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Molecular recognition between biomolecules and ligands is very specific

in living cells. The functions of all biochemical processes and cell mechanisms

are dependent upon complex but specific non-covalent intermolecular inter-

actions. As essential building blocks in protein and nucleic acid, phosphate

groups are commonly found in nucleic acids, proteins, and lipids. Nearly

half of known proteins have been shown to interact with ligands containing a

phosphate group. Binding of a phosphoryl group is fundamental to a range of

biological processes including metabolism, biosynthesis, gene regulation, signal

transduction, muscle contraction, and antibiotic resistance. Phosphorylation

is one of the most common forms of reversible posttranslational modification

of protein and, nearly 30% of all proteins are phosphorylated on at least one

residue in cells. However, phosphate binding sites are less well defined and

fundamental principles of why and how proteins recognize phosphate groups

are not yet fully understood.
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Molecular modeling is a common tool for studying biomolecular struc-

ture, dynamics, interaction and function. Due to the complex electrostatics,

high concentration of ions and intricate interactions with environment, how-

ever, the modeling and designing of highly charged drug-like molecules and

nucleic acid derivatives are extremely difficult. This thesis will focus on the

highly charged phosphate, including its different protonation states, and ener-

getic and thermodynamic driving forces behind protein-phosphate recognition.

This thesis work will also discuss the development of more sophisticated com-

putational models, AMOEBA+, that are necessary for a better understanding

and prediction of the physical properties of small organic molecules.

Four projects will be discussed in this dissertation: two projects on

force field development, and two on applying molecular dynamic simulations

to understand biological processes. These projects have led to new insights into

understanding of physical and chemical principles and mechanisms underly-

ing highly protein-phosphate binding and nucleic acid stability. In addition,

this thesis work will enhance the capability to develop and apply computa-

tional and theoretical frameworks to model, predict and design proteins, ther-

apeutics, and diagnostic strategies targeting phosphates, phosphate-containing

biomolecules.
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Chapter 1

Molecular Modeling for Biomolecules

Molecular modeling and simulation can be a powerful tool for quantita-

tive understanding of the driving forces underlying molecular recognition,[87,

120] and accelerating drug discovery and guiding molecular design by pre-

dicting ligand interactions with biomolecular targets.[85, 140] Numerous po-

tential energy methods have been proposed to compute binding free energy,

increasing in complexity from empirical docking methods to quantum mechan-

ics (QM) calculations.[85] Empirical docking methods[151] are frequently used

for library screening and though they allow for fast calculation, they do not

maintain high accuracy of the potential energy function, nor do they allow for

sufficient sampling of binding conformations. QM calculations of binding free

energy[10, 93, 196] are limited to small, predetermined binding sites. Bridges

between docking methods and QM are semi-empirical force-field methods us-

ing Molecular Dynamics (MD) or Monte Carlo sampling schemes to generate

many configurations and energies.[163, 202]

In force fields, the potential energy of the system is computed from

the analytical functions of the atomic coordinates. Classical force fields such

as AMBER,[50] CHARMM,[290] OPLS-AA,[254] or GROMOS[242] typically
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represent intermolecular interactions by a van der Waals (vdW) term and elec-

trostatic term dependents on fixed point charges. This representation is com-

putationally efficient and sufficiently accurate for many applications. However,

the potential energy is limited by not capturing electrostatic responses to en-

vironmental stimulus, referred to as the polarization effect.[230] Additionally,

modeling electrostatics as point charges neglects the intricate yet substantial

effect of charge distribution,[313] which can be properly captured by higher

order multipole moments.[247] Therefore, tremendous efforts have been made

to develop advanced representations of electrostatics ranging from fluctuat-

ing charges,[225] Drude oscillators,[12, 167] up to fully polarizable force-fields

such as AMOEBA (atomic multipole optimized energetics for biomolecular

applications).[248, 265]

This chapter includes the current development and application of po-

larizable force field. It will cover an introduction to polarizable forcefield, the

polarizable framework used in AMOEBA, an automatic approach for parame-

terization, nucleic acid and Ion model. Besides, it will include the applications

of AMOEBA on small molecules, protein-ion binding, interaction with the

electric field and hybrid QM/MM method. Last but not the least important,

the overall structure and outline of the dissertation will be presented.

1.1 Polarizable Force Field

There has been much effort devoted to improving the potential-energy

functions or force field (FF) used in MD simulations. It is believed in biology

2



that amino acid sequences carry the structure information, which then deter-

mines the function. The potential energy surface defines the physical driving

forces underlying biomolecular structure and interactions. Force fields usu-

ally consist of several empirical energy terms including short-ranged bonded

interactions and non-bonded interactions such as repulsion, dispersion and

electrostatics. Electrostatics is both important and computationally expen-

sive due to its long-range nature. To facilitate simulations of biomolecules

with modest computational power, traditional force fields use fixed point

charge placed at atomic centers to represent the electrostatic interactions.

The limitations of the fixed point-charge force fields have been well recog-

nized.[45, 182, 190, 220, 246] One significant approximation in traditional force

fields is the omission of polarization, i.e. the response of the charge distri-

bution to environment. This is problematic when applying the same set of

charge parameters to different environments, such as aqueous solution, pro-

tein cavity, cell membrane and heterogeneous interfaces, where the charge

distribution should change accordingly. Another approximation is the atom-

centered point-charge model, whereas the realistic charge distribution should

be smooth and anisotropic. To capture anisotropic features such as -holes,

lone pairs and -bonding, it is necessary to adopt higher-order multipolar elec-

trostatics models [95, 131, 154, 156, 288] and/or adding off-center sites.[95] The

effect of having atomic multipoles beyond fixed charges is of the same magni-

tude as the effect of polarization, suggesting that both should be included in

force field development.[131]

3



1.2 AMOEBA

Over the past decades, several polarizable force fields have been devel-

oped for biological systems, including AMBER,[43, 300] AMOEBA,[227, 232]

CHARMM Drude, CHARMM fluctuating charge,[56, 258] SIBFA, GEM,[95]

and ABEEM.[175, 326] As a physics-grounded force field and different from

the simple fixed-point-charge (partial charge) force fields AMOEBA depicts

molecular polarizability and electrostatic potential terms by using mutual

atomic dipole-dipole induction along with permanent atomic point multipoles

(monopole, dipole, and quadrupole).[265] These results in a more accurate

description of molecular energetics in biological applications.

U = Ubond + Uangle + Utorsion + U(out−of−plane) + UvdW + Uperm
ele + U ind

ele (1.1)

Ubonded =
∑

kr(r − req)2+
∑

ka(θ − θeq)2+
∑ Vn

2
[1 + cos (nϕ− ϕn)]+

∑
kχχ

2

(1.2)

AMOEBA is the first general-purpose polarizable force field that has

been utilized in MD simulations of protein-ligand binding and calculation of

absolute and relative binding free energy.[17, 135, 136] AMOEBA potential en-

ergy is written as a sum of valence and nonbonded contributions (Equation

1.1). The first four terms describe the intramolecular valence interactions:

bond stretching, angle bending, torsional rotation and out-of-plane torsion

terms (Equation 1.1). The last three terms in Equation 1.3, Equation 1.4

and Equation 1.5 are the non-bonded van der Waals (vdW) and permanent

4



electrostatic (Uperm
ele ) and polarization contributions (U ind

ele ).

UvdW = εij

(
1 + δ

ρij + δ)

)n−m(
1 + γ

ρmij + γ
− 2

)
(1.3)

Uperm
ele =

∑
(Mi)

TTijMj (1.4)

U ind
ele = −1

2

∑
i

(µindi )TEdir
i (1.5)

The vdW interaction is described by the buffered-14-7 vdW formula

(Equation 1.3) is the potential well depth and is the ratio between the ac-

tual separation of i-j sites and the minimum energy distance, described as

ρij = Rij/R
0
ij.[104] The electrostatic potential energy is evaluated from the

permanent molecular dipole and quadrupole moments, in which Mj is the poly

tensor of permanent multipoles (charge, dipole, and quadrupole) (Equation

1.4) and molecular isotropic dipole polarizability, which will be discussed in

the AMOEBA polarization framework section. All electrostatic energy and

force terms, including polarization, are calculated using the particle-mesh-

Ewald (PME) approach.[73, 255]

1.2.1 Polarization Framework

Polarization is explicitly treated by mutual induction of dipoles at po-

larizable sites (located at atomic centers). A point dipole moment is induced

at each polarizable site according to the electric field experienced by that site:

µindi = αi(E
dir
i + Emut

i ) (1.6)

where αi is the atomic polarizability on site i; Edir
i is the direct electric field

generated by permanent multipoles of other sites; Emut
i is the mutual field

5



generated by induced dipoles of other sites. The Edir
i and Emut

i are expressed

as

Edir
i =

∑
TijMj (1.7)

Emut
i =

∑
i 6=j

T 11
ij µ

ind
j (1.8)

where the Tij in Equation 1.7 is the multipole-multipole interaction matrix;49

Mj is the poly tensor of permanent multipoles;[289] In Equation 1.8, T 11
ij is

the dipole-dipole interaction matrix and µindj is the induced dipole moment

of site j. The induced dipole on each polarizable site is solved iteratively to

obtain the converged dipole values. With self-consistent field (SCF) converged

induced dipole, the polarization energy can be obtained through

U ind
ele = −1

2

∑
i

(µindi )TEdir
i (1.9)

To ensure the finite nature of the intermolecular induction effect, Thole

used a damping scheme in which a smeared charge distribution replaces one of

the point dipoles, and thus dipole interactions are damped.[279] As a result,

the dipole interaction energy approaches a finite value instead of becoming infi-

nite as the atomic separation approaches zero. Tholes scheme is very successful

in reproducing dipole molecular polarizability tensors for a broad range of or-

ganic molecules using element-based isotropic atomic polarizabilities.[279, 289]

This scheme has been adopted by AMOEBA force field to model polariza-

tion energy.[162, 289] The electric fields due to both the permanent multipoles

and the induced dipoles are damped using the same function in the current

6



AMOEBA model. This is accomplished by modifying the interaction T ma-

trices in the corresponding orders and higher order T matrices can be found

in reference.[174]

Tα = −λ3
Rα

R3
(α = x, y, z) (1.10)

The form of λ3 that the current AMOEBA uses is:

λ3(r) = 1− e−au3(r) (1.11)

where u(r) = rij/(αiαj)
1
6 is the scaled distance between sites i and j; rij and

αi are the real distance and atomic polarizability, respectively. The factor

a is the dimensionless width parameter of the smeared charge distribution,

and effectively controls the damping strength. The universal damping factor

was determined to be 0.39 for both the direct and mutual part in the current

AMOEBA by considering the molecular polarizabilities and total associate

energy of water clusters up to hexamers.[162]
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1.2.2 Parameterization Using ForceBalance

Figure 1.1: Density of liquid water over the temperature range of 250-370 K
at atmospheric pressure. The data were reproduced from the original papers
by using WebPlotDigitizer (https://automeris.io/WebPlotDigitizer).

An automatic and systematic approach for the parameterization of

AMOEBA using the ForceBalance package[303] has also been explored. Over-

all the AMOEBA water model reparameterized (AMOEBA14)[162] using Force-

Balance[303] better reproduces high-level quantum mechanical (QM) data and

experimental condensed-phase properties compared to the original AMOEBA03.

Variations of the functional form were devised to improve the computational

speed, including the direct polarization (iAMOEBA)[303] and united atom

models (uAMOEBA).[235] Both iAMOEBA and uAMOEBA, parameterized

using ForceBalance, have comparable accuracy to AMOEBA03 for predicting

gas-phase and liquid properties. As an example, the liquid densities over a
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wide temperature range predicted by different water models are compared in

Figure 1.1.

1.2.3 AMOEBA Nucleic Acid and Ion Models

Figure 1.2: Transition from A-DNA to B-DNA in ethanol/water solution as
captured by AMOEBA simulations.57

Recently, Zhang et al. developed the AMOEBA force field for DNA

and RNA.[335] The force field was extensively validated through 35 microsec-

onds of MD simulations. The simulated solution and crystal structures of

DNA duplexes, RNA duplexes, and hairpins agree with NMR structures with

RMSDs < 2.0Å. Notably, the interconversion between A- and B-form DNAs
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was observed in ethanol-water mixtures, (Figure 1.2) indicating a balanced

description of the stabilities of different forms. Clavagura and coworkers de-

veloped the AMOEBA force field for Fe(II) and the heme cofactor in ferrous

and ferric form.[263, 319] The parameters were validated for energy calculation

of larger clusters and MD simulations of cytochromes, showing good agreement

with DFT and NMR data. To match the energy components from ab initio

calculations, Xia et al. incorporated an explicit charge-transfer term into the

AMOEBA force field for Fe(III).[323] For the transition metal ions Cu2+ and

Zn2+, AMOEBA-VB model was derived.[324] This model generates correct

ion-ligand geometry and energetics for both QM gas-phase clusters and the

coordination of the first solvation shell structure of their aqueous solutions.

To better model the water ligand exchange rate around Mg2+, Kurnikov and

Kurnikova [159] treated the polarizability of AMOEBA water as variables ac-

cording to the distance between water and Mg2+.

1.3 Recent Applications of AMOEBA

AMOEBA force fields have been widely used to simulate water, or-

ganic molecules and proteins.[97, 186, 210, 248, 266, 316] Recent applications of

AMOEBA on biomolecular systems include small molecules,[33] ions, [185, 260]

protein-ion and protein-ligand binding,[121, 195, 218, 234] diffusion and perme-

ation of small molecule,[184, 281] ion channels,[227] interaction with electric

field, [72, 177] and hybrid QM/MM method.[177]
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1.3.1 Small Molecules

Ionic liquid systems have received much attention because of their

excellent thermal and electrochemical stability and good solvation proper-

ties.[148, 272] Due to their charged nature, they are studied with MD simula-

tions employing polarizable force fields. Busch et al. studied a highly concen-

trated aqueous solution of proline using neutron diffraction experiments and

MD simulations employing AMOEBA and CHARMM force fields. Detailed

structural analysis revealed the existence of proline dimers, which explains well

the experimental observation. Compared to the non-polarizable CHARMM

force field, the polarizable AMOEBA simulation gives better agreement with

the EPSR fits to the diffraction data, which is similar to ab initio (CPAIMD)

methods.[33]

1.3.2 Ions, Ion Channels and Protein-Ions Binding

The association of Mg2+ and H2PO−4 in water may give insights into

our understanding of Mg and phosphate-containing biomolecules, e.g. DNA,

RNA, and ATP. A recent simulation study shows that the binding free en-

ergy between Mg2+ and H2PO−4 determined by AMOEBA simulations (-2.23

kcal/mol) closely match the experimental value (-1.7 kcal/mol).[185] Another

recent quantum calculation which used a mixed explicit/continuum solvent

model gave a value of -3.3 kcal/mol, while non-polarizable force field over-

predicted the binding free energy by a factor of ten.[260] These results again

emphasized the importance of polarization in highly charged systems.
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By explicitly introducing the multipole terms and polarization into the

electrostatic potentials, the permeation free energy barrier of K+ through the

gA channel is considerably reduced compared to the overestimated results

obtained from the fixed-charge model. Moreover; the estimated maximum

conductance, without any corrections, for both K+ and Na+ passing through

the gA channel is much closer to the experimental results than any classical

MD simulations, demonstrating the power of AMOEBA in investigating the

membrane proteins.[227] Several recent studies have been focused on capturing

the interactions of ions with proteins and nucleic acids. Using the AMOEBA

polarizable-force field, many-body effects were shown to be essential for ion-

selectivity in Mg2+ and Ca2+ protein complexes.[121]

1.3.3 Interaction with Electric Field

Electronic polarization is essential for modeling the interaction with the

electric fields, such as in the simulations of THz spectra. AMOEBA force field

was used to simulate the THz spectra of two zwitterionic amino acids (glycine

and valine) in aqueous solution. After the detailed check of the THz spec-

tral assignments, the mode-specific spectral decomposition into intramolecu-

lar solute motions, and solutewater cross-correlation modes, the authors found

promising agreement of AMOEBA and ab initial molecular dynamics (AIMD)

data for both systems.[72]
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1.3.4 QM/MM

Polarizable force fields have been applied to the hybrid QM/MM method

to better describe the environment of the QM region.[81, 103, 173, 178, 179,

332] The methods have been implemented in software interfaces, such as

Gaussian/TINKER,[179] Psi4/TINKER[103], Q-Chem/CHARMM.[332] The

use of polarizable force fields improves both ground-state energy and struc-

ture[103, 179] and excited-state spectral properties.[177, 179, 332] Loco et al.

used QM/MM simulations with B3LYP and AMOEBA to study the color

tuning in Carotenoid pigment-crustacyanin complexes.[177] It was found that

the polarizable force field and MD simulations are necessary to obtain quanti-

tative predictions of the spectrum. The high color tunability of the pigment-

protein complex was explained by the bond length alternation in the long-chain

carotenoids modulated by the dynamical protein environment.

1.4 The Next Generation: AMOEBA+

Classical molecular mechanics force fields typically model interatomic

electrostatic interactions with point charges or multipole expansions, which

can fail for atoms in close contact due to the lack of a description of pene-

tration effects between their electron clouds. These short-range penetration

effects can be significant and are essential for accurate modeling of intermolec-

ular interactions. The current AMOEBA force field and most other widely

used fixed-charge force fields utilize a less repulsive van der Waals potential

to compensate the charge penetration contribution in short range. The prob-
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lem with this approach, however, is that the resulting vdW parameters are

less transferable.[209, 277] To improve the accuracy and transferability and

mitigate the tedious parameterization process, the next-generation AMOEBA

force field focuses on calibrating each energy component to high-level QM en-

ergy decomposition such as Symmetry-Adapted Perturbation Theory (SAPT)

including electrostatic, induction/polarization, repulsion, and dispersion en-

ergies (Equation 1.12), and using automated optimization methods[303] for

parameterization at large scales.

ESAPT2+ = ESAPT
elst + ESAPT

exch−r + ESAPT
disp + ESAPT

ind (1.12)

For electrostatic interactions, the point charge or multipole model fails

at close distances where electron clouds overlap. In this situation charge

penetration (CP) effect must be considered. By utilizing empirical smear-

ing functions either for charge-charge interactions only[306] or higher order

multipoles,[238] the charge-penetration correction can be accurately captured.

For polarization, the Thole damping function used in AMOEBA[232] was im-

proved to better capture the explicit many-body interactions for a range of

molecules at different intermolecular distances.[174] The polarization model

also offers a way to separate the polarization energy from the charge-transfer

energy in a physically consistent way. For vdW interactions, the buffered-

14-7 potential used in AMOEBA is re-parametrized by targeting the SAPT

exchange-repulsion and dispersion energy.[236] This vdW model will be dis-
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cussed in Chaptor3.1

1.4.1 S101x7 SAPT2+ Database

Figure 1.3: Schematic view of molecules in the S101 dataset. The arrows
connect two molecules that form a dimer; “/2” represents the existence of a
homodimer; “/+” indicates both neutral and ionized molecules are included.

1The first two subsections’ work (1.41 and 1.42) were previously published.[9] Q. T.
Wang and J. A. Rackers developed and validated the model. C. F. He and I constructed
QM database, which contains the total interaction energy as well as each energy component
of 707 dimer. C. Narth, L. Lagardre, N. Gresh, J. W. Ponder and J.P. Piquemal and P.
Y. Ren helped revised the paper. Besides, the many body interactions section (1.43) were
previously published .[174]. C. W. Liu developed the model, I constructed the training data
and helped writing the paper.
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The S101x7 contains the detailed energy decomposition results of 39

common motifs and functional groups in biomolecules at various intermolecular

distances.[304] The first 66 dimer structures are taken from the S66 database

from Hobza et al.[250] This database covers the commonly encountered ele-

ments in biochemistry: H, C, N, O, S, P, and halogen atoms (F, Cl, and Br)

in 11 chemical types including alcohol, acid, amide, amine, sulfoxide, sulfide,

alkane, alkene, alkyne, haloalkane, and phosphate ions. The small molecules

included in S101x7 are generally carriers of the functional group of interest

while the larger ones are actual biomolecular building blocks. For example,

the database includes both the neutral and ionized amino acid side chain

analogs, peptide bond model N-methylacetamide and uracil.(Figure 1.3) Each

dimer complex was placed at seven separations (0.70, 0.80, 0.90, 0.95, 1.00,

1.05, 1.10 times of the equilibrium distances) using the same definitions of the

intermolecular distance vectors from the S66x8 database. The lower bound is

at very short separations, 0.7 times the equilibrium, which is rarely investi-

gated but is fundamental to the study of the short-range charge penetration

effect of electrostatic and exchange-repulsion of van der Waals components.

In the S101x7 database, the newly added pairs were optimized using MP2/cc-

pVTZ method with counterpoise correction and the interaction energy was

decomposed using SAPT2+/aug-cc-pVD(T)Z method[117, 222] in PSI4 pro-

gram.[285] The results contain electrostatics, exchangerepulsion, induction,

and dispersion components.[222] Different configurations of the same dimers

are included in the data set to take into account orientation effects. These QM
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energy decomposition results can be used as a reference for parameter training

force fields to represents protein-phosphate binding and understand molecular

recognition.

1.4.2 Charge Penetration Model

Figure 1.4: Plots of multipole electrostatic energy (kcal/mol) against the refer-
ence SAPT2+/aug-cc-pVTZ calculation for (A) near-equilibrium (0.90, 0.95,
1.00, 1.05, and 1.10) complexes taken from the S101x7 dataset, (B) expanded
plot of the boxed region in A, and (C) short-range (0.70 and 0.80) complexes
in the S101x7 dataset. The uncorrected AMOEBA point multipole energy
(multipoles only) is shown in red circles, and the charge penetration corrected
point multipole energies using the valence-α parameter set (multipoles + CP)
are denoted by blue crosses.
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By comparing to the electrostatic energy terms in S101x7 database,

a general model has been developed to incorporate the charge penetration

effect into the AMOEBA force field.[305] By replacing the Coulomb electro-

static interaction with the charge penetration corrected model, this model

significantly improves the agreement between point multipoles and quantum

mechanical electrostatic energies from SAPT2+ decomposition even at short

inter-molecular distances. (Figure 1.4) The use of 18 pairs of charge penetra-

tion parameters for 9 chemical elements reflects the robustness and transfer-

ability of this model. The charge penetration correction is short-ranged and

rapidly converges to the classical Coulomb interaction beyond 6− 7 Å. Thus,

it can be completely incorporated into the real space of Ewald summation

without any additional computational cost in reciprocal space. Because sim-

ulations including penetration correction are clearly feasible, there is ongoing

work dedicated to the optimization of parallel scaling the coupled penetration/

smooth particle mesh Ewald approach. In addition, higher order penetration

corrections (charge-dipole and charge-quadrupole penetration) are also possi-

ble and have been implemented in models such as SIBFA.[94]

1.4.3 Many-Body Interactions

The non-additive many-body interactions are significant for structural

and thermodynamic properties of condensed phase systems. Recently, the

many-body interaction energy of a large number of common organic/biochemical

molecular clusters have been examined, which consist of 18 chemical species
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and cover nine common organic elements, using the MllerPlesset perturbation

theory to the second order (MP2). The capability of Thole-based dipole induc-

tion models has been evaluated to capture the many-body interaction energy.

Three models were compared: the original model and parameters (model 0)

used by AMOEBA force field, a variation of the original model (model 1),

with 0.34 damping parameters which have been re-optimized to MP2 data

and a third model (model 2) where the damping function form applied to the

permanent electric field is modified as λ′3(r) = 1− exp−au(r)
3
2 .[174]
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Figure 1.5: The plot of (a) the E3B and (b) E4B calculated using the three
polarization models and QM methods (MP2/aug-cc-pvtz for Water-4568 and
RI-MP2/cc-pvtz for Tetramers set). Each (MeOH)4 and (MeOH)2(H2O)2
cluster has two different structures.

The many-body interactions (E3B and E4B) of organic molecular clus-

ters have been well captured by classical polarization models. Overall, the

current AMOEBA model and two new models are able to reasonably describe

the three- and four-body energy for a wide range of organic molecular clusters

in different configurations. (Figure 1.5 and Figure 1.6). In these simple mod-

els, universal parameters controlling the damping strength perform well for

all organic species tested in this study. Comparing to the current AMOEBA,

20



as expected, the two new models that have been explicitly fitted to the E3B

show better agreement with the MP2 results. Model 2, where the damping

function for direct induction due to the permanent field was modified, best re-

produced the distance dependence of the E3B. (Figure 1.5) In physical sense,

these results clearly show that instead of using the smeared charge distribu-

tion given by the damping function of the current AMOEBA, a different charge

distribution is needed to well capture the distance dependence of many-body

interactions.
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Figure 1.6: Plots of the E3B distance dependence calculated from three polar-
ization models, MP2/aug-cc-pvtz (for water) and RI-MP2/cc-pvtz (for other
molecules) for selected trimer systems: (a) Water, (b) Ammonia, (c) Methanol
and (d) Imidazole. The right-most structure indices represent the equilibrium
structure for each trimer. The left side of x-axis indicates the smaller inter-
molecular distances than the right.

1.5 Overview of Thesis Work

The rest of this Thesis is organized as follows: Chapter 2 will cover

the development of advanced polarizable force fields for water and organic

molecules including the development of general van der Waals (vdW) po-
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tential for common organic molecules and the coarse-grained water model

united AMOEBA (uAMOEBA). Chapter 3 will describe the application of

AMOEBA on elucidating the phosphate binding mode in phosphate binding

protein (PBP) and analyzing the binding thermodynamics of series of host-

guest systems vary from ligand to ligand. The conclusion is drawn in Chapter

4.
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Chapter 2

Development of Advanced Polarizable Force

Fields for Water and Organic Molecules

Molecular recognition is central to biomolecular processes such as sig-

nal transduction, metabolism, and gene expression.[115, 141] In drug discovery

processes, one primary goal is to identify small ligands that can selectively

bind to a macromolecular target with high affinities and favorable pharma-

cological properties.[139, 153] Computational modeling holds the promise of

accelerating drug discovery and guiding molecular design by predicting ligand

interactions with biomolecular targets.[140] Although computational modeling

and simulation can provide a quantitative understanding of the mechanism un-

derlying molecular recognition,[163] effective sampling methods and accurate

force fields continue to be the main challenges for reliable prediction of molec-

ular interactions. Accurately modeling intermolecular interaction is essential

for organic/biochemical systems,[60] which motivates the necessity of accurate

energy potentials in classical simulations. This chapter will cover the develop-

ment of general van der Waals potential for common organic molecules, and

the coarse-grained water model.1

1The vdW work (2.1) were previously published.[236] I developed and validated the vdw
model, constructed both training and testing dataset, and wrote the paper. Q. T. Wang and
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The first project presents a systematic development of a new van der

Waals potential (vdW2016) for common organic molecules based on symmetry-

adapted perturbation theory energy decomposition. The Buf-14-7 function, as

well as Cubic-mean and Waldman-Hagler mixing rules were chosen given their

best performance among other popular potentials. A database containing 39

organic molecules and 108 dimers was utilized to derive a general set of vdW

parameters, which were further validated on nucleobase stacking systems and

testing organic dimers. The vdW2016 potential is anticipated to significantly

improve the accuracy and transferability of new generations of force fields for

organic molecules.[236]

In addition, the second project reports the development of a united

AMOEBA (uAMOEBA) polarizable water model. While providing compara-

ble accuracy for gas-phase and liquid properties, uAMOEBA is computation-

ally 3-5 times more efficient than the three-site AMOEBA03 model in MD

simulations. In this coarse-grained polarizable water model, both electrostatic

and van der Waals representations have been reduced to a single site located at

the oxygen atom. Hydrogen atoms are retained only to define local frames for

the molecular multipole moments and intramolecular vibrational modes. Good

transferability from the gas to the liquid phase has been demonstrated over a

wide range of temperatures, and from nonpolar to polar environments, due to

P. Y. Ren helped revising the paper. Besides, the united AMOEBA water model work (2.2)
were previously published .[235]. L. P. Wang used the ForceBalanced software to optimize
the model and I validated it using MD simulations and wrote the paper. V. Pande and P.
R. Ren helped writing the paper.
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the presence of molecular polarizability. The water coordination, hydrogen-

bonding structure and dynamic properties given by uAMOEBA are similar to

those derived from the all-atom AMOEBA03 model and experiments. Thus,

uAMOEBA is an accurate and efficient alternative for modeling water.[235]

2.1 General van der Waals potential for common or-
ganic molecules

2.1.1 Introduction

Classical force fields such as AMBER,[38, 49] CHARMM, [24] OPLS-

AA,[144] and GROMOS[242] typically model the electrostatic interactions

with fixed atomic point charges and treat van der Waals interactions via

simple functions, such as the Lennard-Jones (12-6) potential. As computa-

tionally efficient alternatives to quantum mechanical calculations, such clas-

sical point charge models have been widely used in molecular dynamic sim-

ulations of biological systems.[49, 144] Newer models that explicitly represent

anisotropic atomic charge distributions and respond to surrounding changes

via polarization[44, 230, 252] can potentially lead to improved transferability

between different chemical and physical environments. For example, the point

charge model can be replaced by atomic multipole moments, such as dipole and

quadrupole, to capture the anisotropic nature of the electronic structures.[247]

The polarization effects have been modeled by interactive atomic induced

dipoles,[11] fluctuating charges[225] or Drude oscillators models.[12, 167] The

AMOEBA force field, which employs atomic multipole moments and dipole
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polarizabilities, is one typical example of such newer models.

Lennard-Jones (12-6) potential is one of the most common functions

to describe the exchange-repulsion and dispersions interactions.[137] It has

been adopted in a range of force fields[7, 46, 52, 171, 194, 216, 241] such as AM-

BER[49] and CHARMM[24]. This simple function contains only two parame-

ters and it is faster to compute than exponential terms.[172] Other Lennard-

Jones potential forms include the Lennard-Jones (9-6) function[14, 126] and

the Lennard-Jones (12-10) function[216] which is an alternative to the usual

Lennard-Jones (12-6) function in AMBER[49] to model hydrogen bonds. As

a special case of the Buckingham potential function,[27] the exponential-6 po-

tential is widely used in force fields[59, 71, 194] such as MM2,[4] MM3,[6] and

MM4.[5] However, both Lennard-Jones and exponential-6 potentials account

poorly for the high quality noble gas data while a simple buffered 14-7 (Buf-14-

7) potential can accurately reproduce the noble gas potentials over a range of

distances.[104] Besides the two interaction-specific parameters, the well depth

and minimum-energy distance, the Buf-14-7 functional form is capable of ad-

justing the curvature of request depending on two shape parameters.

In addition to the functional forms, vdW interactions between unlike

atoms (e.g. O and H) depend on the suitable combination of mixing rules to

generate the well depth and distance parameters, unless pair-wise parameters

are specified for all combinations. Current available force fields employ either

geometric or arithmetic mean as the combining rules, which lead to large errors

for mixed noble gas atom pairs.[296] More elaborate combination rules have
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been proposed, involving additional parameters such as polarizability, ioniza-

tion potentials, or dispersion force coefficients.[261] Newly derived combining

rules, Waldman-Hagler (W-H)[296] and Halgren (HHG),[104] require no addi-

tional parameters other than the well depth and distance, also well reproduce

the experimental values of noble gas interactions.

In classical force fields, electrostatic parameters, such as atomic charges,

are normally computed from ab initio quantum mechanics directly.[262] The

so-called vdW interaction in a force field is actually less well-defined and is

essentially utilized to capture everything beyond the charge-charge interac-

tions, including the charge penetration, charge transfer and perhaps some of

the many-body polarization effects in condensed-phase. Additional difficulty

in force field parameterization lies in the limitations of ab initio methods. A

perfect ab initio force field will not reproduce experimental condensed-phase

thermodynamic properties without explicit quantum corrections such as zero-

point energy. Thus, deriving vdW parameters by fitting to gas-phase ab initio

molecular interaction energy alone is insufficient if the resulting force fields

were intended for condensed-phase systems, even with many-body polariza-

tion were explicitly accounted for. Given these limitations, the most effective

approach, pioneered by Jorgensen and co-workers in developing OPLS and

OPLSAA force fields,[51, 107, 147, 233, 254] has been to used derive vdW pa-

rameters directly against reliable and widely available liquid properties such

as density and heat of vaporization.

The current AMOEBA force field and most other widely used fixed-
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charge force fields address this issue by using a less repulsive van der Waals

potential to compensate the missing charge penetration contribution in short

range. The problem with this approach however, is that the resulting vdW

parameters are less transferable.[209, 277] Given the recent advances in com-

putational chemistry and the computing power, the noncovalent interaction

energy components can be computed using highly accurate quantum mechani-

cal methods[223] such as symmetry-adapted perturbation theory (SAPT).[134]

Recently, a general electrostatic model has been developedto incorporate the

charge penetration effect based on the atomic multipole moments in all-atom

AMOEBA.[305] This model significantly improves the agreement between point

multipoles and quantum mechanical electrostatic energies from SAPT2+ de-

composition even at short inter-molecular distances. This improvement leads

to the need to revisit vdW potentials that are capable of capturing SAPT

repulsion and dispersion energy.

This work presents the first systematic attempt to develop a new van

der Waals potential, vdW2016, for common organic molecules based on SAPT

energy decomposition. First, several common vdW functions were examinedto

determine the best functional form based on noble gas interaction energy data.

A general set of parameters (element based) was then determined by fitting

to the exchange-repulsion and dispersion energies for 756 dimers made of 39

common organic molecules with different configurations and separation dis-

tances (S108x7 database). This new vdW potential was further validated on

nucleobase stacking systems as well as on a testing set of small organic dimers
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(S36x7). Overall, the vdW2016 potential is expected to provide accurate pre-

diction of vdW interaction energy for common organic molecules, including

drug candidates.

2.1.2 Computational Methods

2.1.2.1 Van der Waals functions and mixing rules

The vdW functional form and mixing rules were determined from no-

ble gas systems including helium (He), neon (Ne), argon (Ar), and krypton

(Kr), where the non-bonded interactions were dominated by vdW interactions.

Three typical vdW functional forms, Buf-14-7, Buckingham, and Lennard-

Jones (12-6), were examined using the same sigma and epsilon extrapolated

directly from the exchange-repulsion and dispersion energy of SAPT2+/aug-

cc-pV5Z calculations (the dispersion energy has been scaled by 0.89). Dif-

ferent combinations of the vdW functions with three sets of mixing rules,

Cubic-mean/HHG, W-H/W-H, Cubic-mean/W-H were examined against the

SAPT2+/aug-cc-pV5Z potential surfaces. According to the best fitting results

with the perfect match with SAPT (Figure 2.1) and the lowest RMSE (Fig-

ure 2.2), I chose the Buf-14-7 (Equation 2.1) as the functional form, and as

mixing rules, Cubic-mean for (Equation 2.2) and W-H for ε (Equation 2.3).

The parameter εjj is the potential well depth, and Rij/σij is the ratio between

the actual separation of i-j atomic sites and the minimum-energy distance.[104]

EvdW = εij

(
1 + δ
Rij

σij
+ δ

)7(
1 + γ

(
Rij

σij
)7 + γ

− 2

)
(2.1)
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σij =
(σii)

3 + (σjj)
3

(σii)2 + (σjj)2
(2.2)

εij = (εiiεjj)
1/2 2(σii)

3(σjj)
3

(σii)6 + (σjj)6
(2.3)

Figure 2.1: Plots of homodimer vdW energies in noble gas systems calculated
by Buf-14-7 (red dash line with circle markers), Buckingham (magenta line
with left-pointing triangle markers), and Lennard-Jones 12-6 (green line with
left-pointing triangle markers) compared to QM reference SAPT2+ calculation
(blue line with cross markers). Same sigma and epsilon parameters were used
in all calculations: 3.11 Å and 0.014 kcal/mol for He; 3.31 Å and 0.048 kcal/mol
for Ne; 4.07 Å and 0.160 kcal/mol for Ar; and 4.38 Å and 0.218 kcal/mol for
Kr.
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Figure 2.2: Differences between heterodimer vdW energies in noble gas system
given by different combinations of vdW functional forms and mixing rules (
ij/ij) compared to SAPT 2+ results. Same functional forms and parameters as
above were used. Distances are ratios relative to the vdW minimum distances
extrapolated from the SAPT2+ exchange-repulsion and dispersion energy.
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2.1.2.2 QM Database for Model Training and Testing

Figure 2.3: Molecule structures in the S108x7 database.

33



S108 x7 fitting database. The interaction energies of seven het-

erodimers between methane, amine, ethene and water were added to the

S101x7 database (39 molecules and 101 dimers)[305] to construct the S108x7

fitting database.(Figure 2.3) The same structural optimization, distance gener-

ation and energy decomposition methods, including the extrapolation scheme

and the scaling of dispersion energy, as in the S101x7 database construction

were used to generate the energy profiles for newly added dimers. The param-

eters of the vdW model were optimized to match the sum of the dispersion and

exchange energy in the S108x7 SAPT2+ database, which contains the total

interaction energies as well as decomposed energy components for 108 pairwise

interactions at seven distances (0.70, 0.80, 0.90, 0.95, 1.00, 1.05, 1.10 times of

the equilibrium distances R). The mean unsigned error (MUE), mean signed

error (MSE), and root-mean-square error (RMSE) were calculated to examine

the performance of different models at all 7 distances for a total of 756 dimers.

This set includes 216 dimers at 2 short distances (0.70R and 0.8R), and 540

dimers at 5 near equilibrium distances (0.9R, 0.95R, R, 1.05R and 1.10R).

S36x7 SAPT0 testing dataset. An S36x7 testing dataset was con-

structed containing newly generated non-aromatic heterodimer interaction en-

ergies between polar-nonpolar, polar-polar, and nonpolar-nonpolar molecules.

Fifteen representative molecules were chosen, which covers 11 chemical types

including alcohol, acid, amide, amine, sulfoxide, sulfide, alkane, alkene, alkyne,

haloalkane, and phosphate ions in the S108x7 fitting database. Identical to

the structural generation and optimization procedures used in the S108x7
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database, the structures of the newly added pairs were optimized using MP2/cc-

pVTZ method. Each dimer complex was studied for seven separation distances

ranging from 0.70-1.10 times the equilibrium distance. For each of the re-

sulting dimer configurations, the interaction energy was decomposed using

SAPT0/jun-cc-pVDZ method[117, 222] in PSI4 program.[285] For aromatic

systems, existing data for nucleicbases were utilized in the testing.

2.1.3 Results and Discussion

2.1.3.1 Atom Types and Parameters

An iterative process was applied to determine the vdW types and pa-

rameters: the universal shape parameters delta and gamma for Buf-14-7, and

the interaction parameters sigma and epsilon for each atom type. I first kept

the shape parameters fixed to optimize sigma and epsilon. Then, the delta

and gamma were optimized with the fixed the interaction parameters gener-

ated previously. New vdW types were added after analyzing the systematic

errors of the model compared to SAPT. The final optimized delta and gamma

parameters in the Buf-14-7 vdW function are 0.273 and 0.025, respectively.

For comparison, the previous AMOEBA[244] and MMFF94[105] force fields

both used 0.07 and 0.12 for delta and gamma, respectively. The nonlinear

least square optimization method, lsqnonlin, in Matlab[100] was applied to

all fitting, including the optimization of delta and gamma parameters in the

Buf-14-7 vdW function, σ and ε parameters for each vdW type. The inputs of

the lsqnonlin program were the objective function, initial parameters, and pa-
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rameter limits. The objective function is the mean squared difference between

calculated vdW and SAPT values of all structures.

Figure 2.4: VdW types and parameters (σ and ε ) for H, C, N, O, P, S, F, Cl,
and Br. Reduction factors for all Hs are 0.93, and are 1.00 for other molecules.
Delta and gamma are 0.273 and 0.025, respectively.

In Figure 2.4, all atoms in the S108x7 system were clustered into 28

vdW types. In addition to the 18 atom types used in the charge penetration

paper,[305] ten more vdW types were added to better capture the vdW in-

teractions. Polar H was divided into three types depending on whether it is

connected to O, N or S. C in alkene (-C=C-) was separated from C in the car-

bonyl group. In aromatic rings, a separate type was used for C atoms bonded

to non-carbon atoms (N and halogens). Both C and H in alkane molecules (sp3

C only bonded to other sp3 C or H) were separated from the general sp3 C and

non-polar H to two new classes. Additional types were assigned to oxygen ion

in acetate and phosphate as well as sp2 hybridized oxygen in phosphoric acid

to capture their vdW interactions. S in sulfide and sulfoxide used different set

of σ and ε, while P, F, Cl, and Br have only one set of parameters each.
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Good correlation has been found with a R2 value of 0.955 between the

average for each element and the atomic radius calculated via SCF minimal

basis-set functions.[47] This trend confirms the physical meaning of the sigma

parameters is in relevance to the atomic diameters. A reduction factor of 0.93

was assigned to all H atoms in order to translate the vdW center of hydrogen

toward the heavy atom along the chemical bond.[244]

2.1.3.2 Model Training Performance on Dimer Interactions

Figure 2.5: Plots of the vdW energy calculated by vdW2016 (circles filled with
distances relative to the equilibrium distance R) and AMOEBA09 model (blue
plus signs) compared to the SAPT2+/CBS/scaled results. The AMOEBA09
vdW parameters were derived to reproduce the total dimer interaction energies
and liquid thermodynamic properties in a force field without charge penetra-
tion corrections. The left plot contains all the 7 distances complexes in the
S108x7 data set. The right plot expanded the top one and contains complexes
with energy from -5 kcal/mol to 20 kcal/mol.
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The van der Waals interactions calculated using the vdW2016 potential

and the AMOEBA09[245] vdW component were compared to SAPT2+ results

of the S108x7 dataset in Figure 2.5. By using a limited set of parameters,

the new potential agrees with SAPT2+ with a correlation coefficient R2 of

0.996 across all dimers and distances. Figure 2.6 shows the 108 dimers energy

profiles from both the vdW2016 potential and SAPT. The errors (blue line) of

the new vdW potential are rather even across all the dimers. As expected, the

AMOEBA09 vdW parameters, based on the same Buf-14-7 function but with

different shape parameters and mixing rules, underestimates the short-range

vdW energy in comparison with SAPT, although displaying a very reasonable

correlation with QM results (R2 of 0.946). The AMOEBA09 vdW parameters

were parameterized to capture the total interaction energy of molecule dimers

and liquid thermodynamic properties. This underestimation of the repulsive

energy was needed to compensate the missing charge penetration term in the

original AMOEBA model. A similar trend is also seen for other fixed-charge

force fields as discussed in later sections. In contrast, the vdW2016 potential

has been specifically fitted to the sum of the dispersion and exchange-repulsion

energy from SAPT.
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Figure 2.6: Plot of the fitting vdW energy calculated by vdW2016 model
(green line) compared to the SAPT2+/CBS/scaled energy (red line). The
blue line is the energy differences between the vdW2016 and QM results.

The statistical analysis of the vdW2016 model and the AMOEBA09

vdW component at different distances are listed in Figure 2.7. For 108 dimers

at all 7 distances, the vdW interaction energy values given by the vdW2016 po-

tential and SAPT2+ are in excellent agreement, with a MUE of 1.054 kcal/mol,

a RMSE of 1.680 kcal/mol, and a MSE of -0.006 kcal/mol. This agreement is

remarkable given that some of the vdW energies at close distances are over a

hundred kcal/mol (Figure 2.6), i.e. 56.5% of the complexes have the energy
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over 50kcal/mol and 14.8% are over 100 kcal/mol. For dimers in five dis-

tances near equilibrium, the MUE and the RMSE of the newly parameterized

vdW potenial are 0.658 and 0.835 kcal/mol, respectively, a more than 3-fold

reduction from the values of the previous AMOEBA model, 2.125 and 2.780

kcal/mol, respectively. The good agreement persists when including dimers

at short separations (0.70, 0.80) where the absolute vdW interaction energy is

rather high (44.3 kcal/mol averaged over 216 dimers). Overall, the vdW2016

potential tends to slightly underestimate both the exchange-repulsion energy

(less repulsive) at short separations given a MSE value of -0.345 kcal/mol, and

the attraction energy (less attractive) near equilibrium distances, with a MSE

value of 0.130 kcal/mol.

Figure 2.7: Differences between vdW energies given by vdW2016 potential,
AMOEBA09 parameters, compared to SAPT2+/CBS/scaled results in the
S108x7 fitting dataset.

It should be noted that the target SAPT2+ attractive dispersion en-

ergies have been scaled by 0.89 in the S108x7 database.[305] This scaling was

obtained by comparing the SAPT2+ total interaction energy with high-level

ab initio data (CCSD(T)/CBS)). Besides, another set of parameters has been

derived by fitting to the non-scaled SAPT2+/CBS QM results with the same
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functional form, shape parameters as above. After optimization, the σ and

ε parameters were increased slightly with similar overall quality. In addi-

tion, damping function (Equation 2.4) constructed by Mooij et al.[203] with

a simple cdamp = 3.54 used by Weitao Yang[318] was tested to further ad-

just the short-range dispersion. With the same vdW interaction parameters

but slightly different delta and gamma shape parameters (0.272 and 0.026, re-

spectively), a same RMSE value of 1.68 kcal/mol was obtained with a slightly

better repulsion at short separations (RMSE 2.850 kcal/mol) but somewhat

worse dispersion at the equilibrium distance (RMSE 0.837 kcal/mol). Thus,

the shape parameters, delta and gamma, in the Buf-14-7 are sufficient and the

damping function is unnecessary for reproducing the vdW interaction energies

of small organic molecules.

fd(σij) =

(
1− exp [−cdamp(

Rij

σij
)3]

)2

(2.4)

2.1.3.3 Validation on Stacked Nucleobase and Heterodimers

The transferability of the vdW2016 model and parameters has been

further validated on molecular dimers that have not been included in the fitting

process. Interaction energies between stacked nucleobase dimers were used

to test aromatic parameters. The additional S36x7 heterodimer interaction

energies were used to validate other polar and non-polar vdW types.
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Figure 2.8: Plot of the vdW energy calculated using the vdW2016, AMBER
FF14, and CHARM 36 models compared to the SAPT0/jun-cc-pVDZ QM
results of ten stacked base pairs across their rotational (Twist, Roll, Tilt) and
translational (Rise, Slide, Shift) configurations. The geometries were taken
from Sherrills work.55

Validation on Stacked Nucleobase. For aromatic systems, which

are computationally expensive to obtain high level SAPT energy decomposi-

tion (e.g. SAPT2+), a previously published nucleobase stacking interaction

energy database55 was used in the validations. The QM energy decomposi-

tion was obtained using the SAPT0/jun-cc-pVDZ method. Only dimers with
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total interaction energies less than 10 kcal/mol have been adopted in the test-

ing. The sum of the SAPT0 repulsion and dispersion energy was compared

with the energy calculated by the vdW2016 model. The comparison with

AMBER FF[49] and CHARMM 36[113] from the previous publication has

also been included, however, it should be noted again that the vdW terms

in these force fields were derived by fitting to QM total interaction energy

and/or liquid properties and implicitly include contributions such as charge

penetration etc. Overall, the vdW2016 potential yields an excellent correla-

tion with the SAPT0 energy (R2 = 0.983) for all base pairs in the translation

and rotation configurations (Figure 2.8). It is also clear that the vdW energy

from fixed-charge force fields systematically underestimates the vdW energy

(too attractive) when compared to SAPT0 results, likely to compensate of the

missing charge penetration contribution.
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Figure 2.9: Plots of the AG:CT stacking vdW energy calculated using the
vdW2016, AMBER FF14, and CHARMM models across rotational (Twist,
Roll, Tilt) and translational (Rise, Slide, Shift) configurations.

The AG and CT stacking pairs were examined in detail in Figure 2.9.

For some configurations, such as Shift, Slide, and Twist, a systematic shift was

observed between the vdW2016 potential and the SAPT0, with the new vdW

model predicting somewhat lower energy. This is due to the missing higher or-

der terms in the SAPT0 level calculation while the vdW2016 potential was pa-

rameterized using SAPT2+ data. Although the SAPT0/jun-cc-pVDZ method

performs qualitatively well for the mixed and dispersion dominated (MX/DD)
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complexes with a mean absolute error (MAE) of 0.32 kcal/mol compared to

the CCSD(T)/CBS method,[191, 222] the SAPT0 interaction energy is sys-

tematically shifted upwards (less negative) compared to SAPT2+ and yields

positive mean signed errors in several systems.[222] For example, it was shown

that the MSE of SAPT0, compared to CCSD(T)/CBS,[191] is 0.11 kcal/mol

for the Non-Bonded Curves (NBC10) systems,[145, 191] 0.47 kcal/mol for the

HSG set,[79] 0.08 and 0.05 kcal/mol for the mixed influenced and dispersion-

dominated bound complexes in S22 set,[145] respectively. Thus, the errors

would be reduced if the more expensive SAPT2+ method was used.
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Figure 2.10: Plot of the vdW energy values of the testing set S36x7 calcu-
lated using the vdW2016 potential (green line) compared to the QM reference
SAPT0/jun-cc-pVDZ (Red line). The blue line is the energy differences be-
tween the vdW2016 and SAPT0 results.

Validation on Heterodimers. Heterodimers of non-aromatic small

organic molecules, which were not included in the fitting, were further exam-

ined to validate the transferability and accuracy of the vdW2016 potential.

Fifteen representative molecules with 11 chemical types were chosen from the

S108x7 database to construct the testing dataset (S36x7) covering interactions

among alcohol, acid, amide, amine, sulfoxide, sulfide, alkane, alkene, alkyne,

haloalkane, and phosphate ions. This dataset includes new cross interactions
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that were not covered in the original S108x7 database used for parameteriza-

tion. Again, the vdW SAPT0 energy decomposition was obtained on these

new dimers. Overall, a strong correlation, with R2 value of 0.994 for 259

heterodimers, was found in this testing set. In contrast to the optimization

process, where the new vdW potential tends to underestimate the dispersion

attraction near equilibrium distance (MSE 0.13 kcal/mol), an overestimation

was found (MSE of -0.11 kcal/mol) in the same distance range, which might

due to the lower level SAPT0 reference energy is less attractive than the higher

level SAPT2+ references used in S108x7 dataset.
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Figure 2.11: Plots of the vdW energy surfaces of selected pairs calculated using
the new vdw2016 model (green line) and the reference SAPT0/jun-ccpVDZ
(red line) in the S36x7 dataset.

All the testing vdW energies predicted by the vdW2016 model are com-

pared with the SAPT0 results in Figure 2.10. Larger errors, either overestima-
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tion or underestimation, are shown as the peaks and valleys in the blue line.

Overall, the errors are rather even across all heterodimers and the shapes of

the curve match the QM results well. Figure 2.11 shows the interaction energy

surfaces of the selected pairs in details. Excellent agreement between the vdW

model and SAPT0 can be observed for interactions between hydrogen bond

donor (polar H) and acceptors (O, N or F), pairs made of alcohol, acid, amide,

amine, haloalkane. For dimers with very short separation distances at around

1.3 angstrom, the vdW potential tended to overestimate the vdW energies in

comparison with the SAPT0 results (See the plots of dimers DMSO-HPO42-,

AcOH-Peptide, AcOH-DMSO, MeNH2-CH3SH, and CH3SH- H2PO4- in Fig-

ure 2.11). In addition, the T-shaped configuration of interactions between

ethynes H and ethenes double bond are the most problematic in both fitting

and testing sets. Anisotropic vdW treatments, such as the Gay-Berne poten-

tial,[89] may be necessary for C and H in unsaturated hydrocarbon.

2.1.3.4 Further Development: VdW 2017 Model

The vdW2016 model discussed above was parametrized on the total

vdW energy, the sum of dispersion and exchange-repulsion of the SAPT2+

energy composition. Recently, our lab re-visit this model by fitting to each

dispersion and exchange-repulsion components at the same time (vdW2017)

Improvements have been observed in both dispersion and exchange-repulsion

energy while the overall performance of the total vdW potential is slightly

worse than vdW2016. (Figure 2.12) More details and updates can be found
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at http://biomol.bme.utexas.edu/ ch38988/s36x7.

Figure 2.12: RMS error (in kcal/mol) of vdW2017 model comparing to the
SAPT2+ components for S108x7 dimer set. VdW2016 model is also provided
for comparison. All represents the dimers of 0.7 to 1.1-fold of the equilibrium
distance while Near equilibrium represents the dimers of 0.9 to 1.1-fold of the
equilibrium distance.

2.1.4 Conclustions

The van der Waals interaction is one of the dominant noncovalent in-

teractions in molecular systems. Accurate treatment of vdW interaction is

crucial in molecular modeling. This work reportes the first systematic at-

tempt to develop a new vdW potential, vdW2016, based on the SAPT2+

energy composition. Based on investigations of noble gas molecular interac-

tions, the soft-core Buf-14-7 was found to best reproduce the QM (SAPT2+)

repulsion and dispersion energy. The most effective mixing rules were found to

be Cubic-mean for sigma and W-H for epsilon. A quantum mechanics inter-

action energy database (S108x7) was used to calibrate the vdW model, which

contains the detailed energy components for 756 pairwise interactions between

39 common organic molecules at various inter-molecular distances. The pa-

rameters of the vdW2016 model were derived by fitting to the sum of the

SAPT2+/CBS/scaled exchange-repulsion and dispersion energy in the S108x7
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database. With 28 pairs of vdW parameters for 9 chemical elements, I am

able to reproduce vdW interaction energy for all dimers in this database with

a RMSE of 1.68 kcal/mol (0.84 kcal/mol if within 90-110% of the equilibrium

distances). Subsequently, the accuracy and transferability of the vdW2016 po-

tential were validated by comparing to the SAPT0 energy of an additional set

of stacked nucleobase62 and newly generated cross-interacting dimers (S36x7).

As a result, the vdW2016 potential yields strong correlations with R2 of 0.983

for all base pairs and 0.994 for 259 heterodimers compared to the SAPT0

energy.

Overall, the present systematic study shows that the accuracy and

transferability of the new vdW2016 potential are excellent in comparison with

the computationally rigorous SAPT data. However, it should be noted that

the gas-phase dimer interaction energy data alone is insufficient for determin-

ing the vdW potential for condensed-phase applications. This new potential

nonetheless serves as a starting point for future refinement using molecular dy-

namics simulations targeting liquid properties.[143, 144] Recent advancement

of decomposition of intermolecular forces has made it possible to construct

molecular mechanics force fields more systematically and rigorously, which

hopefully will lead to higher chemical accuracy and more general transferabil-

ity.
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2.2 United Polarizable Multipole Water Model for Molec-
ular Mechanics Simulations

2.2.1 Introduction

Water is an important solvent in living systems[40, 83] and many in-

dustrial applications.[101, 111, 129, 215, 292] There are a number of molecular

mechanics models, such as the three-site TIPS[138], TIP3P,[142] SPC,[282] and

SPC/E[20], the four-site TIP4P[142],TIP4P-Ew[118], TIP4P/2005[1], and the

five site ST2[275], TIP5P[183] and TIP5P-E[251], that are commonly used in

molecular simulation of water. These models use fixed atomic partial charges,

with electrostatic energy evaluated in pairwise-additive fashion. Some models

incorporate explicit electronic polarization to allow the charge distribution to

respond to electrostatic environment and to further improve the reproduction

of many water properties; these include Dang-Chang[53], Thole-Type-Model

(TTM)[30–32, 77, 322], SWM-4DP[160], DPP2[158] and AMOEBA03.[244] The

AMOEBA03 water model[74] was developed with a focus on capturing molecu-

lar polarizability, electrostatic potential, as well as the interaction energy from

gas to condensed-phase, by utilizing permanent atomic monopole, dipole and

quadrupole moments and mutual atomic dipole-dipole induction.[230, 243]

The inexpensive AMOEBA (iAMOEBA) model was introduced re-

cently as a way to achieve improved computational efficiency.[302] In this

model, the induced atomic dipoles are determined directly from the permanent

multipole electric fields without further interactions between induced dipoles.

Thus, it captures some 3-body effects in polarization while reducing the com-
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putational cost relative to the fully self-consistent AMOEBA03 water model

by a factor of 1.5-6. An alternative to improve the computational efficiency,

without sacrificing the many-body effect, is to reduce the number of interaction

sites within the model. Water models with single dipole moment representa-

tion have been developed since the 1980s.[23] Ichiye and her coworkers[127, 176]

introduced the soft sticky dipole potential for liquid water, with one spheri-

cal repulsive potential, a short-range tetrahedral sticky potential and a point

dipole at the center of mass. Compared with TIP3P and TIP4P models, it

produced similar liquid water properties but with up to one order of magni-

tude speed-up. Later in 2010, the soft-sticky dipole-quadrupole-octupole water

model was presented by the same group. It was suggested that the addition of

octupole moments improved the dielectric constant (75 at 298K).[278] Carnie

and Patey reported a polarizable dipole-tetrahedral quadrupole water model

and a self-consistent mean field theory was applied to account for molecular

polarizability.[36] Later, Kusalik and Patey added the octupole moments to

their water model discussed above and observed strong preferential solvation of

anions at infinite dilution, suggesting an important role of octupole moments

in ion solvation. Jonsson et al.[312] introduced a one-site water potential based

on electrostatic, induction, dispersion and short-range repulsion interactions.

Also, multipoles up to quadrupole moment for polarizability and up to hex-

adecapoles for permanent electrostatics were included. Previously, one-site

non-polarizable models have been explored, based on permanent molecular

multipoles and the Gay-Berne potential, for molecular liquids including wa-
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ter.[88, 90] Molinero and Moore proposed a water model that further omitted

long-range intermolecular interactions. This model generally reproduces the

bulk properties of liquid water except for the self-diffusion coefficient, which

is too fast.[200] The faster diffusion rate is likely due to the lack of long-ranged

electrostatic forces in the model.

In this paper, a new (nonbonded) one-site polarizable water model,

uAMOEBA, is described. This model removes two nonbonded interaction

sites on H atoms to speed up the energy and force calculations by a factor

of 3 to 5 times over the previous three-site AMOEBA03 model in molecular

dynamics when particle-mesh Ewald is used to treat long-range electrostat-

ics.[73] Importantly, the full many-body polarization effects are retained via

mutual induction of molecular dipoles. In this model, the permanent molec-

ular multipole (dipole and quadrupole) moments, isotropic molecular dipole

polarizability, and a single vdW interaction site are placed on oxygen. The

remaining hydrogen atoms only carry atomic masses to define the local coor-

dinate frames and the intramolecular geometry. For computational efficiency,

uAMOEBA does not contain any octupole moment, which is a potential lim-

itation of this model. The hydrogen atoms experience forces due to valence

(bond, angle and Urey-Bradley) interactions. In addition, the torques ex-

perienced by the molecular dipole and quadrupole moments on oxygen are

translated into forces on the hydrogen atoms in the same way as all-atom

AMOEBA03.[244] The use of a single scalar polarizability is well justified, as

the three components of water molecular polarizability (1.528, 1.415, 1.468)
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are indeed similar in magnitude. The accuracy of uAMOEBA water model

is demonstrateby evaluating a range of gas-phase and liquid properties and

comparing the results with the existing AMOEBA03/ iAMOEBA models and

experimental data. The current work aims to extend beyond the previous one-

site water models by systematically examining gas-phase clusters of increasing

size and important thermodynamic properties at a wide range of temperatures.

In addition, the uAMOEBA model is applied to study interactions between

water and other common organic molecules (modeled by all-atom AMOEBA03

[245]) to investigate its transferability.

2.2.2 Methodology

2.2.2.1 Parameterization Dataset

The data utilized for fitting the parameters was composed of a combi-

nation of experimentally determined liquid properties as well as high-level ab

initio QM-derived properties. The liquid properties considered were density,

enthalpy of vaporization, isothermal compressibility, isobaric heat capacity,

thermal expansion coefficient, and dielectric constant. The temperature and

pressure combinations were: 1 atmosphere at temperatures ranging from 249

K to 373 K (32 total), and 298 K at pressures from 1 kilobar to 4 kilobar (4

total).

The ab initio QM reference data included properties for systems rang-

ing in size from the monomer to clusters of 23 water molecules. For the

monomer, the molecular dipole, quadrupole, polarizability, vibration, and ge-
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ometry were considered. The ab initio QM interaction energy and geometries

for the ground state dimer, Smith dimer set (10 total),[269] trimer, tetramer,

pentamer, eight hexamers,[16] two octamers,[321] five 11-mers,[29] five 16-

mers, two 17-mers, and four 20-mers[76],[75] were utilized for calibration. In

previous work,[302] over 42000 cluster (ranging from 2 to 22 water molecules)

geometries were obtained from AMOEBA03 simulations of liquid water for

temperatures ranging from 249 K to 373 K. Energy and gradients for the clus-

ters were determined via RI-MP2[273],[274]/heavy-aug-cc-pVTZ[63] as imple-

mented in Q-Chem 4.0.[264] This large compilation of theoretical data was

included in the fitting of the model parameters.

2.2.2.2 Parameter Optimization

ForceBalance, an automatic optimization method, was applied to pa-

rameterize the uAMOEBA water model using the expanded data set described

above. ForceBalance supports many different optimization algorithms, and

the calculation in this work was carried out with the trust-radius Newton-

Raphson (or Levenberg-Marquardt[168],[189]) algorithm and an adaptive trust

radius.[57],[204] This algorithm requires the first and second derivatives of

the objective function in the parameter space, which we derive from the first

derivatives of the simulated properties using the Gauss-Newton approxima-

tion.

A major challenge in force field parameterization is the significant sta-

tistical noise in the objective function from the sampling of properties to be
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matched to experiment. The parametric derivatives are challenging to eval-

uate because numerical differentiation requires running multiple simulations

and evaluating small differences between statistically noisy estimates. Force-

Balance uses thermodynamic fluctuation formulas to calculate accurate para-

metric derivatives of simulated properties without running expensive multiple

simulations.[58, 301] For instance, the ensemble average of a generic observable

A that does not depend explicitly on the force field parameters (for example,

the density or an order parameter) can be expressed as follows:

〈A〉λ = 1
Q(λ)

∫
A(r, V ) exp (−β(E(r, V ;λ) + PV ))drdV

Q(λ) =
∫

exp (−β(E(r, V ;λ) + PV ))drdV

(2.5)

where A is the observable, r a given molecular configuration in a periodic sim-

ulation cell, λ the force field parameter, E the potential energy, β ≡ (kBT )−1

the inverse temperature, kB the Boltzmann constant, T the temperature, P the

pressure, V the volume, Q the isothermal-isobaric partition function, and the

angle brackets with a λ subscript represent an ensemble average in the thermo-

dynamic ensemble of the force field parameterized by . In practice, this integral

is evaluated numerically using molecular dynamics or Monte Carlo simulation

in the NPT ensemble. Since the expression for A depends on λ only through

the potential energy E, we can differentiate Equation 2.5 analytically:

57



d
dλ
〈A〉λ = 1

Q(λ)

∫
A(r, V ) exp (−β(E(r, V ;λ) + PV ))

(
−β dE(r,V)

dλ

)
drdV

− 1
Q(λ)2

dQ
dλ

∫
A(r, V ) exp (−β(E(r, V ;λ) + PV ))drdV

= −β
(
〈AdE

dλ
〉λ − 〈A〉λ〈dEdλ 〉λ

)
(2.6)

The potential energy derivative 〈dE/dλ〉 is evaluated by numerically

differentiating the potential energies at the sampled structures. Equation 2.6

provides a way to evaluate the parametric derivative of thermodynamic prop-

erties without running additional sampling simulations, though the derivative

of any observable always manifests as a higher order correlation function and

has a larger statistical error than the observable itself. This equation may be

directly applied to obtain derivatives of ensemble-averaged observables with

implicit parametric dependence through the thermodynamic ensemble, such as

the density. Equation 2.6 is easily extensible to obtain derivatives of observ-

ables with explicit parameter dependence, such as the enthalpy; derivatives for

higher-order thermodynamic response properties such as the dielectric con-

stant are obtained using the chain rule. We omit the calculation of second

parametric derivatives for reasons of computational cost and statistical noise,

relying instead on the least-squares form of the objective function and the

Gauss-Newton approximation to obtain the Hessian.

The problem of overfitting is treated by regularization via a penalty

function, which corresponds to imposing a prior distribution of parameter
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probabilities in a Bayesian interpretation. The prior widths reflect the ex-

pected variations of the parameters during the optimization. We used a Gaus-

sian prior distribution, corresponding to a parabolic penalty function in pa-

rameter space centered at the original AMOEBA03 parameter values with the

chosen force constants. Since the various parameters have different physical

meanings (e.g. vdW well depth, O-H bond length), each parameter type was

assigned its own prior width.

We ran the optimization until fluctuations from numerical noise pre-

vented further improvement. The calculation converged to within the statis-

tical error after about 15 nonlinear iterations, though we performed several

optimizations with different choices of weights for the reference data and prior

widths before arriving at the final answer.

2.2.3 Computational Details

2.2.3.1 Parameterization Calculations

ForceBalance carried out the condensed phase simulations in the opti-

mization by interfacing with OpenMM 6.1,[65, 66] a GPU-accelerated molec-

ular dynamics software package with an extensively validated implementation

of AMOEBA03, which provides a speedup of an order of magnitude over the

reference implementation in TINKER 6.3. At each optimization step, the set

of 36 simulations at different phase points (32 temperatures at 1.0 atm pres-

sure plus 4 pressures at 298.15 K temperature), is performed simultaneously

on multiple nodes in a GPU cluster; the Work Queue library allows ForceBal-
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ance to act as a distributed computing server and coordinate many OpenMM

simulations running on multiple compute nodes in different physical locations.

Finally, the data from the finished simulations was analyzed using the mul-

tistate Bennett acceptance ratio estimator (MBAR),[267] which allows each

simulation to contribute to the estimated properties of all other simulations.

This combination of methods allowed us to optimize the condensed phase prop-

erties very accurately. Due to the non-overlapping features of the simulation

codes, we combined OpenMM 6.1 and TINKER 6.3 during the optimization

to evaluate quantities for comparison with the ab initio and gas phase refer-

ence data, using OpenMM to evaluate the potential energies and forces, and

TINKER to evaluate the binding energies and monomer properties.

2.2.3.2 Validation calculations

The validation calculations were conducted using the TINKER 6.3

modeling package. PME summation was used to handle the electrostatic in-

teractions (real-space cutoff at 7 Å) and the atom-based switching window

was applied to restrict the vdW interactions with a cutoff of 12 Å. During the

MD simulation of NPT ensembles, we utilized the Nose-Hoover algorithm to

integrate the equation of motion and control pressure and temperature.[192]

Diffusion. The diffusion coefficient is typically computed from the

slope of the mean-square displacement as a function of time, averaged over

the MD trajectories of individual particles:

DPBC = lim
t→∞

1

6

d〈|r(t)− r(0)|〉
dt

(2.7)

60



Yeh and coworkers[329] showed that for a system of nearly 2000 water molecules

in a cell with periodic boundary conditions (PBC), the diffusion coefficient

could be underestimated by around 10%; correcting for such systematic er-

rors is particularly crucial in comparisons of simulation to experiment when

transport properties are used to assess interaction potentials.[205, 229, 315] A

correction to the system-size dependence was proposed:

D0 = DPBC +
2.837297kBT

6πηL
(2.8)

where L is the length of the cubic simulation box, DPBC is the diffusion

coefficient calculated in the simulation, kB the Boltzmann constant, T the

absolute temperature, and η the shear viscosity.

To obtain the system-size independent diffusion coefficient D0, I calcu-

lated the diffusion coefficients DPBC under periodic boundary conditions with

N = 216, 343, 512, 1000, 1600 and 2500 water molecules. The production time

of the simulations is 6 ns (N 512), 5 ns (N=1000, 1600), or 3 ns (N = 2500).

In practice, each MD trajectory was divided into 500ps blocks from which the

water diffusion coefficient was evaluated. The final DPBC was computed as

the average over these blocks. The size-independent diffusion coefficient D0

was obtained by fitting a straight line to DPBC vs. 1/L and extrapolating to

1/L = 0.

Viscosity. No significant system-size dependence of viscosity was ob-

served in computer simulations of LJ fluids.[18, 333] Here I used the slope of

Equation 2.8 to obtain the average viscosity. To estimate the error bar for
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size-independent viscosity and self-diffusion coefficient, the size-dependent dif-

fusion coefficient for each box size was computed from a randomly selected

500ps block of trajectory. These diffusion coefficients for the 6 box sizes were

then combined to compute the size-independent viscosity and diffusion coeffi-

cient according to Equation 2.8. The above process was repeated for 16 times

to calculate the standard error.

62



2.2.4 Results and Discussion

2.2.4.1 Optimized Parameters

Figure 2.13: Parameters for uAMOEBA water model.

The final parameters for the new uAMOEBA, AMOEBA03 and iAMOEBA

models are compared in Figure 2.13. The first six rows contain the intramolec-

ular parameters for uAMOEBA. The equilibrium bond length was set to 0.9499
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Å, which is slightly shorter than the experimental value of 0.9572 Å.[82] The

ideal bond angle parameter of 105.9◦ is reduced by 1−2◦ from the iAMOEBA

and AMOEBA03 values. The slightly increased value from the experimental

gas-phase angle of 104.52◦ is necessary to reproduce the experimental liquid

properties such as the dielectric constant[101, 116], [244] (Figure 2.17). The

three force constants for the valence terms were fit to reproduce the experi-

mental gas-phase vibrational frequencies of the water monomer.[54] The bond,

angle and the Urey-Bradley force constants for uAMOEBA are essentially un-

changed from the iAMOEBA values.

In uAMOEBA the non-bonded interaction sites on the hydrogen atoms

are removed. The repulsion-dispersion parameters (vdW radius and well-

depth), permanent molecular multipole (dipole and quadrupole) moments,

isotropic molecular dipole polarizability, and a single vdW interaction sites

are assigned to oxygen, which is slightly shifted from the molecular center of

mass.

The next five rows contain the vdW parameters, followed by twelve

rows containing the permanent multipole parameters. uAMOEBA has a larger

vdW radius and well depth compared to AMOEBA03, which is largely due to

the removal of vdW interaction sites from hydrogen. With no partial charges

in this model, the electrostatic representation relies on high order molecular

moments, which are significantly different from the atomic multipole moments

of AMOEBA03 or iAMOEBA. In this case, it is more meaningful to compare

molecular properties as described below.
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2.2.4.2 Fitted gas phase water properties

Figure 2.14: Gas phase monomer properties of the uAMOEBA, AMOEBA14
and iAMOEBA models compared with experiment, evaluated at the energy-
minimized geometry. The molecular multipole moments were evaluated at
the center of mass of water molecule.[48]; bReference[293]; cReference[214];
dReference[68]; eReference[286]; fReference[96].

Recently, Abascal and Vega pointed out that water multipole moments,

specifically quadrupole moments, are crucial for capturing water properties

from the vapor and liquid to solid phases accurately in multi-site models.[291]

In Figure 2.14, a comparison of the experimental, ab initio QM, and calculated

molecular dipole moments, quadrupole moments and polarizability of an iso-

lated water molecule at equilibrium geometry is given. The uAMOEBA water

monomer possesses a molecular dipole of 1.801 Debye, similar to that of the all-

atom AMOEBA14 water model with revised parameters (1.808 Debye). The

yy and zz components of the uAMOEBA molecular quadrupole moments are

in better agreement with experimental values than the previous AMOEBA14
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or iAMOEBA model. The isotropic molecular polarizability of the uAMOEBA

model is noticeably greater than the AMOEBA14 or experimental value but

slightly lower than that of iAMOEBA.

Figure 2.15: Electrostatic potential plotted on the vdW surface, with blue
representing 0.05 h and red -0.05 h. The MP2 result was obtained using the
6-311++G (2d, 2p) basis set.

Figure 2.15 shows the plots of the electrostatic potential of different wa-

ter models on the vdW surface. The water structure (O and H) used in calcu-

lations was based on the MP2/cc-pVTZ optimized geometry. In general, both

uAMOEBA and AMOEBA03 compare well with the MP2/6-311++G(2d,2p)

ESP. The similarity between the uAMOEBA and MP2 potentials around H

is notable given that uAMOEBA has no electrostatic parameters on H. How-

ever, uAMOEBA is slightly more negative around the oxygen site; this is also
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possibly a consequence of the missing hydrogen sites, which leads to larger

multipole moments on oxygen and stronger electrostatic interactions at short

range. This may also explain the slightly over-structured RDF plot around

the second solvation shell, due to the stronger electrostatic interaction. The

fixed charge TIP4P-EW model displays a very reasonable ESP surface while

the TIP5P model seems not negative enough around the O. Nonetheless, due

to the lack of explicit polarization, both TIP4P-EW and TIP5P models give

a water dipole moment of 2.3 D, about 30% higher than the experimental or

uAMOEBA/AMOEBA03 value for a gas-phase water monomer (Figure 2.14).
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Figure 2.16: Cluster energy of gas phase geometry-optimized clusters ranging
from size 2-20.

The interaction energies of water clusters ranging from dimers to clus-

ters of 20 water molecules are shown in Figure 2.16. The predicted cluster

energies are in generally good agreement with ab initio QM results, with a

RMSE value of 0.85 kcal/mol per molecule and a correlation coefficient R2

of 0.988. The error increases for larger clusters. Despite the overall success,

uAMOEBA has trouble with certain molecular orientations due to its isotropic,

spherical nature. For example, it finds 1.056 and 1.841 kcal/mol for the Smith5

and Smith6 dimer interaction energies, while the experimental value is ∼ -4
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kcal/mol. Besides, clusters provide a critical calibration for the increasing im-

portance of polarization as one move from the gas-phase toward bulk phases.

uAMOEBA is able to accurately reproduce the optimal structures of the wa-

ter clusters; The RMSDs to the reference QM-optimized structures are around

0.15 Å for all of the clusters in the parameterization data set except a couple

of hexamers and one eleven-mer.

2.2.4.3 Fitted liquid water properties

Figure 2.17: Thermodynamic properties of uAMOEBA liquid water as a func-
tion of temperature. Error bars indicate one standard error.

69



Figure 2.17 shows the temperature dependence of thermodynamic prop-

erties water simulated using uAMOEBA and compared to experiment: the

density, enthalpy of vaporization, thermal expansion coefficient, isothermal

compressibility, isobaric heat capacity and dielectric constant, which are in-

cluded as part of the parameterization data set. Overall the coarse-grained

uAMOEBA model is able to describe the liquid properties as well as the pre-

vious AMOEBA03 models and other non-polarizable and polarizable models

in the literature (Figure 2.21).

The enthalpy of vaporization, thermal expansion coefficient, isothermal

compressibility and dielectric constant all show excellent agreement with ex-

periment over a range of temperatures after the parameter fit. The density

of liquid uAMOEBA shows a correct maximum at 277 K. Small deviations in

density of up to 1.4% are observed at very high temperatures (373.15 K). As

the AMOEBA03 model, uAMOEBA overestimates the water heat capacity at

room temperature by 3 cal/mol K−1, similar to the other two polarizable mod-

els that have reported Cp, GCPM (22.5) and SWM6 (22.0). This deficiency

is likely due to the approximated quantum correction to the heat capacity

applied to the classical, flexible model.[118, 208, 244]

The dielectric constant of water is a critical property that is tightly cou-

pled to the electrostatic model. However, the evaluation of dielectric constant

by computer simulation is difficult due to the slow convergence near ambi-

ent conditions[119] and its dependence on the long-range interactions,[101] as

well as the H-O-H angle.[116] Previous model shows that the non-polarizable
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models tend to underestimate the dielectric constant (68 for SPC/E[116] and

62 for TIP4P-Ew[149]), likely due to the fixed atomic charges.[284] Our sim-

ulated value for the dielectric constant, 78.4±1, matches perfectly with the

experimental measurement of 78.5 at 298 K. The use of quadrupole moments

and incorporation of many body polarization, even though at a coarse-grained

molecular level, seems sufficient to capture the dielectric response of water.

In liquid phase, the instantaneous water dipole moment according to

DFT simulations ranges between 2.6 and 3.0 Debye at room temperature.[124]

The average molecular dipole moment predicted by uAMOEBA, including

both the permanent and induced components, is 2.80±0.19 Debye, which is

consistent with the 2.78 Debye given by the all-atom AMOEBA03 model.

Due to the induced dipoles, the liquid phase principle molecular quadrupole

moments, located at the water center of mass, changed slightly to (2.962,

-2.645. -0.317).

2.2.4.4 Validation of uAMOEBA

In this section, the uAMOEBA model is validated by predicting sev-

eral properties not used in parameterization, including the radial distribution

function (RDF), O-O-O angle distribution, self-diffusion coefficient, viscosity

and interaction energy with molecules other than water.
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Figure 2.18: The oxygen-oxygen RDF curves of the uAMOEBA water model,
compared with experimentally derived RDFs.
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Figure 2.19: The oxygen-hydrogen RDF curves of the uAMOEBA water
model, compared with experimentally derived RDFs.

2.2.4.4.1 Radial Distribution Function To characterize the liquid struc-

ture, the O-O and O-H radial distribution function were sampled from the

NPT molecular dynamics simulations. As showing in Figure 2.18, the O-O

RDF displays two well-defined peaks, similar to the experimentally derived

RDFs from X-ray scattering data taken by Hura and co-workers using the

Advanced Light Source (ALS)[268], more recently by Skinner and co-workers

using the Advanced Photon Source (APS)[132] and simulations using the 2013

iAMOEBA model.[302] The positions of the first and second peaks of the
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uAMOEBA gOO(r) agree very well with the experimental data, especially the

ALS data. Like iAMOEBA, the position of the first trough is slightly shifted

to the left. The first peak height is almost identical to that of iAMOEBA, both

similar to the ALS RDF. The second peak height is notably higher than the

rest, and accordingly the first trough is 0.1 lower than the experimental RDF,

which suggests that the second shell of uAMOEBA water is somewhat over

structured. The positions of the first and second peaks of uAMOEBA gOH(r)

show excellent agreement with the experimental curve (Figure 2.19). The first

peak appears around 1.9 AA, which matches the reported the hydrogen bond

length (1.5 2.5 Å[271]). The first peak of the uAMOEBA gOH(r) is lower than

the Soper 1986 data[270] but higher than the Soper 2000 results.[295] Features

in the first trough and second peak are similar to the Soper 1986 data.
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Figure 2.20: The O-O-O angle distributions of uAMOEBA, AMOEBA03,
TIP4P-Ew, and TIP5P water models.

2.2.4.4.2 O-O-O Angle Distribution The O-O-O angle distributions

sampled using uAMOEBA, AMOEBA03, TIP4P-EW, and TIP5P models are

showing in Figure 2.21. From MD trajectories, I computed the O-O-O an-

gle distribution within 3.4Å of each oxygen atom. Overall, the O-O-O angle

distribution in these models suggests a tetrahedron-like structure, as the max-

imum probability appears around 101-105 degree. All models display a small

shoulder at 55-58 degree, indicating a fifth atom entering the first solvation

shell. This is strong evidence that the uAMOEBA model can describe hydro-

gen bonding as well as the other all-atom models. Note that the uAMOEBA
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profile is particularly similar to that of TIP4P-Ew.

Figure 2.21: Comparison of experimental and simulated liquid data from dif-
ferent water models (T = 298.15 K, P = 1 atm). Numbers in parentheses
include one standard error in terms of the least significant digit.

2.2.4.4.3 Self-diffusion Coefficient and Viscosity The size-independent

diffusion coefficient D0 and viscosities η are summarized in Figure 2.21. Polar-

izable water models generally produce reasonable diffusion constants compared

to nonpolarizable ones[101], except for SWM4-NDP that is slightly under-

polarized. The strong dependence of the calculated diffusion constant on

the system size was observed. With a small box of 216 water molecules,

the simulated D using uAMOEBA is 1.95x10-5 cm2 s−1, which increases to

2.21x10-5 cm2 s−1 when the simulation box contains 2500 molecules. By using

extrapolation, the system-independent self-diffusion constant by uAMOEBA
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is 2.41x10-5 cm2 s−1, in excellent agreement with the experimental value. For

the viscosity, which is considered system size-independent, most models under-

estimate the viscosity except the BK3 and AMOEBA03 model. The deviation

in viscosity given by the uAMOEBA model is similar to AMOEBA03 models

and larger than those of SWM6, BK3 and iAMOEBA (0.85 cP).[302]
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2.2.4.5 Comparison between Coarse-grained and All-atom AMOEBA

Figure 2.22: Dimer equilibrium interaction energy between water and small
molecules. Compared results from uAMOEBA, AMOEBA03 water model
and SAPT2+/CBS (calculated using PSI4[285]). For the water-water dimer,
AMOEBA03 or uAMOEBA was used for both molecules. For the other het-
erodimers, the water was modeled with either uAMOEBA or AMOEBA03 (as
labeled in the 3rd and 4th column) while the other molecule was always mod-
eled with AMOEBA03. The structural RMSD values in parentheses represent
the structural different from the MP2/cc-pVTZ optimized structures.[9]
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2.2.4.5.1 Transferability Validation To investigate the transferability

of the uAMOEBA model and its ability to interact with the all-atom AMOEBA03

model, I have computed the dimer equilibrium interaction energy between wa-

ter and several small molecules (Figure 2.22). For the water-water dimer,

AMOEBA03 or uAMOEBA was used for both molecules. For the other het-

erodimers, the water was modeled with either uAMOEBA or AMOEBA03 (as

labeled in the 3rd and 4th column in Figure 2.22) while the other molecule

was always modeled with AMOEBA03. These comparisons allow us to un-

derstand the potential differences between the AMOEBA03 and uAMOEBA

water models as solvent. Starting from QM optimized structures, each dimer

was optimized using force fields to obtain the corresponding interaction en-

ergy. These molecules were chosen to test performance of uAMOEBA water

model as the hydrogen bond donor, acceptor and interacting with aromatic

benzene. The overall trend given by uAMOEBA model is in good agreement

with the SAPT2+/CBS data (calculated using PSI4[285]). The correlation

coefficient (R2) between uAMOEBA and SAPT2+/CBS results is 0.83 while

the correlation coefficient between all-atom AMOEBA03 and SAPT2+/CBS

is 0.92. As a hydrogen bond acceptor, uAMOEBA preforms equally well com-

pared to allatom AMOEBA03, even in the more complicated peptidewater

interaction (-5.35 for uAMOEBA, -5.16 for AMOEBA03 and -5.14 kcal/mol

for SAPT2+/CBS). In addition, uAMOEBA accurately captures the OH-pi

interaction when facing the aromatic molecules. I also tested the hybrid wa-

ter dimer where one of the water is described AMOEBA03 while the other is
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uAMOEBA. The dimer interaction energy is -4.11 kcal/mol when uAMOEBA

is the H-bond donor in the dimer, and -5.90 kcal/mol when uAMOEBA is

the H-bond acceptor. The average of the two is -5.0 kcal/mol, matching very

well with AMOEBA03 or QM values. Overall the uAMOEBA water model

performs reasonably when replacing the AMOEBA03 model in the hybrid

uAMOEBA-AMOEBA03 application even though there are no electrostatic

or vdW parameters on the hydrogen atoms at all.

Figure 2.23: Efficiency test for the uAMOEBA water model. For all simula-
tions, the vdW cutoff was set to 12 Åand Ewald real-space cutoff was 7 Å.
For the first 3 systems of 512 molecules or less, no neighbor-list was used for
the vdW calculation. Computer hardware: Intel E5-2697 v2 @ 2.70GHz, 8
threads.

2.2.4.5.2 Computational Efficiency The main motivation for develop-

ing uAMOEBA is to improve computational efficiency by reducing the number

of nonbonded interaction sites. I compared the simulation time between the

uAMOEBA model and the all-atom AMOEBA03 model in 1000 steps of gradi-

ent evaluation (Figure 2.23). The same simulation settings were used for both

80



models and the only difference is the model parameters that distinguish the

one-site model from the three-site model. The efficiency ratio is defined by the

simulation time from the all-atom AMOEBA03 model divided by that of the

one-site model. For relatively small systems containing less than 1000 atoms,

the speed up is almost a factor of 5, while for large water box the improvement

is about a factor of 3; this is expected as the computational cost of the PME

method scales as N log (N).

2.2.5 Conclusions

Advancement in molecular simulation relies on accurate potential mod-

els and efficient sampling methods. This work presents the development of a

coarse-grained polarizable water model, uAMOEBA, where all nonbonded in-

teractions, including the polarizability, are placed on the oxygen atom. The

parameters of this model are determined from a wide range of ab initio and ex-

perimental data using the automated ForceBalance procedure. The model and

parameters are validated by comparing with additional ab initio and experi-

mental results, including liquid structural properties, self-diffusion coefficient,

shear viscosity, and interaction energies with other small organic molecules.

Overall, uAMOEBA shows good transferability between gas and liquid phases,

polar and nonpolar environments, most likely because of the incorporation of

molecular polarizability. The water structural and dynamic properties given

by uAMOEBA are in very good agreement with those derived from all-atom

AMOEBA03 model and experiments. The dimer interaction energy between
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AMOEBA03 small molecules and uAMOEBA water are mixed together also

show a satisfying trend in comparison with all-AMOEBA03 and SAPT results.

Meanwhile, the computational efficiency is improved by a factor of three com-

pared to atomistic AMOEBA03. uAMOEBA has been expected to be a useful

solvent model in simulations of biological systems such as proteins and nucleic

acids and it can be readily combined with the existing all-atom polarizable

protein force field.[265]
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Chapter 3

Applications of AMOEBA to Protein-ligand

Recognition

Molecular recognition between biomolecules and ligands is very specific

in living cells. The performance of many biochemical processes and cellular

mechanisms are dependent upon complex but specific non-covalent intermolec-

ular interactions underlying a multitude of functions.[114] For example, pro-

teins utilize negatively charged anions, particularly phosphate-derived groups,

in signal transduction, metabolism, biosynthesis, gene regulation, and many

other biological functions.[327] While there is an abundance of experimental

structure information about protein-ion interactions, general understanding

of the recognition mechanism for specific ions remains elusive. For example,

it is unclear how proteins recognize and utilize the anionic phosphate groups

that are ubiquitously involved in signaling proteins such as kinases and phos-

phatases.[115]

Due to the lack of effective sampling methods and accurate force fields

that accurately represent molecular interactions,[163] computational and the-

oretical studies of ion-protein systems are challenging and our ability to make

accurate predictions of ion binding sites, using statistical or physical ap-
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proaches, is very limited.[297] In addition, progress regarding phosphate and

anion binding to proteins has been limited; likewise, the energetic and thermo-

dynamic driving forces of these binding events remain poorly understood.[259]

The complex electrostatic interactions between anions and other biomolecules

cannot be captured by the simple fixed-charge model prevalent in traditional

force fields. For example, the binding free energy of Mg2+ to phosphate (Pi)

in the solution given by fixed-charged model is overestimated by order of mag-

nitude compared to the experiment. Such large error is mainly due to not

explicitly accounting for the polarization of the phosphates or charge pene-

tration/charge transfer in response to Mg2+.[212] Quantum mechanical cal-

culation can provide accurate descriptions of such interactions but is mostly

restricted to small molecule compounds in predetermined binding sites. In

this chapter, I will present the application of AMOEBA force field on highly

charged molecule phosphate-protein binding and host-guest systems.1

In the first project, the controversial mechanism of PBP-phosphate

recognition is discussed. Based on the similar binding affinities at acidic and

basic pHs, it is believed that the hydrogen network in the binding site is

flexible to adapt to different protonation states of phosphates. However, only

hydrogen (1H) phosphate was observed in the sub-angstrom X-ray structures.

1The vdW work (3.1) were previously published.[234] I optimized the two phosphate
models and constructed testing dataset to validate them against QM dimer interaction
energies. I also run MD simulation to study the effect of buffer agent. Z. F. Jing, K.
Dalby and P. Y. Ren helped revising the paper. Besides, the host-guest binding (3.2) were
previously published .[17]. I run all the simulations, analyzed the effect of Hydrogen bonds
and helped writing the paper. D. R. Bell and Z. F. Jing analyzed the motion of the ligands,
the contribution of Entropy and Enthalpy. P. R. Ren helped revising the paper.
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To address this inconsistency, I performed molecular dynamics simulations

using the AMOEBA polarizable force field. Structural and free energy data

from simulations suggested that 1H phosphate was the preferred bound form at

both pHs. The binding of dihydrogen (2H) phosphate disrupted the hydrogen-

bond network in the PBP pocket, and the computed affinity was much weaker

than that of 1H phosphate. Furthermore, I figured that the discrepancy in

the studies described above is resolved if the interaction between phosphate

and the buffer agent is taken into account. The calculated apparent binding

affinities are in excellent agreement with experimental measurements. Our

results suggest the high specificity of PBP for 1H phosphate and highlight the

importance of the buffer solution for the binding of highly charged ligands.

In the second project, a series of host-guest systems previously used in

the SAMPL4 blind challenge is investigated by using molecular simulations

and the AMOEBA polarizable force field. The free energy results computed

by Bennetts acceptance ratio (BAR) method using the AMOEBA polariz-

able force field ranked favorably among the entries submitted to the SAMPL4

host-guest competition.[311] In this work, I conduct an in-depth analysis of

the AMOEBA force-field host-guest binding thermodynamics by using both

BAR and the orthogonal space random walk (OSRW) methods. The bind-

ing entropy-enthalpy contributions are analyzed for each host-guest system.

For systems of inordinate binding entropy-enthalpy values, I further examine

the hydrogen bonding patterns and configurational entropy contribution. The

binding mechanism of this series of host-guest systems varies from ligand to
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ligand, driven by enthalpy and/or entropy changes. Convergence of BAR and

OSRW binding free energy methods are discussed. Ultimately, this work il-

lustrates the value of molecular modeling and advanced force fields for the

exploration and interpretation of binding thermodynamics.

3.1 Phosphate Binding Mode in Phosphate binding pro-
tein

3.1.1 Introduction

Inorganic phosphate is one of the most important nutrients for organ-

isms. It is not only used in the biosynthesis of cellular components, such as

ATP, nucleic acids, phospholipids, and protein, but also an integral part of

many biological processes, including metabolism, gene regulation, and muscle

contraction.[35, 98, 146, 287, 317, 327] Protein phosphorylation is a key mecha-

nism for regulating transmembrane and intracellular signal transduction and

affects every basic cellular process.[123, 180] Due to the biological importance

of Pi, the transport of Pi into cells and the maintenance of proper Pi homeosta-

sis are critical. The phosphate binding protein (PBP), an initial receptor of

the phosphate-specific transport systems (Pst),[157, 240] binds phosphate with

high specificity against competing anions such as sulfate.[110, 164, 237, 328]

This high specificity is explained by a rich network of 12 hydrogen bonds (H-

bonds) between phosphate and the binding site.[110, 240, 309] Another distinct

feature of the PBP binding site is a low-barrier hydrogen-bond (LBHB) be-

tween phosphate and the Asp side chain. While its effect on protein phosphate
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binding is not as significant as indicated by gas-phase calculations,[91, 308] the

LBHB is responsible for discriminating arsenate and other similar tetrahedral

oxyanions.[70, 240, 307].

Despite numerous studies on PBPs, questions remain about the binding

mechanism. It is believed that PBP can bind to either 1H or 2H phosphate

based on the observation that E. coli PBP has similar affinities for phosphate

at pH 4.5 and 8.5.[70, 91, 109, 170, 240, 294, 309] It was suggested that the bind-

ing pocket is capable of binding to both 1H and 2H phosphate with reorien-

tation of hydrogen atoms/H-bond network only.[240] However, sub-angstrom

X-ray crystallography studies of a topologically similar protein PfluDING (P.

fluorescens PBP) showed that only 1H phosphate was present in the binding

pocket at both pH 4.5 and 8.5, suggesting that PBP should follow a simi-

lar binding mechanism.[26, 70, 307] It seems that the conserved experimental

affinities and the 1H-specific binding mode in sub-angstrom crystal structures

cannot be reconciled with each other.

Molecular dynamics simulations based on classical force fields have been

a valuable tool for the understanding of protein-ligand binding.[61, 135, 198,

325] The popular fixed-charge force fields have been applied to model neu-

tral ligands and monovalent ions.[61, 99, 199, 219] Highly charged species are

more challenging in simulation and often treated by computationally demand-

ing quantum mechanical methods.[62, 152, 239] Polarizable force fields offer

an efficient way to model electrostatic interactions for highly charged species

with high fidelity.[231, 256, 323] Here, I carried out molecular dynamics simu-
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lations using the AMOEBA polarizable force field[265, 276] to investigate the

phosphate binding mode of PBPs.

3.1.2 Computational Methods

3.1.2.1 Quantum Mechanics and Molecular Mechanics

Ab initio quantum mechanics calculations were performed using Gaus-

sian 09 and PSI4 program[117, 222, 285] with the following methods and ba-

sis sets. For permanent multipole fitting, the structures of the 1H and 2H

phosphate models were first optimized at the MP2/6-31G* level, then sin-

gle point energy calculations at the MP2/aug-cc-pVTZ level were performed.

Atomic multipole moments were initially assigned from QM electron density

calculated at the MP2/6-311G** level via Stones distributed multipole anal-

ysis.[106] For torsion fitting, structures with different dihedrals angles at the

rotatable bonds were optimized at HF/6-31G* level, followed by single point

energy calculation at the MP2/6-311++G** level. The molecular polariz-

ability of 1H and 2H phosphate models were calculated using two methods,

B97XD and MP2, each with two basis sets aug-cc-pVTZ and 6-311++G**.

For a series of distances, the interaction energies of 1H and 2H phosphate

with water, amide dimers were calculated at MP2/aug-cc-pVTZ, MP2/aug-

cc-pVQZ in PSI4 and extrapolated to the CBS level. For different protonation

states, dimers structures of phosphate interacting with residue models, cropped

from PDB structures, were optimized at the MP2/6-31G* level in Gaussian,

with fixed heavy atom positions to mimic the interactions distances in binding

88



pockets. The interaction energies were calculated via SAPT0/jun-cc-pVDZ,

SAPT2+/aug-cc-pVDZ and RIMP2/aug-cc-pVTZ method in PSI4.

All molecular mechanics force field based calculations were performed

using TINKER 6 Software.[276] The POTENTIAL program was used to fit

electrostatic potentials around molecules. The ANALYZE program was used

to calculate the total potential energy and its components, for all individual

interactions and electrostatic moments of molecules, dimers and protein-ligand

complexes. The MINIMIZE program was used to relax protein-ligand system.

The POLARIZE program was used to compute molecular polarizabilities based

on atomic polarizability parameters in the AMOEBA force field. Other useful

tools including XYZEDIT, PDBXYZ, and CRYSTAL were used in setting

up the MD simulation systems. All parameters for water and protein were

adopted from the current AMOEBA force field.[135]
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3.1.2.2 Absolute Binding Free Energy Calculations

Figure 3.1: Thermodynamic cycle for calculating the binding free energy of
phosphate-protein binding.

∆Gbind = ∆Gpro −∆Ghyd (3.1)

The absolute binding free energy (∆Gbind) of the phosphate protein binding

was calculated by the double-decoupling method. This involvers disappearing

the phosphate in water and in protein-phosphate complex.[135] Hence, the

binding free energy can be defined as the difference between the decoupling free

energies in water (∆Ghyd) and protein environments (∆Gpro).[22, 84] (Equation

3.1, Figure 3.1) When the ligand is completely decoupled from its environment,

the ligand could jump out of the pocket, prolonging convergence. To prevent

this situation, a constraint with constant spring constant, of 15 kcal/(mol/Å
2
)
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was added in the simulations, and the effect of the constraint was subsequently

removed by a correction term (∆Gcorrection) defined by Equation 3.2.[84, 283]

∆Gcorrection = RT ln

[
Co

(
2πRT

k

)3/2
]

(3.2)

All molecular dynamics simulations were run using the Tinker-OpenMM

package with a RESPA integrator[34], Bussi thermostat[21], Berendsen baro-

stat,[19] and 3.0 fs time step with hydrogen-mass repartition (heavy-hydrogen

keyword) on GPUs. The van der Waals iterations used a 12.0 Å cutoff, while

the electrostatic interactions used a 7.0 Å cutoff. The simulation schema

started with a total of 3 ns of NVT MD simulations, then the system was

gradually heated from 50K to 298K exponentially. In order to relax the water

in the box, position-restraints were added on protein-ligand complex during

the initial heating steps. Next, NVT simulations were performed at 298K for

3 ns while gradually turning off all the position restraints on protein-ligands

from a restraint constant value of 100 to 0 using an interval of 10. NPT simu-

lations at 298K were conducted for 2ns to compute the average density or box

size. The average box size from these NPT simulations was used in production

MD simulations.

U = U(λ,R), U0 = U(0,R), U1 = U(1,R) (3.3)

∆G =
N−1∑
i=1

[G(λi+1)−G(λi)] , λ1 = 0, λN = 1 (3.4)
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A mixed potential was defined to calculate the free energy difference

between the end states that were connected analytically (Equation 3.3). The

free energy changes from one state to the other is thus given by Equation

3.4. In order to obtain free energy estimates, the Bennett acceptance ratio

method[108] was applied, which required a certain value of fixed order param-

eter λ to connect the two end states. In this study the perturbation schedules

contained scaling down electrostatics and scaling down van der Waals with λ

in a series of steps: 1.0, 0.9, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.4, 0.0. For each

λ value at 298K, I carried out 10ns NVT simulation for calculating ∆Gsolv and

6ns simulations for ∆Gbind. Therefore, I analyzed 22 trajectories in total to

obtain the absolute binding free energy for each phosphate protein system.

In this work, the structures of the PBP-phosphate complexes for the

wild type and the D56N mutant were taken from the PDB (PDB code: 1IXI

and 1IXH). The structures were then solvated in periodic boxes of 73.27 x73.27

x91.59 Å
3

with NaCl added to yield 0.15 M salt concentration. The systems

were relaxed and heated before free energy simulations. The binding free

energies were calculated by the double-decoupling scheme and the Bennet

acceptance ratio method.[80, 135] All molecular dynamics simulations were run

with the Tinker-OpenMM program on GPU.[80] The equations in Equation

3.2 were used to calculate the apparent KD that without and with buffer effect

at pH 4.5 and 8.5. The pKa value is 7.21.
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Figure 3.2: Apparent dissociation constant KD Calculations without and with
buffer effect at pH 4.5 and 8.5. The pKa value is 7.21.
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3.1.3 Parameterization Strategy and Model development

3.1.3.1 Parameterization of 1H and 2H Phosphate Models

Figure 3.3: Parameterization schema of 1H and 2H phosphate models.

The parameterization schema is showing in Figure 3.3. The phosphate

models are represented by 4 types of atoms: phosphorus (P), double-bonded

oxygen (O), single-bonded oxygen (Os), and hydrogen (H) on the single-

bonded oxygen. 1H phosphate model contains a -2e charge while 2H phosphate

model carries -1e charge. The electrostatic and polarization parameters were

determined form the QM electrostatic potential and molecular polarizabilities

at MP2/aug-cc-pVTZ and wB97X-D/6-311++G** level, respectively. The

torsional parameters were derived to reproduce the QM conformational en-

ergy profile at MP2/6-311++G** level. The vdW parameters were optimized

to capture the phosphate water interaction energy at different orientations cal-

culated at the MP2/CBS level. 1H and 2H phosphate models share the same

vdW parameters. To reproduce the interaction energy of the short H-bond
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between phosphate and carboxylate group, pairwise vdW parameters between

the carboxylate O atom and phosphate H and O atoms were necessary. The

pairwise vdW parameters were optimized by fitting to interaction energies cal-

culated by MP2/CBS and PCM. Different pairwise vdW parameters were used

among 1H and 2H models. As validation, the final force field parameters of

phosphate were applied to compute the total interaction between phosphate

and protein residue side chain models. The parameters for Tris-H+ were de-

rived by using POLTYPE. Gaussian 09[224] and Psi4[334] were used for the

QM calculations.

3.1.3.2 Validation of the Phosphate Models

Figure 3.4: Model compounds for amino acid-phosphate interactions extracted
from PDB. All 10 possible protonation states for phosphate were considered.

As validation, the final force field parameters of phosphate were ap-

plied to compute the total interaction between phosphate and protein residue
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side chain models (Figure 3.4). In Figure 3.5, the total interactions of residue-

phosphate calculated using AMOEBA force field were compared to QM results

at different levels including RIMP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ,

and SAPT0/jun-cc-pVDZ. Good agreement between the AMOEBA and QM

results was obtained with a correlation coefficient R2 value of 0.99 across all

dimers configurations and phosphate protonation states. The RMSE values

are 3.4, 3.8, and 4.4 kcal/mol when comparing the total interaction energy

calculated by AMOEBA and QM at RIMP2/aug-cc-pVTZ, SAPT2+/aug-cc-

pVDZ, and SAPT0/jun-cc-pVDZ levels.

Figure 3.5: Performance of AMOEBA interaction energies of 120 model com-
pounds for amino acid-phosphate dimers compared to RIMP2/aug-cc-pVTZ,
SAPT0/jun-ccpVDZ and SAPT2+/aug-cc-pVDZ results. MUE, MSE and
RMSE stand for mean unsigned error, mean signed error and root mean
squared error, respectively.

3.1.4 Results and Discussion

3.1.4.1 One Hydrogen Phosphate is the Dominant Form

The molecular mechanism of phosphate-PBP binding in E.coli has been

hypothesized based on X-ray structures without the protons on phosphate.[91,
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110, 240] The phosphate is bound through 12 H-bonds formed with 5 backbone

NH groups, 4 hydroxyl groups of serine and threonine, 2 NH groups of the

Arg135 sidechain, and one oxygen of the Asp56 sidechain. 1H phosphate was

described as the acceptor for 11 H-bonds and the donor for one H-bond, in

which 1H phosphate shared its proton with the carboxylate sidechain of Asp56

to form low-barrier hydrogen-bond (Figure 3.7A). In the 2H phosphate binding

mode, Luecke et al.[240] assumed that no drastic structural rearrangement of

the binding pocket is needed. The only difference from 1H binding was that

the hydroxyl group of Ser38, as the only one favorably positioned to have a

proton bound to an O lone pairs, flipped to accept the second H on phosphate

while donating its proton to Asp56 (Figure 3.7B). The binding pocket in the

D56N mutant PBP is similar to the wild type, except for a normal hydrogen

bond between Asn56 and phosphate.[91]
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Figure 3.6: Plot of 12 hydrogen bond distances (XY) between 1H phosphate
and heavy atoms in wild type (top) and D56N mutant (bottom) PBP receptors.
The orange symbols represent the distances in crystal structures and the green
boxes represent the average distances in simulations with standard deviations.
X axis lists all interacting residues in PBP. Suffix S stands for sidechain and B
stands for backbone. In simulations, 1H phosphate reproduced and maintained
12 hydrogen bonds in both binding pockets and the H-bond distances are
consistent with the experimental values.

3.1.4.1.1 Hydrogen Bond Distances Between Phosphate and PBPs

In the 1H phosphate binding simulations, 12 H-bonds for the wild type and

the mutant were maintained over the entire 18-ns simulations (Figure 3.6).

The mean distances are 2.87 ± 0.14 Å and 2.91 ± 0.14 Å for wild type and the

mutant PBP binding pocket, respectively, compared to experimental H-bonds
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distances of 2.72 ± 0.11 Å and 2.77 ± 0.11 Å. The H-bond between Asp56 and

1H phosphate is the shortest among all H-bonds, which was captured by the

simulation. On the other hand, the binding of 2H phosphate led to significant

rearrangement of the H-bond network and an unstable binding pocket. In

the 2H phosphate-D56N mutant complex, the mean distances of all H-bond

pairs increased to 3.23 ± 0.37 Å. I observed relatively weak binding (discussed

below) compared to 1H phosphate, with water molecules entering the binding

pocket during the simulations. These water molecules replaced the binding

with the Arg135 side chain and pushed Ser139, Ser 38, Gly 140, and Phe11

away from the phosphate.

Figure 3.7: Illustration of phosphate binding with Asp56 in wild-type PBPs.
A. 1H phosphate binding mode in current simulation; B. Hypothesized 2H
binding mode involves flipping of the hydroxyl group of Ser38 to Asp56 to
accept the second proton on phosphate;[240] C. 2H phosphate bidentate bind-
ing with Asp56 in current simulation. During the simulations, 1H phosphate
kept the same binding mode as crystal structure while 2H phosphate preferred
bidentate binding with Asp56, which is different from the monodentate binding
hypothesized in literature.[26]
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It was found that the 2H phosphate preferred bidentate binding with

Asp56 in wild-type protein, in contrast to the hypothesized monodentate bind-

ing mentioned above (Figure 3.7B and C). Asp56 rotated toward the phosphate

and formed two stable hydrogen bonds with mean distances of 2.58 and 2.63 Å

throughout the 18-ns simulation. The bidentate binding brings the negative-

charge center closer to the phosphate and disrupted the H-bonds between the

phosphate and other residues, both of which would weaken the binding in the

pocket. As for the 2H phosphate binding with the mutant protein, I observed

water entering the pocket from the Arg135 side. As a result, the distances of

all native H-bond pairs increased to 3.43± 0.42 Å.

Based on the simulations of phosphate binding with wild-type and mu-

tant PBPs, the crystal structures for complexes could be well maintained when

the PBPs were bound to 1H phosphate. However, 2H phosphate in the PBPs

led to significant disruption of the H-bond network, and the hypothesized

binding mode, which involves flipping of the hydroxyl group of Ser38 from

phosphate to Asp56 (Figure 3.7B), is unlikely. This is consistent with the

sub-angstrom X-ray structure analysis.[26, 70, 307] In the sub-angstrom X-ray

crystallography studies of PfluDING, only one proton on oxygen atoms of the

phosphate was observed at pH 4.5 and 8.5. PfluDING and E. coli PBP are

topologically similar with a structural RMSD value of 1.34 Å over 228 Cα

carbons and 0.23 Å over all heavy atoms in the binding pocket. Indeed, the

residues in the binding pocket are conserved except that the Phe backbone is

replaced by that with Leu, and the H-bond distances in the binding pocket
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are almost the same.[26] Thus, the phosphate-PBP binding should have the

same mechanism i.e. 1H phosphate binds at both pHs. The result highlights

the high specificity arising from the extensive network of H-bonds which can

distinguish not only between 1H phosphate and sulfate, but also between 1H

and 2H phosphates.

Figure 3.8: Calculated standard binding free energy (kcal/mol) of 1H/2H phos-
phate with PBPs or buffer ligands. The uncertainties are shown in parentheses.

3.1.4.1.2 Calculated Standard Binding Free Energies To determine

the thermodynamic preference for 1H vs. 2H phosphate, I calculated the free

energy changes for transferring 1H/2H phosphate from water to PBPs using

MD simulations (Figure 3.8). The 1H phosphate binding free energies are 5-6

kcal/mol lower than those of 2H phosphate, suggesting that 1H is the dominant

form bound to PBPs. This again agrees with sub-angstrom crystallography

studies.[26, 70, 307] It should be noted that constant-pH MD is an alternative

way to determine the protonation state of titratable groups.[122, 201] In addi-

tion, the binding free energies of 1H phosphate are similar for the wild type

and the mutant protein, consistent with experimental measurements. This
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similarity is a result of the compensation between the stabilization effect of

the LBHB and the changes in total charge of the binding pocket. In the simu-

lations, the stabilization of the LBHB was modeled by the special vdW inter-

actions, which contributed -2.9 kcal/mol to the binding free energy between

1H phosphate and the wild-type PBP. In the mutant, the LBHB is replaced

by a normal H-bond, while the replacement of Asp with Asn increases the

electrostatic potential of the binding site and reinforce the interaction with

the negatively charged phosphate ion. This explains why the D56N mutant

with altered electrostatic potential can have a similar binding affinity to that

of the wild type.

3.1.4.2 The Critical Effect of Buffer Solution

3.1.4.2.1 Apparent Dissociate Constant Kapp
D It remains unclear why

the experimentally measured binding affinities are similar under acidic and ba-

sic conditions. The measured quantity is the apparent dissociation constant

Kapp
D , which concerns the ratio between the total concentrations of phosphate

in free and bound forms, Kapp
D =

[PBP ]×([HPO2−
4 ]+[H2PO

−
4 ])

([HPO2−
4 :PBP ]+[H2PO

−
4 :PBP ])

. Because the cal-

culated binding free energy of 2H phosphate is ∼ 5 kcal/mol smaller than that

of 1H phosphate, [H2PO
−
4 : PBP ] much smaller than [HPO2−

4 : PBP ] at

pH 4.5. As a result, Kapp
D depends on the ratio between 1H and 2H forms in

solution, Kapp
D ≈ KD,HPO42−:PBP/

[HPO2−
4 ]

([HPO2−
4 ]+[H2PO

−
4 ])

. The fraction of [HPO2−
4 ]

is close to 1 at pH 8.5, and reduces to ∼ 1/500 at pH 4.5. Thus, the apparent

Kapp
D will increase from 6 nM at pH 8.5 to 2.5 µM at pH 4.5, which corre-
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sponds to a change of +3.6 kcal/mol in binding free energy at 298 K. However,

this is different from the experimental trend in binding free energy, which only

increase by 1.5-1.7 kcal/mol when pH changes from 8.5 to 4.5. It is interesting

to note that the calculated binding affinity at pH 4.5 is in excellent agreement

with experimental measurement.

Figure 3.9: Calculated apparent binding free energy (kcal/mol) of phosphate
with PBP in wild type and D56N mutant protein at pH 8.5 and 4.5 and 50
mM sodium acetate/Tris acetate. The uncertainties are shown in parentheses.

3.1.4.2.2 Calculated apparent binding free energies This discrep-

ancy can be explained by the buffer solution, which has a significant effect

on the binding free energy, especially for highly charged species.[62] In previ-

ous experimental work, Tris acetate and sodium acetate buffer solutions were

used to maintain the pH at 8.5 and 4.5, respectively.[91] I calculated the bind-

ing free energy between 1H/2H phosphate and Tris-H+ or Na+ (Figure 3.8).

The calculated standard binding free energy between 1H phosphate and Tris-

H+ is -3.1 kcal/mol and the corresponding KD is 5.2 mM. At experimental

Tris acetate concentrations of 50 mM, [HPO2−
4 ] is ∼ 10 times lower than
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[HPO2−
4 : Tris − H+]. Therefore, at pH 8.5, this buffer agent will compete

with PBP to bind the 1H phosphate and reduce the apparent binding affinity.

This matches the observation that the binding affinity decreases with increas-

ing ionic strength.[294] In acidic buffer solution, neither 1H nor 2H phosphate

is bound to Na+, so the buffer solution does not affect Kapp
D . Using the binding

free energies of PBPs and buffer agents with phosphate and the concentration

of the buffer solution, I computed the apparent binding free energies under

the experimental conditions (Figure 3.9 and Figure 3.2). For both wild-type

and mutant PBPs, the binding free energy at pH 4.5 and 8.5 agrees with

experimental data within ∼1 kcal/mol.

Clearly, the interpretation that 1H and 2H phosphate should bind to

PBP with similar affinities is due to neglecting the effect of buffer solution.

The effect of buffer solution on the binding affinity measurement has been well

recognized,[228] but not routinely incorporated in the experimental analyses.

The current study demonstrates that molecular simulations can complement

experimental measurement in delineating different contributions in the binding

process.

In biology, pH is maintained at 7.4 by carbonic acid and bicarbonate,

which are neutral or negatively charged and should not bind strongly to phos-

phates. Therefore, the biological buffer should not affect the specificity for

1H phosphate, i.e. 1H phosphate is the predominant bound state. This again

points out the importance of considering the binding of buffer agents if the

buffer used in biochemical experiment is different from the biological buffer.
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3.1.5 Conclusions

In summary, this work resolved a long-standing controversy about the

phosphate binding mode (1H vs. 2H) in PBPs through molecular dynamics

simulations using the AMOEBA polarizable force field. It shown that 1H phos-

phate is the energetically favorable species in the binding pocket at different

pHs, and simulated H-bond network agrees well with the crystal structure.

Based on our simulations, 2H phosphate binds much more weakly and dis-

rupts the H-bond network observed in the crystal structure. After considering

the interaction of phosphate with the agents in the buffer solution, for both

WT and mutant PBP, the calculated binding free energies are in good agree-

ment with experimental data, i.e. the binding affinity does not vary much

with pH although only 1H phosphate is bound to PBPs. Our results highlight

the importance of the buffer solution when interpreting the binding affinity

data for highly charged species. In addition, molecular simulations can bridge

the gap between different experimental techniques and provide new insight for

protein-ligand binding.

3.2 Calculating Binding Free Energy of Host-Guest sys-
tem

3.2.1 Introduction

Molecular recognition is fundamental to biological processes and is uti-

lized in applications ranging from therapeutics to chemical sensors[280]. Un-

derstanding the importance of molecular recognition, the interactions involved
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are exceedingly complex and dependent upon a high degree of order between

the solutes and the solvent for binding. Computer prediction of binding affin-

ity holds potential to accurately capture thermodynamic information from

different states as well as allow for the design of novel ligands.

Methods for binding free energy calculation can be classified according

to depiction of either alchemical or physical pathways. The alchemical path-

way uses alchemical, or non-physical intermediates to compute binding free

energy, which is popular for its general applicability and efficiency. Physical

pathways are preferable for large molecules and can give binding mechanism

and kinetics[42, 102]. While traditional methods such as Bennetts acceptance

ratio[108] have been successful, improvement in computational efficiency is de-

sired for application to large systems and more sophisticated potential energy

representations. To this end, many enhanced sampling methods have been

developed[55, 211].

Host-guest systems are often used as a model for binding affinity pre-

diction because of their modest size and high specificity among guests. By

computing the free energy behaviour of relatively small molecules, inadequa-

cies can be better determined and remediated for the rigorous and strenuous

computation of binding free energies for large proteins. In the SAMPL3[213]

and SAMPL4[193] host-guest binding competitions, the cucurbit[7]uril macro-

cycle was used as the host molecule. The cucurbit[n]uril macrocycle (CB[n])

is composed of n conjoined glycoluril subunits forming a cylindrical molecule

approximately 9.1Å in height (for a thorough review of CB[n] chemistry, see
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[298]). As with many macrocycles, such as cyclodextrin, CB[n] has been ex-

plored as a molecular container for drug delivery[133, 165, 337]. The glycoluril

subunits position a ring of carbonyl groups at the two faces of the cylinder,

while the inner region of carbon-nitrogen chains remains hydrophobic. Hence,

guests of hydrophobic cores with cationic end groups can bind with high affin-

ity to the CB[n] host.

This work reports the investigation of host-guest binding thermody-

namics between a CB[7] host and a set of 14 small molecules. The guests

range from linear hydrocarbons to cycloalkanes, species of norbornanes and

adamantane. I use two free energy calculation methods and several thermo-

dynamic inquiries to interpret experimental affinities. In particular, I dissect

the roles of entropy and enthalpy in binding for each guest. For anomalous

enthalpy/entropy values, the separate entropy contributions of water and the

host-guest systems are investigated. The Binding affinities of the host-guest

systems are both enthalpy- and entropy-driven. I further discuss the appli-

cation and convergence of the OSRW and BAR binding free energy methods.

Our results attest to the application of binding free energy simulation methods

towards the understanding of experimental binding affinities.

3.2.2 Computational Methods

3.2.2.1 Orthogonal space random walk (OSRW)

OSRW is an enhanced sampling scheme for free energy calculation,

which allows more effective sampling of conformational transitions in aque-
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ous solution.[197, 226, 336, 338] It performs a random walk in two orthogonal

dimensions. One dimension is along the order parameter representing an

alchemical intermediate state that connects the two states of interest.[3, 155]

The other dimension is along the orthogonal generalized force (Fλ = ∂U/∂λ),

whose integral is the free energy (Figure 3.5). Once a state is sampled, a

Gaussian distributed bias is added to discourage the system from revisiting

that state. A complete explanation of the method as well as the requisite

adjustments needed to employ a polarizable force field can be found in Abella

et al.[188]

∆G =

∫ 1

0

〈∂U
∂λ
〉λdλ (3.5)

3.2.2.2 Recent Development of Enhanced Sampling

Several efforts have been made in recent years to accelerate the sim-

ulations of polarizable force fields. Multiple time step algorithms have been

developed to allow for very large time steps in molecular dynamics simula-

tions.[169, 206, 217] In the extreme case, the computation speed can be acceler-

ated by 10 to 20 times.[206] Dual force field approach introduced by Schnieders

and coworkers,[64] takes advantage of the sampling efficiency of the fixed-point

charge model (OPLS-AA) and accuracy of polarizable force fields to compute

the absolute crystal decomposition thermodynamics. A similar procedure was

used by Shirts and coworkers to indirectly calculate the free energy of three

benzene polymorphs by AMOEBA.[41] There have also been significant ad-
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vances in thermodynamic and kinetic reweighting methods,[181, 314] which can

in principle be combined with the dual-force field methods. An exciting new

direction is to combine polarizable force fields with enhanced sampling meth-

ods such as orthogonal space sampling,[69] Markov state models and Mile-

stoning,[112, 125] which will significantly extend the time and length scales of

polarization force fields simulations to areas such as protein and nucleic acids

conformational dynamics. These studies would provide crucial feedback to the

force field development and insights into our understanding of the intermolec-

ular forces and how they affect the structure and properties of biomolecular

systems.

3.2.2.3 Simulation System

In this study, the absolute binding free energy values of 14 guests in the

SAMPL4 CB[7]-guest system were calculated using the polarizable AMOEBA

force field. Parameters for the molecules were derived by following the pro-

cedure previously described in Ren et al[248]. All molecular dynamics simu-

lations were run using TINKER with a RESPA integrator[34], Bussi thermo-

stat[21], and a 2.0 femtosecond time step. The vdW calculations had a 12.0

Å cutoff while the electrostatic calculations had a 7.0 Å cutoff. The Gaussian

bias was deposited every 10 steps, with a height of 0.005 kcal/mol and widths

of 4 kcal/mol for Fλ and 0.01 for . Additional simulations with a reduced

height of 0.001 or 0.002 kcal/mol were also carried out for some guests. The

production time of the OSRW is around 15-20 ns. All OSRW simulations were
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conducted on Texas Advanced Computing Center (TACC) Stampede as well

as a local computer cluster. For the BAR simulations, first the electrostat-

ics were gradually scaled off with vdW interactions kept at full strength, and

then the vdW interactions were scaled off. The numbers of steps for these

two stages were 11-12 and 10-13 respectively. The total simulation time for

each step was 1 ns and coordinates were saved every 1 ps for analysis. The

correction Gcorrection was 6.245 kcal/mol and should be added to all binding

free energy calculations for both BAR and OSRW. The binding enthalpy was

obtained from the difference between the average energies in the binding and

free states. This method has comparable accuracy with that of the vant Hoff

method[320] and that of the BAR method.[25]
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3.2.3 Results: Calculated Binding Free Energies

Figure 3.10: Predicted binding free energy as a function of experimental bind-
ing free energy (in kcal/mol). Line is y=x.

Figure 3.10 and Figure 3.11 both present binding free energy results

from OSRW and BAR computations compared with experiment. Figure 3.10

shows that the OSRW and BAR free energies establish good correlation with

experiment, having R2 correlation values of 0.69 (OSRW) and 0.62 (BAR).

Besides, Figure 3.11, structures and energies of the guest ligands studied here

are presented[193]. The host for all ligands is CB[7] as stated previously. For

each ligand in Figure 3.11, the free energy values of experiment, OSRW, and

BAR are presented explicitly. Reported in the SAMPL4 results, the abso-

lute uncertainty of all experimental free energy values is ± 0.1 kcal/mol. The
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BAR results are those that were previously reported in the SAMPL4 con-

test.[193] Lastly, Figure 3.12 presents errors and correlation metrics between

OSRW/BAR and experimental values. Despite the duplicate runs and Gaus-

sian height decrease necessary for the OSRW computations, the Kendall τ

coefficient for OSRW supports a strong agreement between OSRW and exper-

iment.
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Figure 3.11: Host-guest binding free energies. The OSRW column presents the
average of results from the full length of simulations, while the OSRW (10 ns)
column presents values cut off at 10ns. The host molecule for all structures is
cucurbit[7]uril. All free energies are given in kcal/mol. The experimental free
energies hold an uncertainty of ± 0.1 kcal/mol.

For ligand C5, positive binding free energies calculated from BAR led

to the exploration of multiple ligand protonation states, denoted as C5 and

C5b. In five ligand cases (C1, C3, C5b, C9, and C10), the OSRW computation

displayed large fluctuations in free energy. Since the fluctuation is proportional
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to the bias deposition rate, additional OSRW simulations were conducted with

decreased Gaussian-height biases for each of these ligands. In theory, lower-

ing the height of the Gaussian distribution will suppress fluctuations at the

expense of slowing down dynamics. However, in this work, the OSRW com-

putations with a lowered Gaussian height (LGH) bias converged at roughly

the same simulation time as the original computations. Lastly, ligands C3 and

C10 were duplicated in the OSRW computation due to poor convergence of

the original simulations.

For Figure 3.10 and Figure 3.11, the final OSRW ligand binding free

energy value is taken to be the average over all of the OSRW computations for

that ligand, with some values excluded (explained below). Multiple indepen-

dent OSRW simulations were run for each ligand. As mentioned above, for two

ligands, OSRW computations were repeated with the original parameters. The

averaging of the free energies includes the LGH and repeated computations

with the original pair of simulations. Exceptions to this average method are

ligands C5 and ligands C10. The binding free energy value for ligand C5 was

taken to be the average of the ligand C5b LGH computation. The protona-

tion state for ligand C5 reported by the BAR computations was similarly C5b.

The 2.5 kcal/mol disagreement between original OSRW simulations for ligand

C5b, as well as the nice agreement between the C5b LGH simulations (within

0.3 kcal/mol), supported our use of the C5b LGH data. For ligand C10, all of

the OSRW free energy values were used in the average except the -0.76 value

as it was in disagreement with all of the other five values by 2.5 kcal/mol.
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I suspect that this low free energy value is an artefact of a slow-convergence

binding energy computation.

Analysis of computed binding affinities from the SAMPL challenge al-

lows for elucidation of binding thermodynamics as well as examination of com-

putational predictions. In the official SAMPL4 host-guest paper, free energy

values from BAR simulations using the AMOEBA polarizable force field were

noted for good performance[193]. Our OSRW-computed free energies correlate

with experimental values slightly better than the BAR results. Note that both

methods use the exact same parameter sets and simulations parameters. How-

ever, long computational times needed for convergence of OSRW free energy

were observed. Upwards of 20 ns of computation time in binding was required

for some ligands, while in our previous work, the hydration free energy was

able to converge in less than 4 ns[188]. For comparison, the BAR computations

were performed for 1ns for each vdW and electrostatic window. One possible

reason that the OSRW method applied here may be slow to converge is due

to the underlying metadynamics procedure. Recently, the Orthogonal Space

Tempering[197] method has been proposed to address this problem.

Figure 3.12: Model deviation from experiment. RMS energy difference, and
AUE (Average Unsigned Error) are in kcal/mol.
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I also investigated the OSRW results if the free energy computations

were carried out for only 10 ns rather than continued to 15+ ns. In Fig-

ure 3.11 the 10ns OSRW binding free energies are presented in comparison to

the experimental values. Surprisingly, the R2 correlation value and the Kendall

correlation coefficient are high, supporting strong correlation between OSRW

and experiment after just 10ns simulations (Figure 3.12). Despite this strong

correlation, the individual ligand errors and the RMSE between experiment

and OSRW are slightly higher than the final results.

3.2.4 Discussion

3.2.4.1 Enthalpy-Entropy Decomposition

Figure 3.13: Host-guest binding enthalpies and entropies (kcal/mol).
STD(∆H) is the uncertainty of enthalpy.
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To gain insights into the molecular driving forces for binding, the en-

thalpy and entropy contributions of the binding free energy have been ex-

amined. Figure 3.13 lists the calculated binding enthalpy and entropy for

each guest ligand. Although the binding free energies for different ligands are

close, ranging from -15 to -5 kcal/mol, the binding enthalpies are vastly dif-

ferent. This is a good demonstration of the enthalpy-entropy compensation

in host-guest binding. Due to the relatively short simulation time (1 ns), the

uncertainties are on the order of 10 kcal/mol. Nevertheless, it can be seen

that some of the recognitions are driven by enthalpy while others by entropy.

Ligands 9, 12, and 13 have both favorable binding enthalpy and entropy. Ex-

treme examples are ligand C10 for entropy-driven binding, and ligands C7

and C8 for enthalpy-driven binding. However, there appears to be no simple

relationship between the binding thermodynamics of the ligand and its charge

or geometry. Comparing C5 with C5b and C3 with C4, I find that the binding

enthalpy does not correlate with the net charge. Ligands C7, C8 and C9 have

the same functional groups and their binding affinities increase with ring size,

but their entropy values differ. Enthalpy values of ligands C7 and C8 clearly

indicate a dominant contribution of enthalpy, while for ligand C9 the enthalpy

value is competitive with entropy.

117



3.2.4.2 Hydrogen Bonding Analysis

Figure 3.14: Analysis of hydrogen bond numbers for guests C7, C8 and C10.
The number of hydrogen bonds between guest-water in solution and between
guest-host/water in host-guest complex are listed as Nsolution and Ncomplex re-
spectively. Further decompositions of hydrogen bond numbers between guest-
host, and between guest-water in host-guest complex are given in N g−h

complex and

Nw−h
complex. The presenting hydrogen bond numbers are averaged by 1000 frames

over 1 ns.

Further analyses were carried out to look into the binding mechanisms.

To explain why guest ligands C7 and C8 are enthalpy-driven, I investigated

the ligand hydrogen bonding formation in water and complexes. Figure 3.14

lists hydrogen bond (H-bond) numbers for ligands C7, C8 and C10 between

guest-water in solution and between guest-host/water in the complex. The

data are averaged over 1000 frames in 1 ns. Compared to ligands C7 and

C8, ligand C10 formed more H-bonds when free in water and bound to the

complex. Furthermore, I analysed the portion of H-bonds formed between

guest-host and guest-water. The three ligands formed similar numbers of H-

bonds with the host while ligand C10 has twice the H-bonds formed with

the surrounding water than other ligands. This may be attributed to the

structural differences: ligand C10 has 3 polar amine groups with two of them

118



exposed to the surroundings, attracting water and other polar groups. In

contrast, ligands C7 and C8 have only one amine group each, leading to less

intermolecular interaction. Noticeably, an increase of H-bonds in ligands C7

and C8 is found when moved from solution to the host-guest complex. On the

other hand, the number of H-bonds formed by C10 decreases upon binding.

The changes in H-bonds may explain why the binding of ligands C7 and C8

were found to be enthalpy-driven.

3.2.4.3 Configurational Entropy

The rotation of guest ligands C7, C8, and C10 inside the CB[7] host

was measured to explore the entropic aspects of these ligands. Three atoms

from each ligands aromatic ring were chosen to represent one plane, while

three atoms from the host were chosen to produce a plane that bisects the

host equally. The rotation of the guest plane with respect to the host plane

was measured over the coordinates of 5ns trajectories. The potential of mean

force (PMF) was also computed for the rotation angles. Similar to a study of

an octa-acid host-guest system[196], the guest ligands here were determined

to rotate almost freely with only small free energy barriers (∼0.5 kcal/mol).

Likewise, computation of the entropy using S = −kB ×
∑
pln(p) resulted in

minute contributions (Slig(complex)rot − Srotlig(free) ≈ 0.05kcal/mol at T=300 K).

The configurational entropies of host-guest complexes C7, C8, and C10

were computed using quasiharmonic analysis[8, 39]. In the quasiharmonic anal-

ysis method, the mass weighted covariance matrix of atomic fluctuations is
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computed. Eigenvalues i of this covariance matrix are then expounded to fre-

quencies of collective motions, ωi = (RT/λi)
1/2. The estimated entropy S of

the molecule is determined by Equation 3.6 where R is the gas constant, ~ is

Plancks constant, and T is temperature.

S = R

3N−6∑
i=1

~ωi/RT
e~ωi/RT − 1

− ln
(
1− e~ωi/RT

)
(3.6)

The quasiharmonic entropy was computed using AMBER14[50]. For

each molecule, all heavy atoms (C,N,O) were included in the covariance matrix.

Figure 3.15 shows the quasiharmonic entropy values for the host-guest systems

C7, C8 and C10. These values include entropies of the host-guest complex Shg,

the guest only in complex Sg(complex), the host only in complex Sh(complex), the

guest in solution Sg(solution), the host in solution Sh(solution), and the entropic

contribution of binding T∆Sconf where ∆Sconf = Shg−Sh(solution)−Sg(solution).

The quasiharmonic approximation maintains limitations involving the use of

Cartesian coordinates and the presence of multiple steep energy wells[15]. Fur-

ther, the quasiharmonic approximation is known to present an upper-bound to

entropy primarily due to correlations between modes[13, 310]. However, sev-

eral trends may be observed from the computed values. CB[7]-C10 complex

has the highest entropic cost (T∆Sconf ) out of the three complexes computed.
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Figure 3.15: Configurational entropy computed from quasiharmonic analysis.
aSh(solution) is 495.61 cal/mol/K.

Entropy values are given for Shg the host-guest complex, Sg(complex) the

guest only in complex, Sh(complex) the host only in complex, and Sg(solution) the

guest in solution. Shg, Sg(complex), Sh(complex), and Sh(solution) are computed from

5ns simulations while Sg(solution) values are computed from 1ns simulations. All

entropy values (except where marked) in cal/mol/K. ∆Sconf = ShgSh(solution)−

Sg(solution). T∆Sconf computed at 300K, with units of kcal/mol.

Given that the enthalpy/entropy decomposition analysis suggested bind-

ing of guest C10 to be entropically favorable (T∆Stot < 0), the positive con-

figurational entropy change computed here (Figure 3.15) indicates that the

favourable binding entropy of ligand C10 is likely water driven. Binding of

guests C7 and C8 resulted in approximately the same entropic cost. Although

the values of Shg and Sg(solution) differ for guests C7 and C8, when combined,

the values largely offset the differences. From analysis of guests C7 and C8, in-

tramolecular atomic fluctuations of the aromatic carbon atoms inside the host

are greater for C8 than for C7. This is consistent with intuition: the larger

aromatic molecule of ligand 8 is slightly pressed inward by the host. This effect

is evident in the Sh(complex) values, where the host in guest C7 complex has
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roughly 4 kcal/mol greater entropy (TS) than the host in guest C8 complex,

which is strained due to ligand size. Similar to the C10 complex, guests C7

and C8 complexes have a positive (unfavourable) entropy contribution, and

additional unfavourable entropic interactions from water likely increase the

binding entropy to the values in Figure 3.13.

As noted above, there are discrepancies between OSRW and BAR re-

sults as well as between independent OSRW simulations for some ligands. To

explain this, I observe that for an unbiased estimator, the uncertainty of a mea-

sured quantity is related to the sample distribution and the autocorrelation

time as

σ(Ā) = σ(A)

√
2τ

t
(3.7)

where τ is the integrated autocorrelation time and t is the total sampling

time. t/2τ is also interpreted as the effective number of independent samples.

Equation 3.7 is valid for BAR. As for OSRW, since the underlying metady-

namics does not converge asymptotically[207], Equation 3.7 should provide

a lower bound for its error. The sample distribution depends on the hybrid

Hamiltonian, i.e. the decoupling scheme for the alchemical transition, which

is different in the OSRW and BAR simulations. The correlation time varies

with the simulation method.
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3.2.4.4 Convergence of the BAR and OSRW

Figure 3.16: Standard deviation of Fλ as a function of for different coupling
schemes. All analyses are based on the decoupling of guest C10 from its host-
guest complex state. vdW only means that the vdW interaction is decoupled
when there is no electrostatics. ele only means that the electrostatics is de-
coupled while vdW interaction is modelled at full strength. ele & vdW means
that both electrostatics and vdW interactions are decoupled simultaneously
as in the current OSRW implementation.

Generally, the correlation time in metadynamics should be shorter than

that of a classical molecular dynamics simulation on the same Hamiltonian.

However, it is difficult to compare the correlation time between OSRW and

BAR because OSRW has an additional degree of freedom . So here I focus

on the effect of the decoupling scheme on the convergence. Figure 3.16 shows

the standard deviation of Fλ in different decoupling schemes. When only the

vdW interaction is decoupled (scaled down), the distribution Fλ is very narrow
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up to λ= 0.5. σ(Fλ) increases sharply and then falls to roughly 10 kcal/mol

when goes from 0.5 to 0.6. When the electrostatics interaction is decoupled in

the presence of vdW interaction, σ(Fλ) is nearly constant around 10 kcal/mol,

which means that there is no dramatic change in phase space and that the

evenly spaced points perform very well in distributing the simulation time.

When vdW and electrostatics interactions are decoupled simultaneously,σ(Fλ)

is significantly higher than when the two interactions are decoupled separately

as approaches 0 and 1. In other words, decoupling both interactions together

enlarges the available phase space. As a result, more independent samples

are needed for 〈Fλ〉 to converge at these two end states. In addition, I note

that the correlation time in the fixed OSRW simulations is much longer than

in the BAR simulations when = 0 (but not when = 1). Although there is

no direct link to the dynamics of the OSRW simulations reported in Figure

3.11, it manifests that decoupling both interactions will create a rough energy

landscape that makes sampling difficult. Therefore, the poor convergence of

some of the OSRW simulations can be largely attributed to the decoupling

scheme.
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Figure 3.17: Correlation between uncertainties of binding free energies and
net charge for each system. RMSE is the root mean square difference between
OSRW results and the reference BAR results.

There is a positive correlation between the uncertainties of the OSRW

simulations and the net charge of the system. Except for guest 3, all the

OSRW results for systems with charge +1 agree well with those of BAR

results, whereas large differences can be found for systems with charge +2

(Figure 3.17). This further supports our finding that decoupling vdW and

electrostatics interactions together hinders the sampling. I expect that the

problem will be less prominent for neutral systems.

3.2.5 Conclusions

In this work, binding free energies of the SAMPL4 host-guest system

CB[7] with 14 guest molecules were computed with both BAR and OSRW
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methods and AMOEBA polarizable force field. Overall the AMOEBA bind-

ing free energy values computed using both BAR and OSRW are in good

agreement with experimental results. The binding thermodynamics of this

series of host-guest systems varies from ligand to ligand. Some are driven by

enthalpy changes while others by entropy gains. The guest ligands C7, C8

and C10 have been further examined, which display high enthalpy or entropy

changes upon binding. The enthalpy-entropy decomposition suggests that the

binding of guest C10 is entropy driven, while binding of guests C7 and C8 have

large enthalpic contributions. Hydrogen bonding analysis showed that guest

C10 formed several hydrogen bonding interactions with both water and host

CB[7], largely due to the three hydrophilic amine groups. Guests C7 and C8

gain additional H-bonds upon binding while C10 loses H-bonds upon binding,

consistent with the enthalpy-entropy decomposition results. Configurational

entropy was computed for guests C7, C8, C10 and their complexes with the

host using quasiharmonic analysis. The configurational binding entropy was

determined to be relatively small for all guests, hinting at the substantial role

of water molecules. Through analysis of intramolecular atomic fluctuations

of guests C7 and C8, cyclic carbon atoms inside the host were found to fluc-

tuate more for guest C8 than C7, intuitively a result of the larger ring of

C8. Unlike ligand-protein binding, the guest molecules were observed to freely

rotate inside the host ring. Convergence of the BAR and OSRW free en-

ergy calculation methods were compared. The current OSRW implementation

encounters convergence problems at the low end of vdW and electrostatics
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decoupling. Possible improvements can be achieved by separating the vdW

and electrostatic decoupling, well-tempered metadynamics[207] and employ-

ing metadynamic alternatives[197]. Nonetheless, here, both BAR and OSRW

methods are found to be adequate to determine the binding affinities for the

model host-guest systems.
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Chapter 4

Conclusion

Molecular dynamics simulation is indispensable tools for investigating

physical properties of proteins, nucleic acids and designing new molecules and

materials.[86, 257, 299] Due to recent advances in computing hardware and im-

proved simulation methods, the time and length scales of molecular dynamics

simulations have been greatly extended.[37, 67, 78, 112, 125] These advances

not only lead to more reliable interpretation and predictions by computer sim-

ulations but also crucial for examining and improving the underlying physical

models and simulation methods.

Polarizable force fields have grown steadily during the past few years in

terms of computational efficiency, model accuracy and applications to biomolec-

ular systems. Advances in GPU computing, polarization and simulation al-

gorithms have provided access to the microsecond time scale with polarizable

force fields, and the computational overhead compared to fixed-charge force

field has been significantly reduced. The applications of polarizable force fields

have provided many new insights. Recent studies using polarizable force fields

have demonstrated the critical role of polarization for the stability of nucleic

acids and proteins, base-pair flipping, ion distribution around DNA, diffusion
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and permeation of small molecules. In general, simulations with polarization

force fields agree better with experiments.

In this thesis, we have discussed the development of advanced po-

larizable force fields for water and organic molecules and the application of

AMOEBA on phosphate-protein binding and hostguest systems. These stud-

ies would provide crucial feedback to the force field development and insights

into the understanding of the intermolecular forces and how they affect the

structure and properties of biomolecular systems.

129



Bibliography

[1] J. L. F. Abascal and C. Vega. A general purpose model for the condensed

phases of water: Tip4p/2005. Journal of Chemical Physics, 123(23),

2005.

[2] Badi Abdul-Wahid, Li Yu, Dinesh Rajan, Haoyun Feng, Eric Darve,

Douglas Thain, and Jesus A. Izaguirre. In IEEE International Confer-

ence on e-Science.

[3] Jayvee R. Abella, Sara Y. Cheng, Qiantao Wang, Wei Yang, and Pengyu

Ren. Hydration free energy from orthogonal space random walk and

polarizable force field. Journal of Chemical Theory and Computation,

10(7):2792–2801, 2014.

[4] N. L. Allinger. Conformational-analysis .130. mm2 - hydrocarbon force-

field utilizing v1 and v2 torsional terms. Journal of the American Chem-

ical Society, 99(25):8127–8134, 1977.

[5] N. L. Allinger, K. S. Chen, and J. H. Lii. An improved force field (mm4)

for saturated hydrocarbons. Journal of Computational Chemistry, 17(5-

6):642–668, 1996.

[6] N. L. Allinger, Y. H. Yuh, and J. H. Lii. Molecular mechanics - the

mm3 force-field for hydrocarbons .1. Journal of the American Chemical

130



Society, 111(23):8551–8566, 1989.

[7] V. S. Allured, C. M. Kelly, and C. R. Landis. Shapes empirical force-

field - new treatment of angular potentials and its application to square-

planar transition-metal complexes. Journal of the American Chemical

Society, 113(1):1–12, 1991.

[8] I. Andricioaei and M. Karplus. On the calculation of entropy from

covariance matrices of the atomic fluctuations. Journal of Chemical

Physics, 115(14):6289–6292, 2001.

[9] A. D. Andricopulo, L. B. Salum, and D. J. Abraham. Structure-based

drug design strategies in medicinal chemistry. Current Topics in Medic-

inal Chemistry, 9(9):771–790, 2009.

[10] Victor M. Anisimov and Claudio N. Cavasotto. Quantum mechanical

binding free energy calculation for phosphopeptide inhibitors of the lck

sh2 domain. Journal of Computational Chemistry, 32(10):2254–2263,

2011.

[11] J. Applequist, J. R. Carl, and K. K. Fung. Atom dipole interaction

model for molecular polarizability - application to polyatomic-molecules

and determination of atom polarizabilities. Journal of the American

Chemical Society, 94(9):2952–+, 1972.

[12] Christopher M. Baker, Victor M. Anisimov, and Alexander D. MacK-

erell. Development of charmm polarizable force field for nucleic acid

131



bases based on the classical drude oscillator model. The Journal of

Physical Chemistry B, 115(3):580–596, 2011.

[13] Alessandro Barducci, Giovanni Bussi, and Michele Parrinello. Well-

tempered metadynamics: A smoothly converging and tunable free-energy

method. Physical Review Letters, 100(2):020603, 2008.

[14] S. Barlow, A. L. Rohl, S. G. Shi, C. M. Freeman, and D. OHare. Molec-

ular mechanics study of oligomeric models for poly(ferrocenylsilanes) us-

ing the extensible systematic forcefield (esff). Journal of the American

Chemical Society, 118(32):7578–7592, 1996.

[15] Riccardo Baron, Philippe H. Hnenberger, and J. Andrew McCammon.

Absolute single-molecule entropies from quasi-harmonic analysis of mi-

crosecond molecular dynamics: Correction terms and convergence prop-

erties. Journal of Chemical Theory and Computation, 5(12):3150–3160,

2009.

[16] D. M. Bates and G. S. Tschumper. Ccsd(t) complete basis set limit

relative energies for low-lying water hexamer structures. Journal of

Physical Chemistry A, 113(15):3555–3559, 2009.

[17] D. R. Bell, R. Qi, Z. F. Jing, J. Y. Xiang, C. Mejias, M. J. Schnieders,

J. W. Ponderc, and P. Y. Ren. Calculating binding free energies of

host-guest systems using the amoeba polarizable force field. Physical

Chemistry Chemical Physics, 18(44):30261–30269, 2016.

132



[18] F. Bemani and R. Sadighi-Bonabi. Plasma core at the center of a

sonoluminescing bubble. Phys Rev E Stat Nonlin Soft Matter Phys,

87(1):013004, 2013.

[19] C. H. Bennett. Efficient estimation of free-energy differences from

monte-carlo data. Journal of Computational Physics, 22(2):245–268,

1976.

[20] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The miss-

ing term in effective pair potentials. Journal of Physical Chemistry,

91(24):6269–6271, 1987.

[21] H. J. C. Berendsen, J. P. M. Postma, W. F. Vangunsteren, A. Dinola,

and J. R. Haak. Molecular-dynamics with coupling to an external bath.

Journal of Chemical Physics, 81(8):3684–3690, 1984.

[22] S. Boresch, F. Tettinger, M. Leitgeb, and M. Karplus. Absolute binding

free energies: A quantitative approach for their calculation. Journal of

Physical Chemistry B, 107(35):9535–9551, 2003.

[23] D. Bratko, L. Blum, and A. Luzar. A simple-model for the intermolecu-

lar potential of water. Journal of Chemical Physics, 83(12):6367–6370,

1985.

[24] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swami-

nathan, and M. Karplus. Charmm - a program for macromolecular

133



energy, minimization, and dynamics calculations. Journal of Computa-

tional Chemistry, 4(2):187–217, 1983.

[25] B. R. Brooks, D. Janezic, and M. Karplus. Harmonic-analysis of large

systems .1. methodology. Journal of Computational Chemistry, 16(12):1522–

1542, 1995.

[26] Ignasi Buch, Toni Giorgino, and Gianni De Fabritiis. Complete re-

construction of an enzyme-inhibitor binding process by molecular dy-

namics simulations. Proceedings of the National Academy of Sciences,

108(25):10184–10189, 2011.

[27] R. A. Buckingham. The classical equation of state of gaseous helium,

neon and argon. Proceedings of the Royal Society of London Series

a-Mathematical and Physical Sciences, 168(A933):264–283, 1938.

[28] P. Bui, D. Rajan, Badi Abdul-Wahid, Jesus A. Izaguirre, and D. Thain.

In Workshop on Python for High Performance and Scientific Computing

(PyHPC).

[29] S. Bulusu, S. Yoo, E. Apra, S. Xantheas, and X. C. Zeng. Lowest-energy

structures of water clusters (h2o)11 and (h2o)13. Journal of Physical

Chemistry A, 110(42):11781–11784, 2006.

[30] C. J. Burnham and S. S. Xantheas. Development of transferable interac-

tion models for water. i. prominent features of the water dimer potential

energy surface. Journal of Chemical Physics, 116(4):1479–1492, 2002.

134



[31] C. J. Burnham and S. S. Xantheas. Development of transferable interac-

tion models for water. iii. reparametrization of an all-atom polarizable

rigid model (ttm2-r) from first principles. Journal of Chemical Physics,

116(4):1500–1510, 2002.

[32] C. J. Burnham and S. S. Xantheas. Development of transferable in-

teraction models for water. iv. a flexible, all-atom polarizable poten-

tial (ttm2-f) based on geometry dependent charges derived from an ab

initio monomer dipole moment surface. Journal of Chemical Physics,

116(12):5115–5124, 2002.

[33] Sebastian Busch, Christian D. Lorenz, Jonathan Taylor, Luis Carlos

Pardo, and Sylvia E. McLain. Short-range interactions of concentrated

proline in aqueous solution. The Journal of Physical Chemistry B,

118(49):14267–14277, 2014.

[34] G. Bussi, D. Donadio, and M. Parrinello. Comp 8-canonical sampling

through velocity rescaling. Abstracts of Papers of the American Chem-

ical Society, 234, 2007.

[35] Claudia Caltagirone and Philip A. Gale. Anion receptor chemistry:

highlights from 2007. Chemical Society Reviews, 38(2):520–563, 2009.

[36] S. L. Carnie and G. N. Patey. Fluids of polarizable hard-spheres with

dipoles and tetrahedral quadrupoles - integral-equation results with ap-

plication to liquid water. Molecular Physics, 47(5):1129–1151, 1982.

135



[37] Kutzner Carsten, Pll Szilrd, Fechner Martin, Esztermann Ansgar, de Groot Bert

L., and Grubmller Helmut. Best bang for your buck: Gpu nodes for gro-

macs biomolecular simulations. Journal of Computational Chemistry,

36(26):1990–2008, 2015.

[38] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M.

Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods. The

amber biomolecular simulation programs. Journal of Computational

Chemistry, 26(16):1668–1688, 2005.

[39] C. E. Chang, W. Chen, and M. K. Gilson. Evaluating the accuracy

of the quasiharmonic approximation. Journal of Chemical Theory and

Computation, 1(5):1017–1028, 2005.

[40] M. Chaplin. Opinion - do we underestimate the importance of water

in cell biology? Nature Reviews Molecular Cell Biology, 7(11):861–866,

2006.

[41] John D. Chodera, William C. Swope, Frank No, Jan-Hendrik Prinz,

Michael R. Shirts, and Vijay S. Pande. Dynamical reweighting: Im-

proved estimates of dynamical properties from simulations at multiple

temperatures. The Journal of Chemical Physics, 134(24):244107, 2011.

[42] Clara D. Christ, Alan E. Mark, and Wilfred F. van Gunsteren. Basic

ingredients of free energy calculations: A review. Journal of Computa-

tional Chemistry, 31(8):1569–1582, 2010.

136



[43] Piotr Cieplak, James Caldwell, and Peter Kollman. Molecular mechani-

cal models for organic and biological systems going beyond the atom cen-

tered two body additive approximation: aqueous solution free energies of

methanol and nmethyl acetamide, nucleic acid base, and amide hydrogen

bonding and chloroform/water partition coefficients of the nucleic acid

bases. Journal of Computational Chemistry, 22(10):1048–1057, 2001.

[44] G. A. Cisneros, J. P. Piquemal, and T. A. Darden. Generalization of

the gaussian electrostatic model: Extension to arbitrary angular momen-

tum, distributed multipoles, and speedup with reciprocal space methods.

Journal of Chemical Physics, 125(18), 2006.

[45] G. Andrs Cisneros, Mikko Karttunen, Pengyu Ren, and Celeste Sagui.

Classical electrostatics for biomolecular simulations. Chemical Reviews,

114(1):779–814, 2014.

[46] M. Clark, R. D. Cramer, and N. Vanopdenbosch. Validation of the

general-purpose tripos 5.2 force-field. Journal of Computational Chem-

istry, 10(8):982–1012, 1989.

[47] E. Clementi, D. L. Raimondi, and Reinhard.Wp. Atomic screening

constants from scf functions .2. atoms with 37 to 86 electrons. Journal

of Chemical Physics, 47(4):1300–, 1967.

[48] S. A. Clough, Y. Beers, G. P. Klein, and L. S. Rothman. Dipole-moment

of water from stark measurements of h2o, hdo, and d2o. Journal of

Chemical Physics, 59(5):2254–2259, 1973.

137



[49] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M.

Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Koll-

man. A 2nd generation force-field for the simulation of proteins, nucleic-

acids, and organic-molecules. Journal of the American Chemical Soci-

ety, 117(19):5179–5197, 1995.

[50] R.M. Betz D.S. Cerutti T.E. Cheatham III T.A. Darden R.E. Duke T.J.

Giese H. Gohlke A.W. Goetz N. Homeyer S. Izadi P. Janowski J. Kaus

A. Kovalenko T.S. Lee S. LeGrand P. Li T. Luchko R. Luo B. Madej

K.M. Merz G. Monard P. Needham H. Nguyen H.T. Nguyen I. Omelyan

A. Onufriev D.R. Roe A. Roitberg R. Salomon-Ferrer C.L. Simmerling

W. Smith J. Swails R.C. Walker J. Wang R.M. Wolf X. Wu D.M. York

D.A. Case, J.T. Berryman and P.A. Kollman. Amber 2015. Report,

University of California, San Francisco, 2015.

[51] M. K. Dahlgren, P. Schyman, J. Tirado-Rives, and W. L. Jorgensen.

Characterization of biaryl torsional energetics and its treatment in opls

all-atom force fields. Journal of Chemical Information and Modeling,

53(5):1191–1199, 2013.

[52] W. Damm, A. Frontera, J. TiradoRives, and W. L. Jorgensen. Opls

all-atom force field for carbohydrates. Journal of Computational Chem-

istry, 18(16):1955–1970, 1997.

[53] L. X. Dang and T. M. Chang. Molecular dynamics study of water

138



clusters, liquid, and liquid-vapor interface of water with many-body po-

tentials. Journal of Chemical Physics, 106(19):8149–8159, 1997.

[54] L. X. Dang and B. M. Pettitt. Simple intramolecular model potentials

for water. Journal of Physical Chemistry, 91(12):3349–3354, 1987.

[55] M. Zuckerman Daniel. Equilibrium sampling in biomolecular simula-

tions. Annual Review of Biophysics, 40(1):41–62, 2011.

[56] Joseph E. Davis and Sandeep Patel. Charge equilibration force fields

for lipid environments: Applications to fully hydrated dppc bilayers and

dmpc-embedded gramicidin a. The Journal of Physical Chemistry B,

113(27):9183–9196, 2009.

[57] J. E. Dennis, D. M. Gay, and R. E. Welsch. An adaptive non-linear

least-squares algorithm. ACM Transactions on Mathematical Software,

7:348–368, 1981.

[58] M. Di Pierro and R. Elber. Automated optimization of potential pa-

rameters. Journal of Chemical Theory and Computation, 9:3311–3320,

2013.

[59] J. L. M. Dillen. An empirical force-field .1. alkanes. Journal of Com-

putational Chemistry, 16(5):595–609, 1995.

[60] Robert A. DiStasio, O. Anatole von Lilienfeld, and Alexandre Tkatchenko.

Collective many-body van der waals interactions in molecular systems.

Proceedings of the National Academy of Sciences, 109(37):14791, 2012.

139



[61] Ron O. Dror, Robert M. Dirks, J.P. Grossman, Huafeng Xu, and David E.

Shaw. Biomolecular simulation: a computational microscope for molec-

ular biology. Annual Review of Biophysics, 41(1):429–452, 2012.

[62] Todor Dudev and Carmay Lim. Competition among metal ions for

protein binding sites: determinants of metal ion selectivity in proteins.

Chemical Reviews, 114(1):538–556, 2014.

[63] T. H. Dunning. Gaussian basis sets for use in correlated molecular

calculations. i. the atoms boron through neon and hydrogen. Journal

of Chemical Physics, 90:1007–1023, 1989.

[64] Eric C. Dybeck, Natalie P. Schieber, and Michael R. Shirts. Effects

of a more accurate polarizable hamiltonian on polymorph free energies

computed efficiently by reweighting point-charge potentials. Journal of

Chemical Theory and Computation, 12(8):3491–3505, 2016.

[65] Peter Eastman, Mark S. Friedrichs, John D. Chodera, Randall J. Rad-

mer, Christopher M. Bruns, Joy P. Ku, Kyle A. Beauchamp, Thomas J.

Lane, Lee-Ping Wang, Diwakar Shukla, Tony Tye, Mike Houston, Timo

Stich, Christoph Klein, Michael R. Shirts, and Vijay S. Pande. Openmm

4: A reusable, extensible, hardware independent library for high perfor-

mance molecular simulation. Journal of Chemical Theory and Compu-

tation, 9(1):461–469, 2013.

[66] Peter Eastman and Vijay S. Pande. Openmm: A hardware-independent

140



framework for molecular simulations. Computing in Science Engineer-

ing, 12(4):34–39, 2010.

[67] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon,

Yutong Zhao, Kyle A. Beauchamp, Lee-Ping Wang, Andrew C. Sim-

monett, Matthew P. Harrigan, Bernard R. Brooks, and Vijay S. Pande.

Openmm 7: Rapid development of high performance algorithms for

molecular dynamics. bioRxiv, 2016.

[68] David S. Eisenberg and Walter Kauzmann. The structure and properties

of water. Clarendon P., Oxford,, 1969.

[69] Ron Elber. Perspective: Computer simulations of long time dynamics.

The Journal of Chemical Physics, 144(6):060901, 2016.

[70] Mikael Elias, Alon Wellner, Korina Goldin-Azulay, Eric Chabriere, Ju-

lia A. Vorholt, Tobias J. Erb, and Dan S. Tawfik. The molecular ba-

sis of phosphate discrimination in arsenate-rich environments. Nature,

491(7422):134–137, 2012.

[71] E. M. Engler, J. D. Andose, and P. V. Schleyer. Critical evaluation

of molecular mechanics. Journal of the American Chemical Society,

95(24):8005–8025, 1973.

[72] Alexander Esser, Saurabh Belsare, Dominik Marx, and Teresa Head-

Gordon. Mode specific thz spectra of solvated amino acids using the

141



amoeba polarizable force field. Physical Chemistry Chemical Physics,

19(7):5579–5590, 2017.

[73] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.

Pedersen. A smooth particle mesh ewald method. Journal of Chemical

Physics, 103(19):8577–8593, 1995.

[74] P. P. Ewald. Die berechnung optischer und elektrostatischer gitterpo-

tentiale. Annalen der Physik, 369(3):253–287, 1921.

[75] G. S. Fanourgakis, E. Apra, W. A. de Jong, and S. S. Xantheas. High-

level ab initio calculations for the four low-lying families of minima of

(h2o)20. ii. spectroscopic signatures of the dodecahedron, fused cubes,

face-sharing pentagonal prisms, and edge-sharing pentagonal prisms hy-

drogen bonding networks. Journal of Chemical Physics, 122:134304,

2005.

[76] G. S. Fanourgakis, E. Apra, and S. S. Xantheas. High-level ab ini-

tio calculations for the four low-lying families of minima of (h2o)20. i.

estimates of mp2/cbs binding energies and comparison with empirical

potentials. Journal of Chemical Physics, 121:2655–2663, 2004.

[77] G. S. Fanourgakis and S. S. Xantheas. Development of transferable

interaction potentials for water. v. extension of the flexible, polarizable,

thole-type model potential (ttm3-f, v. 3.0) to describe the vibrational

spectra of water clusters and liquid water. Journal of Chemical Physics,

128(7), 2008.

142



[78] Anton K. Faradjian and Ron Elber. Computing time scales from re-

action coordinates by milestoning. The Journal of Chemical Physics,

120(23):10880–10889, 2004.

[79] J. C. Faver, M. L. Benson, X. A. He, B. P. Roberts, B. Wang, M. S. Mar-

shall, M. R. Kennedy, C. D. Sherrill, and K. M. Merz. Formal estimation

of errors in computed absolute interaction energies of protein-ligand com-

plexes. Journal of Chemical Theory and Computation, 7(3):790–797,

2011.

[80] G.; Schlegel H. B.; Scuseria G.; Robb M.; Cheeseman J.; Scalmani G.;

Barone V.; Mennucci B.; Petersson G. Inc Wallingford CT 2009 200.

Frisch, M.; Trucks. Gaussian 09.

[81] Kratz Eric G., Walker Alice R., Lagardre Louis, Lipparini Filippo, Pique-

mal JeanPhilip, and Andrs Cisneros G. Lichem: A qm/mm program for

simulations with multipolar and polarizable force fields. Journal of

Computational Chemistry, 37(11):1019–1029, 2016.

[82] N. Gailar and E. K. Plyler. Rotation-vibration spectra of deuterated

water vapor. Journal of Chemical Physics, 24(6):1139–1165, 1956.

[83] M. Gerstein and M. Levitt. Simulating water and the molecules of life.

Scientific American, 279(5):100–105, 1998.

[84] M. K. Gilson, J. A. Given, B. L. Bush, and J. A. McCammon. The

statistical-thermodynamic basis for computation of binding affinities: A

143



critical review. Biophysical Journal, 72(3):1047–1069, 1997.

[85] M. K. Gilson and H. X. Zhou. Calculation of protein-ligand binding

affinities. Annu Rev Biophys Biomol Struct, 36:21–42, 2007.

[86] Boon Chong Goh, Jodi A. Hadden, Rafael C. Bernardi, Abhishek Sing-

haroy, Ryan McGreevy, Till Rudack, C. Keith Cassidy, and Klaus Schul-

ten. Computational methodologies for real-space structural refinement

of large macromolecular complexes. Annual Review of Biophysics, 45(1):253–

278, 2016.

[87] Holger Gohlke and Gerhard Klebe. Approaches to the description and

prediction of the binding affinity of small-molecule ligands to macro-

molecular receptors. Angewandte Chemie (International ed. in En-

glish), 41(15):2644–76, 2002.

[88] P. A. Golubkov and P. Y. Ren. Generalized coarse-grained model based

on gay-berne and point multipole potentials. Abstracts of Papers of the

American Chemical Society, 232:274–274, 2006.

[89] P. A. Golubkov and P. Y. Ren. Generalized coarse-grained model

based on point multipole and gay-berne potentials. Journal of Chemical

Physics, 125(6), 2006.

[90] P. A. Golubkov, J. C. Wu, and P. Y. Ren. A transferable coarse-

grained model for hydrogen-bonding liquids. Physical Chemistry Chem-

ical Physics, 10(15):2050–2057, 2008.

144



[91] D. Gonzalez, M. Elias, and E. Chabriere. The ding family of phos-

phate binding proteins in inflammatory diseases. Oxidative Stress and

Inflammation in Non-Communicable Diseases - Molecular Mechanisms

and Perspectives in Therapeutics, 824:27–32, 2014.

[92] M. A. Gonzalez and J. L. F. Abascal. The shear viscosity of rigid water

models. Journal of Chemical Physics, 132(9), 2010.

[93] F. Grater, S. M. Schwarzl, A. Dejaegere, S. Fischer, and J. C. Smith.

Protein/ligand binding free energies calculated with quantum mechan-

ics/molecular mechanics. Journal of Physical Chemistry B, 109(20):10474–

10483, 2005.

[94] N. Gresh, G. A. Cisneros, T. A. Darden, and J. P. Piquemal. Anisotropic,

polarizable molecular mechanics studies of inter- and intramoecular in-

teractions and ligand-macromolecule complexes. a bottom-up strategy.

Journal of Chemical Theory and Computation, 3(6):1960–1986, 2007.

[95] Nohad Gresh, G. Andrs Cisneros, Thomas A. Darden, and Jean-Philip

Piquemal. Anisotropic, polarizable molecular mechanics studies of inter-

and intramolecular interactions and ligandmacromolecule complexes. a

bottom-up strategy. Journal of Chemical Theory and Computation,

3(6):1960–1986, 2007.

[96] A. Grossfield, P. Y. Ren, and J. W. Ponder. Ion solvation thermody-

namics from simulation with a polarizable force field. Journal of the

American Chemical Society, 125(50):15671–15682, 2003.

145



[97] Alan Grossfield, Pengyu Ren, and Jay W. Ponder. Ion solvation ther-

modynamics from simulation with a polarizable force field. Journal of

the American Chemical Society, 125(50):15671–15682, 2003.

[98] M. Gruber, P. Greisen, C. M. Junker, and C. Helix-Nielsen. Phosphorus

binding sites in proteins: Structural preorganization and coordination.

Journal of Physical Chemistry B, 118(5):1207–1215, 2014.

[99] Mathias F. Gruber, Elizabeth Wood, Sigurd Truelsen, Thomas ster-

gaard, and Claus Hlix-Nielsen. Computational design of biomimetic

phosphate scavengers. Environmental Science Technology, 49(16):9469–

9478, 2015.

[100] MATLAB Users Guide. The mathworks. Inc., Natick, MA, 5, 1998.

[101] B. Guillot. A reappraisal of what we have learnt during three decades

of computer simulations on water. Journal of Molecular Liquids, 101(1-

3):219–260, 2002.

[102] James C. Gumbart, Benot Roux, and Christophe Chipot. Standard

binding free energies from computer simulations: What is the best strat-

egy? Journal of Chemical Theory and Computation, 9(1):794–802, 2013.

[103] Hatice Gkcan, Eric Kratz, Thomas A. Darden, Jean-Philip Piquemal,

and G. Andrs Cisneros. Qm/mm simulations with the gaussian elec-

trostatic model: A density-based polarizable potential. The Journal of

Physical Chemistry Letters, 9(11):3062–3067, 2018.

146



[104] T. A. Halgren. Representation of vanderwaals (vdw) interactions in

molecular mechanics force-fields - potential form, combination rules, and

vdw parameters. Journal of the American Chemical Society, 114(20):7827–

7843, 1992.

[105] T. A. Halgren. Merck molecular force field .2. mmff94 van der waals

and electrostatic parameters for intermolecular interactions. Journal of

Computational Chemistry, 17(5-6):520–552, 1996.

[106] D. Hamelberg and J. A. McCammon. Standard free energy of releas-

ing a localized water molecule from the binding pockets of proteins:

Double-decoupling method. Journal of the American Chemical Society,

126(24):7683–7689, 2004.

[107] E. Harder, W. Damm, J. Maple, C. J. Wu, M. Reboul, J. Y. Xiang,

L. L. Wang, D. Lupyan, M. K. Dahlgren, J. L. Knight, J. W. Kaus, D. S.

Cerutti, G. Krilov, W. L. Jorgensen, R. Abel, and R. A. Friesner. Opls3:

A force field providing broad coverage of drug-like small molecules and

proteins. Journal of Chemical Theory and Computation, 12(1):281–296,

2016.

[108] Matthew Harger, Daniel Li, Zhi Wang, Kevin Dalby, Louis Lagardre,

Jean-Philip Piquemal, Jay Ponder, and Pengyu Ren. Tinker-openmm:

Absolute and relative alchemical free energies using amoeba on gpus.

Journal of Computational Chemistry, 38(23):2047–2055, 2017.

147



[109] A. E. Hargrove, S. Nieto, T. Z. Zhang, J. L. Sessler, and E. V. Anslyn.

Artificial receptors for the recognition of phosphorylated molecules. Chem-

ical Reviews, 111(11):6603–6782, 2011.

[110] Amanda E. Hargrove, Sonia Nieto, Tianzhi Zhang, Jonathan L. Sessler,

and Eric V. Anslyn. Artificial receptors for the recognition of phospho-

rylated molecules. Chemical Reviews, 111(11):6603–6782, 2011.

[111] P. H. Hemmerich and A. H. von Mikecz. Defining the subcellular inter-

face of nanoparticles by live-cell imaging. Plos One, 8(4), 2013.

[112] Niel M. Henriksen, Andrew T. Fenley, and Michael K. Gilson. Com-

putational calorimetry: High-precision calculation of hostguest bind-

ing thermodynamics. Journal of Chemical Theory and Computation,

11(9):4377–4394, 2015.

[113] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4:

Algorithms for highly efficient, load-balanced, and scalable molecular

simulation. Journal of Chemical Theory and Computation, 4(3):435–

447, 2008.

[114] A. K. Hirsch, F. R. Fischer, and F. Diederich. Phosphate recognition in

structural biology. Angew Chem Int Ed Engl, 46(3):338–52, 2007.

[115] A. K. H. Hirsch, F. R. Fischer, and F. Diederich. Phosphate recogni-

tion in structural biology. Angewandte Chemie-International Edition,

46(3):338–352, 2007.

148



[116] P. Hochtl, S. Boresch, W. Bitomsky, and O. Steinhauser. Rational-

ization of the dielectric properties of common three-site water models

in terms of their force field parameters. Journal of Chemical Physics,

109(12):4927–4937, 1998.

[117] E. G. Hohenstein and C. D. Sherrill. Density fitting of intramonomer

correlation effects in symmetry-adapted perturbation theory. Journal

of Chemical Physics, 133(1), 2010.

[118] H. W. Horn, W. Swope, J. Pitera, J. D. Madura, T. J. Dick, G. L. B.

Hura, and T. Head-Gordon. Development of an improved four-site water

model for bio-molecular simulations: Tip4p-ew. Abstracts of Papers of

the American Chemical Society, 228:U530–U531, 2004.

[119] H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick,

G. L. Hura, and T. Head-Gordon. Development of an improved four-

site water model for biomolecular simulations: Tip4p-ew. Journal of

Chemical Physics, 120(20):9665–9678, 2004.

[120] K. N. Houk, A. G. Leach, S. P. Kim, and X. Y. Zhang. Binding affini-

ties of host-guest, protein-ligand, and protein-transition-state complexes.

Angewandte Chemie-International Edition, 42(40):4872–4897, 2003.

[121] Jing Huang, Andrew C. Simmonett, Frank C. Pickard, Alexander D.

MacKerell, and Bernard R. Brooks. Mapping the drude polarizable

force field onto a multipole and induced dipole model. The Journal of

Chemical Physics, 147(16):161702, 2017.

149



[122] E. C. Hulme and M. A. Trevethick. Ligand binding assays at equilib-

rium: validation and interpretation. British Journal of Pharmacology,

161(6):1219–1237, 2010.

[123] T. Hunter. Why nature chose phosphate to modify proteins. Philosoph-

ical Transactions of the Royal Society B-Biological Sciences, 367(1602):2513–

2516, 2012.

[124] G. Hura, J. M. Sorenson, R. M. Glaeser, and T. Head-Gordon. A high-

quality x-ray scattering experiment on liquid water at ambient condi-

tions. Journal of Chemical Physics, 113(20):9140–9148, 2000.

[125] Brooke E. Husic and Vijay S. Pande. Markov state models: From an art

to a science. Journal of the American Chemical Society, 140(7):2386–

2396, 2018.

[126] M. J. Hwang, T. P. Stockfisch, and A. T. Hagler. Derivation of class-ii

force-fields .2. derivation and characterization of a class-ii force-field,

cff93, for the alkyl functional-group and alkane molecules. Journal of

the American Chemical Society, 116(6):2515–2525, 1994.

[127] T. Ichiye and M. L. Tan. Soft sticky dipole-quadrupole-octupole poten-

tial energy function for liquid water: An approximate moment expan-

sion. Journal of Chemical Physics, 124(13), 2006.

[128] S. Imoto, S. S. Xantheas, and S. Saito. Molecular origin of the difference

in the hoh bend of the ir spectra between liquid water and ice. Journal

150



of Chemical Physics, 138(5), 2013.

[129] J. Israelachvili and H. Wennerstrom. Role of hydration and water struc-

ture in biological and colloidal interactions. Nature, 379(6562):219–25,

1996.

[130] S. Izadi, R. Anandakrishnan, and A. V. Onufriev. Building water

models: A different approach. Journal of Physical Chemistry Letters,

5(21):3863–3871, 2014.

[131] Sofie Jakobsen and Frank Jensen. Systematic improvement of potential-

derived atomic multipoles and redundancy of the electrostatic parameter

space. Journal of Chemical Theory and Computation, 10(12):5493–5504,

2014.

[132] George A. Jeffrey. An introduction to hydrogen bonding. Topics in

physical chemistry. Oxford University Press, New York, 1997.

[133] Y. J. Jeon, S. Y. Kim, Y. H. Ko, S. Sakamoto, K. Yamaguchi, and

K. Kim. Novel molecular drug carrier: encapsulation of oxaliplatin in

cucurbit 7 uril and its effects on stability and reactivity of the drug.

Organic Biomolecular Chemistry, 3(11):2122–2125, 2005.

[134] B. Jeziorski, R. Moszynski, and K. Szalewicz. Perturbation-theory ap-

proach to intermolecular potential-energy surfaces of van-der-waals com-

plexes. Chemical Reviews, 94(7):1887–1930, 1994.

151



[135] D. Jiao, P. A. Golubkov, T. A. Darden, and P. Ren. Calculation of

protein-ligand binding free energy by using a polarizable potential. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 105(17):6290–6295, 2008.

[136] D. Jiao, J. J. Zhang, R. E. Duke, G. H. Li, M. J. Schnieders, and P. Y.

Ren. Trypsin-ligand binding free energies from explicit and implicit sol-

vent simulations with polarizable potential. Journal of Computational

Chemistry, 30(11):1701–1711, 2009.

[137] J. E. Jones. On the determination of molecular fields iii - from crystal

measurements and kinetic theory data. Proceedings of the Royal Society

of London Series a-Containing Papers of a Mathematical and Physical

Character, 106(740):709–718, 1924.

[138] W. L. Jorgensen. Quantum and statistical mechanical studies of liquids

.10. transferable intermolecular potential functions for water, alcohols,

and ethers - application to liquid water. Journal of the American Chem-

ical Society, 103(2):335–340, 1981.

[139] W. L. Jorgensen. The many roles of computation in drug discovery.

Science, 303(5665):1813–1818, 2004.

[140] W. L. Jorgensen. Efficient drug lead discovery and optimization. Ac-

counts of Chemical Research, 42(6):724–733, 2009.

152



[141] W. L. Jorgensen. Foundations of biomolecular modeling. Cell, 155(6):1199–

1202, 2013.

[142] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and

M. L. Klein. Comparison of simple potential functions for simulating

liquid water. Journal of Chemical Physics, 79(2):926–935, 1983.

[143] W. L. Jorgensen, J. D. Madura, and C. J. Swenson. Optimized inter-

molecular potential functions for liquid hydrocarbons. Journal of the

American Chemical Society, 106(22):6638–6646, 1984.

[144] W. L. Jorgensen, D. S. Maxwell, and J. TiradoRives. Development and

testing of the opls all-atom force field on conformational energetics and

properties of organic liquids. Journal of the American Chemical Society,

118(45):11225–11236, 1996.

[145] P. Jurecka, J. Sponer, J. Cerny, and P. Hobza. Benchmark database of

accurate (mp2 and ccsd(t) complete basis set limit) interaction energies

of small model complexes, dna base pairs, and amino acid pairs. Physical

Chemistry Chemical Physics, 8(17):1985–1993, 2006.

[146] S. C. L. Kamerlin, P. K. Sharma, R. B. Prasad, and A. Warshel. Why

nature really chose phosphate. Quarterly Reviews of Biophysics, 46(1):1–

132, 2013.

[147] G. A. Kaminski, R. A. Friesner, J. Tirado-Rives, and W. L. Jorgensen.

Evaluation and reparametrization of the opls-aa force field for proteins

153



via comparison with accurate quantum chemical calculations on pep-

tides. Journal of Physical Chemistry B, 105(28):6474–6487, 2001.

[148] Zigui Kan, Qiang Zhu, Lijiang Yang, Zhixiong Huang, Biaobing Jin, and

Jing Ma. Polarization effects on the cellulose dissolution in ionic liquids:

Molecular dynamics simulations with polarization model and integrated

tempering enhanced sampling method. The Journal of Physical Chem-

istry B, 121(17):4319–4332, 2017.

[149] F. N. Keutsch and R. J. Saykally. Water clusters: Untangling the mys-

teries of the liquid, one molecule at a time. Proceedings of the National

Academy of Sciences of the United States of America, 98(19):10533–

10540, 2001.

[150] P. T. Kiss and A. Baranyai. A systematic development of a polarizable

potential of water. Journal of Chemical Physics, 138(20), 2013.

[151] Douglas B. Kitchen, Helene Decornez, John R. Furr, and Jurgen Ba-

jorath. Docking and scoring in virtual screening for drug discovery:

methods and applications. Nat Rev Drug Discov, 3(11):935–949, 2004.

[152] Miriam Kohagen, Martin Lepk, and Pavel Jungwirth. Calcium binding

to calmodulin by molecular dynamics with effective polarization. The

Journal of Physical Chemistry Letters, 5(22):3964–3969, 2014.

[153] P. A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. H. Huo, L. Chong,

M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srini-

154



vasan, D. A. Case, and T. E. Cheatham. Calculating structures and

free energies of complex molecules: Combining molecular mechanics and

continuum models. Accounts of Chemical Research, 33(12):889–897,

2000.

[154] Michal H. Kol and Pavel Hobza. Computer modeling of halogen bonds

and other -hole interactions. Chemical Reviews, 116(9):5155–5187, 2016.

[155] X. J. Kong and C. L. Brooks. lambda-dynamics: A new approach to

free energy calculations. Journal of Chemical Physics, 105(6):2414–

2423, 1996.

[156] Christian Kramer, Alexander Spinn, and Klaus R. Liedl. Charge anisotropy:

Where atomic multipoles matter most. Journal of Chemical Theory and

Computation, 10(10):4488–4496, 2014.

[157] B. D. Kubena, H. Luecke, H. Rosenberg, and F. A. Quiocho. Crys-

tallization and x-ray-diffraction studies of a phosphate-binding protein

involved in active-transport in escherichia-coli. Journal of Biological

Chemistry, 261(17):7995–7996, 1986.

[158] R. Kumar, F. F. Wang, G. R. Jenness, and K. D. Jordan. A second

generation distributed point polarizable water model (vol 132, 014309,

2010). Journal of Chemical Physics, 132(13), 2010.

[159] Igor V. Kurnikov and Maria Kurnikova. Modeling electronic polariz-

ability changes in the course of a magnesium ion water ligand exchange

155



process. The Journal of Physical Chemistry B, 119(32):10275–10286,

2015.

[160] G. Lamoureux, A. D. MacKerell, and B. Roux. A simple polarizable

model of water based on classical drude oscillators. Journal of Chemical

Physics, 119(10):5185–5197, 2003.

[161] M. L. Laury, L. P. Wang, V. S. Pande, T. Head-Gordon, and J. W. Pon-

der. Revised parameters for the amoeba polarizable atomic multipole

water model. J Phys Chem B, 2015.

[162] Marie L. Laury, Lee-Ping Wang, Vijay S. Pande, Teresa Head-Gordon,

and Jay W. Ponder. Revised parameters for the amoeba polarizable

atomic multipole water model. The Journal of Physical Chemistry B,

119(29):9423–9437, 2015.

[163] M. Lawrenz, J. Wereszczynski, J. M. Ortiz-Sanchez, S. E. Nichols, and

J. A. McCammon. Thermodynamic integration to predict host-guest

binding affinities. Journal of Computer-Aided Molecular Design, 26(5):569–

576, 2012.

[164] P. S. Ledvina, A. L. Tsai, Z. M. Wang, E. Koehl, and F. A. Quiocho.

Dominant role of local dipolar interactions in phosphate binding to a re-

ceptor cleft with an electronegative charge surface: Equilibrium, kinetic,

and crystallographic studies. Protein Science, 7(12):2550–2559, 1998.

156



[165] J. W. Lee, S. Samal, N. Selvapalam, H. J. Kim, and K. Kim. Cucurbi-

turil homologues and derivatives: New opportunities in supramolecular

chemistry. Accounts of Chemical Research, 36(8):621–630, 2003.

[166] M. S. Lee, F. R. Salsbury, and C. L. Brooks. Constant-ph molecular

dynamics using continuous titration coordinates. Proteins-Structure

Function and Bioinformatics, 56(4):738–752, 2004.

[167] Justin A. Lemkul, Jing Huang, Benot Roux, and Alexander D. MacK-

erell. An empirical polarizable force field based on the classical drude

oscillator model: Development history and recent applications. Chemi-

cal Reviews, 2016.

[168] K. Levenberg. A method for the solution of certain non-linear problems

in least squares. Quarterly of Applied Mathematics, 2:164–168, 1944.

[169] Elisa Liberatore, Rocco Meli, and Ursula Rothlisberger. A versatile mul-

tiple time step scheme for efficient ab initio molecular dynamics simula-

tions. Journal of Chemical Theory and Computation, 14(6):2834–2842,

2018.

[170] Dorothee Liebschner, Mikael Elias, Sbastien Moniot, Bertrand Fournier,

Ken Scott, Christian Jelsch, Benoit Guillot, Claude Lecomte, and Eric

Chabrire. Elucidation of the phosphate binding mode of ding proteins

revealed by subangstrom x-ray crystallography. Journal of the American

Chemical Society, 131(22):7879–7886, 2009.

157



[171] S. Lifson, A. T. Hagler, and P. Dauber. Consistent force-field studies of

inter-molecular forces in hydrogen-bonded crystals .1. carboxylic-acids,

amides, and the c=o...h- hydrogen-bonds. Journal of the American

Chemical Society, 101(18):5111–5121, 1979.

[172] T. C. Lim. Scaling function between the exponential-6 and the general-

ized lennard-jones potential functions. Journal of Mathematical Chem-

istry, 33(3-4):279–285, 2003.

[173] Filippo Lipparini, Louis Lagardre, Christophe Raynaud, Benjamin Stamm,

Eric Cancs, Benedetta Mennucci, Michael Schnieders, Pengyu Ren, Yvon

Maday, and Jean-Philip Piquemal. Polarizable molecular dynamics in a

polarizable continuum solvent. Journal of Chemical Theory and Com-

putation, 11(2):623–634, 2015.

[174] Chengwen Liu, Rui Qi, Qiantao Wang, J-P Piquemal, and Pengyu Ren.

Capturing many-body interactions with classical dipole induction mod-

els. Journal of Chemical Theory and Computation, 13(6):27512761,

2017.

[175] Cui Liu, Yue Li, Bing-Yu Han, Li-Dong Gong, Li-Nan Lu, Zhong-Zhi

Yang, and Dong-Xia Zhao. Development of the abeem polarization

force field for base pairs with amino acid residue complexes. Journal of

Chemical Theory and Computation, 13(5):2098–2111, 2017.

[176] Y. Liu and T. Ichiye. Soft sticky dipole potential for liquid water: A

new model. Journal of Physical Chemistry, 100(7):2723–2730, 1996.

158



[177] Daniele Loco, Francesco Buda, Johan Lugtenburg, and Benedetta Men-

nucci. The dynamic origin of color tuning in proteins revealed by

a carotenoid pigment. The Journal of Physical Chemistry Letters,

9(9):2404–2410, 2018.

[178] Daniele Loco, Louis Lagardre, Stefano Caprasecca, Filippo Lipparini,

Benedetta Mennucci, and Jean-Philip Piquemal. Hybrid qm/mm molec-

ular dynamics with amoeba polarizable embedding. Journal of Chemical

Theory and Computation, 13(9):4025–4033, 2017.

[179] Daniele Loco, tienne Polack, Stefano Caprasecca, Louis Lagardre, Fil-

ippo Lipparini, Jean-Philip Piquemal, and Benedetta Mennucci. A

qm/mm approach using the amoeba polarizable embedding: From ground

state energies to electronic excitations. Journal of Chemical Theory and

Computation, 12(8):3654–3661, 2016.

[180] Hartmut Luecke and Florante A. Quiocho. High specificity of a phosphate-

transport protein determined by hydrogen-bonds. Nature, 347(6291):402–

406, 1990.

[181] Chao Lv, Xubin Li, Dongsheng Wu, Lianqing Zheng, and Wei Yang.

Predictive sampling of rare conformational events in aqueous solution:

Designing a generalized orthogonal space tempering method. Journal

of Chemical Theory and Computation, 12(1):41–52, 2016.

[182] Baker Christopher M. Polarizable force fields for molecular dynamics

159



simulations of biomolecules. Wiley Interdisciplinary Reviews: Compu-

tational Molecular Science, 5(2):241–254, 2015.

[183] M. W. Mahoney and W. L. Jorgensen. A five-site model for liquid water

and the reproduction of the density anomaly by rigid, nonpolarizable

potential functions. Journal of Chemical Physics, 112(20):8910–8922,

2000.

[184] N. Manin, M. C. da Silva, I. Zdravkovic, O. Eliseeva, A. Dyshin, O. Yasar,

D. R. Salahub, A. M. Kolker, M. G. Kiselev, and S. Y. Noskov. Licl sol-

vation in n-methyl-acetamide (nma) as a model for understanding li(+)

binding to an amide plane. Phys Chem Chem Phys, 18(5):4191–200,

2016.

[185] Kumar Manjeet, Simonson Thomas, Ohanessian Gilles, and Clavagura

Carine. Structure and thermodynamics of mg:phosphate interactions in

water: A simulation study. ChemPhysChem, 16(3):658–665, 2015.

[186] Y. Mao, O. Demerdash, M. Head-Gordon, and T. Head-Gordon. Assess-

ing ion-water interactions in the amoeba force field using energy decom-

position analysis of electronic structure calculations. J Chem Theory

Comput, 12(11):5422–5437, 2016.

[187] Y. J. Mao and Y. W. Zhang. Thermal conductivity, shear viscosity and

specific heat of rigid water models. Chemical Physics Letters, 542:37–41,

2012.

160



[188] Daniel T. Margul and Mark E. Tuckerman. A stochastic, resonance-

free multiple time-step algorithm for polarizable models that permits

very large time steps. Journal of Chemical Theory and Computation,

12(5):2170–2180, 2016.

[189] D. W. Marquardt. An algorithm for least-squares estimation of non-

linear parameters. Journal of the Society for Industrial and Applied

Mathematics, 11:431–441, 1963.

[190] Garland R. Marshall. Limiting assumptions in molecular modeling:

electrostatics. Journal of Computer-Aided Molecular Design, 27(2):107–

114, 2013.

[191] M. S. Marshall, L. A. Burns, and C. D. Sherrill. Basis set convergence

of the coupled-cluster correction, delta(ccsd(t))(mp2): Best practices for

benchmarking non-covalent interactions and the attendant revision of

the s22, nbc10, hbc6, and hsg databases. Journal of Chemical Physics,

135(19), 2011.

[192] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein. Ex-

plicit reversible integrators for extended systems dynamics. Molecular

Physics, 87(5):1117–1157, 1996.

[193] E. Masson, X. X. Ling, R. Joseph, L. Kyeremeh-Mensah, and X. Y. Lu.

Cucurbituril chemistry: a tale of supramolecular success. Rsc Advances,

2(4):1213–1247, 2012.

161



[194] S. L. Mayo, B. D. Olafson, and W. A. Goddard. Dreiding - a generic

force-field for molecular simulations. Journal of Physical Chemistry,

94(26):8897–8909, 1990.

[195] A. Y. Mehandzhiyski, E. Riccardi, T. S. van Erp, H. Koch, P. O. As-

trand, T. T. Trinh, and B. A. Grimes. Density functional theory study

on the interactions of metal ions with long chain deprotonated carboxylic

acids. J Phys Chem A, 119(40):10195–203, 2015.

[196] P. Mikulskis, D. Cioloboc, M. Andrejic, S. Khare, J. Brorsson, S. Gen-

heden, R. A. Mata, P. Soderhjelm, and U. Ryde. Free-energy perturba-

tion and quantum mechanical study of sampl4 octa-acid host-guest bind-

ing energies. Journal of Computer-Aided Molecular Design, 28(4):375–

400, 2014.

[197] Donghong Min, Lianqing Zheng, William Harris, Mengen Chen, Chao

Lv, and Wei Yang. Practically efficient qm/mm alchemical free energy

simulations: The orthogonal space random walk strategy. Journal of

Chemical Theory and Computation, 6(8):2253–2266, 2010.

[198] Niraj Modi, Roland Benz, Robert E. W. Hancock, and Ulrich Kleinekath-

fer. Modeling the ion selectivity of the phosphate specific channel oprp.

The Journal of Physical Chemistry Letters, 3(23):3639–3645, 2012.

[199] Niraj Modi, Ivn Brcena-Uribarri, Manjeet Bains, Roland Benz, Robert

E. W. Hancock, and Ulrich Kleinekathfer. Tuning the affinity of anion

162



binding sites in porin channels with negatively charged residues: Molec-

ular details for oprp. ACS Chemical Biology, 10(2):441–451, 2015.

[200] V. Molinero and E. B. Moore. Water modeled as an intermediate el-

ement between carbon and silicon. Journal of Physical Chemistry B,

113(13):4008–4016, 2009.

[201] J. Mongan, D. A. Case, and J. A. McCammon. Constant ph molecular

dynamics in generalized born implicit solvent. Journal of Computational

Chemistry, 25(16):2038–2048, 2004.

[202] J. I. Monroe and M. R. Shirts. Converging free energies of binding

in cucurbit 7 uril and octa-acid host-guest systems from sampl4 using

expanded ensemble simulations. Journal of Computer-Aided Molecular

Design, 28(4):401–415, 2014.

[203] W. T. M. Mooij, F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-

van de Rijdt, and B. P. van Eijck. Transferable ab initio intermolecular

potentials. 1. derivation from methanol dimer and trimer calculations.

Journal of Physical Chemistry A, 103(48):9872–9882, 1999.

[204] J. J. More and D. C. Sorensen. Computing a trust region. SIAM

Journal on Scientific and Statistical Computing, 4:553–572, 1983.

[205] H. Morhenn, S. Busch, H. Meyer, D. Richter, W. Petry, and T. Unruh.

Collective intermolecular motions dominate the picosecond dynamics of

short polymer chains. Phys Rev Lett, 111(17):173003, 2013.

163



[206] Joseph A. Morrone, Thomas E. Markland, Michele Ceriotti, and B. J.

Berne. Efficient multiple time scale molecular dynamics: Using colored

noise thermostats to stabilize resonances. The Journal of Chemical

Physics, 134(1):014103, 2011.

[207] Jrmie Mortier, Christin Rakers, Marcel Bermudez, Manuela S. Mur-

gueitio, Sereina Riniker, and Gerhard Wolber. The impact of molecular

dynamics on drug design: applications for the characterization of lig-

andmacromolecule complexes. Drug Discovery Today, 20(6):686–702,

2015.

[208] R. D. Mountain and D. Thirumalai. Ergodic measures for the simulation

of dielectric-properties of water. Computer Physics Communications,

62(2-3):352–359, 1991.

[209] X. J. Mu, Q. T. Wang, L. P. Wang, S. D. Fried, J. P. Piquemal, K. N.

Dalby, and P. Y. Ren. Modeling organochlorine compounds and the

sigma-hole effect using a polarizable multipole force field. Journal of

Physical Chemistry B, 118(24):6456–6465, 2014.

[210] Xiaojiao Mu, Qiantao Wang, Lee-Ping Wang, Stephen D. Fried, Jean-

Philip Piquemal, Kevin N. Dalby, and Pengyu Ren. Modeling organochlo-

rine compounds and the -hole effect using a polarizable multipole force

field. The Journal of Physical Chemistry B, 118(24):6456–6465, 2014.

[211] H. S. Muddana, C. D. Varnado, C. W. Bielawski, A. R. Urbach, L. Isaacs,

M. T. Geballe, and M. K. Gilson. Blind prediction of host-guest binding

164



affinities: a new sampl3 challenge. Journal of Computer-Aided Molecu-

lar Design, 26(5):475–487, 2012.

[212] H. S. Muddana, J. Yin, N. V. Sapra, A. T. Fenley, and M. K. Gilson.

Blind prediction of sampl4 cucurbit[7]uril binding affinities with the min-

ing minima method. Journal of Computer-Aided Molecular Design,

28(4):463–474, 2014.

[213] Hari S. Muddana, Andrew T. Fenley, David L. Mobley, and Michael K.

Gilson. The sampl4 host-guest blind prediction challenge: an overview.

Journal of Computer-Aided Molecular Design, 28(4):305–317, 2014.

[214] W. F. Murphy. Rotation-vibration raman-spectrum of water-vapor.

Journal of the Optical Society of America, 67(10):1397–1397, 1977.

[215] T. Negami, K. Shimizu, and T. Terada. Coarse-grained molecular dy-

namics simulations of protein-ligand binding. Journal of Computational

Chemistry, 35(25):1835–1845, 2014.

[216] G. Nemethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini,

A. Zagari, S. Rumsey, and H. A. Scheraga. Energy parameters in

polypeptides .10. improved geometrical parameters and nonbonded in-

teractions for use in the ecepp/3 algorithm, with application to proline-

containing peptides. Journal of Physical Chemistry, 96(15):6472–6484,

1992.

165



[217] Ian J. Nessler, Jacob M. Litman, and Michael J. Schnieders. Toward po-

larizable amoeba thermodynamics at fixed charge efficiency using a dual

force field approach: application to organic crystals. Physical Chemistry

Chemical Physics, 18(44):30313–30322, 2016.

[218] V. Ngo, M. C. da Silva, M. Kubillus, H. Li, B. Roux, M. Elstner, Q. Cui,

D. R. Salahub, and S. Y. Noskov. Quantum effects in cation interactions

with first and second coordination shell ligands in metalloproteins. J

Chem Theory Comput, 11(10):4992–5001, 2015.

[219] Sergei Yu Noskov, Simon Bernche, and Benot Roux. Control of ion

selectivity in potassium channels by electrostatic and dynamic properties

of carbonyl ligands. Nature, 431:830, 2004.

[220] Demerdash Omar, Wang LeePing, and HeadGordon Teresa. Advanced

models for water simulations. Wiley Interdisciplinary Reviews: Compu-

tational Molecular Science, 8(1):e1355, 2018.

[221] P. Paricaud, M. Predota, A. A. Chialvo, and P. T. Cummings. From

dimer to condensed phases at extreme conditions: Accurate predictions

of the properties of water by a gaussian charge polarizable model. Jour-

nal of Chemical Physics, 122(24), 2005.

[222] T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill.

Levels of symmetry adapted perturbation theory (sapt). i. efficiency

and performance for interaction energies. Journal of Chemical Physics,

140(9), 2014.

166



[223] T. M. Parker and C. D. Sherrill. Assessment of empirical models versus

high-accuracy ab initio methods for nucleobase stacking: Evaluating the

importance of charge penetration. Journal of Chemical Theory and

Computation, 11(9):4197–4204, 2015.

[224] Robert M. Parrish, Lori A. Burns, Daniel G. A. Smith, Andrew C.

Simmonett, A. Eugene DePrince, Edward G. Hohenstein, Uur Bozkaya,

Alexander Yu Sokolov, Roberto Di Remigio, Ryan M. Richard, Jrme F.

Gonthier, Andrew M. James, Harley R. McAlexander, Ashutosh Kumar,

Masaaki Saitow, Xiao Wang, Benjamin P. Pritchard, Prakash Verma,

Henry F. Schaefer, Konrad Patkowski, Rollin A. King, Edward F. Valeev,

Francesco A. Evangelista, Justin M. Turney, T. Daniel Crawford, and

C. David Sherrill. Psi4 1.1: An open-source electronic structure pro-

gram emphasizing automation, advanced libraries, and interoperability.

Journal of Chemical Theory and Computation, 13(7):3185–3197, 2017.

[225] Sandeep Patel and Charles L. Brooks. Charmm fluctuating charge force

field for proteins: I parameterization and application to bulk organic

liquid simulations. Journal of Computational Chemistry, 25(1):1–16,

2004.

[226] D. A. Pearlman and P. A. Kollman. The lag between the hamiltonian

and the system configuration in free-energy perturbation calculations.

Journal of Chemical Physics, 91(12):7831–7839, 1989.

167



[227] Xiangda Peng, Yuebin Zhang, Huiying Chu, Yan Li, Dinglin Zhang,

Liaoran Cao, and Guohui Li. Accurate evaluation of ion conductivity

of the gramicidin a channel using a polarizable force field without any

corrections. Journal of Chemical Theory and Computation, 12(6):2973–

2982, 2016.

[228] E. Persch, O. Dumele, and F. Diederich. Molecular recognition in chem-

ical and biological systems. Angewandte Chemie-International Edition,

54(11):3290–3327, 2015.

[229] G. D. J. Phillies. Self-consistency of hydrodynamic models for the

zero-shear viscosity and the self-diffusion coefficient. Macromolecules,

35(19):7414–7418, 2002.

[230] J. W. Ponder and D. A. Case. Force fields for protein simulations.

Protein Simulations, 66:27–+, 2003.

[231] J. W. Ponder, C. J. Wu, P. Y. Ren, V. S. Pande, J. D. Chodera, M. J.

Schnieders, I. Haque, D. L. Mobley, D. S. Lambrecht, R. A. DiStasio,

M. Head-Gordon, G. N. I. Clark, M. E. Johnson, and T. Head-Gordon.

Current status of the amoeba polarizable force field. Journal of Physical

Chemistry B, 114(8):2549–2564 PMCID: PMC2918242, 2010.

[232] Jay W. Ponder, Chuanjie Wu, Pengyu Ren, Vijay S. Pande, John D.

Chodera, Michael J. Schnieders, Imran Haque, David L. Mobley, Daniel S.

Lambrecht, Robert A. DiStasio, Martin Head-Gordon, Gary N. I. Clark,

168



Margaret E. Johnson, and Teresa Head-Gordon. Current status of the

amoeba polarizable force field. The Journal of Physical Chemistry B,

114(8):2549–2564, 2010.

[233] M. L. P. Price, D. Ostrovsky, and W. L. Jorgensen. Gas-phase and

liquid-state properties of esters, nitriles, and nitro compounds with the

opls-aa force field. Journal of Computational Chemistry, 22(13):1340–

1352, 2001.

[234] Rui Qi, Zhifeng Jing, Chengwen Liu, Jean-Philip Piquemal, Kevin N.

Dalby, and Pengyu Ren. Elucidating the phosphate binding mode of

pbp: The critical effect of buffer solution. The Journal of Physical

Chemistry B, 2018.

[235] Rui Qi, Lee-Ping Wang, Qiantao Wang, Vijay S. Pande, and Pengyu

Ren. United polarizable multipole water model for molecular mechanics

simulation. The Journal of Chemical Physics, 143(1):014504, 2015.

[236] Rui Qi, Qiantao Wang, and Pengyu Ren. General van der waals poten-

tial for common organic molecules. Bioorganic Medicinal Chemistry,

24(20):4911–4919, 2016.

[237] F. A. Quiocho. Atomic basis of the exquisite specificity of phosphate

and sulfate transport receptors. Kidney International, 49(4):943–946,

1996.

169



[238] Joshua A Rackers, Qiantao Wang, Chengwen Liu, Jean-Philip Piquemal,

Pengyu Ren, and Jay W Ponder. An optimized charge penetration

model for use with the amoeba force field. Physical Chemistry Chemical

Physics, 19:276–291, 2017.

[239] Li Rao, Qiang Cui, and Xin Xu. Electronic properties and desolvation

penalties of metal ions plus protein electrostatics dictate the metal bind-

ing affinity and selectivity in the copper efflux regulator. Journal of the

American Chemical Society, 132(51):18092–18102, 2010.

[240] N. N. Rao and A. Torriani. Molecular aspects of phosphate-transport

in escherichia-coli. Molecular Microbiology, 4(7):1083–1090, 1990.

[241] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M.

Skiff. Uff, a full periodic-table force-field for molecular mechanics and

molecular-dynamics simulations. Journal of the American Chemical

Society, 114(25):10024–10035, 1992.

[242] Maria M. Reif, Philippe H. Hnenberger, and Chris Oostenbrink. New

interaction parameters for charged amino acid side chains in the gromos

force field. Journal of Chemical Theory and Computation, 8(10):3705–

3723, 2012.

[243] P. Y. Ren and J. W. Ponder. Consistent treatment of inter- and in-

tramolecular polarization in molecular mechanics calculations. Journal

of Computational Chemistry, 23(16):1497–1506, 2002.

170



[244] P. Y. Ren and J. W. Ponder. Polarizable atomic multipole water model

for molecular mechanics simulation. Journal of Physical Chemistry B,

107(24):5933–5947, 2003.

[245] P. Y. Ren, C. J. Wu, and J. W. Ponder. Polarizable atomic multipole-

based molecular mechanics for organic molecules. Journal of Chemical

Theory and Computation, 7(10):3143–3161, 2011.

[246] Pengyu Ren, Jaehun Chun, Dennis G. Thomas, Michael J. Schnieders,

Marcelo Marucho, Jiajing Zhang, and Nathan A. Baker. Biomolecular

electrostatics and solvation: a computational perspective. Quarterly

Reviews of Biophysics, 45(4):427–491, 2012.

[247] Pengyu Ren and Jay W. Ponder. Polarizable atomic multipole water

model for molecular mechanics simulation. The Journal of Physical

Chemistry B, 107(24):5933–5947, 2003.

[248] Pengyu Ren, Chuanjie Wu, and Jay W. Ponder. Polarizable atomic

multipole-based molecular mechanics for organic molecules. Journal of

Chemical Theory and Computation, 7(10):3143–3161, 2011.

[249] J. Rezac, K. E. Riley, and P. Hobza. S66: A well-balanced database

of benchmark interaction energies relevant to biomolecular structures.

Journal of Chemical Theory and Computation, 7(8):2427–2438, 2011.

[250] J. Rezac, K. E. Riley, and P. Hobza. S66: A well-balanced database

of benchmark interaction energies relevant to biomolecular structures

171



(vol 7, pg 2427, 2011). Journal of Chemical Theory and Computation,

10(3):1359–1360, 2014.

[251] S. W. Rick. A reoptimization of the five-site water potential (tip5p) for

use with ewald sums. Journal of Chemical Physics, 120(13):6085–6093,

2004.

[252] S. W. Rick and S. J. Stuart. Potentials and algorithms for incorporat-

ing polarizability in computer simulations. Reviews in Computational

Chemistry, Vol 18, 18:89–146, 2002.

[253] S. W. Rick and S. J. Stuart. Potentials and algorithms for incorpo-

rating polarizability in computer simulations, volume 18 of Reviews in

Computational Chemistry, pages 89–146. Wiley-Vch, Inc, New York,

2002.

[254] M. J. Robertson, J. Tirado-Rives, and W. L. Jorgensen. Improved pep-

tide and protein torsional energetics with the opls-aa force field. Journal

of Chemical Theory and Computation, 11(7):3499–3509, 2015.

[255] C. Sagui, L. G. Pedersen, and T. A. Darden. Towards an accurate rep-

resentation of electrostatics in classical force fields: efficient implemen-

tation of multipolar interactions in biomolecular simulations. J Chem

Phys, 120(1):73–87, 2004.

[256] Dmitri V. Sakharov and Carmay Lim. Zn protein simulations including

charge transfer and local polarization effects. Journal of the American

172



Chemical Society, 127(13):4921–4929, 2005.

[257] Romelia Salomon-Ferrer, Andreas W. Gtz, Duncan Poole, Scott Le Grand,

and Ross C. Walker. Routine microsecond molecular dynamics simu-

lations with amber on gpus. 2. explicit solvent particle mesh ewald.

Journal of Chemical Theory and Computation, 9(9):3878–3888, 2013.

[258] Patel Sandeep and Brooks Charles L. Charmm fluctuating charge force

field for proteins: I parameterization and application to bulk organic

liquid simulations. Journal of Computational Chemistry, 25(1):1–16,

2004.

[259] P. Satpati, C. Clavaguera, G. Ohanessian, and T. Simonson. Free energy

simulations of a gtpase: Gtp and gdp binding to archaeal initiation factor

2. Journal of Physical Chemistry B, 115(20):6749–6763, 2011.

[260] Priyadarshi Satpati, Carine Clavagura, Gilles Ohanessian, and Thomas

Simonson. Free energy simulations of a gtpase: Gtp and gdp binding

to archaeal initiation factor 2. The Journal of Physical Chemistry B,

115(20):6749–6763, 2011.

[261] T. Schnabel, J. Vrabec, and H. Hasse. Unlike lennard-jones parameters

for vapor-liquid equilibria. Journal of Molecular Liquids, 135(1-3):170–

178, 2007.

[262] M. J. Schnieders, N. A. Baker, P. Y. Ren, and J. W. Ponder. Polarizable

atomic multipole solutes in a poisson-boltzmann continuum. Journal of

173



Chemical Physics, 126(12), 2007.

[263] David Semrouni, William C. Isley, Carine Clavagura, Jean-Pierre Dognon,

Christopher J. Cramer, and Laura Gagliardi. Ab initio extension of the

amoeba polarizable force field to fe2+. Journal of Chemical Theory and

Computation, 9(7):3062–3071, 2013.

[264] Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T.

Brown, A. T. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill,

Jr. DiStasio, R. A., R. C. Lochan, T. Wang, G. J. Beran, N. A. Besley,

J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P.

Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson,

B. Austin, J. Baker, E. F. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw,

B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Hey-

den, S. Hirata, C. P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger,

A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I.

Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sher-

rill, A. C. Simmonett, J. E. Subotnik, 3rd Woodcock, H. L., W. Zhang,

A. T. Bell, A. K. Chakraborty, D. M. Chipman, F. J. Keil, A. Warshel,

W. J. Hehre, 3rd Schaefer, H. F., J. Kong, A. I. Krylov, P. M. Gill,

and M. Head-Gordon. Advances in methods and algorithms in a mod-

ern quantum chemistry program package. Physical Chemistry Chemical

Physics, 8:3172–3191, 2006.

[265] Y. Shi, Z. Xia, J. J. Zhang, R. Best, C. J. Wu, J. W. Ponder, and P. Y.

174



Ren. Polarizable atomic multipole-based amoeba force field for proteins.

Journal of Chemical Theory and Computation, 9(9):4046–4063, 2013.

[266] Yue Shi, Zhen Xia, Jiajing Zhang, Robert Best, Chuanjie Wu, Jay W.

Ponder, and Pengyu Ren. Polarizable atomic multipole-based amoeba

force field for proteins. Journal of Chemical Theory and Computation,

9(9):4046–4063, 2013.

[267] Michael R. Shirts and John D. Chodera. Statistically optimal analysis of

samples from multiple equilibrium states. Journal of Chemical Physics,

129(12), 2008.

[268] L. B. Skinner, C. C. Huang, D. Schlesinger, L. G. M. Pettersson, A. Nils-

son, and C. J. Benmore. Benchmark oxygen-oxygen pair-distribution

function of ambient water from x-ray diffraction measurements with a

wide q-range. Journal of Chemical Physics, 138(7), 2013.

[269] B. J. Smith, D. J. Swanton, J. A. Pople, H. F. Schaefer, and L. Radom.

Transition structures for the interchange of hydrogen atoms within the

water dimer. Journal of Chemical Physics, 92:1240–1247, 1990.

[270] A. K. Soper. The radial distribution functions of water and ice from

220 to 673 k and at pressures up to 400 mpa. Chemical Physics, 258(2-

3):121–137, 2000.

[271] A. K. Soper and M. G. Phillips. A new determination of the structure

of water at 25-degrees-c. Chemical Physics, 107(1):47–60, 1986.

175



[272] Oleg N. Starovoytov, Hedieh Torabifard, and G. Andrs Cisneros. De-

velopment of amoeba force field for 1,3-dimethylimidazolium based ionic

liquids. The Journal of Physical Chemistry B, 118(25):7156–7166, 2014.

[273] R. P. Steele, Jr. DiStasio, R. A., Y. Shao, J. Kong, and M. Head-Gordon.

Dual-basis second-order moller-plesset perturbation theory: A reduced-

cost reference for correlation calculations. Journal of Chemical Physics,

125:074108, 2006.

[274] R. P. Steele, R. A. DiStasio, and M. Head-Gordon. Non-covalent in-

teractions with dual-basis methods: Pairings for augmented basis sets.

Journal of Chemical Theory and Computation, 5:1560–1572, 2009.

[275] F. H. Stillinger and A. Rahman. Molecular-dynamics study of liquid wa-

ter under high compression. Journal of Chemical Physics, 61(12):4973–

4980, 1974.

[276] A. J. Stone. Distributed multipole analysis: Stability for large basis

sets. Journal of Chemical Theory and Computation, 1(6):1128–1132,

2005.

[277] M. Tafipolsky and B. Engels. Accurate intermolecular potentials with

physically grounded electrostatics. Journal of Chemical Theory and

Computation, 7(6):1791–1803, 2011.

[278] J. A. Te and T. Ichiye. Temperature and pressure dependence of the

optimized soft-sticky dipole-quadrupole-octupole water model. Journal

176



of Chemical Physics, 132(11), 2010.

[279] B. T. Thole. Molecular polarizabilities calculated with a modified dipole

interaction. Chem. Phys., 59(3):341–350, 1981.

[280] Pratyush Tiwary, Vittorio Limongelli, Matteo Salvalaglio, and Michele

Parrinello. Kinetics of proteinligand unbinding: Predicting pathways,

rates, and rate-limiting steps. Proceedings of the National Academy of

Sciences, 112(5):E386–E391, 2015.

[281] Hedieh Torabifard and G. Andres Cisneros. Computational investiga-

tion of o2 diffusion through an intra-molecular tunnel in alkb; influence

of polarization on o2 transport. Chemical Science, 8(9):6230–6238, 2017.

[282] K. Toukan and A. Rahman. Molecular-dynamics study of atomic mo-

tions in water. Physical Review B, 31(5):2643–2648, 1985.

[283] M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time

scale molecular-dynamics. Journal of Chemical Physics, 97(3):1990–

2001, 1992.

[284] I. Tunon, M. T. C. MartinsCosta, C. Millot, and M. F. RuizLopez. A hy-

brid density functional classical molecular dynamics simulation of a wa-

ter molecule in liquid water. Journal of Molecular Modeling, 1(4):196–

201, 1995.

[285] J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F. A.

Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L.

177



Abrams, N. J. Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D.

Allen, H. F. Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, and

T. D. Crawford. Psi4: an open-source ab initio electronic structure pro-

gram. Wiley Interdisciplinary Reviews-Computational Molecular Sci-

ence, 2(4):556–565, 2012.

[286] E. Tzoracoleftherakis, J. Maroulis, S. Katsanou, and J. Androulakis.

Primary tamoxifen treatment for elderly women with operable breast

cancer. 10th International Congress on Senology - Breast Diseases of

the Senologic International Society, pages 739–742, 1998.

[287] J. A. Ubersax and Jr. Ferrell, J. E. Mechanisms of specificity in protein

phosphorylation. Nat Rev Mol Cell Biol, 8(7):530–41, 2007.

[288] Oliver T. Unke, Mike Devereux, and Markus Meuwly. Minimal dis-

tributed charges: Multipolar quality at the cost of point charge electro-

statics. The Journal of Chemical Physics, 147(16):161712, 2017.

[289] Piet Th van Duijnen and Marcel Swart. Molecular and atomic polariz-

abilities: thole’s model revisited. J. Phys. Chem. A, 102(14):2399–2407,

1998.

[290] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong,

J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, and A. D.

MacKerell. Charmm general force field (cgenff): A force field for drug-

like molecules compatible with the charmm all-atom additive biological

force fields. Journal of computational chemistry, 31(4):671–690, 2010.

178



[291] C. Vega and J. L. F. Abascal. Simulating water with rigid non-polarizable

models: a general perspective. Physical Chemistry Chemical Physics,

13(44):19663–19688, 2011.

[292] H. Venthur, A. Mutis, J. J. Zhou, and A. Quiroz. Ligand binding and

homology modelling of insect odorant-binding proteins. Physiological

Entomology, 39(3):183–198, 2014.

[293] Verhoeve.J and A. Dymanus. Magnetic properties and molecular quadrupole

tensor of water molecule by beam-maser zeeman spectroscopy. Journal

of Chemical Physics, 52(6):3222–, 1970.

[294] N. K. Vyas, M. N. Vyas, and F. A. Quiocho. Crystal structure of m tu-

berculosis abc phosphate transport receptor: specificity and charge com-

pensation dominated by ion-dipole interactions. Structure, 11(7):765–

74, 2003.

[295] W. Wagner and A. Pruss. The iapws formulation 1995 for the thermo-

dynamic properties of ordinary water substance for general and scientific

use. Journal of Physical and Chemical Reference Data, 31(2):387–535,

2002.

[296] M. Waldman and A. T. Hagler. New combining rules for rare-gas van-

der-waals parameters. Journal of Computational Chemistry, 14(9):1077–

1084, 1993.

179



[297] T. T. Waldron, M. A. Modestou, and K. P. Murphy. Anion binding

to a protein-protein complex lacks dependence on net charge. Protein

Science, 12(4):871–874, 2003.

[298] S. Walker, R. Oun, F. J. McInnes, and N. J. Wheate. The potential

of cucurbit n urils in drug delivery. Israel Journal of Chemistry, 51(5-

6):616–624, 2011.

[299] Tiffany R. Walsh and Marc R. Knecht. Biointerface structural effects

on the properties and applications of bioinspired peptide-based nanoma-

terials. Chemical Reviews, 117(20):12641–12704, 2017.

[300] Junmei Wang, Piotr Cieplak, Jie Li, Qin Cai, Meng-Juei Hsieh, Ray

Luo, and Yong Duan. Development of polarizable models for molecular

mechanical calculations. 4. van der waals parametrization. The Journal

of Physical Chemistry B, 116(24):7088–7101, 2012.

[301] L.-P. Wang, J. Chen, and T. van Voorhis. Systematic parametrization

of polarizable force fields from quantum chemistry data. Journal of

Chemical Theory and Computation, 9:452–460, 2013.

[302] L. P. Wang, T. Head-Gordon, J. W. Ponder, P. Ren, J. D. Chodera, P. K.

Eastman, T. J. Martinez, and V. S. Pande. Systematic improvement of

a classical molecular model of water. Journal of Physical Chemistry B,

117(34):9956–9972, 2013.

180



[303] Lee-Ping Wang, Teresa Head-Gordon, Jay W. Ponder, Pengyu Ren,

John D. Chodera, Peter K. Eastman, Todd J. Martinez, and Vijay S.

Pande. Systematic improvement of a classical molecular model of water.

The Journal of Physical Chemistry B, 117(34):9956–9972, 2013.

[304] Q. Wang, J. A. Rackers, C. He, R. Qi, C. Narth, L. Lagardere, N. Gresh,

J. W. Ponder, J. P. Piquemal, and P. Ren. General model for treating

short-range electrostatic penetration in a molecular mechanics force field.

J Chem Theory Comput, 11(6):2609–2618, 2015.

[305] Q. T. Wang, J. A. Rackers, C. He, R. Qi, C. Narth, L. Lagardere,

N. Gresh, J. W. Ponder, J. P. Piquemal, and P. Y. Ren. General

model for treating short-range electrostatic penetration in a molecular

mechanics force field. Journal of Chemical Theory and Computation,

11(6):2609–2618, 2015.

[306] Qiantao Wang, Joshua A. Rackers, Chenfeng He, Rui Qi, Christophe

Narth, Louis Lagardere, Nohad Gresh, Jay W. Ponder, Jean-Philip Pique-

mal, and Pengyu Ren. General model for treating short-range electro-

static penetration in a molecular mechanics force field. J. Chem. Theory

Comput., 11(6):2609–2618, 2015.

[307] Z Wang, A Choudhary, P S Ledvina, and F A Quiocho. Fine tuning the

specificity of the periplasmic phosphate transport receptor. site-directed

mutagenesis, ligand binding, and crystallographic studies. Journal of

Biological Chemistry, 269(40):25091–4, 1994.

181



[308] Z. M. Wang, H. Luecke, N. H. Yao, and F. A. Quiocho. A low energy

short hydrogen bond in very high resolution structures of protein re-

ceptor phosphate complexes. Nature Structural Biology, 4(7):519–522,

1997.

[309] Arieh Warshel and Arno Papazyan. Energy considerations show that

low-barrier hydrogen bonds do not offer a catalytic advantage over ordi-

nary hydrogenbonds. Proceedings of the National Academy of Sciences,

93(24):13665–13670, 1996.

[310] J. Wereszczynski and J. A. McCammon. Statistical mechanics and

molecular dynamics in evaluating thermodynamic properties of biomolec-

ular recognition. Quarterly Reviews of Biophysics, 45(1):1–25, 2012.

[311] F. H. Westheimer. Why nature chose phosphates. Science, 235(4793):1173–

1178, 1987.

[312] K. T. Wikfeldt, E. R. Batista, F. D. Vila, and H. Jonsson. A transferable

h2o interaction potential based on a single center multipole expansion:

Scme. Physical Chemistry Chemical Physics, 15(39):16542–16556, 2013.

[313] D. E. Williams. Representation of the molecular electrostatic potential

by atomic multipole and bond dipole models. Journal of Computational

Chemistry, 9(7):745–763, 1988.

[314] Hao Wu, Fabian Paul, Christoph Wehmeyer, and Frank No. Mul-

tiensemble markov models of molecular thermodynamics and kinetics.

182



Proceedings of the National Academy of Sciences, 2016.

[315] J. C. Wu, G. Chattree, and P. Y. Ren. Automation of amoeba po-

larizable force field parameterization for small molecules. Theoretical

Chemistry Accounts, 131(3), 2012.

[316] Johnny C. Wu, Gaurav Chattree, and Pengyu Ren. Automation of

amoeba polarizable force field parameterization for small molecules. The-

oretical Chemistry Accounts, 131(3):1138, 2012.

[317] P. Wu, L. G. Ma, X. L. Hou, M. Y. Wang, Y. R. Wu, F. Y. Liu, and X. W.

Deng. Phosphate starvation triggers distinct alterations of genome ex-

pression in arabidopsis roots and leaves. Plant Physiology, 132(3):1260–

1271, 2003.

[318] Q. Wu and W. T. Yang. Empirical correction to density functional

theory for van der waals interactions. Journal of Chemical Physics,

116(2):515–524, 2002.

[319] Xiaojing Wu, Carine Clavaguera, Louis Lagardre, Jean-Philip Piquemal,

and Aurlien de la Lande. Amoeba polarizable force field parameters of

the heme cofactor in its ferrous and ferric forms. Journal of Chemical

Theory and Computation, 14(5):2705–2720, 2018.

[320] Matthew A. Wyczalkowski, Andreas Vitalis, and Rohit V. Pappu. New

estimators for calculating solvation entropy and enthalpy and compara-

183



tive assessments of their accuracy and precision. The Journal of Physical

Chemistry B, 114(24):8166–8180, 2010.

[321] S. S. Xantheas and E. Apra. The binding energies of the d2d and

s4 water octamer isomers: High-level electronic structure and empirical

potential results. Journal of Chemical Physics, 120:823–828, 2004.

[322] S. S. Xantheas, C. J. Burnham, and R. J. Harrison. Development

of transferable interaction models for water. ii. accurate energetics of

the first few water clusters from first principles. Journal of Chemical

Physics, 116(4):1493–1499, 2002.

[323] Miaoren Xia, Zhifang Chai, and Dongqi Wang. Polarizable and non-

polarizable force field representations of ferric cation and validations.

The Journal of Physical Chemistry B, 121(23):5718–5729, 2017.

[324] Jin Yu Xiang and Jay W. Ponder. A valence bond model for aqueous

cu(ii) and zn(ii) ions in the amoeba polarizable force field. Journal of

Computational Chemistry, 34(9):739–749, 2013.

[325] W. Yang, Y. Q. Gao, Q. Cui, J. Ma, and M. Karplus. The missing link

between thermodynamics and structure in f¡sub¿1¡/sub¿-atpase. Pro-

ceedings of the National Academy of Sciences, 100(3):874–879, 2003.

[326] Zhong-Zhi Yang, JianJiang Wang, and Dong-Xia Zhao. Valence state

parameters of all transition metal atoms in metalloproteins - Develop-

ment of ABEEM fluctuating charge force field, volume 35. 2014.

184



[327] S. M. Yannone, S. Hartung, A. L. Menon, M. W. Adams, and J. A.

Tainer. Metals in biology: defining metalloproteomes. Curr Opin

Biotechnol, 23(1):89–95, 2012.

[328] Nanhua Yao, Polly S. Ledvina, Abha Choudhary, and Florante A. Quio-

cho. Modulation of a salt link does not affect binding of phosphate to its

specific active transport receptor. Biochemistry, 35(7):2079–2085, 1996.

[329] I. C. Yeh and G. Hummer. System-size dependence of diffusion coeffi-

cients and viscosities from molecular dynamics simulations with periodic

boundary conditions. Journal of Physical Chemistry B, 108(40):15873–

15879, 2004.

[330] S. Yoo and S. S. Xantheas. Communication: The effect of dispersion

corrections on the melting temperature of liquid water. Journal of

Chemical Physics, 134(12), 2011.

[331] W. B. Yu, P. E. M. Lopes, B. Roux, and A. D. MacKerell. Six-site po-

larizable model of water based on the classical drude oscillator. Journal

of Chemical Physics, 138(3), 2013.

[332] Qiao Zeng and WanZhen Liang. Analytic energy gradient of excited elec-

tronic state within tddft/mmpol framework: Benchmark tests and par-

allel implementation. The Journal of Chemical Physics, 143(13):134104,

2015.

185



[333] X. Zeng, J. Li, H. Xie, and L. Liu. A novel dismantling process of waste

printed circuit boards using water-soluble ionic liquid. Chemosphere,

93(7):1288–94, 2013.

[334] C. S. Zhang, C. Lu, Q. T. Wang, J. W. Ponder, and P. Y. Ren. Polar-

izable multipole-based force field for dimethyl and trimethyl phosphate.

Journal of Chemical Theory and Computation, 11(11):5326–5339, 2015.

[335] Changsheng Zhang, Chao Lu, Zhifeng Jing, Chuanjie Wu, Jean-Philip

Piquemal, Jay W. Ponder, and Pengyu Ren. Amoeba polarizable atomic

multipole force field for nucleic acids. Journal of Chemical Theory and

Computation, 14(4):2084–2108, 2018.

[336] Lianqing Zheng, Mengen Chen, and Wei Yang. Random walk in orthog-

onal space to achieve efficient free-energy simulation of complex systems.

Proceedings of the National Academy of Sciences of the United States of

America, 105(51):20227–20232, 2008.

[337] Lianqing Zheng, Mengen Chen, and Wei Yang. Simultaneous escaping of

explicit and hidden free energy barriers: Application of the orthogonal

space random walk strategy in generalized ensemble based conforma-

tional sampling. Journal of Chemical Physics, 130(23), 2009.

[338] Lianqing Zheng and Wei Yang. Practically efficient and robust free en-

ergy calculations: Double-integration orthogonal space tempering. Jour-

nal of Chemical Theory and Computation, 8(3):810–823, 2012.

186


