ratings

reveal only some aspects of subject QoE.

Winning/Loss %

Figure 2.11: Wilcoxon ranksum test using α = 0.05 on the averaged temporal
scores for all patterns, represented as a 7 × 7 matrix. Each entry shows the
winning percentage of the row compared to the column for all 14 video con-
tents. Green shows the number of contents that the pattern in the row is QoE
superior to the column, red shows the contents where the row is inferior to the
column and orange shows that the row and column are indistinguishable. The
purple box shows the comparisons only between patterns #1 to #4 (B0 = 1333
kbits) and the blue box shows the comparisons only between patterns #5 to
#7 (B0 = 0 kbits).
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2.6 Analysis of Temporal Scores

Temporal scores are a rich source of subjective QoE. Similar to the

frame averaging used earlier, we performed frame averaging on the continuous

subjective scores and show the result for several patterns in Fig. 2.12. We

now focus on a comparison between patterns #1 and #7. Clearly, rebuffering

(#1) severely and sharply damages subjective QoE for all contents. Further,

the QoE recovers at a slower pace than it originally dropped, suggestive of the

hysteresis phenomenon: there is a lag between subjective QoE scores and cur-

rent video quality or playback status. We earlier observed that subjects were

not forgiving of rebuffering events. By contrast, when the bitrate dropped

from 250 to 100 kbps, the subjective QoE reactions varied depending on each

content. On scenes having higher spatiotemporal complexities, compression

artifacts may be more visible and affect the QoE heavily and sharply, while

others may not be affected to the same extent. Similar observations may be

made for all patterns that contain at least one rebuffering event (where the

video freezes and the rebuffering icon appears), which are obvious and unpleas-

ant to viewers, whereas bitrate drops have a different impact on subjective QoE

depending on each content’s complexity.

Notably, the constant encoding bitrate employed in #2 had a tempo-

rally varying effect on the perceived QoE. Given the long duration of the video

contents and the different video characteristics present in each content (such

as scene changes), it is clear that the subjects’ QoE also changed over time

even when the encoding scheme was static. This observation strongly supports
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Figure 2.12: Temporal ratings across all contents for all playout patterns after
subject rejection. First row: patterns 0 to 3; second row: patterns 4 to 7.
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a “per chunk” encoding strategy [42], where each video content is first split

into short video chunks and then, based on the video complexity during this

chunk, an appropriate encoding scheme can be chosen.

To investigate the interplay between rebuffering and compression ar-

tifacts under a different light, we split the test contents into two sets based

on their complexity: Set 1 includes source contents of low complexity and Set

2 those of higher complexity. To determine the two sets we considered the

following: contents with high motion and/or spatial complexity require more

encoding bits, hence subjective scores would likely be lower on such sequences.

To determine content complexity, the authors of [48] defined a criticality mea-

sure as the logarithm of the sum of the SI and TI indices.

Given that the quality impairments of the otherwise very high quality

videos being viewed are dominated by H.264 compression, an excellent measure

of the content complexity to a fixed bitrate are the scores of a high performance

objective quality engine such as ST-RRED [143]. ST-RRED is an information-

theoretic approach to VQA that builds on the innovations in [137, 138]. It

achieves quality prediction efficiency without the need to compute motion

vectors unlike [133, 134].

To avoid any subjective biases due to content, we computed ST-RRED

[143] between the original pristine video and #2 - constant encoding bitrate

under the same total bit budget constraint. The computed ST-RRED value

(on the constant bitrate encodes) was a way of describing the content com-

plexity: the higher the ST-RRED value, the less “complex” the content was
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assumed to be. As we will show later, ST-RRED performed the best among

the VQA models studied across the subset of video sequences without any

rebuffering, hence it was deemed suitable for this purpose. Finally, as shown

in Fig. 2.13, there are 5 contents (shown in red color) that have a relatively

higher encoding complexity than the rest. Therefore, we considered those 5 as

Set 2 while the rest were assigned to Set 1.
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Figure 2.13: ST-RRED values between pattern #2 and the original source
video for all 14 contents. Blue points correspond to low complexity contents
while red points correspond to high complexity contents.

Next, we found the average (per frame) MOS score over all contents for

each of the 8 different patterns, as shown in Fig. 2.14. The effects of content

complexity were evident: after a rebuffering event occurred, the QoE recovered

more slowly for contents in Set 2 (high complexity) as shown by the green

arrow in #6. Meanwhile, the videos in Set 2 tended to have larger standard

errors against the videos in Set 1, since the increased encoding complexity may

have led to a larger variance in the subjective QoE reactions. Overall, during
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normal playback, the contents in Set 2 have a lower QoE than the contents in

Set 1.

We also observed the following interaction: a relatively long rebuffer

event (as in playout patterns #1 and #6) led to larger drops in the reported

subjective QoE on Set 1, as compared to Set 2 (see the black arrows in the

plots for playout patterns #1 and #6). It is likely that the subjects were

more annoyed by rebuffering events when they occurred during the playback

of higher quality video content. A similar observation was also made in [45] us-

ing retrospective QoE ratings on short video sequences. However, for shorter

rebuffering events (playout patterns #3 and #5) quality drops due to re-

buffering between the two sets was similar. Notably, the second rebuffering

in pattern #5 led to the opposite effect: given that one rebuffering event had

already occurred, the quality drop on Set 2 was larger than the one for Set 1.

This may be attributed to the effects of memory of a recent rebuffering event

on currently perceived QoE.

By comparing patterns #1, #3 and #5, it is also evident that when the

number or the durations of the rebuffering events increases, there is a larger

drop in the temporal QoE scores. Again, these effects of rebuffering on the

subjective QoE were harder to capture when we used the retrospective QoE

ratings.
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Figure 2.14: Averaged temporal ratings and standard errors for content Sets 1
and 2 for all playout patterns after subject rejection. First row: patterns 0 to
3; second row: patterns 4 to 7. Due to the different video lengths, we trimmed
the axis of the plot to the duration of the shortest video sequence. The black
arrows show the effect of rebuffering for the high vs. low complexity sets. The
green arrow shows the different rates of QoE recovery for these sets.
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2.7 Cognitive Aspects in Subjective QoE

2.7.1 Recency Effects

As already discussed, subject QoE might depend heavily on more recent

experiences. To further investigate this claim, we performed local averaging

on the temporal scores using a sliding window, then measured the correlations

of those averages against the retrospective scores. Let κ denote the size of

the sliding window in seconds, τ be the total duration of a video and µ(a, b)

be the average of the temporal scores from frame a to frame b and f be the

retrospective score assigned to that video. Figure 2.15 shows the SROCC

between µ(a, b) and f using κ = 10 seconds. It is clear that local temporal
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Figure 2.15: SROCC between the averaged temporal scores (over a 10 sec.
window) and the retrospective MOS.

averaging produced stronger correlations over the more recent time intervals.

This agrees strongly with the recency effect observed on the subjects’ QoE.
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2.7.2 Non-linearities in Subjective QoE

Non-linearities in human responses to video quality are usually not con-

sidered in depth. Here, we are able to examine these effects given the richness

of the collected temporal data. Fig. 2.15 shows that, as the observation win-

dow is increased further into the past, the rank correlation decreases until

approximately 45 seconds, at which point it increases. This could be due to

the fact that after the first 15 seconds most of the video impairments begin to

occur, hence a local temporal window of “high disagreement” between subjects

occurs as the impairments take place. By high disagreement, we refer to differ-

ent response times between subjects, different recovery times and different use

of the rating scale. Note that even after z-scoring normalization, the subject

ratings are still dependent on the rating behavior over time. We refer to both

bitrate changes and rebuffering events during those time intervals as “events”

where non-linearities in the human responses are activated and intensified. As

a result, linearly combining the scores still produces non-linear measurements

that do not correlate as well as when such events are not taking place.

To examine our hypothesis, we considered three different cases in Fig.

2.16: when the encoding bitrate is constant (patterns #0 and #2), when there

is a single event (or two consecutive events) such as a lone rebuffering event or

one followed by a bitrate drop (patterns #1, #3, #4, #6 and #7) and when

there are two distinct events (pattern #5). The first case demonstrates the

recency effect: more recent scores correlate more highly with the retrospective

score. In the second case, a combination of recency and human non-linearities
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is demonstrated: past experiences correlate less with the retrospective score,

especially when there is a bitrate drop or a rebuffering event. However, recency

by itself is not enough to explain subject QoE when a very negative QoE

experience has occurred in the past. As shown in the third case, the correlation

is much lower even over very recent time intervals due to the two rebuffering

events that have happened earlier.
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Figure 2.16: Spearman’s rank correlation coefficient for different pattern sets.
From left to right: patterns 0 and 2, patterns 1, 3, 4, 6, 7 and pattern 5.

2.7.3 Recency vs. Primacy

The previous analysis gives rise to the following contradiction: if sub-

jects tend to bias their ratings based on the recency effect, why would a re-

buffering event (or a bitrate drop) that happened much earlier matter? In

the cognitive science literature, the primacy effect refers to the human ten-

dency to recall events that occurred at the beginning of a series of events [55].

We can apply this concept to the various events to which subjects are exposed

when viewing streaming videos, such as bitrate changes. It is likely that, when

giving a retrospective evaluation, both primacy and recency effects affect the
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subjects’ responses. If the perceived video quality is relatively stable, sub-

jects tend to internally rely more heavily on their latest experiences to make

a retrospective decision, yet negative QoE events that occur early on can also

activate longer term reactions.

Given our previous analysis of both retrospective and temporal scores,

it is important to summarize the different aspects of each. For long video se-

quences in streaming applications, retrospective scores are simple and efficient

QoE descriptors but do not capture all aspects of QoE. When integrating their

temporal experiences into a single QoE score, subjects may be biased towards

recent experiences (recency) or much earlier but memorable - typically un-

pleasant - ones (primacy), but they may also be insensitive to how long these

unpleasant viewing experiences were (duration neglect). By contrast, tem-

poral scores are rich and descriptive QoE indicators. However, the different

response times between subjects and other temporally varying QoE aspects

make temporal scores harder to analyze.

2.8 Objective Video Quality Assessment

2.8.1 Is Objective VQA Enough?

Most VQA algorithms are not applicable to frame freezes; hence video

sequences with playback interruptions are usually not considered in objective

quality analysis studies [100]. As a way of understanding how well these “stan-

dard” VQA models predict subjective QoE, we ask the question: “How well do

VQA algorithms perform on video sequences when excluding frame freezes?”
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To answer this question, we considered the set Sq of videos without any re-

buffering, the set Sr of videos having at least one rebuffering event and the

whole dataset (Sall = Sq
⋃
Sr). Clearly, Sr and Sq are disjoint. Then, we ap-

plied various quality metrics on Sq and Sall. We compared several leading full

reference (FR), reduced reference (RR) and no reference (NR) image (IQA) or

video (VQA) quality assessment algorithms [34, 99]: PSNR, PSNRhvs [113],

SSIM [159], MS-SSIM [160], NIQE [94], VMAF [79], ST-RRED [143] and

GMSD [164]. We refer the interested reader to [87, 109, 134] for other per-

ceptual VQA models that have been developed. When applying them on the

videos in Sq, we calculated the quality scores only on normal playback frames

and measured the correlation with the retrospective scores after subject rejec-

tion. For PSNRhvs we used the publicly available Daala [10] implementation

and for the other methods we used the available implementations. All models

were applied on the luminance channel of the test videos and the black borders

around the videos were removed. The results are presented in Table 2.1.

As shown in the first column, NIQE unsurprisingly performed the worst

since it is a frame-based NR model, while PSNR and PSNRhvs performed the

worst across all FR algorithms, followed by GMSD. The results on Sall were

much lower than on Sq; indicating that the tested IQA/VQA systems were un-

able to predict QoE as well when rebuffering events were present. Note that

SSIM performed better than MS-SSIM and close to the best predictor (ST-

RRED) on Sall. This suggests that the subjects were internally responding

strongly to rebuffering events rather than evaluating quality only. To investi-
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Table 2.1: Spearman’s rank correlation coefficient (SROCC) for various im-
age/video quality assessment algorithms (IQA/VQA) against the retrospective
scores after performing mean pooling on the no-rebuffering subset (Sq) and on
the whole dataset (Sall). The best result per subset is in boldface.

IQA/VQA metric Sq Sall
PSNR (IQA, FR) 0.5535 0.5257

PSNRhvs [113] (IQA, FR) 0.5884 0.5465
SSIM [159] (IQA, FR) 0.7862 0.7230

MS-SSIM [160] (IQA, FR) 0.7647 0.6979
NIQE [94] (IQA, NR) 0.3811 0.1300

VMAF [79] (VQA, FR) 0.7607 0.6079
ST-RRED [143] (VQA, RR) 0.8216 0.7257

GMSD [164] (IQA, FR) 0.6665 0.5937

gate the performance of VQA models on videos afflicted by rebuffering, Fig.

2.17 shows the performance of ST-RRED on videos with rebuffering and on

videos without rebuffering coded by color and symbol shape. It is important

to observe that the predictive power of ST-RRED decreases when rebuffering

events are introduced, which is not surprising: almost all perceptual IQA/VQA

models only consider the effects of visual quality on the perceived QoE. There-

fore, in the presence of rebuffering, objective video quality models become less

reliable predictors of subjective QoE. This implies the need to develop more

general QoE-aware methods. In the next Chapter, we will be introducing such

models and evaluating their performance on the LIVE-NFLX dataset.

2.8.2 Temporal Pooling Strategies for Objective VQA

Simple averaging of frame quality scores is broadly used to pool qual-

ity scores computed on short videos, but more sophisticated perception-driven
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Figure 2.17: Performance of ST-RRED on videos with and w/o rebuffering.

temporal pooling strategies have been proposed, including hysteresis [132],

VQ pooling [105] and temporal percentile pooling [98]. For percentile pool-

ing, we sorted the frame-based values, then averaged the 5% of them which

corresponded to lowest quality. We next investigated whether adopting these

approaches could produce better correlations against human subjective scores

on Sq and Sall. The results of this experiment are presented in Table 2.2.

On Sq, most methods benefited from a temporal pooling strategy, ex-

cept ST-RRED (where performance was improved only slightly by percentile

pooling). Otherwise, these improvements were not significant for Sall. This

suggests that deploying temporal strategies designed for short sequences may

not significantly improve QoE prediction on long sequences suffering from both

rebuffering and bitrate changes: temporal pooling strategies operate on the nu-

merical scores produced by objective video quality models. Again, ST-RRED

performed the best on Sq in terms of SROCC. On Sall, SSIM (with hysteresis
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pooling) was able to reach the maximum predictive performance of ST-RRED.

Notably, percentile pooling was beneficial to FR methods such as SSIM and

MS-SSIM on Sq, but in the case of NIQE, the prediction performance dropped

considerably. This is likely because NIQE is frame-based, does not capture

temporal information critical to QoE prediction, does not capture artifact

fluctuations nor does it benefit from reference information. Therefore, NIQE

scores may unreliably reach extreme values.

Table 2.2: SROCC against the retrospective scores achieved when using tem-
poral pooling strategies on the LIVE-Netflix dataset, sets Sq and Sall. For each
quality metric and subset (Sq/Sall), the best pooling method is in boldface.
The best combination (quality model and pooling) per subset is in boldface
and italic font.

Set Sq Sall
Model/Pooling mean hysteresis VQ percentile mean hysteresis VQ percentile

PSNR 0.5535 0.5518 0.5621 0.5869 0.5257 0.5360 0.5398 0.5581
PSNRhvs [113] 0.5884 0.5960 0.6134 0.6379 0.5465 0.5601 0.5668 0.5781

SSIM [159] 0.7862 0.7971 0.7899 0.8049 0.7230 0.7298 0.7028 0.7051
MS-SSIM [160] 0.7647 0.7686 0.7593 0.7800 0.6979 0.7037 0.6680 0.6772

NIQE [94] 0.3811 0.4094 0.4185 0.2720 0.1300 0.1412 0.1590 0.0110
VMAF [79] 0.7607 0.7760 0.7679 0.7663 0.6079 0.6347 0.6116 0.5006

ST-RRED [143] 0.8216 0.8154 0.8032 0.8232 0.7257 0.7235 0.7139 0.7174
GMSD [164] 0.6665 0.6465 0.6416 0.7502 0.5937 0.5634 0.5684 0.6369

2.9 Discussion and Conclusion

We described a subjective study that focused on the temporal aspects

of subjective video QoE under various network, buffer and low bitrate con-

straints. The study gathered both continuous time and retrospective data

that we processed to extract useful information regarding those factors that
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affect QoE, such as the network condition, the encoding bitrate and the spatio-

temporal complexities of the video contents being viewed. Overall, we hope

that QoE researchers find the new database to be a useful tool for studying the

temporal aspects of subjective quality of experience. This remains a relatively

unexplored area of research that poses many challenges.

Objective prediction models that incorporate spatio-temporal aspects

of videos and that predict human reactions to both bitrate dynamics and

rebuffering events could ultimately help streaming video companies address

resource allocation problems more efficiently and in a user-adaptive way. In

the following Chapters, we describe our research efforts towards this direction,

by describing overall (endpoint) QoE prediction models [45], [24], as well as on

continuous-time QoE prediction [23, 25, 28, 38] models that we have recently

designed.
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Chapter 3

Retrospective Quality of Experience

Prediction

3.1 Introduction

In the previous Chapter, we demonstrated the need for QoE-aware

prediction models that integrate video quality, stalling and memory measure-

ments. In this Chapter, we present the Video Assessment of TemporaL Arti-

facts and Stalls (Video ATLAS) model, which integrates video quality, stalling

and memory information to predict retrospective (overall) quality of experi-

ence. Video ATLAS is made publicly available at http://live.ece.utexas.edu/

research/VideoATLAS/vatlas index.html.

The rest of this Chapter is organized as follows. Section 3.2 discusses

previous work on video streaming QoE prediction and Section 3.3 gives an

overview of the subjective video QoE databases that we used to study and

predict QoE. Section 3.4 describes the proposed feature-based QoE prediction

model. Section 3.5 presents experimental results and Section 3.6 concludes the

observations in this Chapter.
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3.2 Previous work on QoE Prediction

There is a large variety of QoE prediction models that can be catego-

rized by the type of information they use and the application environment. To

facilitate a description of previous work on QoE prediction, we consider the

following three categories of QoE prediction models.

3.2.1 QoE Prediction on Videos with Normal Playback

The most typical HAS scenario is to apply an adaptive bitrate alloca-

tion strategy such that bandwidth consumption is optimized. The effects of

bitrate changes on the retrospective QoE may vary according to a number of

QoE-related scene aspects: low-level content (slow/fast motion scenes), pre-

vious bitrates, frequency of bitrate shifts and their noticeability, the display

device being used and so on [50, 100, 135, 150]. Apart from compression arti-

facts, HAS streams may also suffer from scaling artifacts, when the encoding

resolution is less than the display resolution [79]. A commonality of these

impairments is that there are no implied playback interruptions. These video

quality degradations have been deeply studied within the context of video

streaming [46, 50, 79, 135, 150] but also video quality [44, 100, 161].

To capture the perceptual effects of these video quality degradations,

a wide variety of video quality assessment (VQA) models have been pro-

posed. As already discussed, these models can be classified as full-reference

(FR) [79, 87, 134, 155, 159, 160], reduced-reference (RR) [29, 77, 143] and no-

reference (NR) [68, 127, 165, 166] models. The basic principle behind these
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models is to model the statistical regularities of high-quality video frames and

measure the deviations of a given (possibly) distorted video sequence. Based

on these perceptually-driven VQA models, continuous-time QoE prediction

models were designed in [23, 38] using Hammerstein-Wiener and non-linear

autoregressive approaches; but these models do not account for the effects of

stalling in HAS video QoE.

3.2.2 QoE Prediction on Videos with Playback Interruption

When the available bandwidth reaches a critical value (e.g. in a mobile

streaming scenario), playback interruption is sometimes very difficult to avoid.

While the effects of stalling on QoE are not yet well understood, various studies

have shown that the duration, frequency and location of stalling events severely

affects QoE [22, 43, 51, 52, 58, 135, 167]. In [58], the effects of initial delay were

compared to those of stalling events that occur while watching. By making

use of global stalling statistics, Quality of Service (QoS) models such as FTW

[59] and VsQM [124] have been proposed. A parametric relationship between

stalling and QoE was derived in [167] using cosine functions, but this approach

makes it hard to integrate more inputs (such as video quality measurements),

if needed. More recent efforts [52] have sought to both model the effects of

stalling on user QoE, and to integrate them with models of recency [56, 57].
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3.2.3 General QoE Prediction Models

Combining objective video quality models and stalling-related informa-

tion into single QoE scores is a difficult proposition which is also partly due to

the unavailability of suitable subjective data. Nevertheless, more general ap-

proaches that seek to combine video quality information together with stalling

information have also been proposed. In [106] the effects of frame drops and

image sharpness were separately modelled; then multiplied together yielding

an overall QoE score. In [141], the authors fed Quantization Parameter (QP)

values and stalling-related features into a Random Neural Network learning

model to make QoE predictions. However, their method was evaluated on

only 4 contents and on short video sequences of 16 seconds, hence they did

not consider longer term memory effects which are prevalent on video stream-

ing applications. Similarly, [163] weighted QP values against the impact of

stalling, which was related to the motion complexity of the last decoded frame.

A shortcoming of these works is that video quality is ascribed or equated

to average bitrate and/or QP values which do not carry as rich perceptual in-

formation as perceptually-motivated FR quality prediction algorithms (such

as SSIM and MS-SSIM). More recently, the authors of [45] combined such FR

approaches with stalling information, yielding the Streaming Quality Index

(SQI). SQI was evaluated in the Waterloo database [45], which contains 10

second clips of videos afflicted by quality changes and stalling. While SQI

delivered good performance and is simple to compute, it is not clear how to

integrate other QoE-related inputs (such as audio quality). The continuous
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QoE prediction problem was recently addressed using a neural network ap-

proach in [25], by integrating features computed using video quality models

and stalling information.

In recent years, the VQEG/ITU-T P.1201-3 standard [3, 117, 123, 130]

has also been proposed as a QoE prediction framework that combines audio-

visual quality measurements together with stalling information. The standard

determines three visual degradation types: upscaling (Du), temporal (Dt) and

quantization (Dq) degradation. Based on the amount of available video infor-

mation (modes 0 to 3), P.1201-3 measures the quantization degradation Dq

using a number of basic video-related attributes such as bitrate, resolution,

frame size or QP. The upscaling degradation Du is expressed as a logarithmic

function of the scaling factor (ratio of display and encoding resolutions), while

Dt is calculated using a parametric expression of framerate, Du and Dq. The

video quality module then sums the three terms together to describe the visual

quality degradations due to scaling, compression and/or jerkiness. There has

also been a Track 2 in P.NATS [11], where a pixel-based FR model was tested

against the previous modes in P.1201-3.

Besides visual quality, the P.NATS approach also takes into account the

audio quality per segment and the effects of stalling using multiple paramet-

ric expressions to derive the final QoE score. Our proposed approach shares

similarities with these models in that we have also considered statistical de-

scriptors (features) that capture the effects of stalling events and memory and

combined them with video quality measurements. However, our line of work
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is different in a number of ways.

We have deployed perceptually-relevant FR-VQA models which mimic

properties of the human visual system and have been shown to highly correlate

with human subjective scores. We do not express video quality as a parametric

model of specific degradations, but instead exploit the statistical regularities

of pristine images and video and measure perceptual quality as a deviation

from these spatiotemporal regularities. Importantly, calculating the FR-VQA

features requires access to the pristine video data which may be unavailable

on the client side. Nevertheless, the VQA calculations can be carried out

offline on the server side, where both the distorted and pristine segments are

available, then sent to the client as part of the metadata. This allows for a

QoE-driven, client-based adaptation strategy.

In P.1201-3, the final QoE score is estimated by summing a machine

learning prediction and the product between audiovisual quality and stalling

information, using many parameters that were determined by training on mul-

tiple databases. Instead, our data-driven approach uses a single SVR and ex-

plicitly describes the non-linear relationships between visual quality, stalling

and memory, without assuming a parametric model. While we do not capture

audio quality information in the proposed model, such information can be also

integrated, if it is readily available. Lastly, the training data and the proposed

QoE prediction model are publicly available to the research community.

The product of our work is the Video Assessment of TemporaL Artifacts

and Stalls (Video ATLAS) model: a new QoE prediction model that integrates
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objective, perceptually-driven FR-VQA models with stalling- and memory-

related features to conduct retrospective HAS-QoE prediction in a unified

way. To design our approach, we relied on two recently designed subjective

video QoE databases which contain videos suffering from temporal rate/quality

changes and stalling events. In the next section, we introduce these databases

and highlight their use for training and evaluating our proposed model.

3.3 Subjective Video QoE Databases

A key component of the proposed Video ATLAS is that it relies on

subjective ground truth data for training and testing purposes. To build ac-

curate retrospective QoE predictors, it is important to collect a large number

of subjective scores under different video impairments including, video qual-

ity changes (due to the multiple encoding bitstream representations of the

high-quality source content), stalling events (due to throughput and buffer

limitations) and combinations of the two. There have been plenty of subjec-

tive studies on HAS QoE [50, 135, 145, 146, 149, 150], but most existing video

quality databases are not publicly available thereby hampering their practical

benefit.

Other works consider these two impairment categories either in isolation

[38, 51, 52] or in an ad hoc fashion, i.e., without a realistic network design in

mind. In addition, due to the difficulty of designing and carrying out large

video subjective studies, many of these datasets are of quite limited size in

terms of video content, video duration and/or the number of participants.
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Overall, the majority of these databases cannot be used to train and evaluate

retrospective QoE predictors for HAS applications.

Towards filling this gap, we already discussed the design of the LIVE-

NFLX Video QoE Database in the previous Chapter. Besides the LIVE-Netflix

database (LIVE-Netflix DB), another sizeable and publicly available video QoE

database that considers interactions between stalling and quality changes is

the Waterloo Video QoE Database [45] (Waterloo DB). This recently devel-

oped database consists of 20 RAW HD 10 sec. reference videos. Each video

was encoded using H.264 into three bitrate levels (500Kbps, 1500Kbps and

3000Kbps) yielding 60 compressed videos. For each of those sequences, two

more categories of video sequences were created by simulating a 5 sec. stalling

event either at the beginning or at the middle of the video sequence. In total,

200 video sequences were evaluated by more than 25 subjects. Based on the

collected subjective data, the authors designed the Streaming QoE Index (SQI)

to “account for the instantaneous quality degradation due to perceptual video

presentation impairment, the playback stalling events, and the instantaneous

interactions between them.”

Unlike the LIVE-Netflix DB, Waterloo DB consists of short video se-

quences (which may not reflect the experiences of viewers watching minutes

or hours of video content), used fewer subjects, and importantly, the stalling

events and the bitrate/quality changes were not driven by any realistic as-

sumptions on the available network or the buffer size. However, given its

simplicity and the lack of availability of other public domain databases of this
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type, applying our proposed model on this database may yield a comparison

of practical worth.

3.4 Learning A QoE Predictor

In the previous Chapter, our experiments on the LIVE-NFLX database

demonstrated that VQA algorithms, which do not consider playback interrup-

tions, do not perform well. We also found that MS-SSIM, while an algorithm

that has a provably better performance than its single scale counterpart (SSIM)

[160], did not perform better than SSIM. Both of these observations verify the

notion that quality assessment tools should be used under the application con-

text and hence integrating QoE-aware information for HAS-QoE applications

is highly relevant.

In this direction, we next describe a new feature-based model which

integrates objective video quality, stalling-related and memory features to sig-

nificantly improve QoE prediction. While Video ATLAS is not an explicit

model of the cognitive properties that affect human QoE, it uses subjective

data to capture effects related to the perceived QoE. Using machine learning

methods to predict subjective quality is not a new concept [79, 127], but our

goal here is to predict subjective HAS-QoE, which is a different concept. Fig-

ure 3.1 shows a block diagram of Video ATLAS, while Table 3.1 summarizes

the attributes of our data-driven approach.
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Figure 3.1: Outline of the Video ATLAS QoE predictor.

Table 3.1: Description of the various features used in Video ATLAS.

Name Description
VQA video quality feature, using ST-RRED.
R1 duration of stalling event in sec.
R2 number of stalling events
M time since the last impairment

Mstall time since the last stall
I duration of the impairment in sec.

3.4.1 Proposed Model

Perceptual video quality during normal playback is a critical factor of

overall perceived QoE; hence high-performing video quality models are de-

sirable. However, not all video quality models perform the same. Recent

experiments have demonstrated that ST-RRED [143] is a robust and high-

performing video quality model when tested on a very wide spectrum of video

quality datasets [13], on multiple resolution and device types.

ST-RRED is an information-theoretic approach to VQA that builds
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on the innovations in [137]. It relies on decomposing video frames as well as

frame differences using a steerable wavelet decomposition of both the spatial

and temporal components. A Gaussian Scale Mixture model [156] of these

wavelet coefficients is used to derive closed-form conditional entropy measure-

ments on both the reference and distorted videos. ST-RRED produces a final

quality score by differencing locally weighted spatial and temporal entropies

between the reference and distorted videos. ST-RRED achieves quality predic-

tion efficiency without the need to compute motion vectors, unlike [134]; hence

it is highly suitable for streaming applications. Compared to using QP values

or average bitrate, ST-RRED captures a number of perceptually-motivated

properties, such as contrast masking, temporal masking and suprathreshold

effects [143].

Since we are focused on predicting retrospective QoE scores, a pooling

strategy was chosen that collapses per-frame objective quality measurements

into a single value. A number of different pooling strategies have been proposed

[100, 105, 136] that capture QoE aspects such as recency or the peak-end effect

(the worst and best parts of an event affect the QoE more). For simplicity, we

deployed simple averaging of the QoE scores as suggested in [136], reserving

recency modeling as a separate input feature.

Stalling greatly impacts the perceived QoE; hence we require stalling

descriptors that capture these stalling-induced QoE effects. It is clear from the

literature (e.g. in [51, 59]) that the number or density of stalling events is a key

factor of overall perceived QoE. When the number of stalling events increases,
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the overall QoE tends to decrease. To account for the effects of stalling [51, 52,

59, 107, 115], we included the length of each stalling event measured in seconds

(R1) and the number of stalling events (R2) as an input feature. The length

of the stalling event(s) was normalized to the duration of each video.

While the previous features consider stalling and quality changes, we

also computed the time (in sec.) per video over which a bitrate drop took

place; following the simple notion that the relative amount of time that a

video is more heavily distorted is directly related to the overall QoE. This

feature (I) was normalized to the duration of each video.

Besides stalling and video quality, QoE is also driven by numerous

cognitive (or memory) factors. For example, more recent experiences have a

larger weight when making retrospective evaluations, also known as the re-

cency effect [56]. Figure 3.2 demonstrates the underlying relationship between

averaged continuous scores in the LIVE-NFLX database within the last 5 sec-

onds of a video, and overall QoE scores. Memory is also activated by non-linear

mechanisms such as recency, primacy and duration neglect [27, 55, 56].

To model the effects of memory/recency, we computed the time since

the last stalling event or rate drop took place and was completed, viz., the

number of seconds with normal playback at the maximum possible bitrate

until the end of the video. By using this feature, we seek to capture the

relationship between the recency of QoE experiences, and the recorded retro-

spective subjective scores. This memory-related feature (M) was normalized to

the duration of each video. Other memory-related approaches such as those in
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Figure 3.2: The recency bias strongly affects QoE: averaged (over the last 5
sec.) continuous scores are highly correlated with retrospective QoE scores.
The retrospective scores were collected on 60-70 second video clips [27].

[57, 116, 167] could lead to performance improvements, but we chose a simpler,

though highly efficient approach to model memory.

Video quality measurements, stalling events and memory have a non-

linear relationship with QoE [27, 45, 50, 167]. For example, there is a funda-

mental difference between the perceptions of stalling events and compression

artifacts: stalling is always noticeable and annoying to subjects, while com-

pression artifacts may be less obvious on some scenes (such as those that can

be easily encoded) [27]. To model the non-linearities between compression,

stalling and memory, we used a Support Vector Regressor (SVR). SVRs are

popular machine learning engines that can model the non-linear relationships

between input features without the need for very large datasets and that have

been successfully deployed in many other image/video quality applications e.g.

in [127].
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3.4.2 Feature Extraction

We now describe the feature extraction process. First, we remove black

borders (if any) from the input videos, since those may affect the performance

of VQA models. Next, consider all frame pairs (i, i + j), where i indexes the

ith frame of the pristine video and i+j indexes the corresponding frame of the

distorted video, where j ≥ 0. If there are no stalling events in the distorted

video, then j = 0 ∀i; else determine j based on the number of stalled frames

until this point. In other words, these two frames must be synchronized in

order to be able to extract meaningful objective quality measurements. Next,

apply ST-RRED to measure the per-frame objective quality, then average pool

these values across frames to obtain a single quality-predictive feature that

will be used later. In addition, all the other features are collected, assuming

that for retrospective QoE prediction, the number of rebuffered frames as well

as the locations of the bitrate changes are known. For ST-RRED, adjacent

frames are needed to compute frame differences, hence we ensured that frame

differencing takes place only between two consecutive frames that both have

normal playback.

3.4.3 Video ATLAS as a General QoE Framework

A unique property of the proposed Video ATLAS model is that it is a

simple and application-independent approach to predict streaming video QoE.

We now discuss the general aspects of the proposed model.

During normal playback, any good video quality algorithm can be used
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to measure objective QoE scores. Our method allows the use of any full

reference (FR) or no reference (NR) image/video quality model as appropriate

for the application context. In Appendix C.1, we showcase examples of using

several models that are both highly compute-efficient and that deliver accurate

VQA predictions, rather than using compute-intensive models [133, 134].

Meanwhile, a flexible number of input features can be considered de-

pending on the application. As an example, the Waterloo Video QoE Database

[45] (Waterloo DB) is, by design, simpler than the LIVE-NFLX DB; hence a

smaller number of input features must be used when training or testing using

this database. Video ATLAS can be easily trained and tested using a smaller

number of features (see also Appendix). An enriched set of features can also

be used, given a suitable database or application. Viewed in a different light,

Video ATLAS can adapt to a diverse set of streaming applications, where both

stalling and compression artifacts may or may not occur.

Lastly, by carefully designing the input features so that their values are

normalized with respect to the video duration, Video ATLAS can be tested

on diverse types of databases. In the experimental section, we demonstrate

an example of training/testing using both the LIVE-NFLX and the Waterloo

databases.

3.4.4 Practical Considerations and Limitations

The proposed model is feature-based; hence its performance may be

adversely affected by the amount and quality of training data. Unlike many
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computer vision applications where the number of features and the available

training data are in the order of thousands (or even millions!), subjective data

carefully collected in a controlled environment are of much lower dimension.

Therefore, the Video ATLAS model is typically trained on approximately few

hundreds of data points, using a small (but highly descriptive) number of

features and uses regressors that are relevant to a small number of features

and/or training data. Notably, given the problem’s dimensionality, “deeper”

learning approaches may not yield substantial performance improvements. In

Appendix C.2, we show how varying the amount of training data affects the

performance of Video ATLAS.

It is important to discuss how Video ATLAS can be deployed in a

more practical setting. In a client-driven adaptive streaming scenario, the

client is in better position to perform QoE calculations. Since the reference

video is typically not available to the client and VQA calculations may be

compute intensive, the VQA measurements can be calculated on the server

side. Similarly, Video ATLAS can be trained on the server side, and the

model parameters, together with the VQA information, can be shared with

the client as part of the metadata. The client that is aware of the playback

and buffer status, can then use the features to perform QoE prediction in real-

time. In our experiments, training Video ATLAS can be carried out within

few seconds and testing the model is even faster, which is due to the simplicity

in the feature set and the SVR. In practice, and when the model is trained

accordingly, these QoE predictions can be carried out on a per-chunk basis (e.g.
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every 2 sec.), and can be used to drive QoE-aware bitrate selection decisions.

QoE is not only influenced by the three Video ATLAS input types:

video quality, stalling and memory. It is also affected by other factors [110]

such as resolution changes [21], varying audio quality, the display device, user

expectations regarding the streaming service and/or the viewing environment,

and the video content itself. Indeed, this is a limiting aspect of the training

data in the LIVE-NFLX database, which does not fully address these factors.

However, while Video ATLAS does not account for these factors, it is a flex-

ible framework that can integrate such QoE-related inputs, if they are made

available. Another important consideration is that Video ATLAS is trained on

subjective data that does not capture every aspect of real-world visual QoE.

As with any experimentally derived QoE model, it may have its own biases.

Ultimately, the success of these kinds of models must be measured by their

performance in real-world application.

3.5 Training and Evaluation of the Proposed Model

3.5.1 Experiments on the LIVE-Netflix Video QoE Database

To demonstrate the potential of the proposed method, we evaluated its

performance in the LIVE-Netflix DB by conducting two different experiments.

The first one (Experiment 1) consisted of creating two disjoint content sets:

one for training and one for testing. Within each content (training or testing),

all patterns were used for training or testing. While this is a common approach

used to account for content dependencies in feature-based VQA methods, it
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may also occur that the different “distortions” or playout patterns induce

pattern dependencies, resulting in overestimation of the true predictive power

of a feature-based method.

To examine pattern independence we also conducted a second experi-

ment (Experiment 2), where we picked one of the playout patterns as a test

pattern and the rest as training patterns. Thus, for each testing pattern there

were 14 test points (one for each content) and 98 training points. On both

tests, we applied the proposed model to predict the QoE scores of the test set,

given the input training features and MOS scores. Since our model does not

produce continuous scores, we only used the retrospective QoE scores from

LIVE-Netflix DB.

After the proposed model was trained on a given set of training features

and MOS scores, we applied regression on the test features to make QoE

predictions. Then, we correlated the regressed values with the MOS scores in

the test set and calculated the Spearman Rank Order Correlation Coefficient

(SROCC) and the Pearson Linear Correlation Coefficients (LCC). The former

measures the monotonicity of the regressed values and the latter the linearity of

the output. Before computing the LCC, we first applied a non-linear (logistic)

regression step on the output QoE scores of every method we compared, as

suggested in [63]. This step is not needed for our feature-based approach,

but we did it to ensure comparability with all other methods. Note that the

SROCC is a non-parametric measure of correlation between subjective data

and QoE predictions; hence non-linear regression is not needed to compute
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Figure 3.3: MOS against predicted QoE scores on a test subset when using
the proposed model. Left: before regression (BR) when using only ST-RRED;
Right: Proposed model. When using the regressed values the monotonicity
may change sign (here it becomes increasing) and the scale of the vertical axis
may also change. The figure shows a single train/test split where the 24 test
points correspond to 8 distortion patterns and 3 contents per distortion.

SROCC.

3.5.1.1 Experiment 1: Testing for Content Independence

As a first step, we visually demonstrate the performance of the learned

QoE model (see Fig. 3.3). In this example, the use of QoE-aware features can

better capture QoE both in terms of monotonicity and linearity, compared to

a model that does not consider stalling events or memory.

Then, we quantitatively analyzed the prediction performance of Video

ATLAS, in Experiments 1 and 2. For Experiment 1, we conducted
(
14
11

)
= 364

unique train/test combinations where, in each trial, there are 11 training and

3 testing contents. The SROCC and LCC calculations were repeated on each
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of the trials yielding a distribution of SROCC and LCC values for all possible

train/test content combinations. Taking the median value of this distribution

of correlation scores yields a single number describing the performance level

of each method.

To demonstrate the promise of Video ATLAS, we compared it with

various types of QoE models, including VQA models [79, 94, 143, 159, 160, 164],

QoS models such as FTW [59] and VsQM [124], variants of the SQI index

proposed in [45], modes 0 and 3 from P.1201-3 [3] and the NARX model [167].

To get a single QoE score from NARX, we first calculated the continuous-time

scores, then averaged them across time. We were not able to find a publicly

available implementation for modes 0 and 3 of [3], but we did our best to

reproduce the steps described in the standard. Table 3.2 shows the SROCC,

LCC and root-mean-squared error (RMSE) results for every model.

We found that Video ATLAS outperformed all other QoE prediction

models, and we found these differences to be statistically significant (see Ap-

pendix C.2). In Appendix C, we investigate the effects of using various VQA

models and feature sets for Video ATLAS. As expected, QoS and VQA mod-

els did not perform as well as QoE models, since they do not jointly capture

the effects of stalling and video quality changes on the perceived QoE. By

contrast, SQI combines perceptually-relevant FR VQA models with stalling

information for retrospective QoE prediction and greatly improved the tested

VQA models, with the exception of ST-RRED. The NARX model lacked in

performance compared to Video ATLAS, which may be due to the fact that
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it was specifically designed for continuous-time QoE prediction.

It is interesting that P.NATS modes 0 and 3 did not perform as expected

in this dataset, which may be attributed in part to differences in the subjective

data they were designed on. The LIVE-NFLX dataset focuses on very low

bitrates and encoding resolutions, and has only a small number of bitrate

shifts per distorted video, while the audio quality is fixed across all distorted

videos and does not contribute to QoE variations. It is possible that if the

LIVE-NFLX dataset used a broader range of resolutions and bitrates, the

performance of P.NATS modes 0 and 3 could be improved. In the next section,

we report our experimental analysis from Experiment 2.

Table 3.2: Results on the LIVE-Netflix DB over 364 pre-generated 80% train
and 20% test splits. The best result is denoted with bold.

Model SROCC LCC RMSE
FTW [59] 0.34 0.30 1.30

VsQM [124] 0.32 0.24 1.31
PSNR 0.60 0.57 0.77

SSIM [159] 0.68 0.75 0.58
MS-SSIM [160] 0.68 0.73 0.60

NIQE [94] 0.21 0.42 0.77
VMAF [79] 0.61 0.75 0.50
GMSD [164] 0.65 0.70 0.64

ST-RRED [143] 0.68 0.75 0.56
PSNR+SQI [45] 0.55 0.60 0.79
SSIM+SQI [45] 0.75 0.81 0.47

MS-SSIM+SQI [45] 0.75 0.79 0.49
ST-RRED+SQI [45] 0.57 0.67 0.66
P.1203 mode 0 [3] 0.46 0.68 1.73
P.1203 mode 3 [3] 0.44 0.30 1.28

NARX [167] 0.79 0.87 0.28
Video ATLAS 0.88 0.94 0.23

71



3.5.1.2 Experiment 2: Testing for Pattern Independence

As already mentioned, we carried out Experiment 2 to investigate pat-

tern independence when applying Video ATLAS, i.e. Experiment 2 excludes

the same distortion (such as 2 stalling events) from being present in both the

train and test sets. As before, we compared Video ATLAS to various VQA

and QoE models, but this time we excluded the QoS and the P.1201-3 models,

since they did not perform as well. We summarize our findings in Table 3.3,

which shows that all models performed worse than Experiment 1 (see Table

3.2). While these performances are not directly comparable since they corre-

spond to a different experimental setup, Video ATLAS performed very well in

both experiments. Note that Experiment 2 includes only 8 train/test combi-

nations (one per distortion pattern), hence investigating statistical significance

was not feasible.

Table 3.3: Experiment 2: Results on the LIVE-Netflix DB using various VQA
models, SQI, NARX and Video ATLAS.

Model SROCC LCC RMSE
PSNR 0.57 0.59 0.57
SSIM 0.79 0.83 0.30

MS-SSIM 0.74 0.83 0.31
NIQE 0.43 0.41 0.64
VMAF 0.49 0.48 0.63
GMSD 0.57 0.62 0.51

STRRED 0.81 0.81 0.31
PSNR+SQI 0.56 0.60 0.57
SSIM+SQI 0.80 0.84 0.30

MS-SSIM+SQI 0.74 0.83 0.30
ST-RRED+SQI 0.80 0.78 0.38

NARX 0.83 0.72 0.61
Video ATLAS 0.83 0.87 0.28
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3.5.2 Experiments on the Waterloo Video QoE Database

It is also important to study the performance of Video ATLAS under

different scenarios represented in other, independent resources, such as the

Waterloo DB. As in Experiment 1, we compared the predictive power of Video

ATLAS with that of SQI [45], and with several VQA models. We found that

FTW [59] and VsQM [124] performed poorly on this dataset and hence those

results are excluded. When conducting direct comparisons, we used the quality

prediction models that were used to define SQI in [45]: PSNR, SSIM, MS-SSIM

and SSIMplus [120]. To ensure that SQI yielded its best results on this dataset,

we used the parameters suggested in [45] (different for each quality model).

Note that the NARX model is continuous-time and hence it cannot be tested

on the Waterloo DB, since per-frame subjective ground truth is not available

in this dataset. We also excluded the P.1201-3 models which have not been

trained on sequences that are less than 60 sec. long.

Given the simple playout patterns, only the VQA+M+R2 feature set

could be used in Video ATLAS, i.e. features I and R1 become inactive. Since

the videos in the Waterloo DB do not suffer from dynamic rate changes, the

M feature was modified to instead be the amount of time since a stalling event

took place (Mstall). We carried out the following two experiments:

Experiment 3: We conducted 1000 trials of 80% train, 20% test splits

on the Waterloo DB, by using pre-generated indices of content-independent

splits. The results are tabulated in Table 3.4. As before, we found that

MS-SSIM and SSIMplus did not perform better than SSIM (though within
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statistical uncertainty), even though both have been shown to yield better

results than SSIM on the IQA and VQA problems [120, 160]. This verifies

our earlier observation that the interplay between stalling events and quality

changes complicates the predictive performance of traditional VQA models.

Therefore, a better IQA/VQA model may not always correlate better with

QoE measured in a lab setting. Overall, Video ATLAS delivered performance

statistically indistinguishable to that of SQI. This is likely in part since the

playout patterns in that dataset are simpler, the feature variation is smaller,

and the number of input features was reduced to only three. Given that SQI

was designed on the Waterloo DB, the Video ATLAS results are quite good.

Table 3.4: Experiment 3: Results on the Waterloo DB over 1000 pre-generated
80% train and 20% test splits.

Model SROCC LCC RMSE
PSNR 0.66 0.65 20.96

SSIM [159] 0.82 0.85 14.81
MS-SSIM [160] 0.79 0.82 15.74
ST-RRED [143] 0.83 0.84 14.37
SSIMplus [120] 0.81 0.84 15.38
PSNR+SQI [45] 0.78 0.75 17.99
SSIM+SQI [45] 0.91 0.90 11.87

MSSIM+SQI [45] 0.89 0.88 12.85
SSIMplus+SQI [45] 0.89 0.89 11.60

Video ATLAS w/ Mstall but w/o I or R1 0.90 0.90 11.45

Experiment 4: In our last experiment, we studied the performance of

Video ATLAS on a database-independent scenario, by training on the Water-

loo DB then testing on the LIVE-Netflix DB (see Table 3.5). In this case,

we applied 10-fold cross validation on the entire Waterloo dataset to deter-

mine the best parameters of each model. For SQI, since we trained on the
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Waterloo DB, we again used the suggested optimal parameters from [45]. As

in Experiment 3, we excluded the NARX and P.1201-3 models, which are not

applicable when the Waterloo database is used either for training or testing.

Notably, we found that when testing on a different database than the testing

one, normalizing the features by the video duration had a positive effect on

the performance of Video ATLAS.

Video ATLAS demonstrated exceptional predictive performance and

outperformed SQI in terms of both SROCC and LCC. While Video ATLAS

performed better, it should be noted that it used only 3 of the 5 input features

(VQA+Mstall+R2), given the simple design of the Waterloo DB. A more gen-

eral dataset for training could potentially increase the predictive performance

of Video ATLAS even further. The simplicity of Video ATLAS is highly de-

sirable: it uses features that capture the three main properties of QoE (video

quality, stalling and memory); hence the QoE predictions are more explainable

and less likely to overfit on unseen test data.

Table 3.5: Experiment 4: Training on the Waterloo DB and testing on the
LIVE-Netflix DB. The best result is denoted with bold.

Model SROCC LCC
FTW [59] 0.34 0.29

VsQM [124] 0.32 0.24
PSNR 0.53 0.51

SSIM [159] 0.72 0.75
MS-SSIM [160] 0.70 0.73
STRRED [143] 0.73 0.74
PSNR+SQI [45] 0.60 0.60
SSIM+SQI [45] 0.78 0.74

MS-SSIM+SQI [45] 0.75 0.71
Video ATLAS w/ Mstall but w/o I or R1 0.84 0.80
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3.6 Conclusions

We described a feature-based approach for QoE prediction that inte-

grates video quality models, stalling-aware, and memory features into a single

QoE prediction model. This approach embodies our first attempt to develop an

integrated retrospective QoE model, where stalling events and quality changes

are considered in a unified way. Nevertheless, there is still room for improve-

ment in two main directions: continuous-time models, such as the recently

proposed ones in [25] and better subjective data that will fuel the design of

better QoE predictors.

While the LIVE-NFLX database makes an effort to reflect realistic

network and playout patterns, it does not include sufficient diversity in terms

of quality and spatial resolution switching, stalling events, bitrate ranges and

uses a single, simplistic network condition. Larger and more diverse subjective

databases that include wider ranges of bitrate levels, that use actual network

traces, and that include large numbers of bitrate and resolution switches are

worthy goals. Such databases could be used to design and train even better

QoE predictors by exploiting improved feature sets, with increased relevance to

realistic HAS-QoE prediction scenarios. In the next Chapters, we will discuss

our ongoing research efforts towards both developing continuous-time models

and collecting richer subjective data.
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Chapter 4

Continuous-Time Quality of Experience

Prediction

4.1 Introduction

In this Chapter1, we present a family of continuous-time streaming

video QoE prediction models that process inputs derived from perceptual video

quality algorithms, rebuffering-aware video measurements and memory-related

temporal data. Our major contribution is to re-cast the continuous-time

QoE prediction problem as a time-series forecasting problem. An implemen-

tation of this work can be found at https://github.com/christosbampis/

NARX QoE release.

In the time-series literature, a wide variety of tools have been devised

ranging from linear autoregressive-moving-average (ARMA) models [35, 92] to

non-linear approaches, including artificial neural networks (ANNs). ARMA

models are easier to analyze; however they are based on stationarity assump-

tions. However, subjective QoE is decidedly non-stationary and is affected by

1This chapter appears in the paper: C. G. Bampis, Z. Li, I. Katsavounidis and A. C.
Bovik, “Recurrent and Dynamic Models for Predicting Streaming Video Quality of Expe-
rience”, IEEE Transactions on Image Processing, vol. 27, no. 7, pp. 3316-3331, 2018.
Christos George Bampis has designed and implemented the objective prediction models and
carried out the experimental analysis of this paper.
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dynamic QoE-related inputs, such as sudden quality changes or playback in-

terruptions. This suggests that non-stationary models implemented as ANNs

are more suitable for performing QoE predictions.

We specifically focus on the most practical and pressing problem: pre-

dicting continuous-time QoE by developing QoE system models driven by

a mixture of quality, rebuffering and memory inputs to ANN-based dynamic

models. Building on preliminary work in [23, 25], we advance progress towards

this goal by devising efficient QoE prediction engines employing dynamic neu-

ral networks including recurrent neural networks, NARX [23, 25] and Ham-

merstein Wiener models [38, 52]. We thoroughly test these models on a set of

challenging new subjective QoE datasets, and we conduct an in-depth experi-

mental analysis of model and variable selection. We also study a variety of new

ways of aggregating the time-series responses produced in parallel by different

QoE models and initializations into a single robust continuous-time QoE es-

timate, and we provide demonstrations and guidance on the advantages and

shortcomings of evaluation metrics that might be used to assess continuous

time QoE prediction performance. We also compare the abilities of our pro-

posed models against upper bounds on performance, i.e, human predictions.

The rest of this Chapter is organized as follows. Section 6.2 studies pre-

vious work on video quality assessment and QoE, while Section 4.3 discusses

the design of our general QoE predictor. Next, Section 4.4 describes the pro-

posed predictor that we have deployed and experimented with, and the com-

plementary continuous-time inputs that feed it. In Section 4.5 we introduce
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the forecasting ensemble approaches that are used to augment performance,

and in Section 4.6 a general class of QoE predictors that we designed are de-

scribed. Section 4.7 explains the experimental setup and Section 4.8 describes

and analyzes our experimental results. Section 4.9 concludes this Chapter.

4.2 Related Work

Ultimately, video QoE research aims to create QoE prediction models

that can efficiently address the resource allocation problem while ensuring the

visual satisfaction of users. As already discussed, QoE prediction models can

be conveniently divided into retrospective and continuous-time QoE predictors.

In previous Chapters, we discussed retrospective QoE prediction models such

as [45, 141] and proposed the Video ATLAS predictor. Here we focus on the

continuous-time QoE prediction problem for HTTP-based adaptive streaming.

Similar efforts have been recently initiated as part of the P.NATS Phase

2 project [4], a joint collaboration between VQEG and ITU Study Group 12

Question 14, which includes numerous industry and university proponents.

These research efforts have the same broad goal as our work, which is to design

objective QoE prediction models for HTTP-based adaptive streaming [5, 117].

The P.NATS models combine information descriptive of rebuffering and video

quality as determined by bitstream or pixel-based measurements. These ap-

proaches operate on a temporal block basis (e.g. on GOPs). Our work has

two fundamental differences. First, we deploy continuous-time predictors that

measure QoE with finer, per-frame granularity and these QoE responses can
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be further aggregated over any desired time interval when designing adaptive

rate allocation strategies. Furthermore, we train neural network models that

exploit long-term memory properties of subjective QoE, which is a distinctive

feature of our work.

Continuous-time QoE prediction using perceptual VQA models has re-

ceived much less attention and is a more challenging problem. In [38], a

Hammerstein-Wiener dynamic model was used to make continuous-time QoE

predictions on videos afflicted only by dynamic rate changes. In [23], it was

shown that combining video quality scores from several VQA models as inputs

to a non-linear autoregressive model, or simply averaging the individual fore-

casts derived from each can deliver improved results. In [167], a simple model

called DQS was developed using cosine functions of rebuffering-aware inputs,

which was later improved using a learned Hammerstein-Wiener system in [52].

The system only processed rebuffering-related inputs, using a simple model se-

lection strategy. Furthermore, only the final values of the predicted time-series

were used to assess performance. As we will explain later, time-series evalua-

tion metrics need to take into account the temporal structure of the data. To

the best of our knowledge, the only approach to date that combines percep-

tual VQA model responses with rebuffering measurements is described in [25],

where a simple non-linear autoregressive with exogenous variables (NARX)

model was deployed to predict continuous QoE.

A limitation of previous QoE prediction studies has been that exper-

imental analysis was carried out only on a single dynamic model and on a
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single subjective database. Since predictive models designed or learned and

tested on a specific dataset run the risk of inadvertent “tailoring” or over-

training, deploying more general frameworks and evaluating them on a variety

of different datasets is a difficult, but much more valuable proposition. We

also believe that insufficient attention has been directed towards how to prop-

erly apply evaluation metrics to time-series QoE prediction models. Optimal

model parameters can significantly vary across different test videos; hence

carefully designed cross-validation strategies for model selection are advisable.

In addition, it is possible to better generalize and improve QoE prediction

performance by using forecast ensembles that filter out spurious forecasts. Fi-

nally, previous studies of continuous QoE have not investigated the limits of

QoE prediction performance against human performance; calculating the up-

per bounds of QoE model execution is an exciting and deep question for QoE

researchers.

To sum up, previous research studies on the QoE problem have suffered

from at least one, and usually several, of the following limitations:

1. including either quality or rebuffering aware inputs

2. relying on a single type of dynamic model

3. limited justification of model selection

4. using evaluation metrics poorly suited for time-series comparisons

5. limited evaluation on a single video QoE database
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6. do not exploit time-series ensemble forecasts

7. do not consider continuous-time human performance

Our goal here is to surmount 1-7 and to further advance efforts to create

efficient, accurate and real-time QoE prediction models that can be readily

deployed to perceptually optimize streaming video network parameters.

4.3 Designing General Continuous-Time QoE Predic-
tors

In our search for a general and accurate continuous-time QoE predictor,

we realized that subjective QoE is affected by the following:

1. Visual quality: low video quality (e.g. at low bitrates) or bandwidth-

induced fluctuations in quality [27, 150] may cause annoying visual artifacts

[100, 131] thereby affecting QoE.

2. Playback interruption: frequent or long rebuffering events adversely af-

fect subjective QoE [59, 153]. Compared to degradations on visual quality,

rebuffering events have remarkably different effects on subjective QoE [27, 50].

3. Memory (or hysteresis) effects: Recency [27, 56, 150] is a phenomenon whereby

current QoE is more affected by recent events. Primacy occurs when QoE

events that happen early in a viewing session are retained in memory, thereby

also affecting the current sense of QoE [55].
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Broadly, subjective QoE “is a non-linear aggregate of video quality,

rebuffering information and memory” [25, 50, 149, 150]. The learning-driven

Video ATLAS model [24], that we proposed, combines these different sources

of information to predict QoE in general streaming environments where re-

buffering events and video quality changes are commingled. Nevertheless, that

model is only able to deliver overall (end) QoE scores. Towards solving the

more difficult continuous-time QoE prediction problem, the following points

should be considered:

1. At least three types of “QoE-aware inputs” must be fused: VQA model

responses, rebuffering measurements and memory effects.

2. These inputs should have high descriptive power. For example, high-performance,

perceptually-motivated VQA models should be preferred over less accurate in-

dicators such as QP values [141] or PSNR. QoE-rich information can reduce

the number of necessary inputs and boost the general capabilities of the QoE

predictor.

3. Dynamic models with memory are able to capture recency (or memory)

which is an inherent property of QoE.

4. These dynamic models should have an adaptive structure allowing for vari-

able numbers of inputs. For example, applications where videos are afflicted

by rebuffering events are not always relevant.

83



5. Multiple forecasts may be combined to obtain robust forecasts when mon-

itoring QoE in difficult, dynamically changing real-world video streaming en-

vironments.

An outcome of our work is a promising tool we call the General NARX (GN)

QoE predictor. Table 4.1 summarizes the notation that we will be using

throughout the Chapter. In the following sections, we motivate and explain

the unique features of this new method.

Table 4.1: Description of the acronyms and variables used throughout the
Chapter.

Acronym Description Acronym Description
VQA video quality assessment r # training data splits for cross-validation
QoE quality of experience NT # training QoE time-series
QP quantization parameter S # shuffles for performance bounds

NARX non-linear autoregressive neural network Nf # frames for a given video
RNN recurrent neural network OL open-loop configuration
HW Hammerstein-Wiener CL closed-loop configuration

V-N/R/H VQA-driven QoE with NARX/RNN/HW ANN artificial neural network
R-N/R/H rebuffering-driven QoE with NARX/RNN/HW FR full-reference
G-N/R/H general QoE-aware with NARX/RNN/HW RR reduced-reference

R1 playback status indicator at time t NR no-reference
R2 # rebuffering events until time t RMSE root-mean-squared error
M time elapsed since last distortion (memory) OR outage ratio
D1 LIVE HTTP Streaming Video Database [38] DTW dynamic time warping
D2 LIVE Mobile Stall Video Database-II [52] D pairwise DTW distance matrix
D3 LIVE-Netflix Video QoE Database [27] CI confidence interval
du # external variable lags SROCC Spearman’s rank order correlation coefficient
dy # input lags PLCC Pearson’s linear correlation coefficient
H # hidden nodes LD number of layer delays in RNN
N # videos in a subjective QoE database α significance level for hypothesis testing
T # training initializations m # comparisons in Bonferroni correction

4.4 The GN-QoE Predictor

Our proposed GN-QoE prediction model is characterized by two main

properties: the number and type of continuous-time features used as input and

the prediction engine that it relies on. In this section, we discuss in greater
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detail the QoE-aware inputs of our system and the neural network engine that

we have deployed for continuous-time QoE prediction.

4.4.1 QoE-Aware Inputs

The proposed GN-QoE Predictor relies on a non-linear dynamic ap-

proach which integrates the following continuous-time QoE-aware inputs:

1. The high-performing ST-RRED metric as the VQA model. Previous studies

[13, 24, 25, 27], have shown that ST-RRED is an exceptionally robust predic-

tor of subjective video quality. As was done in [23], it is straightforward to

augment the GN-QoE Predictor by introducing additional QoE-aware inputs,

if they verifiably contribute QoE prediction power. For example, the MOAVI

key indicators [74] of bluriness or blur loss distortion could be applied in order

to complement the current VQA input. At the same time, we recognize that

simple and efficient models are desireable in practical settings, especially ones

that can be adapted to different types of available video side-information.

Quality switching [119, 150] also has a distinct effect on subjective video

QoE. While we do not explicitly model quality switching, the memory com-

ponent of the NARX engine allows it to exploit ST-RRED values over longer

periods of time as a proxy for video segments having different qualities.

2. We define a boolean continuous-time variable R1 which describes the play-

back status at time t which takes value R1 = 1 during a rebuffering event and

R1 = 0 at all other times. This input captures playback-related information.
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Figure 4.1: Examples of the proposed continuous time QoE variables. Left
to right: ST-RRED computed on video #72 of the LIVE-NFLX Video QoE
Database (D3), and R1 and M on the LIVE Mobile Stall Video Database-II
(D2).

We also define the integer measure R2 to be the number of rebuffering events

that have occurred until time t.

3. M : the time elapsed since the latest network-induced impairment such as

a rebuffering event or a bitrate change occurred. M is normalized to (divided

by) the overall video duration. This input targets recency/memory effects on

QoE.

Figure 4.1 shows a few examples of these continuous-time inputs measured on

videos from various subjective databases.

4.4.2 NARX Component

The GN-QoE Predictor relies on the non-linear autoregressive with ex-

ogenous variables (NARX) model [25, 84, 140]. The NARX model explicitly

produces an output yt that is the result of a non-linear operation on multiple
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past inputs (yt−1, yt−2, . . . ) and external variables (ut):

yt = f(yt−1, yt−2, ..., yt−dy ,ut,ut−1,ut−2, ...,ut−du) (4.1)

where f(·) is a non-linear function of previous inputs {yt−1, yt−2, ..., yt−dy}, and

previous (and current) external variables {ut,ut−1,ut−2, ...,ut−du}, where dy is

the number of lags in the input and du is the number of lags in the external

variables. To capture the recency effects of subjective QoE, the memory lags

dy and du need to be large enough. In practice, we determine these parameters

using cross-validation (see Section 4.7.2). In Section E.4 we show that GN-QoE

is able to capture recency effects when predicting QoE.

In a NARX model, there are two types of inputs: past outputs that are

fed back as future inputs to the dynamic model, and external (or “exogenous”)

variables (see Fig. 4.1). The former are scalar past outputs of the NARX

model, while the latter are past and current values of QoE-related information,

e.g. the video quality model responses, and can be vector valued. To illustrate

this, Fig. 4.3 shows an example of the NARX architecture: there are three

exogenous inputs u(t), each containing a zero lag component and five past

values. By contrast, past outputs cannot contain the zero lag component.

The function f(·) is often approximated by a feed-forward multi-layer

neural network [101] possibly having variable number of nodes per hidden layer.

Here we focus on single-hidden layer architectures having H hidden nodes.

There are two approaches to training a NARX model. The first approach is

to train the NARX without the feedback loop, also known as an open-loop
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(OL) configuration, by using the ground truth values of yt when computing

the right hand side of (4.1). An example of the ground truth scores is shown

in Fig. 4.2. The second approach uses previous estimates of yt, also known

as a closed-loop (CL) configuration [23]. Both approaches can be used while

training; however, application of the NARX must be carried out in CL mode,

since ground truth subjective data is not available to define a new time-series.

The advantages of the OL approach are two-fold: the actual subjective scores

are used when training, and the neural network to be trained is feed-forward;

hence static backpropagation can be used [16].
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Figure 4.2: Exemplar subjective QoE scores on video #10 from the LIVE
HTTP Streaming Video Database (denoted by D1).

It has been shown [23] that, in practice, the CL configuration requires

longer training times and yields worse predictive performance; hence we use the

OL configuration when training and the CL configuration only when testing.

An example of the CL configuration of the NARX model is shown in Fig.
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4.3. For simplicity, we used a tangent sigmoid activation function and a linear

function in the output layer. The role of the linear function is to scale the

outputs in the range of the subjective scores, while the sigmoid activation

function combines past inputs and external variables in a non-linear fashion.

Given that the problem is of medium size, we chose the Levenberg-Marquardt

[76, 90] algorithm to train the model [15]. To reduce the chances of overfitting

in the OL training step, we used an early stopping approach [17]: the first 80%

of the samples were used to train the OL NARX, while the remaining 20% were

used to validate it. In Appendix D, we discuss these implementation details

of the NARX predictor, including the choice of the training algorithm, the

activation function and data imputation strategies.

Figure 4.3: The dynamic CL NARX system with 3 inputs, 8 neurons in the
hidden layer and 5 feedback delays. The recurrency of the NARX occurs in
the output layer [16].

The GN-QoE Predictor follows a learning-driven approach which re-

quires careful cross-validation and design. Still, preliminary experiments led

us to the conclusion that a single time-series prediction may be insufficient

for the challenging problem of continuous-time QoE prediction. Next, we de-

scribe another unique feature of the GN-QoE Predictor: the use of forecasting

ensembles.
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4.5 Forecasting Ensembles

4.5.1 Motivation

Ensemble learning is a long-standing concept that has been widely ap-

plied in such diverse research fields as forecasting [75, 171] and neural network

ensembles [70, 173]. We are specifically interested in time-series forecasting

ensembles, where two or more continuous QoE predictions are aggregated. In

our application, we utilize a variety of dynamic approaches that have various

parameters, such as the number of input delays. The results of these models

may also depend on the neural network initialization. Generally, relying on a

single model may lead to drawbacks such as:

1. Uncertain model selection. For example, in the stationary time-series and

ARMA literature [35, 92], model order selection typically relies on measure-

ments of sample autocorrelations or on the Akaike Information Criterion. How-

ever, in neural network approaches, this problem is not as well-defined.

2. Using cross-validation for model selection may not always be the best choice.

Different choices of the evaluation metric against which the QoE predictor is

optimized may yield different results. Furthermore, an optimal model for

a particular data split may not be suitable for a different test set. While

much larger QoE databases could contribute towards ameliorating this issue,

the barriers to creating these are quite formidable, suggesting multi-modal

approaches as an alternative way to devise effective and practical solutions.
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3. The QoE dynamics within a given test video may vary widely, reducing the

effectiveness of a single model order.

Since a single time-series predictor might yield subpar prediction results, we

have developed ensemble prediction models that deliver more robust predic-

tion performance by deemphasizing unreliable forecasts. These ensemble tech-

niques were applied to each of the forecasts generated. For example, testing

GN-QoE using κ different combinations of model orders du and dy, λ different

neural network initializations and µ possible values for the neurons in the hid-

den layer, produces κλµ forecasts which are then combined together yielding

a single forecast. In the next section, we discuss these ensemble methods in

greater detail.

4.5.2 Proposed Ensemble Methods

We have developed two methods of combining different QoE predictors.

The first determines the best performer from a set of candidate solutions. We

relied on the dynamic time warping (DTW) distance [32] which measures the

similarity between two time-series that have been time-warped to optimally

match structure over time: a larger DTW distance between two time-series

signifies they are not very similar. The benefit of DTW is that it accounts

for the temporal structure of each time-series and that it makes it possible

to compare signals that are similar but for rebuffering-induced delays. We

computed pairwise DTW distances between all predictors, thereby producing

a symmetric matrix of distances D = [dij], where dij = dji is the DTW distance
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between the ith and jth time-series predictions. Similar to the subject rejection

method proposed in [27], we hypothesize that νi =
∑
j

Dij, i.e., the sum across

rows (or columns) of D is an effective measure of the reliability of the ith

predictor. A natural choice is

io = arg min
i

νi, (4.2)

where io denotes the single best predictor. Note that io may not necessarily

coincide with the time-series prediction resulting from the best model parame-

ters (as derived in the cross-validation step). The second approach is to assign

a probabilistic weight to each of the C candidate predictors:

ỹt =
C∑
c=1

wcŷct, wc =
1/νc∑
c

1/νc
, (4.3)

where wc ∈ [0, 1] determines (weights) the contribution of the cth predictor to

the ensemble estimate ỹt. Along with these two ensemble methods, we also

evaluated several other commonly used ensemble methods, including mean,

median and mode ensembles. Mean ensembles have proven useful in many

forecasting applications [147], while median and mode ensembles are more

robust against outliers [69].

4.6 The G- Family of QoE Predictors

The GN-QoE Predictor is versatile and can exploit other VQA inputs

than the high performance ST-RRED model [13]. Indeed, it allows the use

of any VQA model (FR, RR or NR), depending on the available reference
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information. As in [24, 25], this enables the deployment of these models in a

wide range of QoE predictions applications.

Taking this a step forward, we have developed a wider family of predic-

tors based on the ST-RRED, R1 and M inputs, that also deploy other dynamic

model approaches. For example, Layer-Recurrent Neural Networks (denoted

here as RNNs)[47] or the Hammerstein-Wiener (HW) dynamic model [38, 52]

can be used instead of NARX, yielding models called GR-QoE and GH-QoE,

respectively. This general formulation also allows us to consider model subsets

that relate and generalize previous work. For example, the GH-QoE model,

when using only ST-RRED as input (denoted by VH in Table 4.2) may be

considered as a special case of [38]. We summarize the proposed family of

G-predictors and other predictors that use subset of these inputs, and their

characteristics in Table 4.2. Since the same QoE features are shared across

GN-, GR- and GH-QoE, we next discuss the learning models underlying GR-

QoE and GH-QoE.

4.6.1 GR-QoE Models

Recurrent Neural Networks (RNNs) [47] have recently gained popular-

ity due to their successful applications to various tasks such as handwriting

recognition [54] and speech recognition [128]. The main difference between the

NARX and RNN architectures, is that while the former uses a feedback con-

nection from the output to the input, RNNs are feedforward neural networks

that have recurrent connections in the hidden layer. Therefore, the structure
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Table 4.2: Summary of the various compared QoE predictors. X denotes
that the predictor in the row possesses the property described in the column.
We have found that including R2 in the G-predictors produces no additional
benefit (see E).

QoE Predictor Learner VQA R1 R2 M ensemble
VN NARX X X
RN NARX X X X

RMN NARX X X X X
GN NARX X X X X
VR RNN X X
RR RNN X X X

RMR RNN X X X X
GR RNN X X X X
VH HW X X
RH HW X X X

RMH HW X X X X
GH HW X X X X

of an RNN allows it to dynamically respond to time-series input data. The

recurrency property of RNNs allows them to model the recency properties of

subjective QoE. An example of such a neural network is shown in Fig. 4.4.

Figure 4.4: The dynamic RNN approach with 1 input, 8 neurons in the hidden
layer and 5 layer delays: the recurrency occurs in the hidden layer rather than
in the output layer [16].

Given that the amount of available subjective data is insufficient to

train a deep neural network, we decided to train relatively simple RNN models,

i.e., neural networks having only one hidden layer and up to 5 layer delays. As

in NARX, we used a tangent sigmoid activation function and a linear function
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at the output layer.

4.6.2 GH-QoE Models

Unlike the NARX and RNN models, the HW model, which is block-

based (see Fig. 4.5), has only been deployed for QoE prediction on videos

afflicted by rate drops [38] or rebuffering events [52]. The HW structure is

relatively simple: a dynamic linear block having a transfer function with nf

poles and nb zeros, preceded and followed by two non-linearities. The poles

and zeros in the transfer function allow the HW model to capture the recency

effects in subjective QoE, while the non-linear blocks account for the non-linear

relationship between the input features and QoE.

Figure 4.5: The HW dynamic approach.

The family of G-QoE predictors (see Table 4.2) can be applied to any

subjective database containing videos afflicted by quality changes, rebuffering

events or both, by simply choosing the model (QoE feature) subset that is

applicable to each case. Following our G-notation, we also define predictors V-

(which use only VQA model responses), R- (only rebuffering features) and RM-

(rebuffering and memory). We next describe the various subjective datasets

we used to evaluate the various approaches.
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4.7 Subjective Data and Experimental Setup

We now discuss the experimental aspects behind our QoE prediction

systems. We first describe the three different subjective QoE databases that

we used and our parameter selection strategy. Next, we discuss the advantages

and caveats of various continuous-time performance metrics and their differ-

ences. We conclude this section with a discussion on performance bounds of

continuous-time QoE predictors.

4.7.1 Subjective Video QoE Databases

In [38], a subjective video QoE database (denoted by D1 for brevity)

was created containing 15 long video sequences afflicted by quality fluctuations

relevant to HTTP rate-adaptive video streaming. This database consists of 8

different video contents of 720p spatial resolution encoded at various H.264 bi-

trate levels, with associated time-varying subjective scores. Rebuffering events

were studied in [51] using a different database (denoted by D2), where diverse

rebuffering patterns were inserted into 24 different video contents of various

spatial resolutions. Unlike [38], this subjective QoE database allows the study

of rebuffering-related characteristics (such as the number, locations and dura-

tions of the rebuffering events) and their effects on time-varying and overall

QoE. A total of 174 distorted videos are part of this database.

A deficiency of these early studies is that they were not driven by any

bandwidth usage models and did not contain videos containing both rebuffer-

ing events and quality variations. In realistic streaming applications, dynamic
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rate adaptations and rebuffering events occur, often in temporal proximity

depending on the client device’s resource allocation strategy [30, 61, 82]. As

already described, we built the new LIVE-NFLX Video QoE Database [27]

(D3) to bridge this gap.

We used these three subjective databases to extensively study the per-

formance of the continuous-time GN-, GR- and GH-QoE predictors. Next,

we describe the cross-validation strategy that we used to determine the best

parameter setting for each of these prediction engines.

4.7.2 Cross-validation Framework for Parameter Selection

We now introduce our cross-validation scheme for continuous-time QoE

prediction. Notably, the proposed recurrent models are highly non-linear;

hence the traditional time-series model estimation techniques used in ARMA

models [35] are not possible. Further, subjective QoE prediction is highly non-

stationary; therefore the most suitable model order may vary within a given

QoE time-series or across different test time-series. As a result, determining

the best model parameters, e.g., the input and feedback delays in the GN-QoE

model (du and dy), the number of poles (nf ) and zeros (nb) in the transfer

function of a GH model, or the number of layer delays (LD) in a GR model,

must be carefully validated (see Table 4.3).

Here we propose a novel cross-validation framework that is suitable for

streaming video QoE predictors. This idea builds on a simpler approach that

was introduced in [23]. In data-driven quality assessment applications, the
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available data is first split into content-independent training and testing sub-

sets, then the training data is further split into smaller “validation” subsets for

determining the best parameters. Content independence ensures that subjec-

tive biases towards different contents is alleviated when training and testing.

In the case of data-driven continuous-time QoE predictors, it is more realistic

to split the data in terms of their distortion patterns, since the testing network

conditions (which have a direct effect on the playout patterns) are not known

a priori.

The non-deterministic nature of these time-series predictions adds an-

other layer of complexity. As an example, given a set of QoE time-series

used for training, we have found that different initial weights produce differ-

ent results for GN- and GR-QoE Predictors; hence their performance should

be estimated across initializations. By comparison, previous continuous-time

QoE prediction models [25, 38, 52] have used a single model order. To sum up,

training a successful continuous-time QoE predictor requires:

1. Determining the best set of parameters using cross-validation on the avail-

able continuous-time subjective data.

2. Ensuring content-independent train and test splits.

3. Distorted videos corresponding to the same network or playout pattern

should belong only in the train or the test set.

4. To account for different neural network initializations, multiple iterations

need to be performed on per training set.
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Based on these properties, we now discuss our cross-validation strategy

in detail. Let i = 1 . . . N index the video in a database containing N videos.

First, randomly select the ith video as the test time-series. To avoid content

and other learning biases, remove from the training set all videos having similar

properties as the test video, such as segments that belong to the same video

content. Depending on which subjective database is used, we applied the

following steps. For D3, we removed all videos having either the same content

or the same distortion pattern [25]. For D1 and D2, we removed all videos

having the same content. This process yielded a set of NT training QoE time-

series for each test video, where NT = 10, 129 and 91 for D1, D2 and D3

respectively.

Next, we divided the training set further into a training subset and a

validation subset. This step was repeated r times to ensure sufficient coverage

of the data splitting. We also found that the HW component of the GH-QoE

model was sensitive to the order of the training data in a given training set. To

account for this variation, we also randomized the order of the time-series in

this second training set. Then, we evaluated each model configuration on every

validation set in terms of root-mean-square error (RMSE), and averaged the

RMSE scores, yielding a single number per model configuration. The model

parameters that yielded the minimum RMSE were selected to be the ones

used during the testing stage. When testing, we used all of the training data

and the optimized model parameters that were selected in the cross-validation

step. To account for different weight initializations, we repeated the training
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process T times; then averaged the performances across initializations.

Table 4.3: Parameters used in our experiments. On all three databases we
fixed r = 3 and T = 5. K can be any of the following three: G, V or RM
depending on the subjective database that the predictors were applied.

Model KN KR KH
parameter du dy H LD H nb nf H

D1 [10,12,14] [10,12,14] [5,8] [3,4,5] [5,8] [10,12,14] [10,12,14] 10
D2 [4,5,6] [4,5,6] [5,8] [3,4,5] [5,8] 4 4 10
D3 [8,10,15] [8,10,15] [5,8] [3,4,5] [5,8] [8,10,15] [8,10,15] 10

During cross-validation, we used the RMSE evaluation metric to select

the best performing model configuration. Nevertheless, other evaluation met-

rics may also contribute important information when comparing continuous-

time QoE prediction engines. In the following section, we investigate these

metrics in greater detail.

4.7.3 Evaluation Metrics

After performing the time-series predictions, it is necessary to select

suitable evaluation metrics to compare the output p with the ground truth time

g. In traditional VQA, e.g, in [134] and in hybrid models of retrospective QoE

[24, 45], the Spearman rank order correlation coefficient (SROCC) is used to

measure monotonicity, while Pearson’s Linear Correlation Coefficient (PLCC)

is used to evaluate the linear accuracy between the ground truth subjective

scores and the VQA/QoE predicted scores. These evaluation metrics have also

been used in studies of continuous-time QoE prediction [23, 38, 52].

Yet, it is worth asking the question: “Is there a single evaluation met-
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ric suitable for comparing subjective continuous-time QoE scores?” We have

found that each evaluation metric has its own merits; hence they have to be

considered collectively.

We now discuss the advantages and shortcomings of the various eval-

uation metrics that can be used to compare a ground truth QoE time-series

g = [gi] and a predicted QoE waveform w = [wi] where i denotes the frame

index. Continuous-time subjective QoE is inherently a dynamic system with

memory; hence we have developed continuous-time autoregressive QoE mod-

els. However, SROCC and PLCC are only valid under the assumption that

the samples from each set of measurements were independently drawn from

within each set; whereas subjective QoE contains strong time dependencies

and inherent non-stationarities.

There are other evaluation metrics that are more suitable for time-series

comparisons, i.e.,

1. The root-mean-squared error (RMSE), which captures the overall signal

fidelity:

√
(
∑Nf

i=1 (wi − gi)2)/Nf , where Nf is the number of frames.

2. The outage rate (OR) [38], which measures the frequency of times when

the prediction wi falls outside twice the confidence interval of gi:

1

Nf

Nf∑
i=1

1(|wi − gi| > 2CIgi), (4.4)

where CIgi is the 95% confidence interval of the ground truth g at frame i

across all subjects.
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3. The dynamic time warping (DTW) distance can also be employed [25, 27,

32] to capture the temporal misalignment between w and g.

Each of these metrics has shortcomings:

1. The RMSE is able to capture the scale of the predicted output, but cannot

account for the temporal structure.

2. The OR is intuitive and suitable for continuous-time QoE monitoring, but

does not give information on how the predicted time-series behaves within the

confidence bounds.

3. DTW captures temporal trends, but the DTW distance is hard to interpret,

e.g., a smaller distance is always better but a specific value is hard to interpret.

We demonstrate these deficiencies in Figs. 4.6, 4.7 and 4.8. Figure 4.6 shows

that the outage rate on the left is lower; however the predicted QoE is noisy.

By contrast, while the predicted QoE on the right has a larger OR, it is more

stable and it appears to track the subjective QoE more accurately. Figure

4.7 shows that, while the DTW distance between the two time-series predic-

tions is very different, both predictions nicely capture the QoE trend. Lastly,

while RMSE captures the correct QoE range, an artificially generated time-

series containing a zero value performs better than the temporal prediction but

misses all of the trends (see Fig. 4.8). Clearly, any single evaluation metric is

likely to be insufficiently descriptive of performance; hence we report all three
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of these metrics, along with the SROCC, to draw a clearer picture of relative

performance.

4.7.4 Continuous-time Performance Bounds

While the previously discussed evaluation metrics can be used to com-

pare QoE predictors, they do not yield an absolute ranking against the putative

upper bound of human performance. As stated in [131]: “The performance

of an objective model can be, and is expected to be, only as good as the per-

formance of humans in evaluating the quality of a given video.” We measured

the “null” (human) level of performance as follows. We divided the subjective

scores of each test video into two groups of the same size, one considered as

the training set and the other as the test set. Let Ai and Bi be the two sets,

i.e., Ai is the train set for the ith test video and Bi the corresponding test

set. For a given evaluation metric, we averaged the subjective scores in Ai and

Bi and compared them. To account for variations across different splits, this

process was repeated S times per test video, yielding subsets Ais and Bis at

each iteration s. We fixed S = 10. Then, we computed the median value over

s, yielding the median prediction performance of the ith test video. Finally,

to obtain a single performance measure on a given database, we calculated the

median value over all test videos.
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Figure 4.6: Vertical axis: QoE; horizontal axis: time (in samples). OR does
not describe the prediction’s behavior within the CI. Left: OR = 5.90; Right:
OR = 13.19.

Figure 4.7: Vertical axis: QoE; horizontal axis: time (in samples). DTW
better reflects the temporal trends of the prediction error although it is harder
to interpret. Left: DTW = 2.96; Right: DTW = 19.56.
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Figure 4.8: Vertical axis: QoE; horizontal axis: time (in samples). RMSE
does not effectively account for the local temporal structure of the prediction
error. Left: RMSE = 0.36; Right: RMSE = 0.33.

4.8 Experimental Results

In this section, we thoroughly evaluate and compare the different ap-

proaches in terms of their qualitative and quantitative performance. Recall

that only database D3 contains both quality changes and playback interrup-

tions; hence we applied the V-predictors on D1, the RM-predictors on D2 and

the G-predictors on D3.

To examine statistical significance, we used the non-parametric Wilcoxon

significance test [139] using a significance level of α = 0.05. To account for

multiple comparisons, we applied Bonferroni correction which adjusts α to α
m

,

where m is the number of comparisons. In all of the reported statistical test

results, a value of ‘1’ indicates that the row is statistically better than the

column, while a value of ‘0’ indicates that the row is statistically worse than

the column; a value of ‘-’ indicates that the row and column are statistically

equivalent.

105



4.8.1 Qualitative Experiments

We begin by visually evaluating the different models on a few videos

from all three QoE databases. Figure 4.9 shows the performance of the VN-

QoE Predictor on video #8 of database D1; the continuous time predictions of

the best cross-validated model closely follow the subjective QoE, and all indi-

vidual models yielded similar outputs. In such cases, it may be that forecasting

ensembles yield little benefit.
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Figure 4.9: The VN-QoE Predictor on video #8 of database D1. Top: pre-
diction using the best cross-validated model; bottom: predictions from all the
models.

By contrast, Fig. 4.10 shows QoE prediction on video #16 of database

D2. All three dynamic approaches suffered either from under- or over-shoot.

The RMR-QoE Predictor produced some spurious forecasts. In this instance,

an ensemble method could increase the prediction reliability, but, in this ex-

ample, the RMH-QoE Predictor performed well.

The example in Fig. 4.11 proved challenging for both the GN- and GR-
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QoE Predictors: the best cross-validated GN model was unable to capture the

subjective QoE trend, while the GR model produced an output that did not

capture the first part of the QoE drop. These examples highlight some of the

challenges of the problem at hand: finding the best neural network model can

be difficult. By contrast, the GH model was able to produce a much better

result. Notably, all three dynamic approaches suffered from spurious forecasts,

again suggesting that forecasting ensembles could be of great use.
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Figure 4.10: Columns 1 to 3: The RMN-, RMR- and RMH-QoE Predictors
applied to video #16 of database D2. First row: prediction using the best
cross-validated model; second row: predictions from all models.

4.8.2 Quantitative Experiments - D1

We begin our quantitative analysis by discussing the prediction per-

formances of the compared QoE prediction models (class V-) on the LIVE
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Figure 4.11: Columns 1 to 3: The GN-, GR- and GH-QoE Predictors applied
on pattern #4 of database D3. First row: prediction using the best cross-
validated model; second row: predictions from all models.

HTTP Streaming Video Database (D1). We first statistically compared the

VN, VR and VH predictors in terms of OR when using ST-RRED (see Table

4.4). Among the three compared dynamic approaches, the VN-QoE Predictor

consistently outperformed the VR and VH models. It has been previously

demonstrated [84] that the NARX architecture is less sensitive than RNN

models when learning long-term dependencies.

Table 4.4: OR significance testing (m = 3) on the class of V-predictors (with-
out ensembles) on D1 using ST-RRED.

Model Type VN VR VH
VN - 1 1
VR 0 - -
VH 0 - -
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In D1, there is no rebuffering in the distorted videos and hence it is

straightforward to study the performance between various leading VQA mod-

els: PSNR, NIQE [94], VMAF (version 0.3.1) [79], MS-SSIM [160], SSIM [159]

and ST-RRED [143] (see Table 4.5).

Table 4.5: Median OR performance for the class of V- QoE predictors on
database D1 (see also Table E.4).

Model Type VN VR VH
NIQE [94] 34.79 42.84 42.78

PSNR 25.07 36.16 29.51
VMAF [79] 12.38 24.05 23.04

MS-SSIM [160] 5.73 17.64 31.82
SSIM [159] 5.46 17.43 30.69

ST-RRED [143] 5.90 20.81 15.31

Unsurprisingly, NIQE performed the worst across all dynamic approaches;

after all, it is a no-reference frame-based video quality metric. PSNR deliv-

ered the second worst performance, but it does not capture any perceptual

quality information. MS-SSIM, SSIM and ST-RRED all performed well when

deployed in the VN-QoE Predictor; but when it was inserted into the HW

model, ST-RRED delivered the best performance. As shown in Table 4.6,

the OR performance differences between VMAF 0.3.1, MS-SSIM, SSIM and

ST-RRED were not statistically significant for the VN model; but all three of

them performed significantly better than PSNR and NIQE. It should be noted

that these statistical comparisons were performed at a very strict confidence

level of α
m

= 0.05
15

(due to Bonferroni correction with m = 15), hence these

comparisons are conservative.
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Table 4.6: OR significance testing (m = 15) when the VN-QoE Predictor was
applied on D1 across various VQA models. Similar results were produced by
the other evaluation metrics.

Model NIQE PSNR VMAF MS-SSIM SSIM ST-RRED
NIQE - 0 0 0 0 0
PSNR 1 - 0 0 0 0
VMAF 1 1 - - - -

MS-SSIM 1 1 - - - -
SSIM 1 1 - - - -

ST-RRED 1 1 - - - -

Our results show that perceptual VQA models, when combined with

dynamic models that learn to conduct continuous-time QoE prediction, do not

perform equally well; hence deploying high performance VQA models can con-

tribute to improved QoE prediction. Deciding upon the choice of the VQA fea-

ture is application-dependent; yet we believe injecting perceptual VQA models

into these models is much more beneficial than using QP or bitrate informa-

tion.

We now study the efficacy of ensemble forecasting approaches. The

naming convention of the ensemble methods is as follows: “best”: pick best

(from cross-validation) model parameters when testing, “avg”: averaging of

all forecasts, “med”: taking the median of all forecasts, “mod”: estimating

the mode, “DTW-single”: determining io in (4.2), “DTW-prob”: probabilistic

weighting of forecasts in (4.3).

Table 4.7 shows that NARX again performed better than the other

models across all ensemble methods. Using an ensemble method different than
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Table 4.7: Median OR performance for various time-series ensemble methods
applied on the class of V-predictors on database D1 using ST-RRED (see also
Table E.5).

Model Type VN VR VH
best 5.90 20.81 15.31
avg 5.25 15.59 14.69
med 5.25 9.15 13.99
mod 4.55 8.48 13.99

DTW-single 5.59 8.81 15.04
DTW-prob 5.25 10.51 14.69

the mean yielded results similar to the mean. This suggests that the VN-QoE

predictions were stable across different initializations and configurations (see

also Fig. 4.9), given that more robust estimators such as the non-parametric

mode produced results similar to the mean ensemble which can be sensitive

to outliers. Unlike VN and VH, using better ensemble estimators improved

the OR performance of VR predictions by 5-10%. This may be explained by

the larger uncertainty involved in the VR predictions, which is alleviated by

our forecasting ensembles. Notably, determining the single best predictor us-

ing DTW in (4.2) performed better than the predictions based on the “best”

model parameters during cross-validation. This verifies our earlier observa-

tion: the optimal model may vary over different data splits. The probabilistic

weighting scheme in (4.3) delivered performance that was competitive with

other ensemble methods, such as the median. Given that this scheme is also

non-parametric and data-driven, these results are encouraging.

111



4.8.3 Quantitative Experiments - D2

Next, we discuss our results on LIVE Mobile Stall Video Database-II

(D2) (see Table 4.8). Overall, the RMN-QoE Predictor outperformed both

the RMR and RMH-QoE Predictors, by achieving an excellent outage rate.

We found these improvements to be statistically significant. Notably, using

ensemble methods greatly improved OR (by more than 10% for both the RMR

and RMH models) across all dynamic models. Using an ensemble method other

than the mean led to a drop of OR by almost 15% in the case of the RMR-

QoE Predictor. This again demonstrates the merits of using a forecasting

ensemble for QoE prediction. Note that an outage rate of 0 does not mean

that the prediction is perfect; it only indicates that the ensemble predictions

were within two times the confidence interval.

Table 4.8: Median OR performance for various time-series ensemble methods
applied on the class of RM-predictors on database D2 (see also Table E.6).

Model Type RMN RMR RMH
best 6.84 21.08 16.22
avg 0.00 11.48 3.71
med 0.00 6.62 4.29
mod 0.00 7.60 4.03

DTW-single 0.00 7.25 3.88
DTW-prob 0.00 7.25 3.38

We also compared the performance of the proposed continuous-time

QoE predictors with a subset of the subjective predictions as an upper bound,

as described in Section 4.7.4. We found that ensemble forecasts can improve

on the prediction performance, but that there is still room for performance
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improvements (see Appendix E.3).

When tested on databasesD1 andD2, the prediction performance of the

proposed dynamic approaches was promising; especially when the predictions

were combined in an ensemble. However, neither of these databases models

both rebuffering events and video quality changes. In the next subsection, we

explore the prediction performance of the studied QoE prediction models on

the more challenging database D3.

4.8.4 Quantitative Experiments - D3

We investigated the performance of the class of G-predictors applied

to the more complex problem of QoE prediction when both rate drops and

rebuffering occur by using database D3. Due to rebuffering, computing VQA

models is not possible without first removing the stalled frames from each dis-

torted video. Using the publicly available metadata [102], we identified stalled

frames and removed them from the distorted YUV video, then calculated the

VQA feature, e.g. ST-RRED, on the luminance channels of the distorted and

reference videos. As shown in see Table 4.9, the GH-QoE Predictor performed

statistically better than the GN-QoE Predictor, while the GR-QoE Predictor

lagged in performance. It is likely that more hidden neurons would enable the

GN and GR models to perform better.

We also investigated the performance improvements of forecasting en-

sembles (see Table 4.10). Overall, all forecasting ensembles greatly improved

the performance of all dynamic models.
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Table 4.9: RMSE significance testing (m = 3) on the class of G-predictors
(without ensembles) on D3 using ST-RRED.

Model Type GN GR GH
GN - 1 0
GR 0 - 0
GH 1 1 -

Table 4.10: Median RMSE performance for various time-series ensemble meth-
ods applied on the class of G-predictors on database D3 using ST-RRED (see
also Table E.7).

Model Type GN GR GH
best 0.28 0.37 0.22
avg 0.24 0.29 0.16
med 0.29 0.29 0.11
mod 0.24 0.28 0.10

DTW-single 0.25 0.30 0.13
DTW-prob 0.24 0.29 0.12

As with D2, we also compared the performance of these QoE predictors

with their upper bound (see Appendix E). Interestingly, we found that the en-

semble predictions sometimes delivered better performance than the subjective

upper bound; an observation that we revisit in Appendix E.

4.9 Conclusions

In this Chapter, we designed simple, yet efficient continuous-time stream-

ing video QoE predictors by feeding QoE-aware inputs such as VQA measure-

ments, rebuffering and memory information into dynamic neural networks. We

explored three different dynamic model approaches: non-linear autoregressive

models, recurrent neural networks and a block-based Hammerstein-Wiener
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model. To reduce forecasting errors, we also proposed ensemble forecast-

ing approaches and evaluated our algorithms on three subjective video QoE

databases. We hope that this work will be useful to video QoE researchers as

they address the challenging aspects of continuous-time video QoE monitoring.

We now ask a more fundamental question: moving forward, which de-

sign aspect of these predictors is most important? Is it the choice of the dy-

namic model e.g. HW vs. NARX or selecting more sophisticated continuous-

time features? The results in Tables 4.6 and E.3, E.4 (see Appendices E.2 and

E.3) demonstrate that a better VQA model (e.g. ST-RRED vs. MS-SSIM) or

adding more rebuffering-related continuous-time inputs may not always yield

statistically significant performance improvements. Tables 4.5, 4.7, 4.8, 4.9

(and Tables E.5, E.6 and E.7 in Appendix E.3) demonstrate that, among the

three dynamic models, the RNN were consistently poorly performing while

the performance differences between the NARX and HW components were

not conclusive: on D1 and D2 the NARX-based predictors were better than

HW, while for D3 the HW component improved upon NARX. Meanwhile, us-

ing ensemble prediction methods yielded performance improvements in most

cases by producing reliable and more robust forecasts. However, these im-

provements may not be significant if the individual forecasts are similar to

each other.

In our preliminary experiments, we also discovered that when our pro-

posed QoE prediction engines were trained on one publicly available database,

then tested on another, they delivered poor performance likely due to their dif-
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ferent design, e.g., only D3 studies both rebuffering events and quality changes.

This highlights an issue that is at the core of data-driven, continuous-time

QoE prediction: lack of publicly-available and diverse subjective data. Ex-

isting databases, including D3, are limited in that they do not sufficiently

cover the large space of adaptation strategies, where time-varying quality, net-

work conditions and buffer capacity are all tied together. Therefore, without

large and more diverse subjective databases, introducing more sophisticated

continuous-time inputs or deploying more complex neural networks will yield

relatively small performance gains. In the next Chapter, we describe a large

subjective experiment that we designed in order to collect an adequate amount

of such data, which will allow us to leverage even more sophisticated learning

techniques as in [89] and potentially incorporate other inputs, such as qual-

ity switching. Such systems may as well exploit realistic network information

extracted from the client side and be used to perceptually optimize bitrate

allocation and/or network and bandwidth usage.
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Chapter 5

Perceptual Video Quality Assessment for

Adaptive Video Streaming

As already discussed, perceptual video quality measurements are an in-

tegral component of an adaptive streaming pipeline. To measure video quality,

objective video quality assessment (VQA) models are typically deployed. In

this Chapter, we focus on FR VQA models for video quality prediction.

There have been numerous approaches to the design of FR VQA al-

gorithms. Image-based approaches [138, 159] exploit only spatial information

by capturing statistical and structural irregularities between distorted video

frames and corresponding reference frames. A common principle underlying

many of these models is that bandpass-filtered responses of high-quality video

frames can be modeled as Gaussian Scale Mixture (GSM) vectors [114, 156]

and that distorted frames can be quantified in terms of statistical deviations

from the GSM model. The GSM approach has been applied in the spatial

[29, 159], wavelet [137, 143] and DCT [127] domains. Importantly, frame dif-

ferences of high quality videos can also be modeled as GSM vectors in order

to measure temporal video distortions [29, 137, 143].

Video-based FR VQA models have also been studied in the literature
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[87, 109, 134, 155]. In [155], the notion of spatio-temporal slices was derived and

the “most apparent distortion principle” [72] was applied to predict video qual-

ity. Optical flow measurements were also used in [87], where video distortions

were modeled by deviations between optical flow vectors. A space-time Gabor

filterbank was used in [134] to extract localized spatio-spectral information at

multiple scales. VQM-VFD [109, 111] used a neural network trained with a

large number of features such as edge features. These algorithms often deliver

good performance on small size videos, but are computationally inefficient on

long HD video sequences, since they apply time-consuming spatio-temporal

filtering operations.

Data-driven models hold great promise for the VQA problem [73, 79,

95, 109, 162]. Netflix recently announced the Video Multimethod Fusion Ap-

proach (VMAF), which is an open-source, learning-based FR VQA model.

VMAF combines multiple elementary video quality features using an SVR

trained on subjective data, and focuses on compression and upscaling arti-

facts. Nevertheless, it does not fully exploit temporal quality information

sensitive to temporal video distortions.

The open-sourced VMAF framework can be used as a starting point to

develop better VQA models by integrating stronger quality features and train-

ing data. Here we leverage these capabilities by proposing two ways to improve

upon the current VMAF framework. The first approach, called SpatioTempo-

ral VMAF, integrates strong temporal features into a single regression model.

The second enhancement (Ensemble VMAF) trains two separate models and
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then performs prediction averaging to predict video quality. Both approaches

rely on statistical models of frame differences and hence avoid computation-

ally expensive spatio-temporal filtering. To train our models, we designed a

large subjective experiment (VMAF+ database) and evaluated these models

in three experimental applications: video quality prediction, QoE prediction,

and Just-Noticeable Difference (JND) prediction.

The rest of the Chapter is organized as follows. Section 5.1 describes

the current VMAF system and highlights its capabilities and limitations. Sec-

tions 5.2 and 5.3 discuss the SpatioTemporal and Ensemble VMAF improve-

ments. Section 5.4 gives an overview of the VMAF+ subjective dataset that

we built. Section 5.5 details experimental results, while Section 5.6 concludes

this Chapter.

5.1 Background on VMAF

5.1.1 How VMAF works

VMAF extracts a number elementary video quality metrics as features

and feeds them into an SVR [79]. This allows VMAF to preserve and weight

the strengths of each individual feature and align the objective predictions

with ground truth subjective data. The VMAF system includes the following

steps (see Fig. 5.1): feature extraction and aggregation, training/testing and

temporal pooling.

The first step is to extract a number of quality metrics as perceptually-

relevant features: DLM [78], VIF [138] and the luminance differences between
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Figure 5.1: Outline of the current VMAF system.

pairs of frames (Temporal Information - TI). The DLM feature captures detail

losses and is calculated by a weighted sum of DLM values over four different

scales. The VIF feature captures losses of visual information fidelity and is

computed at four scales, yielding four VIF features. The TI feature aims to

capture temporal effects due to motion changes which are quantified by lumi-

nance differences, resulting in six features overall. The TI feature is currently

the only source of temporal quality measurement in VMAF.

Each of these six features is extracted as a feature map of size equal

to the corresponding scale. Next, the average value of each feature map is

calculated, to produce one feature value per video frame and feature type. For

training purposes, VMAF aggregates the per frame features over the entire

video sequence, yielding one feature value per training video. These six feature

values are fed, together with the corresponding subjective ground truth, to an
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SVR model. For testing purposes, VMAF predicts one value per video frame

and calculates the arithmetic mean over all per frame predictions to predict

the overall video quality.

5.1.2 VMAF Limitations and Advantages

VMAF has been developed with a particular application context in

mind. For the Netflix use case, there are two main video impairments that

are of interest: compression and scaling artifacts. Compression artifacts are

typically observed as blocky regions within a frame, while scaling artifacts

arise when the encoding resolution is lower than the display resolution and are

usually observed as jerky regions around edges. Both of these artifact types

are introduced while encoding the video content. Packet loss transmission

distortions are not a problem for HTTP adaptive streaming applications which

rely on the TCP transfer protocol.

Under this specific application context, VMAF achieves good predictive

performance by weighting the elementary video quality features. Figure 5.2

illustrates an example of the performance gains afforded by VMAF fusion.

Importantly, VMAF has been trained on video sources which contain film

grain noise. The effects of film grain on perceived video quality are not always

clear, since film grain may be reduced due to compression and sometimes

possesses an aesthetic subjective appeal. By training on the presence of film

grain, VMAF “learns” to account for these phenomena when performing video

quality predictions.
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Figure 5.2: Performances of the individual VMAF features and the fusion
result on the LIVE Mobile VQA Database [100]. Left to right: VIF calculated
at scales 2 and 3; DLM; VMAF fusion. When training VMAF, we relied on
the NFLX dataset [79]. The performance metrics and our model evaluation
are described in greater detail in Section 5.5.
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Aside from average frame difference measurements (TI feature), VMAF

does not exploit temporal quality measurements. The TI feature attempts to

capture motion masking effects, i.e., the reduction of distortion visibility due

to large motion changes. Nevertheless, TI measurements are more related to

the video content itself and do not effectively account for temporal masking.

Temporal video distortions, such as ghosting, flickering and motion estimation

errors, are quite complex in nature and deeply impact perceived video quality

[134]. Since compression standards are evolving and even lower encoding rates

are being used [12], it is important for FR VQA models, such as VMAF, to

generalize well on unseen video distortions.

5.2 SpatioTemporal VMAF

5.2.1 S-SpEED and T-SpEED features

Extracting temporal quality information is important for VQA models,

but space-time VQA models are often computationally intensive, since they

employ motion estimation or spatiotemporal filtering. To extract temporal

quality measurements, we exploit statistical models of frame differences in

high-quality videos similar to [137, 143] and [29]. The main idea is to model

the bandpass-filtered map responses of frames and frame differences as GSM

vectors [114, 156] and use entropic differencing to predict visual quality. To

calculate these entropy values, a conditioning step is applied which removes

local correlations from band-pass filtered coefficients. Conditioning is equiv-

alent to divisive normalization [126]; a process that is known to occur in the
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early stages of vision [37, 49, 93].

We build our work on the recently developed SpEED-QA model [29],

which extracts information-theoretic information in the spatial domain. A

diagram of the feature extraction steps is shown in Fig. 5.3. First, let Fi

be the ith video frame and Di = Fi+1 − Fi be the ith frame difference of

the reference or the distorted video. Then, downsample Di to the kth scale,

which yields the Di,k frame difference map. Then filter Di,k with a spatial

Gaussian filter and perform local mean subtraction in the spatial domain.

This local operation approximates the multi-scale multi-orientation steerable

filter decomposition used in [143] and is very compute-efficient.

Entropy measurements and entropic differencing have been shown to

correlate quite highly with human judgements of video quality [29, 143]. There-

fore, our next step is to calculate the local entropies in the reference and the

distorted video for the local mean-subtracted response map (MS map). These

steps are visualized in Fig. 5.4. We split the response map into b × b non-

overlapping blocks yielding the coefficients Cmk for block m and scale k. These

coefficients can be modeled as a GSM vector, i.e., Cmk = SmkUmk, where Smk

represents the variance field and is a non-negative random variable indepen-

dent of Umk ∼ N(0,KUk
). We model the neural noise present along the visual

pathway using an additive white noise model, i.e, C ′mk = Cmk + Wmk, where

Wmk ∼ N(0, σ2
wIN), IN is the b× b identity matrix and N = b2 is the number

of coefficients per block. In our implementation, we fix σ2
w = 0.1, b = 5 and

use a 7× 7 isotropic gaussian filter of standard deviation 7/6.
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Figure 5.3: T-SpEED feature extraction. Blue and red colors denotes the
reference and distorted videos respectively. A dashed box outline denotes that
these operations are performed on each block of the MS map, while dashed
and bulleted outline denotes a single value per frame. When extracting the
S-SpEED features, the diagram remains the same, except that whole video
frames are used instead of frame differences.
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To predict video quality, SpEED-QA calculates the entropy differences

between a reference and a distorted video at the lowest scale (k = 4). To

this end, we also apply conditioning on the block variances smk, which are

realizations of Smk and compute the entropies of the noisy bandpass coefficients

C ′mk, i.e.,

h(C ′mk|Smk = smk) =
1

2
log[(2πe)N |s2mkKUk

+ σ2
wIN |] (5.1)

To determine smk, calculate the sample variance on every non-overlapping

block of the MS map. To estimate the b× b covariance matrix KUk
, we use a

sliding window to collect all overlapping blocks from the MS map and compute

the sample covariance. The use of overlapping blocks in this step ensures that

a sufficient number of samples is available for covariance estimation, especially

for lower scales.

Following entropy calculation, the block entropies are further weighted

by a logarithmic factor, i.e., log
(
1 + s2mk

)
. This logarithmic factor is applied

twice; once for the temporal and once for the corresponding spatial variances.

This step lends a local nature to the model and ensures numerical stability at

regions of low spatial or temporal variance. To measure the statistical distance

between the GSM models of the distorted and reference video frames, the

weighted block entropy values are differenced and the absolute values of those

differences are computed. The absolute values are averaged over all blocks,

yielding the T-SpEED feature for frame i and scale k. This feature captures

the information loss due to temporal video distortions. To capture spatial
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quality degradations, we can also define the corresponding S-SpEED feature

by performing local mean subtraction on Fi,k instead of Di,k, then following

the exact same steps. The only difference is that the logarithmic weighting

only involves the spatial variance term, unlike T-SpEED.

mean

subtraction

split into bxb

 overlapping

blocks

split into bxb

 non-overlapping

blocks

estimate the bxb 

covariance matrix

 using all blocks

calculate

variance

on each block

calculate 

entropies on each

 non-overlapping

block

Figure 5.4: Details on entropy calculation for S-SpEED and T-SpEED.

5.2.2 SpatioTemporal Feature Integration

Despite the good performance of SpEED-QA in a number of databases

[29], it does not account for the effects of film grain on the perceived visual

quality and does not exploit multiscale information. Previous studies have

established the merits of multiscale information for image and video quality

assessment [160]. The human visual system processes visual information in a

multiscale fashion, while images demonstrate significant self-similarities. No-

tably, multiscale algorithms incorporate the effects of different display sizes

and viewing distances. Unfortunately, unlike image quality applications, in-

corporating multiscale information for VQA is not as easy.

In preliminary experiments, we discovered that the use of temporal

entropy differences across multiple scales yields complementary perceptual in-
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formation. To exploit this observation and combine information across scales,

we adopt a data-driven approach to learn the contribution from each scale and

predict visual quality. Due to a motion downshifting phenomenon [143], lower

scales yield stronger features, hence we extract T-SpEED features from scales

2, 3 and 4. The use of scale k denotes that the frame difference MS map is

downscaled by a factor of 2k, which allows for more efficient feature extraction.

To complement the T-SpEED features, we found that applying VIF

on the frame difference signal [137] across multiple scales leads to further im-

proved performance. We call these features T-VIF (4 features calculated from

scales 0, 1, 2 and 3). Both T-SpEED and T-VIF measure temporal infor-

mation loss using the GSM statistical model [156] on frame differences, but

T-VIF relies on mutual information between wavelet coefficients. Since the

5 spatial VMAF features (DLM and VIF from 4 scales) sufficiently capture

spatial quality degradations, we include them in our model as well. Over-

all, the proposed SpatioTemporal VMAF (ST-VMAF) approach deploys 12

perceptually relevant features (5 from VMAF, 3 from T-SpEED and 4 from

T-VIF) which capture both spatial and temporal information. Compared to

other feature candidates, we found that the proposed feature set delivers the

best performance.

Similar to the original VMAF approach, we average the per frame fea-

tures during training but perform per frame ST-VMAF predictions when test-

ing. This design choice did not have an effect on the predictive performance

of the ST-VMAF model. This also enables ST-VMAF to be used as an input
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to a larger, online, QoE prediction system (see Section 5.5).

To calculate the aggregate quality over an entire video sequence, we ap-

plied the hysteresis temporal pooling method in [132]. Human opinion scores

vary smoothly over time, while objective predictions respond sharply to vi-

sual changes. Meanwhile, subjective quality perception is driven by mem-

ory/recency, i.e., more recent experiences tend to more deeply affect current

visual impressions. Based on these observations, we applied a linear low-pass

operator and a non-linear rank order weighting on the objective prediction

scores, as suggested in in [132].

5.3 Ensemble VMAF

5.3.1 Why an Ensemble Model?

In the previous section, we described a simple way to integrate strong

temporal quality measurements into VMAF, by concatenating the spatial

VMAF features with the T-VIF and T-SpEED features. However, in cases

where the available subjective video data is limited, increasing the feature di-

mensionality (or using deep neural networks) may lead to overfitting. Video

databases are usually pretty diverse in their design and contents and hence a

particular feature subset may work well on one dataset, but not on another.

For example, we have empirically observed that the ADM feature carries a

large weight for spatial degradations, but does not generalize well on unseen

data. One option is to carefully tune the regression model parameters to effec-

tively regularize the predictions. Another alternative, which we have decided
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to follow here, is to consider fusion approaches.

Model fusion (or bagging) is a well-studied concept [112] which com-

bines multiple individual learners. The main idea is to fuse multiple simple

models that are easier to tune, and that complement each other towards reduc-

ing the prediction variance. Among other fusion possibilities, we experimented

with training multiple SVRs on different video databases or training different

regressors (e.g. a Random Forest and a SVR) on the same dataset. Neverthe-

less, we found that aligning predictions coming from models that were trained

on subjective data collected under different experimental conditions and/or as-

sumptions was a difficult proposition. We also found that the SVR predictions

always outperformed Random Forest predictions and hence their combination

was not beneficial. The performance merits of using an SVR for image and

video quality assessment have also been demonstrated in [79, 93, 127]. These

observations led us to the design of Ensemble VMAF (E-VMAF), which we

describe next.

5.3.2 An Ensemble Approach to Video Quality Assessment

We propose E-VMAF, an ensemble enhancement to VMAF, wherein

multiple feature subsets are used to train diverse VQA models that are then

aggregated to deliver a single prediction value. Nevertheless, training and

combining multiple models can significantly increase the complexity, which

can be challenging for a VQA model if it is to be deployed at a global scale.

Driven by simplicity, we trained two SVR models on the VMAF+ database
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(see also Section 5.4), and then averaged the individual predictions, as shown

in Fig. 5.5.
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Figure 5.5: Overview of the ensemble approach.

Given that the VMAF feature set already captures the combined ef-

fects of compression and scaling (and the predominance of these distortions in

practice), we use the same features (6 features) for the first individual model,

denoted by M1. To design M2, it is desirable to capture both spatial and

temporal quality measurements, such that the individual predictions are accu-

rate enough. Motivated by the perceptual relevance of the T-SpEED features

used in ST-VMAF, we combined the 3 T-SpEED features with the 3 S-SpEED

features calculated at the same scales (2, 3 and 4).

The VIF features of M1 and the S-SpEED features of M2 both exploit
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the GSM model of high-quality video frames, but they also have some differ-

ences. The S-SpEED features are based on conditional entropies which are

weighted by local variances, while VIF uses mutual information between ref-

erence and distorted image coefficients. Temporal quality measurements are

complementary between the two models: T-SpEED of M2 expresses temporal

information loss by conditioning and applying temporal variance weighting,

while the TI feature of M1 measures motion changes as a proxy for temporal

masking effects.

Interestingly, we found that optimizing weighted averages of the indi-

vidual predictions from M1 and M2 did not yield significant performance gains.

This suggests that the prediction power of the two learners are at near-parity.

The prediction averaging step produces a single prediction per frame which is

then averaged over all frames of each test video. For the time averaging step,

we again employed the hysteresis pooling method [132], as in ST-VMAF.

5.4 The VMAF+ Subjective Dataset

Data-driven approaches to VQA deeply depend on the training data

that is used to train the regressor engines. We believe that a useful train-

ing dataset should include a diverse and realistic set of video contents and

simulate diverse yet practical distortions of varying degradation levels. Col-

lecting consistent subjective data has the potential to significantly increase the

performance of data-driven VQA models on unseen data.

To this end, we conducted a large-scale subjective study targeting mul-
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tiple viewing devices and video streams afflicted by the most common distor-

tions encountered in large geographic-scale video streaming: compression and

scaling artifacts. We first gathered 29 10-second video clips from Netflix TV

shows and movies, from a variety of content categories, including, for example,

drama, action, cartoon and anime. The source videos were of different resolu-

tions, ranging from 720x480 up to 1920x1080, while the frame rates were 24,

25 or 30 frames per second. In our content selection, we also included darker

scenes, which are particularly challenging for encoding and video quality algo-

rithms. It should be noted that some of the source videos contain film grain

noise, which is more often found in older (legacy) content. This allows us to

gather valuable subjective data on videos that not only suffer from compres-

sion and scaling artifacts, but importantly, where there may be degradations

of quality in the original source video.

To describe content variation and encoding complexity, we employed an

approach different from the usual SI-TI plots [161]. We encoded all video con-

tents using a fixed Constant Rate Factor (CRF) setting of 23, then measured

the bitrate of each video file. Figure 5.6 shows that the video contents span a

large range of encoding complexities, from less than 1Mbps up to around 19

Mbps.

In streaming applications, the source video is usually divided into smaller

chunks (e.g. of 2 seconds each) and stored in multiple representations, where

each representation is defined by a specific pair of an encoding resolution

and bitrate level. To generate the distorted videos, we downsampled each
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Figure 5.6: Encoding complexity across contents, expressed as the bitrate (in
terms of kbps) of a fixed CRF 23 encode using libx264.

source video to six different encoding resolutions: 320x240, 384x288, 512x384,

720x480, 1280x720 and 1920x1080, then encoded them using the H.264 codec

using three different CRF values: 22, 25 and 28, thereby yielding 18 distorted

videos per content. For display purposes, all of the videos were upscaled to

1920x1080 display resolution. Both the downscaling and upscaling operations

were performed using a lanczos filter. Due to copyright restrictions, the videos

cannot be made publicly available.

To avoid subjective fatigue, we employed a content selection scheme,

where each subject only viewed a subset of all video contents. To avoid any

memory biases, we ensured that video contents were displayed in a random

order such that no video content was consecutively displayed. Overall, we

gathered more than 20000 scores from 167 subjects on three different viewing

devices: mobile, laptop and television. When training our models, we applied
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standard subject rejection protocols [63] and used the laptop subset of human

opinion scores. Figure 5.7 shows the distribution of the raw subjective data. It

can be seen that the scores widely cover the subjective range. The outcome of

our subjective test is the VMAF+ video quality database, which we found to

be an excellent source of training data for developing learning-based FR-VQA

models (see Section 5.5).
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Figure 5.7: Mean opinion score distribution on the VMAF+ database.

5.5 Experimental Analysis

In this section, we discuss a series of experiments on three different

and important video quality applications: subjective video quality prediction,

Just-Noticeable Difference (JND) prediction and video QoE prediction. For

evaluation purposes, we used the Spearman Rank Order Correlation Coeffi-

cient (SROCC), the Pearson Linear Correlation Coefficient (PLCC) and the

root-mean-squared error (RMSE). The SROCC measures the monotonic rela-
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tionship between the objective predictions and the ground truth data, while

PLCC measures the degree of linearity between the two. The SROCC and

PLCC correlation coefficients describe the overall agreement between subjec-

tive and objective scores, hence a better objective metric should produce a

higher correlation number. Before computing PLCC, a non-linear logistic fit-

ting was applied to the objective scores as outlined in Annex 3.1 of ITU-R

BT.500-13 [63].

We evaluated the proposed approaches against a number of popular

FR (and RR) VQA models. We tested the following VQA methods:1 PSNR,

PSNR-hvs [113], SSIM [159], MS-SSIM [160], ST-RRED [143], SpEED-QA

[29], ST-MAD [155], VQM-VFD [109] and VMAF version 0.6.1 [79]. For

VMAF 0.6.1 we used the suggested parameters, which were also used for E-

VMAF. We found this simple parameter selection scheme to work very well for

E-VMAF. In our experiments, performing cross-validation for ST-VMAF on

the VMAF+ dataset led to overfitting of unseen distortions, hence we empiri-

cally fixed C = 0.5 and γ = 0.04. This parameter selection delivered consistent

results across a large number of databases, as we will demonstrate next.

In the experiments, we relied on a wide variety of subjective video

databases: LIVE VQA [131], LIVE Mobile [100]2, CSIQ-VQA [154], NFLX

[79], SHVC [20]3, VQEG-HD3 [18], EPFL-Polimi [44], USC-JND [158], LIVE-

1We did not test MOVIE [134] since it is very time consuming when applied on HD
videos.

2We excluded frame freezes and used only the mobile subset.
3We excluded videos from Session 3 due to content overlap with the NFLX set.
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Table 5.1: Subjective Database Overview. TE: transmission errors, RA:
rate adaptation, MJPEG: motion JPEG compression, WC: compression using
wavelet, AWN: additive white noise, QoE: rate adaptation and/or rebuffer-
ing. yuv420p8b: planar YUV 420, 8-bit depth, yuv420p10b: planar YUV 420,
10-bit depth.

Database # Videos Resolution Duration Frame Rate Format Distortion Type
LIVE VQA [131] 150 768x432 10 sec. 25, 50 yuv420p8b H.264, MPEG-2, TE

LIVE Mobile [100] 160 1280x720 15 sec. 30 yuv420p8b H.264, TE, RA

CSIQ-VQA [154] 216 832x480 10 sec.
24, 25, 30

50, 60
yuv420p8b

H.264, H.265, MJPEG
WC, TE, AWN

VMAF+ 290 1920x1080 10 sec. 24, 25, 30 yuv420p8b H.264 and scaling
NFLX [79] 300 1920x1080 6 sec. 24, 25, 30 yuv420p8b H.264 and scaling

SHVC [20] 64 1920x1080 ∼= 10 sec. 25, 50
yuv420p8b
yuv420p10b

HEVC

VQEG HD3 [18] 135 1920x1080 10 sec. 30 yuv420p8b H.264, MPEG-2, TE

EPFL [44] 144
352x288
704x576

10 sec. 30 yuv420p8b H.264, TE

USC-JND [158] 3520
1920x1080, 1280x720

960x540, 640x360
5 sec. 24, 30 yuv420p8b H.264

LIVE-NFLX [27] 112 1920x1080 ¿ 60 sec. 24, 25, 30 yuv420p QoE
LIVE-HTTP [38] 15 1280x720 300 sec. 30 yuv420p8b QoE

NFLX [27] and LIVE-HTTP [38]. These databases contain a large variety of

distortion types, including H.264 and HEVC compression and dynamic rate

adaptation, scaling, packet loss, transmission errors and rebuffering events.

Importantly, our experimental analysis includes videos with various resolu-

tions, ranging from 352x288 up to 1920x1080, and frame rates (24, 25, 30, 50

and 60 fps). An overview of these databases is given in Table 5.1.

5.5.1 Video Quality Prediction

We begin our experimental analysis with the problem of video quality

prediction. To accurately evaluate performance, we focused on cross-database

results, i.e., we relied on the VMAF+ subjective dataset for training and
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Table 5.2: SROCC performance comparison on multiple Video Quality Sub-
jective Databases. VMAF, ST-VMAF and E-VMAF were trained on the
VMAF+ dataset. The best overall performance is denoted by boldface.

Database LIVE VQA LIVE Mobile CSIQ-VQA NFLX SHVC VQEG HD3 EPFL
overall

SROCC
overall
PLCC

PSNR 0.523 0.687 0.579 0.705 0.755 0.770 0.753 0.691 0.677
PSNR-hvs 0.662 0.757 0.599 0.819 0.828 0.798 0.904 0.785 0.788

SSIM 0.694 0.757 0.698 0.788 0.754 0.907 0.712 0.771 0.752
MS-SSIM 0.732 0.748 0.749 0.741 0.715 0.898 0.931 0.808 0.791
ST-RRED 0.805 0.892 0.805 0.764 0.889 0.912 0.944 0.872 0.777

SpEED-QA 0.776 0.897 0.741 0.781 0.879 0.909 0.936 0.861 0.759
ST-MAD 0.825 0.663 0.735 0.768 0.611 0.847 0.901 0.782 0.769

VQM-VFD 0.804 0.816 0.839 0.931 0.863 0.939 0.850 0.873 0.870
VMAF 0.6.1 0.756 0.906 0.614 0.928 0.887 0.850 0.836 0.847 0.853
ST-VMAF 0.809 0.905 0.784 0.927 0.888 0.932 0.945 0.897 0.898
E-VMAF 0.792 0.929 0.761 0.930 0.892 0.906 0.942 0.894 0.895

tested on the rest of the video databases. For each VQA model, we report

the SROCC values per testing dataset, as well as an aggregate SROCC and

PLCC value. To compute the aggregate correlation score, we applied Fisher’s

z-transformation [39], i.e.,

z =
1

2
ln

1 + r

1− r
,where r is SROCC or PLCC, (5.2)

to the correlation values and then averaged them over all tested databases.

The average value was then transformed back using the inverse of (5.2). Table

5.2 shows the results of this experimental analysis.

Among image-based models, such as PSNR and SSIM, PSNR delivered

the worst performance. This is expected, since it is a signal fidelity metric

that does not exploit perceptual information. SSIM and PSNR-hvs performed

considerably better and MS-SSIM achieved further performance gains, likely

due to the multiscale properties captured therein. Nevertheless, none of these
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spatial metrics exceeded an aggregate SROCC of 0.81, which demonstrates the

importance of capturing temporal information.

Regarding video-based models, ST-MAD did not perform well and was

very time-consuming (see Section A.2). VMAF 0.6.1 delivered excellent perfor-

mance on the NFLX dataset, which is expected, given that it mostly captures

compression and scaling artifacts. However, it demonstrated poor generaliza-

tion capabilities on unseen distortions, such as the CSIQ-VQA database. ST-

RRED and SpEED-QA performed well on most databases in terms of SROCC,

but neither algorithm performed well on the NFLX dataset, which may be due

to the presence of film grain in some of the source content. Notably, the ag-

gregate PLCC of ST-RRED and SpEED-QA was relatively low. Unlike VQA

models trained on subjective data, such as VMAF or VQM-VFD, the ST-

RRED and SpEED-QA predictions were highly non-linear with ground truth.

VQM-VFD delivered similar SROCC performance, but, unlike ST-RRED and

SpEED-QA, it uses a number of basic features that are fed to a neural network

trained on a very large number of subjective datasets.

From the above analysis, it can be seen that VMAF does not fully

exploit temporal information and does not generalize well on unseen distor-

tions. At the same time, untrained VQA models such as ST-RRED do not

exhibit a linear relationship with subjective ground truth, do not capture the

effects of film grain and do not combine multiscale information. The methods

we have developed here aim to bridge this gap and combine the best of both

worlds. Table 5.2 shows that ST-VMAF achieved standout aggregate perfor-
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mance across all databases, while E-VMAF functioned nearly as well. Both

models achieve this excellent level of video quality prediction power using a

single training dataset and a single parameter setting. It should be noted that

both ST-VMAF and E-VMAF considerably improve on VMAF, although they

were trained on the VMAF+ dataset, which focuses only on compression and

scaling artifacts. For example, on the CSIQ-VQA database, which contains

multiple distortion types other than compression, ST-VMAF and E-VMAF

both perform quite well. This strongly suggests that these new models possess

excellent generalization capabilities beyond their demonstrated state-of-the-

art VQA performance. In Appendix A, we further analyze the performance

gains and the computational efficiency of the proposed VQA models.

5.5.2 JND and QoE Prediction

Another interesting application of VQA models is JND detection, i.e.,

identifying JND points, and comparing them with the detection capabilities

of humans. The USC-JND dataset [158] was designed specifically for this pur-

pose. It contains a large number of videos, JND points and human opinion

scores. We selected several leading VQA models and reported their JND pre-

diction performance in Table 5.3. For this detection task, we did not employ

the hysteresis temporal pooling, since detection is a different task. Both ST-

VMAF and E-VMAF outperformed other powerful VQA models, including

ST-RRED and VMAF.

An important emerging application of perceptual video quality models
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Table 5.3: USC-JND performance comparison. VMAF, ST-VMAF and E-
VMAF were trained on the VMAF+ dataset. The best performing algorithms
are denoted by boldface.

Database SROCC PLCC
PSNR 0.616 0.589
SSIM 0.718 0.602

MS-SSIM 0.815 0.739
ST-RRED 0.844 0.735

SpEED-QA 0.843 0.727
VMAF 0.6.1 0.853 0.854
ST-VMAF 0.877 0.856
E-VMAF 0.875 0.869

is streaming video QoE prediction. In streaming applications, the reference

video is usually available, hence reference models are more relevant. The pre-

dominant video impairments that occur during video streaming are compres-

sion, spatial scaling artifacts, and rebuffering events. We studied the behavior

of the ST-VMAF and E-VMAF models on the recently released LIVE-NFLX

Video QoE Database [27], which simulates realistic buffer and network con-

straints, and contains rebuffering events, rate adaptations and constant bitrate

encodes. Table 5.4 shows that none of the considered FR-VQA models per-

formed particularly well, since they do not model the effects of rebuffering.

This suggests that more sophisticated QoE predictors (than just VQA algo-

rithms) are required for the more general problem of QoE assessment. How-

ever, both of the new models achieved better performance than all the other
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models, especially in terms of PLCC4.

Table 5.4: Quantitative performance comparison on the LIVE-NFLX Video
QoE Database [27], including both compression and rebuffering events. The
best performing algorithm is denoted by boldface.

VQA SROCC PLCC
PSNR 0.515 0.507

PSNR-hvs 0.535 0.545
SSIM 0.701 0.726

MS-SSIM 0.683 0.710
ST-RRED 0.702 0.715

SpEED-QA 0.712 0.727
VMAF 0.6.1 0.607 0.667
ST-VMAF 0.735 0.780

E-VMAF 0.721 0.772

We also examined the potential of incorporating the ST-VMAF and

E-VMAF VQA models into an existing continuous-time QoE predictor. We

tested the revised QoE predictor using the LIVE-HTTP Video QoE Database

[38] which studies the effects of HTTP-based rate adaptation on 5 min. long

HD video sequences. Table 5.5 reports the outcomes of the experiments when

using the NARX QoE predictor [25], which has demonstrated promising results

on the few available video QoE databases. First, we split the database into

content independent train-test splits, then determined the best NARX config-

uration on the training set. Next, we tested the selected parameter setting on

the test videos using a number of leading VQA models as integral components

4VQM-VFD cannot be applied to videos of duration more than 15 sec. and hence is
excluded
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of the NARX QoE predictor. For evaluation purposes, we reported the SROCC

and root mean squared error (RMSE) values between the continuous QoE pre-

dictions and the continuous ground truth data. It can be seen that ST-VMAF

outperformed all of the other VQA models when used in this way, suggesting

that it is an excellent choice for inclusion in future perceptually-driven online

QoE prediction systems. Ultimately, we envision deploying high-performance

QoE predictors to design practical perception-driven rate adaptation and net-

work allocation protocols.

Table 5.5: Quantitative performance comparison on the LIVE-HTTP [38]
Video QoE Database when using the continuous-time NARX [25] QoE pre-
dictor. The best performing algorithm is denoted by boldface.

VQA SROCC RMSE
PSNR 0.731 6.708
SSIM 0.901 3.844

MS-SSIM 0.881 4.248
ST-RRED 0.885 4.226

VMAF 0.6.1 0.883 4.321
ST-VMAF 0.924 3.515

E-VMAF 0.922 3.666

5.5.3 Observations and Takeaways

In our experiments, we demonstrated that both ST-VMAF and E-

VMAF performed very well for video quality and JND prediction and have

the potential to be integrated with QoE predictors. Between the two, their

performances are quite similar: E-VMAF was slightly better in terms of PLCC
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for JND prediction (see Table 5.3) and ST-VMAF was a bit better in terms of

SROCC in the LIVE-NFLX experiment (see Table 5.4). The benefit of using

E-VMAF is that it is easier to tune, since using the same SVR parameters as

VMAF yielded excellent results. By contrast, to train ST-VMAF, its larger

number of features (compared to the VMAF baseline) had to be regularized

using more careful SVR tuning. Nevertheless, in applications where a compact

feature and model representation is required, ST-VMAF might be a preferred

solution.

5.6 Conclusion

In this chapter, we developed two high-performing, data-driven full ref-

erence video quality assessment models. We have shown how strong temporal

and spatial quality measurements can be integrated into a recently developed

video quality prediction system. Both models can be easily deployed into the

Netflix VMAF ecosystem and hence can be applied to perceptual video quality

at global scale. In the future, we plan to further improve those models by com-

bining NR source VQA measurements with the FR system towards accounting

for possible degradations of the original source/reference video. To do so, we

also plan to develop better data-driven NR video quality models that can be

used in lieu of existing NR VQA [127] approaches. Towards achieving this

goal, it will be very interesting to exploit the ensemble fusion idea proposed

here on the NR VQA problem.
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Chapter 6

End-to-end Perceptual Adaptive Streaming: A

Subjective Study

6.1 Introduction

Understanding and predicting QoE for adaptive video streaming is an

emerging research area [22, 24, 25, 27, 45, 50, 58, 96, 135, 145, 149, 150]. Exist-

ing QoE studies do not fully capture important aspects of practical video

streaming systems, e.g., they do not incorporate actual network measurements

and client-adaptation strategies. To this end, we built the LIVE-NFLX-II

database, a large subjective QoE database that integrates perceptual video

coding and quality assessment, using actual measurements of network and

buffer conditions, and client-based adaptation. To construct our database,

we relied on an adaptive streaming prototype that consists of four modules;

an encoding module, a network module, a video quality module and a client

module.

A unique characteristic of the subjective database presented herein is

that we incorporate recent developments in large-scale video encoding and

adaptive streaming. To generate video encodes, we make use of an encoding

optimization framework [67] that selects encoding parameters on a per-shot
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basis, guided by a state-of-the-art video quality assessment algorithm (VMAF)

[79].

To model video streaming, we use actual network measurements and

a pragmatic client buffer simulator, rather than just simplistic network and

buffer occupancy models. Given the plethora of network traces and adapta-

tion strategies, the database captures multiple streaming adaptation aspects,

such as video quality fluctuations, rebuffering events of varying durations and

numbers, spatial resolution changes, and video content types. The subjective

data consists of both retrospective and continuous-time scores, which makes

it ideal for training various QoE models. Lastly, the video database is consid-

erably larger and publicly-available. To highlight the contribution of the new

database, Table 6.1 shows its advantages over existing ones.

Table 6.1: High-level comparison with other relevant video streaming subjec-
tive studies.

Description [118] [145] [150] [168] [83] [38] [45] [53] [27] LIVE-NFLX-II
client adaptation X X
continuous QoE X X X X X

actual network traces X X
buffer model X X X

public X X X X X
> 400 test videos X
> 60 subjects X X X

rebuffering + quality X X X X X X
content-based encoding X X X

6.2 Previous Works

To develop QoE-aware video streaming systems, it is important to ana-

lyze human subjective data of user experience, develop QoE prediction models
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and integrate these models into client-adaptation algorithms. With this set-

ting in mind, we constructed the LIVE-NFLX-II database to collect human

subjective data, train QoE models and study client adaptation algorithms.

Therefore, it is important to relate our work with previous works on each of

these QoE-related aspects.

6.2.1 Subjective Analysis of HTTP QoE

Subjective video quality assessment [161] is important for better un-

derstanding human video perception and validating better objective models.

Many databases have been designed towards advancing progress on the more

general problem of video quality [18, 44, 60, 100, 154] and streaming [27, 38, 45,

58, 83, 118, 142, 145, 149–151, 168]. There are also two valuable survey papers

in the field in [50, 135]. Here we give only a brief overview to elucidate impor-

tant shortcomings in previous studies, and to suggest potentially important

improvements.

The time-varying quality of long HTTP streams was investigated in

[38], without considering rebuffering events and/or client adaptation strate-

gies. A crowdsourcing experimental comparison among three representative

HTTP-based clients was carried out in [118], but only one video content was

used and the time-varying QoE was not investigated. In [45], the effects of

rebuffering and quality changes were jointly considered, but the videos used

were of short duration and the generated distortions did not simulate any ac-

tual client adaptation strategy. A simplistic buffer and network approach was
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derived in [27] (also introduced in Chapter 2) to study the trade-offs between

compression and rebuffering; but only eight distortions were generated and the

database is not available in its entirety. Further, it was quite common for the

aforementioned experiments to use a fixed bitrate ladder, without considering

content-aware encoding strategies which are gaining popularity.

To summarize the main shortcomings of these previous studies, we

think that they do not study all of the multiple important dimensions in

the client adaptation space, they do not use actual network measurements

or a buffer occupancy model to depict an actual streaming scenario, they are

small or moderate in size, and they are not always publicly available. Here we

present our efforts on advancing the field of perceptually-optimized adap-

tive video streaming by designing a new and unique QoE database, whereby

perceptual video quality principles are injected into various stages of a mod-

ern streaming system: encoding, quality monitoring and client adaptation. We

hope that these efforts will help pave the way for the development of optimized

perceptual streaming systems in video streaming industry.

6.2.2 Objective Models for QoE Prediction

The design of optimized user QoE protocols requires accurate QoE

prediction models [25, 31, 38, 45, 86, 97, 117, 123, 124, 163]. These models either

predict continuous-time QoE or retrospective (after the viewing session ends)

QoE. To form these predictions, video quality information is combined with

other QoE indicators, such as the location and duration of rebuffering events,
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the effects of user memory, the effect of quality switching, and other factors.

In most cases, video quality is equated with the video encoding bitrate, the

quantization parameter (QP), or is measured using perceptually-designed ob-

jective video quality models [11, 120, 159]. Predicting QoE in actual streaming

scenarios is a very challenging proposition; to be able to train better algo-

rithms and evaluate existing ones, diverse and detailed video databases are

needed.

6.2.3 Client-based Adaptation Algorithms

The design space of adaptation algorithms is very large, but client-based

Adaptive Bitrate (ABR) strategies can be broadly classified as: throughput-

based [65, 85, 148], buffer-based [30, 61, 91, 144] and hybrid/control-theoretical

approaches [41, 82, 88, 157, 169, 172]. Throughput-based approaches rely on

TCP throughput estimates to select subsequent rate chunks, while buffer-based

approaches use measurements of buffer occupancy to drive these decisions.

Hybrid algorithms use both throughput estimates and buffer occupancy, and

deploy control-theoretical or stochastic optimal control formulations to max-

imize user QoE [169]. Recently, raw network observations were also fed to

neural networks to achieve adaptive rate selection [89]. An excellent survey of

adaptation strategies is found in [71]. Designing QoE-aware adaptation strate-

gies is strongly connected to QoE prediction models, since their optimization

goal is to maximize some QoE metric [89, 169]. In turn, subjective experiments

are important sources of ground truth data to train and develop better QoE
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predictors [27, 45].

6.3 Adaptive Video Streaming Pipeline

6.3.1 Overview

To overcome the limitations of previous QoE studies and train better

QoE models, we build our database based on a highly realistic adaptive stream-

ing pipeline model, which comprises four main modules, as shown in Fig. 6.1.

The encoding module splits a source video into segments (chunks), determines

the per-chunk encoding parameters (encoding resolution and QP) and pro-

duces encodes of optimized quality. The video quality module calculates the

per-chunk video quality, which drives the encoding and client modules. The

network module incorporates the selected network traces, and is responsible

for communication between the encoding, video quality and client modules.

The client module is responsible for requesting the next chunk to be played. To

decide the bitrate/quality level, the client module is aware of its buffer status,

and may estimate the future bandwidth (based on past client measurements).

Lastly, the playout sequence is generated by concatenating the downloaded

encodes, and by adding rebuffered frames when playout pauses. Next, we dis-

cuss the network and client modules in greater detail; more details about the

encoding module, the video quality module and the overall streaming system

can be found in Appendix F.
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Figure 6.1: Adaptive streaming ecosystem overview.

6.3.2 Network Module

The network module utilizes actual network traces to inform the client

regarding the bitrate/quality levels for each segment in the chunk map. In

practice, this can be implemented as part of the manifest exchange between

the server and the client. To capture the effects of network variability, we

manually selected 7 network traces from the HSDPA dataset [6, 122], which

contains actual 3G traces collected from multiple travel routes in Norway, using

various means of transportation, including car, tram and train, together with

different network conditions. This dataset has been widely used to compare

adaptation algorithms and is suitable for modeling challenging low-bandwidth

network conditions.

We have summarized the characteristics of the selected network traces

in Table 6.2. As shown in Fig. 6.2, the selected traces are approximately

40 seconds in duration and have varying network behaviors. For example, the
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Figure 6.2: Network traces used in our streaming pipeline.

TLJ trace has the lowest average bandwidth but does not vary much over time,

while the MKJ trace has a much more volatile behavior compared to TLJ. It

may be observed that the network traces densely cover download speeds up to

1Mbps, and there are also samples falling within the 1Mbps-3Mbps range.

6.3.3 Client Module

The client module is responsible for monitoring and updating the buffer

status and deciding the next chunk to be played. To marginalize the effects of

pre-buffering on our analysis, the client module pre-fetched B0 = 1 chunk for

each generated playout sequence. This pre-fetched chunk was always encoded

at the lowest bitrate/quality. To perform client adaptation, we decided to
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Table 6.2: Summary of the network traces used in LIVE-NFLX-II. The avail-
able bandwidth B is reported in kbps. We denote by min B, max B, µB and
σB the minimum, maximum, average and standard deviation of the available
bandwidth.

ID Type min B max B µB σB From To
CSS Car 234 1768 989 380 Snaroya Smestad
TJL Tram 52 1067 617 207 Jernbanetorget Ljabru
TVO Train 131 1632 702 349 Vestby Oslo
MKJ Metro 28 1511 696 456 Kalbakken Jernbanetorget
BLO Bus 9 886 373 235 Ljansbakken Oslo
FNO Ferry 35 3869 1325 761 Nesoddtangen Oslo
TLJ Tram 86 485 269 86 Ljabru Jernbanetorget

implement four adaptation algorithms that are representative of the very large

design space of adaptation algorithms. Each of these four algorithms focuses

on different design aspects, such as preserving the buffer status, maximizing

the download bitrate, or mediating between chunk quality and buffer level.

Table 6.3 defines some of the acronyms used hereafter.

We implemented the buffer-based (BB) approach from [61], which de-

cides the rate of the next chunk to be played, as a function of the current

buffer occupancy. For BB, a reservoir of r = 5 sec. and a cushion of c = 4.5

sec. was used. The advantage of the BB approach is that it can reduce the

amount of rebuffering by only accessing buffer occupancy. Viewing adaptation

from a different perspective, we also implemented a rate-based (RB) approach

which selects the maximum possible bitrate such that, based on the estimated

throughput, the downloaded chunk will not deplete the buffer. To estimate

the future throughput, an average of w = 5 past chunks is computed. In-

tuitively, selecting w can affect the adaptation performance, if the network

varies significantly. A low w could be insufficient to make a reliable band-
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width estimation, while a very large w might include redundant past samples

and have a diminishing return effect. Another downside of the RB approach

is that, when channel bandwidth varies significantly, it may lead to excessive

rebuffering and aggressive bitrate/quality switching.

Using the video bitrate as a proxy for quality may yield sub-optimal

results; a complex scene (rich in spatial textures or motion) requires more

bits to be encoded at the same quality as compared to a static scene having a

uniform background and low motion. Therefore, it is interesting to explore how

a quality-based (QB) adaptation algorithm will correlate against subjective

scores. We relied on the dynamic programming consistent-quality adaptation

algorithm presented in [81]. The main idea is to use a video quality model

(such as VMAF) as a utility function to be maximized within a finite horizon

h (in sec.). This utility maximization is formulated as a dynamic programming

(DP) problem solved at each step, which determines the stream to be played

next.

In our QB implementation, the network conditions are not explicitly

modeled. Instead we assume that the future throughput (within the horizon

h) will be equal to the average throughput over the past w = 5 chunks. For the

QB client, two practical limitations on the buffer size are imposed. To reduce

the risk of rebuffering, the QB solution requires that the buffer is never drained

below a lower bound Bl (in sec.). Also, due to physical memory limitations,

QB never fills the buffer above a threshold Bh. To ensure that the Bl and Bh

constraints are satisfied, the QB solution is set to converge to a target buffer
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Bt ∈ (Bl, Bh) by imposing in its DP formulation that the buffer at the end of

the time horizon has to be equal to Bt. Notably, if the dynamic programming

solution fails (when Bl cannot be achieved or Bh is surpassed), then QB selects

the lowest (or respectively the highest) quality stream. This is also known as

“fallback” mode.

It is impossible for any adaptation strategy to have perfect knowledge

of future network conditions. In practice, probabilistic network modeling, or

other, much simpler estimation techniques can be derived. For the latter, many

adaptation algorithms assume that the network conditions are constant over

short time scales, and apply filtering based on previous network measurements,

as in QB. Since accurate knowledge of the future bandwidth places an upper

bound on the performance of an algorithm, we also included a version of QB

which uses the actual network traces, instead of throughput estimates, thereby

acting as an “oracle” (OQB).

Table 6.3: Acronym definition table.

Acronym Definition Measured in Value Used in
BB buffer-based adaptor - - -
RB rate-based adaptor - - -
QB quality-based adaptor - - -

OQB oracle quality-based adaptor - - -
B0 pre-fetched video data # chunks 1 BB, RB, QB, OQB
Bl min allowed buffer size sec. 1 QB, OQB
Bh max allowed buffer size sec. 10 QB, OQB
Ta actual throughput kbps varies BB, RB, QB, OQB
h horizon sec. 10 QB, OQB
Bt target buffer sec. 2 QB, OQB
r reservoir for BB sec. 5 BB
c cushion for BB sec. 4.5 BB
w window for throughput estimation # chunks 5 RB, QB, OQB
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We believe that this end-to-end streaming pipeline greatly resembles

modern (and future) video streaming architectures. Therefore, we can use

it to achieve our main goal: design a large subjective experiment to study

streaming user experiences and train QoE models. In the next sections, we

discuss the database we developed and our findings in greater detail.

6.4 Subjective Experiment

In this Section, we explain the subjective experiment we carried out to

design the LIVE-NFLX-II Streaming Video database.

6.4.1 Video Contents in LIVE-NFLX-II

We collected subjective scores on the 15 video contents shown in Fig.

6.3. The selected contents span a diverse set of content genres, including ac-

tion, documentary, sports, animation and video games. Notably, the videos

also contain computer-generated content, such as Blender [7] animation and

video games. The video sources were shot/rendered under different light-

ing conditions ranging from bright scenes (Skateboarding) to darker scenes

(Chimera1102353). There were different types of camera motion, including

static (e.g. Asian Fusion and Meridian Conversation) and complex scenes

taken with a moving camera, with panning and zooming (e.g. Soccer and

Skateboarding). We summarize some of the content characteristics in Table

6.4.

It should be noted that the video sequences are approximately 25 sec-
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Figure 6.3: Example video frames of each of the 15 video contents in
LIVE-NFLX-II (left to right and top to bottom): AirShow, AsianFusion,
Chimera1102353, Chimera1102347, CosmosLaundromat, ElFuenteDance, El-
FuenteMask, GTA, MeridianConversation, MeridianDriving, Skateboarding,
Soccer, Sparks, TearsOfSteelRobot, TearsOfSteelStatic.
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Table 6.4: Content characteristics of the video contents in LIVE-NFLX-II.

Video Source ID Description

AirShow AS
Camera tracks object of interest, blue sky

background.
AsianFusion AF Static camera, zoom-in, uniform background.

Chimera1102353 CD
Static camera on a dark background, medium

motion.
Chimera1102347 CF Multiple human faces, zoom-in, low motion.

CosmosLaundromat CL
Blender animation, saliency, low motion, camera

panning or static
ElFuenteDance ED Rich spatial activity, multiple human faces
ElFuenteMask EM Medium spatial activity, saliency

GTA GTA Gaming content, fast motion
MeridianConversation MC Low-light, human face, low motion, static camera

MeridianDriving MD
Camera zoom-in, face close-up, low motion, human

face
SkateBoarding SB Fast motion, complex camera motion, saliency

Soccer SO
Fast moving camera, rich spatial and temporal

activity.
Sparks SP Slow camera motion, human face, fire sparks, water

TearsOfSteelRobot TR
Fast motion, multiple moving objects, complex

camera motion
TearsOfSteelStatic TS Static camera, human close up, low motion
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onds long and typically contain multiple scene cuts. This design choice is

different from commonly used single-scene 10 second test videos, which are

widely used in video quality testing. For video streaming applications, we

found it more appropriate to use longer video contents with multiple scene

cuts, for a number of reasons. Video streaming viewers tend to watch video

content that is many minutes long, while the network conditions may vary

considerably throughout a streaming session. Having multiple scene changes

also allows us to better exploit the DO encoding approach, which leverages

the different scene complexities.

6.4.2 Subjective Testing Procedure

A single-stimulus continuous quality evaluation study [63] was carried

out over a period of four weeks at The University of Texas at Austin’s LIVE

subjective testing lab. We collected retrospective and continuous-time QoE

scores on a 1080p 16:9 computer monitor from a total of 65 subjects. Ret-

rospective scores reflect the overall QoE after viewing each video sequence in

entirety, while continuous scores capture the time-varying nature of QoE due

to quality changes and stalling.

Given the large number of videos to be evaluated and necessary con-

straints on the duration of a subjective study, we showed only a portion of

the distorted videos to each subject via a round-robin approach as follows.

Each subject viewed all 15 contents, but only 10 distorted (2 adaptors and 5

network traces) videos per content. We assumed the sequence of adaptors BB,
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RB, QB and OQB and network traces 0 to 7, then assigned them to subjects in

a circular fashion. For example, if subject i was assigned to adaptors BB and

RB and network traces 0 to 4, then subject i+ 1 was assigned to adaptors RB

and QB and traces 1 to 5. This led to a slightly uneven distribution of subjects

viewing each distorted video, but we considered this to have a minor effect.

The benefit of a round robin approach compared to a random assignment is

that we can have guaranteed coverage for all traces and adaptors.

To avoid user fatigue, the study was divided into three separate 30-

minute viewing sessions of 50 videos each (150 videos in total per subject).

Each session was conducted at least 24 hours apart to minimize subject fatigue

[63]. To minimize memory effects, we ensured that within each group of 7

displayed videos, each content was not displayed more than once. We used

the Snellen visual acuity test and ensured that all participants had normal or

corrected-to-normal vision. In total, the final database consists of 420 distorted

videos (15 contents, 7 network traces and 4 adaptation strategies) and an

average of 23.2 subjects viewed every distorted video. No video was viewed

by less than 22 subjects, ensuring a sufficient number of scores per video.

Overall, we gathered 65*150 = 9750 retrospective scores and 9750 continuous-

time waveforms to study subjective QoE. It should be noted that the number

of subjects and distorted videos in the database is significantly larger than

many other subjective databases.

To design the experimental interface, we relied on Psychopy, a Python-

based software [108]. Psychopy makes it possible to generate and display visual
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stimuli with high precision, which is very important when collecting continu-

ous, per-frame subjective data. To facilitate video quality research, we make

our subjective experiment interface publicly available at https://github.com/

christosbampis/Psychopy Software Demo LIVE NFLX II.

Following data collection, we applied z-score normalization per subject

and per session [63] to account for subjective differences when using the rating

scale. To reliably calculate the retrospective Mean Opinion Score (MOS), we

applied subject rejection on the z-scored values according to [63]. After sub-

ject rejection, we found that the retrospective scores were in high agreement,

exhibiting a between-group (splitting the scores per video into two groups and

correlating) Spearman’s Rank Order Correlation Coefficient of 0.96. For the

continuous scores, we simply applied mean temporal pooling. While more ad-

vanced subject rejection techniques could have been used as in [27], we found

that the average (across subjects) continuous-time scores did not significantly

change after rejection.

6.5 Objective Analysis of LIVE-NFLX-II

We now discuss some properties we have observed of the LIVE-NFLX-

II database by analyzing the multiple dimensions of the design space, such as

the adaptation algorithms, the network traces and the video contents used.
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6.5.1 Video Content Analysis

Besides user content preferences, an important consideration when stream-

ing a particular video content is its encoding complexity. One approach to

describe content is the spatial and temporal activity (SI-TI) plot [161], but

we were inclined to use a description that more closely relates to the encoding

behavior of each content. Therefore, we decided to use content complexity,

i.e., the number of encoding bits per source content, as an alternate descrip-

tion. We expect that contents with larger motions and high spatial activity

(textures) to be harder to compress, hence subjective scores will generally be

lower for those contents for a fixed number of available bits. To measure con-

tent encoding complexity, we generated one-pass, fixed constant rate factor

= 23 (CRF) 1920x1080 encodes using libx264, then measured the encoding

bitrate (see Fig. 6.4). It is clear that there is a large variety of content

complexities ranging from low motion contents, such as MeridianConversa-

tion or Chimera1102353, medium motion and/or richer textures such as in

Skateboarding or ElFuenteMask and high motion and spatial activity as in

the Soccer and GTA scenes.

These encoding complexities had a direct effect on the video segments

that were played out on the client side. Figure 6.5 shows that contents having

low complexities, such as MC, CF and CD, were delivered with better VMAF

values. By contrast, challenging content, like GTA and Soccer (SO), were

streamed at significantly lower quality. This reveals the importance of content-

driven encoding on the server and the potential of content-aware streaming
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Figure 6.4: Content (encoding) complexity for the 15 contents in LIVE-NFLX-
II.

strategies, where streaming parameters are customized to the video content

streamed by each client.

6.5.2 Network Condition Analysis

Besides video content, we also introduced various network traces, which

can influence the streamed video segments. We collected measurements of the

playout bitrate, averaged it over each second (and across contents and adap-

tors) and show its dynamic per network condition evolution (average and 95%

confidence intervals) in Fig. 6.6. Note that after approximately 25 seconds,

the confidence intervals became larger, because fewer samples were available

(only videos that experienced rebuffering had longer than 25 sec. duration).

As expected, better network conditions overall (FNO and CSS) achieved
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Figure 6.6: Playout bitrate over time across different network traces. To
capture the effects of the rebuffering intervals, a value of 0 is used for the
video bitrate during those time instants.
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better playout bitrates when compared to low-bandwidth cases, as in TLJ and

BLO. It is interesting to observe that volatile traces, such as MKJ and CSS,

led to significant differences in bitrate, but this was not the case for FNO.

Since FNO provides a better network on average than MKJ and CSS, the

video buffer was sufficiently filled to account for sudden drops.

6.5.3 Adaptation Algorithm Analysis

Given an encoding chunk map and some time-varying throughput, the

client’s algorithm makes the ultimate decision on the playback characteris-

tics. To study adaptation behavior, we first collected key characteristics (e.g.

number of rebuffers) for all distorted videos generated by each adaptation al-

gorithm. Table 6.5 shows that the OQB adaptor delivered the lowest amount

of rebuffering and the lowest average between-chunk VMAF difference. This

is to be expected since perfect knowledge of future network conditions would

significantly improve the behavior of any adaptation strategy.

By contrast, the RB adaptor led to the largest amount of rebuffering,

since it aggressively chooses the chunk rate, it is myopic (does not look ahead in

time) and does not take into account the buffer status. The more conservative

BB reduces the amount of rebuffering as compared to RB and QB, and has the

least number of quality switches. Nevertheless, given that it does not explicitly

seek to maximize bitrate, it delivers the lowest playout bitrate. Between RB

and BB, QB offers a better tradeoff between playout bitrate and rebuffering.

These results are not very surprising: maximizing quality/bitrate or avoiding
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rebuffering are conflicting goals, and hence, designing adaptation algorithms

should focus more on jointly capturing these factors, as in the case of QB.

At this point, let us take a step back and consider why OQB, despite

knowing the entire trace, also suffers from rebuffering. In fact, by setting the

maximum buffer Bh = 10 sec., and h = 10 sec. the dynamic programming

solution may fail to return an optimal solution. We found that by increasing

Bh and h, both OQB and QB led to significantly reduced rebuffering, which

would make the number of rebuffers in the database significantly smaller for

subjective analysis. Therefore, our selected parameters mediate between data

diversity and meaningful adaptation behavior.

Table 6.5: Objective comparison between adaptation algorithms. Each at-
tribute is averaged over all 105 videos (15 contents and 7 traces) per adaptor.
The bitrate values are imputed with a value of 0 during rebuffering intervals,
while the VMAF values are calculated only on playback frames

.

Description BB RB OQB QB
# switches 5.91 7.08 8.13 8.45

bitrate (kbps) 535 543 660 636
# rebuffers 0.75 1.57 0.70 0.99

rebuffer time (sec.) 1.02 1.35 0.79 1.14
per chunk avg. VMAF 58.05 62.58 64.52 63.19
per chunk VMAF diff. 9.67 7.51 6.89 8.59

Let us now ask a different question: what is the streaming behavior of

each adaptation algorithm over time? As before, we measure the per second

playout bitrate and buffer level, and show the per adaptation evolution in Fig.

6.7. In terms of bitrate, RB aggressively starts off for the first few seconds,

but then tends to have have a lower bitrate than both quality-based adaptors.
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Figure 6.7: Playout bitrate and buffer level over time for different adaptation
algorithms (averaged across traces and contents). To capture the effects of
the rebuffering intervals, a value of 0 is used for the video bitrate during those
time instants.

By contrast, BB is the most conservative strategy in terms of bitrate, while

QB and OQB deliver start-up bitrates in between RB and BB. However, after

about 15 seconds, QB and OQB consistently deliver higher bitrates. Notably,

when a video is significantly longer than 25 sec., this is due to harsher network

conditions which lead to rebuffering. Therefore, bitrate decreases and the

buffer level over these time intervals (t >= 25 sec.) decreases or stays the

same.

In terms of buffer level, BB quickly stabilizes its buffer level, while the

other adaptors are significantly slower. For RB, aggressive quality switching

together with network volatility leads to initial rebuffering and slows down

buffer build-up. Nevertheless, after enough time elapses, the RB buffer level

increases and even surpasses the BB one, due to the fact that there is enough

buffer to avoid rebuffering. In the case of QB and OQB, both adaptors try to
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reach the target buffer Bt = 2, while OQB (being an oracle) better succeeds

at doing so.

It is important to observe that the RB and BB adaptors do not specify

a maximum or a target buffer size and hence this might complicate a direct

comparison between them and QB or OQB. With regards to the maximum

buffer size, RB or BB do not generally reach a value close to Bh = 10 sec.

when applied without any such constraint. As a result, it is the target buffer

of QB/OQB that is actually making our comparisons harder. Nevertheless, it

is not very clear as to how these adaptors can be modified to produce a specific

target buffer.

Until now, we have identified the main differences between adaptation

algorithms. Nevertheless, we have also found a very important similarity:

rebuffering events tend to occur earlier in the video playout. To demonstrate

this, we calculated the rebuffering ratio of each adaptor over time, i.e., the

average rebuffering rate incurred by an adaptor throughout the playout. Figure

6.8 shows that all adaptors have significantly higher rebuffering ratios early

on, since the buffer is not yet filled. This is also related to the fact that we

only fetch one chunk before starting the playout (see Appendix F, Section

F.3). Between adaptors, there are, of course differences too: RB rebuffers

even earlier, since it does not take into account the buffer level. Between

QB and OQB, the difference is that QB can lead to rebuffering much later in

the video, while OQB, which is aware of the entire network trace, is able to

minimize rebuffering events from occurring at a later time during the playout.
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Figure 6.8: Rebuffering location for different adaptation algorithms (averaged
across traces and contents). The location is normalized with respect to the
original video duration.

6.6 Human Opinion Score Analysis

Up to this point, we have studied the behavior of different network

traces and adaptors with respect to some QoE-related factors. Nevertheless, in

streaming applications, human opinion scores serve as the ground truth when

analyzing streaming video impairments and when evaluating objective models

of video quality and QoE prediction. Here we analyze the video database by

means of the collected retrospective and continuous-time subjective scores.

6.6.1 Analysis Using Retrospective Scores

To identify the main QoE factors, Fig. 6.9 highlights the relation-

ships between retrospective scores and average VMAF values (calculated on
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Figure 6.9: VMAF measurements, number and duration of rebuffer events
against retrospective opinion scores in LIVE-NFLX-II. Around 40% of the
videos have at least one rebuffering event.

non-rebuffered frames), and the number and duration of rebuffering events

respectively. Unsurprisingly, the VMAF performance was lower in the pres-

ence of rebuffering (the red points negatively impact the overall correlation),

since it does not account for its effects on user experience. In Section 6.7,

we show how QoE prediction models based on VMAF can deliver improved

performance. Meanwhile, it can be seen that a larger number of rebuffering

events tends to decrease user experience, but as the number of events be-

comes larger than 4, there are fewer points to reach the same conclusion with

statistical significance. On the rightmost part of Fig. 6.9, we observe that a

longer rebuffering time also lowers QoE, but when the rebuffering time is more

than 4 seconds, duration neglect effects [56] may reduce this effect. Accord-

ing to the duration neglect phenomenon, subjects may recall the duration of

an impairment, but they tend to be insensitive to its duration when making

retrospective QoE evaluations.

As in the previous section, we compared the retrospective opinion scores

among different adaptors (Fig. 6.10). We observed that the opinion scores are
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Figure 6.10: Retrospective opinion score distribution for different adaptation
algorithms (averaged across traces and contents).

not very different across adaptors. This may be due to the fact that most of

the rebuffering events occurred early in the video playout (as shown in Fig.

6.8), and because, just before the video finishes playing (and the retrospective

score is recorded), the adaptation algorithms have built-up sufficient buffer

to better handle bitrate/quality variations, even if the network is varying sig-

nificantly. Therefore, it is likely that recency effects [27, 56] led to biases in

the retrospective evaluations. Meanwhile, the per adaptor differences in terms

of the average VMAF measurements are not considerably different (see Table

6.5) and hence the retrospective scores are also similar across adaptors. In the

next section, we investigate the effects on the time-varying QoE.
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6.6.2 Analysis Using Continuous Scores

Following our per-second objective analysis in Section 6.5, Fig. 6.11

depicts the continuous-time user experience across adaptation strategies. We

found that, within the first few seconds, the RB aggressive rate strategy ini-

tially leads to better QoE, unlike BB, QB and OQB, which opt for buffer

build-up. Within the first 12 seconds, BB is overly conservative and deliv-

ers the lowest QoE among all adaptors, while QB and OQB perform between

RB and BB. Nevertheless, after 12 seconds, QB and OQB improve consider-

ably, with OQB tending to produce higher scores for the rest of the session.

BB is relatively lower than RB and QB, both of which are statistically close.

As before, we note that, after 25 seconds, QoE measurements are decreas-

ing and have larger confidence intervals, since they correspond to videos that

rebuffered, and their number decreases over time.

Viewed from the network condition perspective, we found that continuous-

time subjective scores are affected by dynamic quality/resolution changes and

rebuffering. Figure 6.12 shows that, for all traces, a few seconds are needed to

build up the video buffer and hence the continuous scores are relatively low.

Under better network conditions (e.g. FNO), the user experience steadily im-

proves after some time, due to the adaptors switching to higher resolution

and lower QP values. By contrast, challenging cases such as BLO and TLJ

recover slowly or do not recover at all, while very volatile conditions, as in

MKJ, may also lead to noticeable drops in QoE much later in the video play-

out. These results, together with the improved performance of OQB, support a
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Figure 6.11: Continuous-time scores for different adaptation algorithms (aver-
aged across traces and contents).

well-established but very challenging proposition: better bandwidth prediction

is important to achieve higher QoE.

6.6.3 Adaptation Algorithm Performance Discussion

Following our earlier between-adaptor analysis, it is natural to ask

which adaptation algorithm performs the best. In terms of retrospective scores,

we were not able to make statistically significant comparisons, in part due to

the effects of recency. However, using continuous-time scores, we found that

OQB performed the best, since it acts as an oracle and has perfect knowledge

of the future bandwidth, while BB was overly conservative during startup and

did not select high quality streams.

Comparing RB and QB, we found that they delivered similar QoE over
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Figure 6.12: Continuous-time scores for different network conditions.

time, except during the start-up phase, where RB picked higher quality levels.

The similar behavior between QB and RB can be attributed to their inherent

properties: RB leads to excessive rebuffering, while QB reduces rebuffering

(by adding the buffer in its optimization scheme), but leads to many quality

switches (see also Table 6.5). In fact, an important consideration when de-

signing QB is selection of the minimum buffer Bl and target buffer Bt values.

When the network changes rapidly, the adaptor may not satisfy these and use

its fallback mode, which leads to such large quality switches.

6.6.4 Limitations of the LIVE-NFLX-II database

Despite our efforts in designing a diverse and realistic database that

relies on state-of-the-art ideas in video encoding and streaming, one cannot
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overlook a number of limitations. We recognise that QoE is not only affected

by the factors investigated herein, such as visual quality, recency, rebuffering

or quality switching, but also by other factors such as the audio quality or

contextual factors, like the display device and user expectations regarding

the streaming service and/or the viewing environment. In our experiment,

the audio quality was fixed and the display device was a computer monitor.

Nevertheless, given the very large design space of the subjective experiment,

it is virtually impossible to vary all of these streaming conditions at the same

time. Meanwhile, the adaptation algorithm design space and the number

of possible network conditions are immense, hence our experiment can only

capture the main characteristics of these dimensions as they pertain to user

experience.

6.7 Perceptual Video Quality and Quality of Experi-
ence

An important goal of our database design is to use it as a develop-

ment testbed for video streaming quality and QoE prediction models. In this

section, we evaluate a number of representative VQA and QoE prediction mod-

els. Given that the database contains both retrospective and continuous-time

scores, we studied the performance of these algorithms both for retrospective

and continuous-time QoE prediction applications.

To calculate video quality, we decoded each distorted video into YUV420

format and applied each video quality model on the luminance channel of a
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distorted video and its reference counterpart. For video content with non-16:9

aspect ratio and before the VQA calculations, we also removed black bars to

measure the quality only for active pixels. For videos containing rebuffered

frames, we removed all of those frames and calculated video quality on the

aligned YUV files [27]. In the next sections, we investigate the predictive per-

formance of leading VQA models and study their predictive performance when

they are combined with QoE-driven models for retrospective and continuous-

time QoE prediction.

6.7.1 Objective Models for Retrospective QoE Prediction

In our first experiment, we applied several well-known video quality

and QoE metrics, including PSNR, PSNRhvs [113], SSIM [159], MS-SSIM

[160], ST-RRED [143], VMAF [79] (version 0.6.1), SQI [45] and Video ATLAS

[24]. The original Video ATLAS model [24], was designed and tested on the

LIVE-NFLX and Waterloo databases (see also Chapter 3), where spatial reso-

lution changes and quality switching events were much less diverse. Given the

flexibility of Video ATLAS and the diversity of our newly designed database,

we can re-train the model to integrate this kind of information. We used the

following features: VMAF as the VQA feature, average absolute difference of

encoding resolution (to capture the effects of resolution switching), rebuffer

duration, and the time since the lowest stream in the sequence (worst quality)

occurred, in seconds. For SQI, VMAF was also used as the VQA model. We

excluded the P.1201-3 models [3], since they are trained for video sequences
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longer than one minute. To evaluate performance, we use Spearman’s Rank

Order Correlation Coefficient (SROCC), which measures the monotonicity be-

tween groundtruth QoE and predictions. The results of our experiment are

shown in Figure 6.13.

Since Video ATLAS is a learning-based model, we split the database

into multiple train/test splits. When using image and video quality databases,

it is common to split the database into content-independent splits; but for the

streaming scenario we propose a different approach. Given that the video

contents are pre-encoded and the behavior of an adaptation algorithm is de-

terministic (given a network trace and a video content), it is more realistic to

assume that, during training, we have collected subjective scores on a subset of

the network traces. Therefore, we perform our splitting based on the network

traces by choosing 5 traces for training and 2 for testing each time, which

yields
(
7
2

)
= 21 unique combinations of 300 (15 contents, 4 adaptors and 5

traces) training and 120 (15 contents, 4 adaptors and 2 traces) testing videos.

The total number of combinations may not be as large; but each train/test

subset contains hundred of videos. Figure 6.13 shows boxplots of performance

across all 21 iterations for all compared models.

It can be observed that all of the VQA-only models lacked in per-

formance, which is to be expected since VQA models only capture visual

quality and disregard other critical QoE aspects such as rebuffering. Nev-

ertheless, VMAF 0.6.1 performed significantly better than all other models.

As a reminder, VMAF was used on multiple occasions when generating the
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Figure 6.13: Boxplots of SROCC performance of leading VQA and QoE models
using retrospective scores.

final videos, e.g., when generating the bitrate ladder, deciding on the encoding

parameters and performing client-based adaptation for QB and OQB. This

suggests that our system is better tuned towards the VMAF model and that

the choice of the quality model has a direct impact on user experience. Using

VMAF as part of the SQI and Video ATLAS QoE predictors led to significant

performance gains in both cases.

6.7.2 Objective Models for Continuous-time QoE Prediction

Predicting continuous-time QoE is a harder task, given the challenges

in collecting reliable ground truth data and designing models that can inte-

grate perceptually-motivated properties into a time series prediction. Earlier

approaches [38] have addressed the problem of predicting time-varying quality
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and only recently similar works have addressed time-varying QoE prediction

[26].

We evaluated two prediction algorithms presented in [26], one based on

autoregressive neural networks (G-NARX) and the other based on recurrent

neural networks (G-RNN). We note that using the SQI model in [45] to predict

continuous-time QoE does not deliver scores that fall within the z-scored con-

tinuous MOS scale, since it is not trained on subjective data. Therefore, the

RMSE and OR values are considerably worse. Further, using the SROCC as an

evaluation metric did not yield satisfying results (around 0.41 of SROCC) and

using the SROCC may not be an appropriate choice for comparing between

time series [26].

To train the G-NARX and G-RNN models, we used per-frame VMAF

measurements as the continuous-time VQA feature. The original network

design was used, with 8 input delays and 8 feedback delays for G-NARX

and 5 layer delays for G-RNN. Both approaches used 8 hidden nodes and

the training process was repeated three times yielding an ensemble of three

test predictions per distorted video that were averaged for more reliable time

series forecasting. We configured the prediction models to output one value per

0.25 sec., by averaging the continuous-time variables accordingly. To evaluate

their performance, we used root mean squared error (RMSE) and outage rate

(OR). RMSE measures the prediction’s fidelity to the ground truth, while

OR measures the frequency of predictions falling outside twice the confidence

interval of the subjective scores.

179



Table 6.6: Prediction performance of the G-NARX and G-RNN QoE models
using continuous scores.

Model RMSE OR
G-NARX 0.267 7.136%
G-RNN 0.276 5.962%

Table 6.6 shows that both approaches delivered promising performance

and similar to each other in terms of RMSE and OR. Nevertheless, we observed

cases where the predictions could be further improved, as in Fig. 6.14. In this

case, the G-NARX QoE prediction did not accurately capture the subjective

trends and their dynamics.
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Figure 6.14: An example where the G-NARX QoE prediction does not capture
the subjective trends.

Developing accurate QoE prediction models is important for improving

client adaptation algorithms, which are fundamentally designed to maximise

some QoE metric. For example, the adaptation strategies in [89, 169] optimize

a hand-crafted linear combination of average video quality, quality switching
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and rebuffering time, rather than deploying a more holistic QoE model.

6.8 Discussion and Conclusion

We presented the design of a large subjective video database, which

relied on a highly realistic streaming system. The collected data allowed us to

analyze overall and continuous-time user experiences under different network

conditions, adaptation algorithms and video contents. Using the collected

human opinion scores, we also trained and evaluated predictors of video quality

and quality of experience.

In the future, we intend to use the ground truth data to build better

continuous-time QoE predictors by integrating additional features, such as

resolution changes, network estimates and buffer status. Inspired by similar

QoE works as in [66], our ultimate goal is to “close the loop”, i.e., inject

such QoE-aware predictions into the client-adaptation strategy in order to

perceptually optimize video streaming.
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Chapter 7

Thesis Conclusion

7.1 Thesis Overview

The main topics of this dissertation were the study of perceptual video

quality assessment and quality of experience for adaptive video streaming.

In Chapter 2, we discussed the design of the LIVE-NFLX subjective video

database, which focuses on the tradeoffs between compression and rebuffering

for low bitrate video streaming. To process the continuous time QoE scores, we

designed a subject rejection scheme based on dynamic time warping. We also

studied other subjective effects, like recency and primacy and demonstrated

the need for developing QoE models that jointly consider rebuffering effects,

memory and video quality measurements to more accurately predict streaming

video QoE.

Based on the collected subjective scores, Chapter 3 detailed the design

of Video ATLAS, a retrospective QoE predictor, which combines QoE-aware

features, like rebuffering and video quality into a support vector regressor to

predict QoE. We evaluated this algorithm under various experimental set-

tings and demonstrated its potential for QoE prediction. Chapter 4 proposed

the use of autoregressive and recurrent neural networks and dynamic models
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for continuous-time QoE prediction. We showed that the problem of QoE

prediction can be formulated as a time series forecasting problem and that

ensemble predictions can deliver improved performance on multiple subjective

QoE databases.

Since all of these QoE prediction models are based on video quality

measurements, it is clear that improving perceptual video quality metrics is

a fundamental problem. Chapter 5 addressed the shortcomings of VMAF, a

recently developed full reference metric, and discussed two successful improve-

ments of it: ST-VMAF and E-VMAF. Both algorithms rely on extracting

entropic differences as features in space or time and they demonstrated state-

of-the-art performance across multiple applications, such as perceptual video

quality assessment and JND prediction, as well as inputs to more general QoE

predictors.

In Chapter 6, we designed LIVE-NFLX-II: a video streaming subjective

database based on a perceptually-optimized end-to-end adaptive streaming

system. The goal of this database was to model realistic streaming scenarios

where the multiple dimensions of client adaptation, such as the video content,

the client adaptation algorithm and the network condition, are taken into

account. We used the collected data to compare between client adaptation

strategies and actual network traces and evaluate video quality predictors,

retrospective and continuous-time QoE predictors.
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7.2 Conclusion and Future Work

This dissertation covered a number of aspects regarding Quality of Ex-

perience for adaptive streaming applications. Nevertheless, this dissertation

paves the way for addressing multiple questions which remain to be answered.

For example, in video streaming, we usually assume that the source video se-

quences are of high quality. However, this assumption may be violated when

the source content has been upscaled, compressed or afflicted by film grain

noise. Some of these artifacts may be more relevant to older (legacy) content,

while others may also be added for artistic purposes. In either case, full refer-

ence video quality algorithms are not the best option, since they only capture

the degradations due to the distortion and do not take into account the orig-

inal source quality. To address this, it would be interesting to combine full

reference and no reference algorithms, as in [170].

Following the development of continuous-time QoE predictors in Chap-

ter 4 and the streaming database presented in Chapter 6, it is also natural to

seek better continuous-time features as inputs to these QoE models. As an

example, inputs like the video quality or resolution switching could be used to

train more accurate predictors. Ultimately, such models can be used for client

adaptation that maximizes QoE given a set of buffer constraints, similar to

the quality-based adaptation strategies studied in Chapter 6. Such approaches

can lead to improved network utilization and improved quality of experience

for the end user. I hope that the developments presented herein will pave the

way for QoE-aware client adaptation and better video streaming worldwide.
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Appendix A

Further experiments on the ST-VMAF and

E-VMAF VQA models

A.1 Cross-database performance for ST-VMAF and E-
VMAF

The proposed VQA models rely on three components: the VMAF+

training subjective data, the spatiotemporal feature integration and the tem-

poral pooling step. In this section, we investigate the effects on the predic-

tive performance of ST-VMAF and E-VMAF when each of these components

varies.

First, we investigated the effects on the predictive performance of ST-

VMAF when trained on other databases in Table A.1. Importantly, the

VMAF+ dataset proved to be highly consistent, and served as an excellent

training dataset for ST-VMAF. It is also encouraging that the aggregate

SROCC values (for a fixed training dataset) achieved by ST-VMAF were very

close to, or significantly exceeded 0.8 (see second to last column in Table A.1).

Similar observations apply to the E-VMAF predictions.

Having established that training on VMAF+ is the best option, we

studied how the performance of ST-VMAF and E-VMAF compares to that
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Table A.1: Cross-database SROCC for ST-VMAF. Each element in this matrix
shows the SROCC performance when training on the dataset in the row and
testing on the dataset in the column. The last two columns show the aggregate
SROCC and PLCC performance per training dataset. Using the VMAF+
dataset for training yielded the best overall performance and is denoted by
boldface.

Database LIVE VQA LIVE Mobile CSIQ-VQA VMAF+ NFLX SHVC VQEG-HD3 EPFL
overall

SROCC
overall
PLCC

LIVE VQA - 0.869 0.742 0.775 0.859 0.873 0.628 0.842 0.811 0.809
LIVE Mobile 0.584 - 0.736 0.791 0.900 0.891 0.653 0.836 0.794 0.786
CSIQ-VQA 0.599 0.856 - 0.757 0.855 0.879 0.669 0.830 0.795 0.794

VMAF+ 0.809 0.905 0.784 - 0.927 0.888 0.932 0.945 0.897 0.898
NFLX 0.733 0.925 0.754 0.888 - 0.874 0.922 0.947 0.882 0.884
SHVC 0.700 0.893 0.759 0.808 0.866 - 0.887 0.930 0.850 0.846

VQEG-HD3 0.706 0.890 0.732 0.813 0.879 0.822 - 0.933 0.842 0.839
EPFL 0.715 0.931 0.717 0.866 0.918 0.878 0.879 - 0.862 0.859

of the individual models M1 and M2, and the performance gains of hysteresis

pooling. To this end, we report the results (when training on VMAF+) in

Table A.2. It can be observed that M1 and M2 deliver similar performances,

but afford significant performance gains when combined using E-VMAF. Sim-

ilarly, ST-VMAF combines some features that may also belong to either M1

or M2, but their combination performs significantly better. Hysteresis pooling

further improves the predictive performance of both ST-VMAF and E-VMAF.

A.2 Computational Analysis for ST-VMAF and E-VMAF

To deploy VQA models for video quality prediction at global scale,

ensuring low time complexity is a critical requirement. Therefore, we studied

the per frame compute time consumed by several leading FR-VQA models1 in

1Frame-based models are usually much faster and hence are excluded.
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Table A.2: Cross-database Aggregate Performance (training on VMAF+
dataset). The best performance is denoted by boldface.

Database pooling SROCC PLCC
M1 mean 0.847 0.853
M2 mean 0.845 0.847

ST-VMAF mean 0.885 0.887
E-VMAF mean 0.873 0.875

ST-VMAF hysteresis 0.897 0.898
E-VMAF hysteresis 0.894 0.895

Figure A.1. For our analysis, we selected videos from 6 different resolutions

ranging from CIF (352x288) up to Full HD (1920x1080). These videos have

334 frames on average and we averaged our time calculations over 5 trials. All

of the compute time analysis was carried out on a 16.04 Ubuntu LTS Intel

i7-4790@3.60GHz system.

ST-MAD required the most compute time, followed by ST-RRED and

VQM-VFD. When implementing ST-MAD and VQM-VFD, we encountered

out-of-memory issues on long Full HD videos. This could be due to the fact

that the ST-MAD implementation stores and loads the entire video into mem-

ory. Another limitation of these approaches is that they only process entire

videos with no capability to produce continuous video quality scores. ST-

RRED processes the video frame by frame to produce continuous scores, but

requires calculating a complete multi-scale, multi-orientation steerable decom-

position.

By contrast, ST-VMAF and E-VMAF are memory efficient, produce
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continuous quality scores and consume less compute time, since they extract

the very efficient S-SpEED and T-SpEED features. Our ST-VMAF and E-

VMAF implementation uses un-optimized Matlab code to extract SpEED-QA

features, while VMAF uses AVX optimization and is implemented in C. Since

ST-VMAF and E-VMAF are natural extensions within the VMAF ecosystem,

it is possible to adopt similar optimization approaches.
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Figure A.1: Per frame compute time required for each FR-VQA model (log
vertical scale).
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Appendix B

Playout Patterns and Encoding Pipeline in

the LIVE-NFLX Video QoE Database

B.1 Explaining the Playout Pattern Parameters

We provide an example of how some of the playout pattern parameters

were determined. We fixed the rebuffer duration for pattern #1 to 8 sec. and

the average bitrate for the client in pattern #2 to be R2 = 160 kbps. Since

there is no rebuffering event in pattern #2 but the available bandwidth is

100 kbps for d seconds, the client in #2 expends all of the available buffer

B0 in d seconds hence (R2 − 100)d = B0 yielding B0 = 1333 kbits. Let tb

be the time interval after the available bandwidth drops until a rebuffering

event occurs in #1. Clearly, tb(250− 100) = B0 since the client depletes all of

the buffer before the playback interruption. During the rebuffering event, the

buffer fills to B1 = 800 kbits in 8 seconds, given the available bandwidth of 100

kbps. The client chooses to start the playback ta seconds before the available

bandwidth recovers hence ta(250−100) = B1, since we assume that all playout

patterns eventually deplete the entire buffer. Therefore, ta = 5.3333 sec. and

d = te + 8 + ta ≈ 22.2167 seconds.
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B.2 Implementation Details of the Encoding Pipeline

Each high quality video source sequence is first encoded into H.264 for-

mat, combined with a corresponding, synchronized audio stream and placed

in an mp4 container without further re-encoding. Then, following the appli-

cation of a specific network-simulated pattern, the .mp4 file is divided into a

number of different chunks, each at a different encoding bitrate. For example,

pattern #6, which contains both bitrate changes and a rebuffering event would

have three chunks: one for the rebuffering event and two corresponding to the

encoded video before and after the rebuffering event.

The encoding pipeline then assembles the segments of the final video,

by concatenating them using an encoding profile demarking the interval of

time spent at each quality level. The location and duration of each rebuffering

event is specified as: enc < start > < stop > < bitrate > stall < start > <

duration >, with time measured in seconds and bitrate in kbps. The encoding

resolution was based on the used bitrate and the encoding profile was set to

high.

Using this encoding profile, the encoding process was carried out as

follows (see Fig. B.1). First, the source video and audio streams were trans-

ferred from Google Drive and stored locally for further encoding. Next, the

source video stream (in H.264 format) was decoded, yielding an uncompressed

raw .yuv file. The encoding map was then used to split the .yuv file in a

frame-accurate manner, yielding .yuv chunks, e.g. three chunks for pattern

#6. A two pass encoding step using FFMPEG was then applied to encode the
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.yuv files into .mp4 format. For pattern #6, this corresponds to two chunks

encoded at 250 kbps, and one encoded at 160 kbps. The final frame of every

video chunk that occurs immediately before a rebuffering event was used to

generate a “rebuffering video chunk”. A familiar “loading icon”, (a spinning

wheel) was overlaid on that frame during the rebuffering event and animated

to simulate the desired video rebuffering effect. After encoding each of the yuv

chunks into .mp4 format, all of the .mp4 segments were upscaled to the device

resolution (1080p), then concatenated into a single .mp4 file. For playback

purposes, each concatenated .mp4 file was lightly compressed using CRF 10,

since raw playback on mobile devices is not supported.

Figure B.1: Encoding pipeline used to create the playout patterns.
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Appendix C

Additional Experimental Analysis for Video

ATLAS

As already discussed, Video ATLAS is a flexible framework that allows

for introducing additional inputs or using other regression models, depending

on the application. In this Appendix, we study five different design aspects

and their effects on the performance of Video ATLAS: VQA inputs, regression

models, feature combination, amount of training data available and pooling

strategy for the VQA feature.

C.1 Using Video ATLAS with Different VQA Models
and Regressors

First, we investigated the performance of Video ATLAS when we var-

ied both the VQA model and the regressor type using [14]: linear models

(Ridge and Lasso regression), Support Vector Regression (SVR) with rbf ker-

nel and ensemble methods such as Random Forest (RF), Gradient Boosting

(GB) and Extra Trees (ET) regression. For the ensemble methods, feature

normalization was not required, but we preprocessed the features for all re-

gression models by mean subtraction and scaling to unit variance. Note that

we computed the data mean and variance in the feature transformation step

193



using only the training data. For each of the regression models, we determined

the best parameters using 10-fold cross validation on the training set. This

process was repeated on all possible train/test splits, which were generated as

in Experiment 1. We reported our results on Table C.1.

Table C.1: Results on different VQA and regression models. Top: SROCC;
Bottom: LCC. We report the median SROCC/LCC before (BR) and after
regression. The last column contains the average of the SROCC/LCC values
across all quality metrics for each regression model.

VQA PSNR SSIM [159] MS-SSIM [160] NIQE [94] VMAF [79] ST-RRED [143] GMSD [164] mean
BR 0.60 0.68 0.68 0.21 0.61 0.68 0.65 0.59

Ridge 0.67 0.78 0.77 0.44 0.62 0.80 0.70 0.68
Lasso 0.65 0.77 0.76 0.44 0.62 0.80 0.70 0.68
SVR 0.62 0.86 0.84 0.52 0.58 0.88 0.70 0.71
ET 0.57 0.87 0.85 0.38 0.57 0.86 0.51 0.66
RF 0.61 0.83 0.82 0.37 0.51 0.82 0.56 0.65
GB 0.55 0.82 0.80 0.38 0.56 0.82 0.53 0.64

VQA PSNR SSIM [159] MS-SSIM [160] NIQE [94] VMAF [79] ST-RRED [143] GMSD [164] mean
BR 0.57 0.75 0.73 0.42 0.75 0.75 0.70 0.67

Ridge 0.81 0.88 0.87 0.60 0.80 0.88 0.83 0.81
Lasso 0.83 0.87 0.87 0.60 0.81 0.88 0.84 0.81
SVR 0.79 0.92 0.92 0.69 0.76 0.94 0.81 0.83
ET 0.72 0.93 0.91 0.60 0.74 0.92 0.72 0.79
RF 0.73 0.91 0.90 0.54 0.67 0.91 0.72 0.77
GB 0.72 0.91 0.88 0.61 0.73 0.91 0.72 0.78

We found that the performance was improved when using Video ATLAS

for all VQA models and for at least one regressor. For VMAF, PSNR and

GMSD the regression result did not improve using every regressor. While

it is true that an effective regression scheme has a large positive impact on

QoE prediction, not all video quality models are a good choice. For example,

we have found that VMAF performs poorly before regression, which could

be due to the fact that VMAF is trained on a large screen and on short

video sequences. On a similar note, models like PSNR which do not capture
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perceptually-relevant information, or NIQE, which does not exploit reference

information, will underperform when used in the Video ATLAS framework.

We found ST-RRED to be a high-performing and reliable VQA model which

yielded the best performance overall (see the last columns of Table C.1).

Regarding the choice of the regressor, we found that the SVR regressor

performed best followed by Ridge. The performance of the Ridge and Lasso

models was somewhat higher than that of RF and ET, while GB yielded the

worst performance across all regression models. It should be noted that these

more complex ensemble methods (RF, GB and ET) are more suitable when

the number of input features is much larger. This again highlights the merits

of the proposed model: it uses a simple and efficient SVR learning engine that

matches well with the dimensionality of the QoE prediction problem.

C.2 Investigating the Feature Combinations in Video
ATLAS

While our proposed system deploys features that collectively deliver

excellent results, it is interesting to analyze the relative feature contributions.

One way to study the feature importances is by a tree-based method [36],

as follows. First, we picked a sophisticated video quality model (ST-RRED)

and the signal fidelity PSNR metric; then applied Random Forest regression.

Figure C.1 shows the feature importances after 1000 pre-generated train/test

splits.

We observed that the video quality model used plays an important role
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Figure C.1: Feature importances using PSNR (left) and ST-RRED (right)
after 364 random train/test splits (Experiment 1) using the Random Forest
regressor (RF). Horizontal axis: feature labels; vertical axis: feature impor-
tance normalized to 1. A more sophisticated VQA model has a larger VQA
feature importance.

in QoE prediction. Nevertheless, when using Video ATLAS with PSNR (a

weakly performing VQA model compared to ST-RRED), the feature impor-

tance of the VQA input was lower as compared to the VQA feature importance

when Video ATLAS uses ST-RRED. The memory feature also makes a strong

contribution, since for retrospective QoE evaluation, recent experiences are a

strong QoE indicator. The stalling features deliver an important but some-

what smaller contribution. Lastly, the R1 feature (stalling duration) had a

much lower contribution, which may be explained by the duration neglect ef-

fect [56]: subjects may remember that a stalling event occurred, but may not

be sensitive to its duration.

To further investigate the effects of those feature types on the retrospec-

tive QoE prediction task, we experimented further by using different feature
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Table C.2: Experiment 1: Results on different feature subsets when ST-RRED
was used. Top: SROCC; Bottom: LCC. The feature subsets are indexed as
described in the text.

Features 1 2 3 4 5 6 7 8 9 10 11 12
Ridge 0.68 0.23 0.27 0.31 0.66 0.68 0.79 0.41 0.42 0.79 0.78 0.80
Lasso 0.68 0.23 0.27 0.32 0.70 0.70 0.80 0.41 0.40 0.80 0.80 0.80
SVR 0.60 0.38 0.28 0.37 0.72 0.64 0.84 0.42 0.48 0.85 0.85 0.88
ET 0.47 0.30 0.24 0.30 0.73 0.66 0.73 0.31 0.39 0.85 0.74 0.86
RF 0.52 0.39 0.26 0.33 0.77 0.61 0.78 0.41 0.47 0.82 0.77 0.83
GB 0.55 0.39 0.27 0.35 0.76 0.60 0.76 0.44 0.50 0.83 0.75 0.82

Features 1 2 3 4 5 6 7 8 9 10 11 12
Ridge 0.75 0.45 0.31 0.29 0.75 0.73 0.78 0.46 0.63 0.80 0.78 0.88
Lasso 0.75 0.45 0.31 0.30 0.78 0.75 0.81 0.46 0.62 0.82 0.81 0.88
SVR 0.71 0.43 0.32 0.32 0.83 0.66 0.86 0.45 0.69 0.90 0.86 0.94
ET 0.54 0.38 0.31 0.32 0.74 0.69 0.74 0.39 0.62 0.92 0.74 0.92
RF 0.60 0.45 0.35 0.32 0.79 0.68 0.79 0.47 0.71 0.90 0.79 0.92
GB 0.67 0.45 0.35 0.31 0.78 0.69 0.79 0.48 0.75 0.90 0.79 0.91

subsets, and recording the QoE prediction performance of each. First, consider

the following feature subsets:

1. 1 feature types: VQA (1), M (2), I (3) and R1+R2 (4)

2. 2 feature types subsets: VQA+M (5) and VQA+I (6)

3. ≥ 3 subsets: VQA+M+R2(7), M+R1+R2 (8),

M+I+R1+R2 (9), VQA+I+R1+R2 (10),

VQA+M+R1+R2 (11) and VQA+M+I+R1+R2 (12)

where the number indicates the index of the column in Table C.2 where the

corresponding feature subset is used. The SROCC and LCC results are shown

in Table C.2, where we selected ST-RRED as the VQA feature and used the

train/test splits from Experiment 1.
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Clearly, when using the individual components as features, the QoE

prediction result was maximized when using VQA but was still very low, es-

pecially for other components such as M. Notably, the regression performance

for the VQA subset was maximized in the case of the Ridge and Lasso lin-

ear regressions, but for the M (memory) and R1+R2 (stalling) feature types,

the SROCC performance was greatly reduced using those regression models

compared to SVR, RF and GB. This may be explained by the fact that the

design of IQA/VQA algorithms such as ST-RRED ultimately aims for lin-

ear/explainable models. By contrast, the memory or stalling-aware features

are highly non-linear, hence non-linear regression models may be expected to

perform better.

We now move on to the different feature combinations and their effects

on QoE prediction. First, note that when VQA is removed from the feature set

(e.g. in columns 8 and 9) the prediction performance dropped considerably.

When the feature set VQA+M+R2 (see column 7 in Table C.2) was used, good

prediction results were obtained. This strongly supports the importance of

combining stalling with memory/recency effects on QoE when viewing longer

video sequences. Overall, the combination of all feature types gave the best

performance over most regression models. This suggests that a successful QoE

prediction model should consider diverse QoE-aware features in order to better

predict QoE.
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Figure C.2: Median SROCC as the amount of training data was varied for
different objective video quality models.

C.2.1 Amount of Training Data and Pooling Strategy

Any data-driven learned model requires needs to have a sufficient amount

of training data to perform reliably. To this end, we analyzed the effects of the

amount of data used to train Video ATLAS on QoE prediction. By varying the

percent of training data in the train/test split, we repeated the same process

as before, over many trials. Figure C.2 shows how the SROCC changed when

the amount of training data was varied between 0.2 (2 training contents) and

0.8 (11 training contents). Clearly, the prediction performance increased when

the available training data was increased.

Lastly, we experimented with the type of pooling that is applied on

the quality metric before it is used in the regression engine. We combined all

features and used the train/test splits of Experiment 1. To collapse the frame-

based objective quality scores to a single summary VQA score, we applied the
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hysteresis pooling method in [132] and the VQ pooling method in [105]. The

former combines past and future quality scores within a window, while the

latter clusters the video frames into low and high quality regions and weights

their contributions to the overall VQA score. The results are tabulated in

Table C.3. For the mean pooling case, we used the results reported in Table

C.1.

Given the results in Table C.3, we observed that the use of more so-

phisticated temporal pooling strategies did not always improve QoE prediction

over mean pooling and any such improvements were not significant. This ob-

servation agrees with previous works [136] that have shown the advantages

of mean pooling when processing longer video sequences to predict endpoint

(retrospective) subjective quality.

Table C.3: SROCC results when using mean, hysteresis and VQ pooling for
various VQA models using Video ATLAS.

VQA mean hysteresis VQ
PSNR 0.62 0.62 0.69

SSIM [159] 0.86 0.85 0.81
MS-SSIM [160] 0.84 0.84 0.80

NIQE [94] 0.52 0.55 0.50
VMAF [79] 0.58 0.60 0.60

ST-RRED [143] 0.88 0.89 0.87
GMSD [164] 0.70 0.65 0.68

C.2.2 Statistical Analysis of Performance

We also carried out a statistical analysis of the results in Experiment

1. First, it is interesting to investigate how the performance varies across
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train/test splits in Experiment 1. To this end, Table C.4 shows the standard

deviation values of the computed SROCC for all of the compared models. It is

clear that QoE-aware methods such as SQI and NARX have a more stable be-

havior as compared to QoS or VQA models, such as ST-RRED. Video ATLAS

produced the lowest prediction uncertainty, demonstrating its robustness.

Table C.4: Statistical analysis for Experiment 1. The first column contains the
median SROCC and the second the standard deviation across all train/test
splits.

Model median σ
FTW 0.34 0.23
VsQM 0.32 0.21
PSNR 0.60 0.29
SSIM 0.68 0.19

MS-SSIM 0.68 0.21
NIQE 0.21 0.20
VMAF 0.61 0.22
GMSD 0.65 0.28

ST-RRED 0.68 0.20
PSNR+SQI 0.55 0.24
SSIM+SQI 0.75 0.15

MS-SSIM+SQI 0.75 0.15
ST-RRED+SQI 0.57 0.23
P.1203 mode 0 0.46 0.18
P.1203 mode 3 0.44 0.19

NARX 0.79 0.14
Video ATLAS 0.88 0.11

We conclude this Appendix by studying the statistical significance of

the SROCC performance results presented in Experiment 1. We used the

Wilcoxon ranksum test [139] with significance level 0.01 by comparing the

distributions of SROCC (for the top-5 performers) across all 364 trials and

present the results in Table C.5. It can be observed that ST-RRED performed

significantly worse, since it does not capture QoE-aware information. The SQI
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variants that used SSIM or MS-SSIM performed statistically equivalently, but

were statistically worse by the NARX model. As we already mentioned, Video

ATLAS performed significantly better in this experiment than NARX, since it

was designed specifically for retrospective, rather than continuous-time, QoE

prediction.

Table C.5: Statistical significance for top-5 performers in Experiment 1. A
value of “1” indicates that the row is statistically better than the column, while
a value of “0” indicates that the row is statistically worse than the column; a
value of “-” indicates that the row and column are indistinguishable.

Model STRRED
SQI

SSIM
SQI

MS-SSIM
NARX

Video
ATLAS

STRRED - 0 0 0 0
SQI SSIM 1 - - 0 0

SQI MS-SSIM 1 - - 0 0
NARX 1 1 1 - 0

Video ATLAS 1 1 1 1 -
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Appendix D

Additional Analysis of the G-NARX model

The design of continuous-time QoE predictors often involves deciding

upon a number of architecture-specific settings, including an imputation strat-

egy, the activation function and the training algorithm. Next, we discuss these

aspects and conclude with a note on computational complexity.

D.1 Inputs of Different Length

An important consideration when implementing the proposed model

is accounting for different input durations. For example, while video quality

predictions are computed on all frames of normal playback [25], the R1 input

(in the presence of rebuffering events) will have longer durations. While it is

possible to train and evaluate the GN and GR QoE Prediction models without

imputing missing VQA response values during rebuffering events, we found it

useful to develop an imputation scheme that defines same-sized inputs for each

test video. In previous studies, playback interruption has been found to be

at least as annoying as very low bitrate distortions [27]; hence we selected

imputed VQA values corresponding to very low video quality. Imputing with

zeros is not a good idea; some video quality models never approach such low
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values while others (such as ST-RRED) correspond lower values to better video

quality. For simplicity, we picked the min (or the max) value of the video

quality prediction corresponding to the worst quality level encountered over

the entire video as the nominal VQA input value during playback interruptions.

To recognize causality, we could also pick the min (or max) VQA values up

until the rebuffering event occurs; we found that this did not greatly affect the

final results. This imputing step is required only on the LIVE-NFLX dataset.

D.2 Activation Function

We experimented with various activation functions: logistic sigmoid

(logsig), hyperbolic tangent sigmoid (tansig) and linear (purelin) and we also

tried various combinations of them in the hidden and output layers. We carried

out ten experiments and computed the median OR on D1 and D2. For D1, we

used du = 10, dy = 10, a single hidden layer with 8 neurons and ST-RRED as

the VQA model. For D2, we used du = 6, dy = 6, a single hidden layer with 8

neurons and the features R1, R2 and M . As shown in Table D.1, using tansig

for the hidden layer and purelin for the output layer proved to be good choices

(in terms of OR) for this task on both databases. Other evaluation metrics

produced similar results.

D.2.1 Training Algorithm

We compared the default Levenberg-Marquardt algorithm against other

training algorithms [15]. Table D.2 shows that using the Levenberg-Marquardt
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Table D.1: OR comparison between different activation functions when train-
ing the NARX component on D1 (VN) and on D2 (RMN). Rows and columns
correspond to the activation function used in the hidden and the output layer
respectively.

Database D1 (VN) D2 (RMN)
Activation tansig logsig purelin tansig logsig purelin

tansig 10.38 20.28 5.90 10.59 31.38 7.68
logsig 8.97 22.55 5.10 10.34 33.26 7.92

purelin 9.28 31.28 11.10 26.04 50.55 5.48

(trainlm) performed very close to the best performing method on D1 (trainbfg)

and was significantly better on D2. This suggests that the use of a general

training algorithm such as Levenberg-Marquardt is sufficient for QoE predic-

tion.

Table D.2: Comparison between different training algorithms using NARX on
databases D1 (VN) and D2 (RMN). The number of iterations was set to 1000.

Database D1 D2

Metric RMSE OR DTW SROCC RMSE OR DTW SROCC
trainlm 4.00 5.72 15.39 0.91 4.43 7.47 4.15 0.93
trainbfg 3.90 4.86 14.73 0.90 6.33 17.53 6.65 0.81
trainrp 4.26 7.79 17.59 0.89 9.21 29.25 9.96 0.71
trainscg 4.20 6.04 16.53 0.89 6.59 21.09 7.21 0.79
traincgb 4.01 5.35 15.93 0.89 6.14 18.36 6.34 0.82
traincgf 4.27 6.86 16.54 0.88 6.11 18.57 6.59 0.82
traincgp 4.07 5.83 15.59 0.89 6.46 21.09 6.57 0.80
trainoss 4.49 6.97 18.14 0.87 7.19 24.27 7.30 0.80
traingdx 6.33 17.72 22.26 0.80 11.87 38.49 10.04 0.66

D.3 Computational Complexity of G-NARX

The proposed continuous-time QoE predictors require calculating per-

ceptual VQA models, training and testing the neural network. Therefore,
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besides calculating the VQA feature, these neural networks can be trained

offline and take up only a small computational overhead. To demonstrate

this, we fixed the NARX architecture to du = 10 and dy = 10 lags, H = 8

hidden nodes and a single hidden layer, then calculated the compute time for

SSIM, for training and for testing the GN-QoE predictor on all 112 videos

in D3 (see Table D.3). All of the timing experiments were carried out on a

16.04 Ubuntu LTS Intel i7-4790@3.60 GHz system. Both the NARX and SSIM

implementations used unoptimized Matlab code.

As shown in Table D.3, calculating SSIM and training the neural net-

work take up considerably more time than testing it. Notably, calculating

SSIM takes much more time than training, since we deployed relatively sim-

ple neural networks. For adaptive streaming applications, where the reference

video and its compressed versions are readily available, the VQA measure-

ments and the neural network training can be carried out in an offline fashion.

Trained model values and associated VQA values can be sent to the client as

part of the metadata and then the client side can perform such QoE predic-

tions in real-time. Compared to simply calculating the VQA values, the only

(online) computational overhead of the proposed predictors is the testing step,

which is relatively fast. If the client side has low computational power, these

operations could also be carried out by proxy “QoE-aware” servers.

The GN-QoE predictor uses ST-RRED as its VQA feature which, com-

pared to SSIM, is a significantly better-performing VQA model [13], but its

computational overhead may limit its potential in some practical applications.
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Table D.3: Average computation times on D3 (112 videos) for the GN-QoE
predictor using SSIM.

Computation Sec.
SSIM 290.66

Training 4.87
Testing 0.04

However, efficient approximations to ST-RRED that are implemented in the

spatial domain are available [29].
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Appendix E

Additional Experimental Analysis of the

G-NARX models

In this section, we study in greater detail continuous-time performance

bounds, the effects of using different rebuffering-related inputs for D2 and

provide more detailed results in Tables E.4, E.5 and E.7.

E.1 Details on Continuous-time Performance Bounds

Table E.1: Median performance for various time-series ensemble methods ap-
plied on the class of RM-predictors on database D2 - direct comparison with
human performance (“ref” row).

Model Type RMN RMR RMH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 4.90 2.14 4.75 0.91 6.46 7.10 6.38 0.87 6.03 7.76 9.76 0.75
avg 4.34 0.00 3.85 0.95 5.74 2.13 4.55 0.93 4.61 1.33 5.85 0.87
med 4.46 0.00 3.71 0.94 5.56 1.08 3.86 0.95 4.39 1.35 6.23 0.86
mod 4.33 0.00 3.79 0.94 5.48 1.05 3.94 0.94 4.41 1.33 6.37 0.85

DTW-single 4.55 0.00 4.02 0.94 5.62 1.33 4.00 0.94 4.52 1.13 7.61 0.84
DTW-prob 4.40 0.00 3.78 0.95 5.62 1.18 3.96 0.95 4.57 1.16 5.72 0.87

ref 3.91 0.00 4.60 0.93 3.91 0.00 4.60 0.93 3.91 0.00 4.60 0.93

Following the steps described in Section 4.7.4, we compared the best

performing combination (RMN-QoE Predictor) against an upper bound, i.e.,

human performance, using S = 10 shuffles. Table E.1 shows that the RMN-

QoE Predictor outperformed both the RMR- and RMH-QoE Predictors, and

its performance in terms of RMSE came close to the reference human perfor-
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Table E.2: Median performance for various time-series ensemble methods ap-
plied on the class of G-predictors on D3 using ST-RRED - direct comparison
with human scores (“ref” row).

Model Type GN GR GH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 0.29 5.48 28.39 0.78 0.38 9.65 29.52 0.69 0.24 2.37 25.56 0.76
avg 0.26 0.00 23.08 0.86 0.39 3.30 21.63 0.79 0.19 0.00 10.19 0.87
med 0.25 0.00 22.52 0.86 0.30 2.21 19.35 0.80 0.15 0.00 9.16 0.88
mod 0.25 0.00 22.03 0.85 0.30 2.17 19.94 0.80 0.14 0.00 9.28 0.89

DTW-single 0.26 0.00 19.99 0.86 0.31 3.10 21.09 0.80 0.16 0.00 13.82 0.85
DTW-prob 0.25 0.00 21.48 0.86 0.30 2.32 19.17 0.81 0.16 0.00 9.46 0.89

ref 0.20 0.00 10.71 0.90 0.20 0.00 10.71 0.90 0.20 0.00 10.71 0.90

mance. We found this difference to be statistically significant; hence there is

some room for improvement. However, the performance in terms of OR was

very good when any of the ensemble methods was considered. Surprisingly,

the DTW and SROCC performances were not always inferior to human scores,

and sometimes these differences were statistically significant.

Comparing the objective prediction scores between Tables E.6 and E.1,

we discovered that, when using only a subset of the subjective scores as ground

truth, the performance of the objective prediction models was reduced. This

may be explained by the fact that subjects do not always agree with each

other; hence using all of the subjective scores reduces both the objective and

subjective uncertainty.

As in D2, we also report the results compared against human perfor-

mance in Table E.2 for D3. We drew similar observations as in Table E.1:

the objective predictions tend to get worse while human performance usually

upper bounds model performance. It is intriguing that combining the differ-

ent GH-QoE forecasts delivered RMSE scores better than human performance
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- a difference which we found to be statistically significant. When objective

prediction models are trained on subjective data, human performance should

generally be superior to or at least statistically equivalent to objective pre-

dictions. However, this upper bound may be violated when we consider post-

processed forecasting ensembles: human performance is the upper bound only

on time-series predictions generated by an individual model. Our observation

may be explained by the design of these two QoE databases. Database D2

includes only rebuffering events, while D3 involves a mixture of rebuffering

and compression; a task that is even more challenging for human subjects.

Therefore, the difficulty of the tasks may increase subjective uncertainty per

test video; an uncertainty for which simple averaging of the continuous scores

across subjects may not always be the best method of aggregating them. This

reinforces our growing belief that simply averaging continuous QoE responses

disregards the inherent non-linearities in these responses [27].

E.2 Rebuffering-related inputs

It has been shown [23] that combinations of VQA inputs (e.g. ST-

RRED combined with SSIM) can deliver improved results. Here we investigate

the effects of using different combinations of rebuffering-related inputs. We

selected NARX as the dynamic model, and performed QoE predictions using

a number of inputs ranging from one to three, as shown in Table E.3. We also

used the parameters from Table 4.3. Notably, we found that only using the

R1 input contributed significantly greater prediction power than R2 and M ; it
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is capable of effectively capturing rebuffering effects and is suitable for being

used alone in the GN-, GR- and GH-prediction models. Combining all three

inputs improved the OR by only 2%. This suggests that R1 is an efficient

descriptor of the effects of rebuffering events on QoE.

Table E.3: Median performance for various continuous-time feature sets on D2

when using the NARX learner. Note that using features R1+R2 defines the
RN-QoE Predictor while R1+R2+M gives the RMN-QoE Predictor.

Model NARX
Features/Metric RMSE OR DTW SROCC

R1 4.65 9.03 4.00 0.94
R2 8.38 31.15 7.29 0.82
M 6.74 23.12 6.39 0.82

R1+R2 4.41 8.14 4.02 0.95
R1+M 4.86 12.12 4.26 0.92
R2+M 6.41 21.53 6.17 0.84

R1+R2+M 4.49 6.84 4.08 0.93

E.3 Additional Tables

In this section we include the earlier described Tables E.4, E.5, E.6 and

E.7.

Table E.4: Median performance for the class of V- QoE predictors on D1.

Model Type VN VR VH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

NIQE [94] 8.61 34.79 29.72 0.54 9.71 42.84 49.42 0.33 8.95 42.78 55.86 0.27
PSNR 6.76 25.07 24.37 0.72 8.10 36.16 35.55 0.56 7.19 29.51 37.49 0.67

VMAF [79] 4.95 12.38 17.80 0.89 6.42 24.05 27.86 0.73 6.44 23.03 27.42 0.81
MS-SSIM [160] 4.07 5.73 15.89 0.91 5.79 17.64 23.67 0.73 7.50 31.82 44.86 0.59

SSIM [159] 4.02 5.45 14.22 0.90 6.07 17.43 24.13 0.74 7.32 30.69 41.78 0.67
ST-RRED [143] 4.25 5.90 15.21 0.90 6.98 20.81 27.22 0.71 5.40 15.31 27.09 0.87
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Table E.5: Median performance for various ensemble methods applied on the
class of V-predictors on D1 using ST-RRED.

Model Type VN VR VH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 4.25 5.90 15.21 0.90 6.98 20.81 27.22 0.71 5.40 15.31 27.09 0.87
avg 3.64 5.24 14.11 0.91 4.99 15.59 17.64 0.85 4.86 14.69 16.72 0.90
med 3.69 5.24 14.01 0.91 4.23 9.15 16.31 0.90 4.85 13.99 16.46 0.90
mod 3.76 4.55 14.26 0.91 4.17 8.47 16.22 0.90 4.82 13.99 20.92 0.90

DTW-single 3.92 5.59 14.01 0.90 4.24 8.81 17.06 0.90 5.02 15.04 18.52 0.89
DTW-prob 3.67 5.25 14.11 0.91 4.20 10.51 16.35 0.89 4.84 14.69 16.72 0.90

Table E.6: Median performance for various ensemble methods applied on the
class of RM-predictors on D2.

Model Type RMN RMR RMH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 4.49 6.84 4.08 0.93 6.33 21.08 5.74 0.89 5.66 16.22 9.04 0.75
avg 4.01 0.00 2.99 0.97 5.59 11.48 3.83 0.95 4.20 3.71 5.43 0.88
med 3.88 0.00 2.93 0.97 5.38 6.62 3.19 0.96 3.79 4.29 5.73 0.87
mod 3.93 0.00 3.03 0.96 5.34 7.60 3.23 0.96 3.88 4.03 5.65 0.86

DTW-single 4.15 0.00 3.03 0.97 5.39 7.25 3.36 0.95 3.99 3.88 6.84 0.86
DTW-prob 3.91 0.00 2.96 0.97 5.33 7.25 3.31 0.96 4.05 3.38 5.10 0.88

Table E.7: Median performance for various ensemble methods applied on the
class of G-predictors on D3 using ST-RRED.

Model Type GN GR GH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 0.28 16.31 26.53 0.81 0.37 22.55 28.58 0.72 0.22 6.19 25.45 0.77
avg 0.24 8.31 19.82 0.88 0.29 14.87 20.11 0.81 0.15 0.33 8.08 0.90
med 0.24 6.66 21.65 0.89 0.29 13.90 18.47 0.82 0.11 0.00 7.43 0.91
mod 0.24 3.92 20.60 0.88 0.28 13.90 19.23 0.81 0.10 0.00 6.98 0.91

DTW-single 0.25 6.02 19.75 0.89 0.30 14.77 21.28 0.82 0.13 0.00 12.25 0.87
DTW-prob 0.24 6.54 20.00 0.89 0.29 14.31 18.90 0.82 0.12 0.00 7.45 0.91
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E.4 Modeling Recency

To conclude this Appendix, we now show that the NARX-driven GN-

QoE predictor is indeed able to capture recency effects in subjective QoE. To

do so, we collected the GN-QoE predictions from D2 and D3, then performed a

moving average operation, i.e., we averaged the predictions (and the subjective

ground truths) at evenly-spaced moments separated by 10 and 5 seconds on

D2 and D3 respectively, using corresponding sliding window sizes of 5 and 2.5

seconds respectively. Figure E.1 shows that both the subjective and objective

scores are very strongly correlated with preceding time averages, indicating

that the objective GN-QoE predictions are indeed able to capture the effects

of recency in subjective QoE.
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Figure E.1: Relationship between current and previous subjective and objec-
tive scores on D2 and D3. The objective predictions are able to capture the
effects of recency.
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Appendix F

Encoding Module, Video Quality Module and

the Streaming Pipeline

F.1 Encoding Module

To generate the video encodes, we adopted the Dynamic Optimizer

(DO) [67] approach that was recently developed and implemented by Netflix.

DO determines the optimal encoding parameters per shot, such that a pre-

defined metric is optimized at a given bitrate. The underlying assumption is

that video frames within a video shot have similar spatio-temporal characteris-

tics (e.g. camera motion and/or spatial activity), and hence should be encoded

at a particular resolution and QP value. For a specific target bitrate, the DO

implementation determines the “optimal” resolution and QP values per shot

that achieves (but does not exceed) this bitrate while maximizing the overall

quality predicted by the VMAF model [79]. Repeating this process over each

target bitrate value and video segment yields a 2D encoding chunk map, where

each row is a single video stream (corresponding to the same target bitrate)

and each column is a different video segment over time (see Fig. F.1) encoded

at the QP and resolution values selected by the DO.

Both the encoding and client modules are driven by VMAF [79] mea-
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Figure F.1: An encoding chunk map representation.

surements which are carried out by the video quality module. In the following

section, we discuss the video quality module in detail.

F.2 Video Quality Module

The end receiver of any video streaming service is the human eye, hence

integrating video quality models in the streaming network is of paramount im-

portance to achieve perceptually optimized video streaming. Numerous studies

have shown that simple video quality indicators such as the encoding bitrate

or peak signal-to-noise ratio (PSNR) do not correlate well with human per-

ception [159, ?]. Nevertheless, PSNR is still often used for codec optimization

and codec comparisons [79], while the encoding bitrate is widely used by client

adaptation algorithms.

In our model system, the video quality module performs perceptual

video quality calculations that are fed to the encoding module, to determine

the bitrate ladder (the set of target bitrates per content), construct the convex
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hull and determine the encoding parameters, and also to the client module, to

drive quality-based streaming decisions. We also use video quality measure-

ments to perform offline analysis of the final video sequences and to compare

them with human subjective scores (see Section 6.7). To effectively measure

quality, we relied on the VMAF model [79]. The choice of VMAF is not re-

strictive, and other high-performing video quality indicators can also be used.

VMAF is used to encode and monitor the quality of millions of encodes

on a daily basis [79] and exhibits a number of key properties. It has been

trained on streaming-related video impairments, such as compression and the

elementary features, such as the VIF model [137, 138], are highly descriptive

of perceptual quality. It is also more computationally efficient than time-

consuming VQA models such as MOVIE [134] and VQM-VFD [109]. Further,

the VMAF framework is publicly available [8] and can be improved even further

by adding other quality-aware features or regression models. Lastly, given that

it is a trained algorithm, it produces scores that are linear with the subjective

scale, i.e., a VMAF of 80 (VMAF ∈ [0, ..., 100]) means that, on average, viewers

will rate a video with a score of 8 out of 10.

F.3 Putting the Pieces Together

After having described all four modules, we can give an overview of the

end-to-end streaming pipeline, as depicted in Fig. F.2. First, the encoding

module performs shot detection and splits the video content into different

shots [67]. Each of these shots is then encoded at multiple encoding levels,
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determined by the corresponding resolution and QP values. The video quality

module calculates the average per segment VMAF values for each of the pre-

encoded segments. After determining the target bitrates for each content,

these bitrates are then passed (along with the VMAF values and the encoded

chunks) into the DO, which decides on the per shot encoding resolution and

QP values. This results in the 2D encoding chunk map (also depicted in

Fig. F.1). Notably, these steps are carried out in an offline fashion and are

orthogonal to the client’s behavior and/or the network condition.

On the client side, the client device first pre-fetches a B0 = 1 chunk.

Based on the client algorithm (BB, RB, QB or OQB), the client then decides

which stream should be selected for the next chunk. If the buffer is depleted,

then rebuffering occurs. To simulate rebuffering, we retrieve the latest frame

that was played out, and overlay a spinning wheel icon on the viewing screen.

Rebuffering occurs until the buffer is sufficiently filled to display the next

chunk and the client adaptation algorithm allows for the playback to resume.

Before display, each encode is upscaled using bicubic interpolation, to match

the 1080p display resolution. In the case of QB and OQB, the client uses the

VMAF values of future segments (within the horizon h) to drive its decision.

Note that for RB and QB the available throughput is estimated by averaging

the download speeds of the w = 5 latest chunks.

218



video content

detect shots

split to shots

encode each 

shot with 

each qp and

resolution

determine target 

bitrate ladder

run DO to 

generate 

chunk map

transmission

download

chunk

calculate

VMAF

decide for

next chunk rebu er?

upscale

assemble

encodes

pre-fetching

Y

display

estimate

throughput

Figure F.2: Full pipeline of LIVE-NFLX-II, where each module is color-coded:
blue: encoding module; red: video quality module, yellow: network module
and green: client module. The client’s behavior is orthogonal to the offline
video encoding and quality calculations on the server side.
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[30] Andrzej Beben, P Wísniewski, J Mongay Batalla, and Piotr Krawiec.

ABMA+: lightweight and efficient algorithm for HTTP adaptive stream-

ing. International Conference on Multimedia Systems, 2016.

[31] Abdelhak Bentaleb, Ali C Begen, and Roger Zimmermann. SDNDASH:

Improving QoE of HTTP adaptive streaming using software defined net-

working. ACM Multimedia Conference, pages 1296–1305, 2016.

[32] Donald J Berndt and James Clifford. Using dynamic time warping

to find patterns in time series. In KDD workshop, volume 10, pages

359–370. Seattle, WA, 1994.
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Quality of experience of adaptive video streaming: Investigation in ser-

241



vice parameters and subjective quality assessment methodology. Signal

Processing: Image Communication, 39:432–443, 2015.

[150] Samira Tavakoli, Sebastian Egger, Michael Seufert, Raimund Schatz,

Kjell Brunnström, and Narciso Garćıa. Perceptual quality of HTTP
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