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Abstract 

 

Ozone Reactions in Unoccupied Spaces of Residences 

 

Jonathan David Gingrich, MSE 

The University of Texas at Austin, 2018 

 

Supervisor: Richard L. Corsi 

 

Ozone has the potential to cause many health problems. Most of the human 

population exposure to ozone occurs indoors. It has been previously reported that the 

average ozone penetration factor into the occupied space is 0.79. However, this value does 

not account for the pathway by which ozone enters the occupied space. A model to 

determine the amount that unoccupied spaces contribute to the ozone concentration in the 

occupied space is presented in this thesis. A literature review was then performed to 

identify parameters for the model as well as gaps that exist in the literature pertaining to 

the model developed. One of the biggest gaps was the lack of ozone decay rates in 

unoccupied spaces, such as garages, attics and crawl spaces. Because of this, a field study 

was designed and completed to determine the ozone decay rate in garages.  

It was determined that the average ozone decay rate in garages is 2.7 (± 1.1) hr-1. 

This value is comparable to previous data for occupied space ozone decay rates. Using 

these data as well as other published data, it was determined that, under normal conditions, 

ozone penetration through unoccupied spaces to the occupied space is not a significant 

pathway. However, there are some conditions for which unoccupied spaces may be a major 
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pathway for ozone entry into homes. One example of this is when both the garage door and 

the door connecting to garage to the occupied space is opened for a long time. Under these 

conditions, the occupied space can reach an indoor/outdoor (IO) concentration of 0.46. As 

can be seen, under this condition, unoccupied spaces do provide substantial contribution of 

ozone to the occupied space. 
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Chapter 1:  Overview 

1.1 THE ISSUE 

Ozone (O3) has been an air pollutant a chemical of concern for many decades [1,2]. 

In tropospheric regions, O3 is created mostly due to photochemical reactions with 

automobile emissions, which means that in locations with a higher concentration of motor 

vehicles, such as cities, there is normally a higher concentration of ozone[3]. Over time, 

the concentration of O3, especially in these cities, has increased in both urban and rural 

areas near urban centers [4]. This increase has shown to increase mortality. 

Epidemiological studies indicate that every 10 ppb increase in O3 results in a 0.41% 

increase in mortality [5].  

Ozone has been shown to irritate the epithelial lining of the esophagus and cause 

an increase in the prevalence of asthma and allergies [6,7]. Ozone also reacts with many 

different surfaces and chemicals indoors, producing reaction byproducts that also cause 

damage to humans [8]. These reactions occur readily in most indoor environments, so not 

only is outdoor ozone of concern; indoor ozone also can have negative health impacts on 

humans [9,10]. 

The primary source of ozone indoors is the penetration into indoor spaces from 

outdoors. Ozone levels inside a building are normally about 10-20 percent of the outdoor 

concentration, depending on the method of ventilation used. But humans also spend a large 

majority of their time indoors, especially in homes [11]. Because of this, up to 60% of an 

individual’s ozone exposure occurs indoors [8]. Therefore, it is important to try to reduce 

the concentration of ozone entering the residence. 

 Stephens et al. estimated that the fractional penetration of ozone into the residential 

occupied space averages 0.79 [12]. It is thought that ozone enters the occupied space via 
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cracks in walls and through openings around windows and doors. However, other pathways 

are possible. One of these is the transport of ozone into the occupied space via unoccupied 

spaces. Examples of these spaces are attached garages, attics, and crawl spaces.  

1.2 OBJECTIVES 

The overall objective of this research was to provide to the scientific community 

data pertaining to the contribution of ozone from unoccupied spaces to occupied spaces of 

residences. This was accomplished in two different ways: 

1. The development of a four-zone model (one occupied space and three 

unoccupied spaces) to model the transport of ozone from the outside 

through the unoccupied spaces and into the occupied space 

2. Field tests to determine the ozone decay rate of ozone in garages 

1.3 GENERAL METHODOLOGY 

1.3.1 Model Development 

A model was developed to estimate the contribution of unoccupied spaces to the 

penetration of ozone from outdoors to indoors. A series of mass balance equations was 

developed to predict the ozone concentration in the occupied and each unoccupied space. 

It was assumed that the outdoor concentration was 75 ppb, which was the highest ozone 

concentration recorded in June 2017 in Austin, Texas [13]. The volumes of each of the 

spaces were estimated from the median size of homes in the United States. After the model 

was developed and parameters established, the model was run to determine the effects of 

different scenarios. The scenarios tested were:  

1. Decreasing the reaction rate of ozone in each zone 

2. Base case scenario 
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3. Removing the Crawl Space 

4. Removing the Attached Garage 

5. Removing the Attic 

6. Opening, then closing the garage door 

For all six of the simulations, ozone levels were simulated either under steady-state 

conditions or until a steady-state condition was reached. The ratio between the zonal and 

the outdoor concentration of ozone was used to determine how much of an impact these 

spaces had on the occupied space.  

1.3.2 Literature Review 

A literature review was conducted in order to determine values for the model 

parameters. The Web of Science was used with a Boolean search structure to identify 

papers related to reaction rates of ozone with surfaces and materials commonly found in 

unoccupied spaces, such as wood, plastic coverings, concreted and insulation. Further 

literature searches identified papers concerning flow rates from the unoccupied spaces to 

the occupied space. A search of the literature revealed that there was very little literature 

concerning reaction of ozone in residential unoccupied spaces. The data that was found for 

both flow rates between zones in the residence as well as reaction rates in the occupied 

space were used in the model described in the previous section. Gaps that remain in the 

literature include ozone decay rates in garages, crawl spaces and attics, as well as flow rates 

between garages and attics, and between crawl spaces and occupied spaces. There is also 

little air exchange rate data for both crawl spaces and attics.  
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1.3.3 Field testing 

Because of the lack of ozone decay rates in unoccupied spaces, it was decided to 

determine the ozone decay rate for garages. To do this, a volunteer sample of 12 garages 

in Central Texas were used to determine the ozone decay rate of a garage. These garages 

ranged in size (1 car vs. 2 car garages) and level of attachment to the occupied space. Of 

the 12 garages tested, seven were attached and five were detached. Seven were two-car and 

five were single car garages.  

In each garage, the same protocol was followed. Carbon dioxide (CO2) decay rates 

were used to determine air exchange rates of each garage. The CO2 was released by a 

pressurized cylinder to artificially increase the concentration of CO2 before terminating the 

source for the decay phase. Simultaneously, the ozone concentration was increased in each 

garage until it reached a maximum concentration using a commercial ozone generator. The 

ozone generator was then turned off and the concentration was measured in order to 

determine the rate of decay of ozone. The air exchange rate was subtracted from this rate 

to determine the ozone decay rate due to ozone reactions with surfaces in each garage. This 

process was repeated at least three times for each garage tested. The empty garage volume 

and surface area was also measured in order to determine the deposition velocity of ozone 

in each of the garages tested. A minimum of three runs were performed in each garage. 
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Chapter 2: Results and Conclusions 

2 RESULTS 

2.1 Model Applications 

The model and application results can be found in Appendix 1. Through the specific 

applications modeled for this study, unoccupied spaces, under normal conditions, appear 

to have little effect on the concentration of ozone in the occupied space. Very few changes 

in model parameters had any effect on the concentration of ozone in the occupied space. 

Further modelling was performed considering only two zones, a garage and an occupied 

space, as presented in Appendix 2. Using the data found from the field studies, it was again 

seen that under regular conditions with a closed door between the attached garage and the 

occupied space, the change in ozone concentration when the garage was “seeded” with 

ozone after a large air exchange with the outside air had little impact on the indoor occupied 

space. However, when the air flow between the garage and the occupied space increases, 

e.g. when a connecting door between the garage and occupied space is also left open, the 

concentration in the occupied space can increase to almost half of the outdoor 

concentration. This shows that under certain circumstances, unoccupied spaces and their 

connections to the occupied space may have an effect on the concentration of ozone in the 

occupied space. 

2.2 Literature Review 

A total of 189 papers were identified and reviewed for this study. From the literature 

review, found in Appendix 1, it was seen that there exists a large gap in the knowledge of 

ozone reactions in unoccupied spaces. To date, no known publication reports ozone decay 

rates of ozone in any unoccupied space. In order to estimate ozone decay rates in each of 
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the spaces, literature ozone decay rates on common materials found in each space were 

used to determine a relative reactivity of each space. Interzonal flow rates between different 

unoccupied and occupied spaces were found in the literature and were used in the model 

above. 

2.3 Field Study 

The average garage air exchange rate determined in this study was 0.47 (± 0.18)    

h-1. This garage air exchange rate was comparable with previous studies of garage air 

exchange rates [9, and articles within]. The decay rate of ozone (kdep) in the garages tested 

had an average value of 2.7 (± 1.1) hr-1. For attached garages, the ozone decay rate was 

determined assuming 100% of airflow into the garage originates or conversely, 100% 

orginates from the occupied space. This resulted in a kdep range of 2.4-2.6 h-1, for 100% 

indoors and 100% outdoors, respectively. Comparing between one car and two car garages 

showed that one car garages had a larger average ozone decay rate (3.5 ± 0.4 hr-1), than did 

two car garages (2.5 ± 1.1 hr-1). Comparing between attached and detached garages, the 

average decay rates were nearly identical (2.6 ± 1.4 hr-1) and (2.9 ± 0.5 hr-1), respectively. 

This suggests that it is very likely that most of the air entering the attached garages comes 

from outdoors rather than indoors. 

To compare between one car and two car garages further, the deposition velocity, 

which is a measure of the decay rate taking into account the surface area to volume (S/V) 

ratio, was calculated. When this is calculated, then the deposition velocities become much 

closer, showing that the most probable effect for the large ozone decay rates in one car 

garages are the higher S/V ratios.  

The average ozone decay rate measured in garages is very close to the average 

decay rate of occupied spaces reported in the literature. For example, Lee et al. (1999) 
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reported an average ozone decay rate across homes of 2.8  ± 1.3 hr-1 [15]. Several 

researchers claim that the consistency of ozone decay rates between different occupied 

spaces is due to the interactions of humans with those environments, as humans and our 

skin oils are a reactive sink for ozone [16–18]. But the ozone decay rate in garages show 

that there could be another underlying factor that defines ozone decay in residences. More 

research is needed to determine what these factors may be, but a major area in most garages 

is gypsum wallboard, which is also a large area in the occupied space. 

2.4 Overall Conclusions and Future Research 

More research needs to be performed in order to fully determine the contributions 

of unoccupied spaces to the concentration of ozone in the occupied space. While models 

showed that little ozone is transferred from the unoccupied spaces under normal conditions, 

there were conditions in which the ozone concentration indoors increased dramatically 

based on scenarios that provided large flows of air from one area of the house to the 

occupied space. For such cases, it is possible that unoccupied spaces could affect the 

concentration of ozone in the occupied space. 

To fully explore these possibilities, ozone decay rate studies should be performed 

on both crawl spaces and attic spaces. These spaces have large connections to the occupied 

space and no research teams have studied ozone decay rates for these spaces. Secondly, 

interzonal air flows between the unoccupied spaces and the occupied space should be 

measured to improve multi-zone models for ozone migration in homes. Finally, because 

ozone is such a strong reactant, it often forms reaction byproducts that could be dangerous 

to people’s health. These byproducts could also be transported into occupied spaces, so 

research should be done to determine the presence of ozone reaction products in both 

unoccupied and occupied spaces of homes.  
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Appendices 

APPENDIX 1 

Ozone Reactions in the Unoccupied Spaces of Single-Family Homes: A Screening 

Analysis 

Introduction 

Ozone has been a subject of extensive study due to the detrimental effects it has 

on human health.  It reacts with polyunsaturated fatty acids in fluids lining the lung with 

subsequent adverse effects in the airway epithelium [19].  Numerous studies have linked 

ozone exposure to decreased lung function, as well as asthma and premature mortality 

[2–8 and references provided therein]. 

The effects of exposure to ozone in buildings have not been extensively studied.  

Weschler [8] reported that indoor exposure accounts for 43% to 76% of total daily 

exposure to O3, with a mean of 60% across seven cities.  Chen et al. [9,26] showed that 

differences in ozone mortality coefficients (increases in short-term mortality for a given 

increase in ozone concentration) between cities can be partially explained by differences 

in total ozone exposure resulting from differences in the amount of ozone transported 

from outdoors to residential indoor environments.  This finding is consistent with 

observations that the prevalence of centralized air conditioning systems, which are 

associated with lower air exchange rates and lower indoor ozone concentrations, is 

inversely associated with ozone-related mortality [24].   
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Ozone is a moderate oxidant and reacts with many chemicals found in indoor air 

or associated with indoor surfaces, leading to a spectrum of secondary products.  These 

include C1-C10 carbonyls, dicarbonyls, hydroxycarbonyls, secondary organic aerosols, 

and additional oxidized products that may be irritating or harmful to building occupants 

[16,27–42].  Weschler [8] provided a summary of stable oxidation products that result 

from indoor ozone chemistry. 

Numerous researchers have studied ozone concentrations in residences [43–49].  

The ratio of indoor to outdoor ozone concentrations (I/O) generally ranges from less than 

0.1 to 0.7, depending on different housing characteristics.  In cases involving natural 

ventilation, e.g., via open windows, the I/O tends to be greater due to higher air exchange 

rates and less time for reactions to occur in indoor air or on indoor surfaces [49,50]. 

Homes with lower air exchange rates have lower I/O due to the extra time available for 

ozone to react indoors.  

Although there are some indoor sources of ozone in residential buildings [50,51] 

the primary source of indoor ozone is outdoor ozone that penetrates through the building 

envelope.  Stephens et al. [12] and Zhao and Stephens [52] measured a penetration factor 

(fraction of outdoor ozone that penetrates through the building envelope) for residences. 

However, these studies assumed that the house was a single zone, and penetration 

pathways were not identified. In effect, the penetration factor reflects integration of ozone 

penetration over all flow pathways from outdoors to indoors.   
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There are multiple locations in houses with connections to the outdoor 

atmosphere and to other zones within the house [53,54]. Many of these locations can 

generally be categorized as unoccupied spaces, e.g., attics, garages and crawl spaces. 

These spaces are directly connected to the outdoor atmosphere via vents, doors, and 

unintentional cracks.  They are also connected to the interior occupied space of homes 

through various flow pathways, including doors/access hatches, leaks in HVAC ducts, 

leaks around pipes and other protrusions between spaces, or cracks between walls, 

ceilings, and floors. However, the connections between these unoccupied spaces and the 

occupied space have been only sparsely studied, particularly with respect to pollutant 

transport. 

Little research has been completed on ozone reactions in the unoccupied spaces of 

homes and flow pathways that transport ozone and its reaction products between the 

occupied and unoccupied spaces. In this paper, we provide a screening assessment of 

potential ozone reactions and flow pathways in single-family homes.  Four major zones 

are considered, including garages, attics, crawlspaces, and the occupied space.  A four-

compartment model is presented with example simulations based on parameters available 

in the published literature.  This screening assessment is intended to guide future research 

on the importance of chemistry in unoccupied spaces and related impacts on the occupied 

spaces of homes. 
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Ozone Chemistry 

There are two types of reactions involving ozone in indoor environments, 

heterogenous (surface) reactions and homogeneous (in air) reactions. Heterogeneous 

reactions are generally assumed to be first order. The reaction rate for a single surface is 

modeled by the following equation: 

𝑅𝑠 = −𝑣𝑑𝐶𝑂3
𝐴 (Equation 1) 

Where Rs is the surface reaction rate (µg/hr), vd is the deposition velocity (m/hr), 

CO3 is the concentration of ozone (µg/m3), and A is the area over which reactions occur 

(m2). 

The inverse of the deposition velocity is taken as an overall resistance to ozone 

removal to a surface; which is typically modeled as the sum of a transport resistance and 

reaction resistance for that surface:  

1

𝑣𝑑𝑖

=
1

𝑣𝑡𝑖

+
4

𝛾𝑖〈𝑣〉
 

(Equation 2) 

where vti is the transport-limited deposition velocity for surface i, 𝛾𝑖 is the reaction 

probability for surface i, and 〈𝑣〉 is the Boltzmann velocity for ozone (362 m/s at 25 degrees 

Celsius). 

Many researchers present only the deposition velocity based on exposure of 

materials to ozone in laboratory chambers.  However, in these cases the deposition velocity 

for many reactive materials depends on the specific fluid mechanic conditions of the 

experimental chamber, and the effects of those conditions on the transport-limited 

deposition velocity.  This makes it difficult to compare the potential for ozone removal to 
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materials based solely on deposition velocity.   For this reason, it is better to present the 

reaction data in the form of a reaction probability rather than the deposition velocity.  

Reported reaction probabilities for indoor materials generally range from 10-8 – 10-4, 

depending on the specific material [32,55–58].  

The volume-normalized sum of ozone reactions across n materials in an indoor 

zone is: 

𝑅𝑠/𝑣 = ∑ 𝑣𝑑𝑖

𝐴𝑖

𝑉

𝑛

𝑖=1

 𝐶𝑂3
 

(Equation 3) 

The term ∑ 𝑣𝑑𝑖

𝐴𝑖

𝑉

𝑛
𝑖=1  is often referred to as an ozone decay rate (kdep; 1/hr), such that 

Equation 3 can be rewritten as: 

𝑅𝑠/𝑣 = 𝑘𝑑𝑒𝑝𝐶𝑂3
 (Equation 4) 

Homogeneous reactions in indoor air are generally bimolecular. As such, the 

reaction rate is modeled by  

𝑅𝑎𝑖𝑟 = −𝑘𝑏𝑗
𝐶𝑗𝐶𝑂3

𝑉 

 

(Equation 5) 

where Rair is the reaction rate in air (μg/hr), kb is the bimolecular reaction rate 

constant between ozone and reactant j (m3/μg hr), and Cj is the concentration of reactant j 

(μg/m3). Homogeneous reactions are normally less significant than surface reactions in 

terms of ozone removal, but may still lead to important reaction products [59]. As such, 

homogeneous reactions are omitted from the screening model described in this paper, 

which focuses on ozone balances in residences. 
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Screening Model  

The same form of mass balance model is applied to each of the four zones 

(occupied space, garage, attic, crawl space) considered in this screening assessment. Due 

to the connections between each zone, the model equations are interdependent. Each zone 

is treated as a well-mixed reactor. For the four zones considered in this screening 

analysis, the following four equations (equations 4-7) were used with variables as 

denoted in Figure 1. 

𝑉1

𝑑𝐶1

𝑑𝑡
= 𝑄10𝐶𝑜𝑢𝑡 + 𝑄4𝐶3 + 𝑄2𝐶2 − 𝑄9𝐶1 − 𝑄3𝐶1 − 𝑄1𝐶1 − 𝑘𝑑𝑒𝑝1

𝐶1 
(Equation 6) 

𝑉2

𝑑𝐶2

𝑑𝑡
= 𝑄14𝐶𝑜𝑢𝑡 + 𝑄7𝐶4 + 𝑄1𝐶1 + 𝑄5𝐶3 − 𝑄13𝐶2 − 𝑄8𝐶2 − 𝑄2𝐶2 − 𝑄6𝐶2 − 𝑘𝑑𝑒𝑝2

𝐶2 
 (Equation 7) 

𝑉3

𝑑𝐶3

𝑑𝑡
= 𝑄11𝐶𝑜𝑢𝑡 + 𝑄3𝐶1 + 𝑄6𝐶2 − 𝑄4𝐶3 − 𝑄5𝐶3 − 𝑄12𝐶3 − 𝑘𝑑𝑒𝑝3

𝐶3 
(Equation 8) 

𝑉4

𝑑𝐶4

𝑑𝑡
= 𝑄15𝐶𝑜𝑢𝑡 + 𝑄8𝐶2 − 𝑄16𝐶4 − 𝑄7𝐶4 − 𝑘𝑑𝑒𝑝4

𝐶4 
(Equation 9) 

Solving these four differential equations simultaneously results in the change in 

concentration of the species of interest for each zone over time.  
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Figure 1. Four-zone model with three unoccupied spaces and one occupied space 

 

For the above equations, the volume of each zone can be easily determined, and 

the outdoor concentration is assumed to be known and constant over the period of 

interest. However, the flow rates into and out of the zones as well as ozone decay rates 

are also required to solve the model. Flow rates change greatly based on pressure 

differences, which can vary due to external factors such as wind direction and strength, or 

internal factors such as turning on a vent or opening a window [60,61].  For this 

screening analysis, we assume steady flow rate conditions. 

Ozone chemistry in garages 

Materials with large surfaces in garages generally include concrete flooring, 

painted and/or unpainted gypsum board walls and ceiling, metal or wooden garage doors, 

and glass windows (some garages).  Other materials include car exteriors, including 

rubber tires, and other items stored in garages.  Chemicals in garage air include those 
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entering from outdoors or other zones, emitted from building materials and stored 

consumer products, and gasoline vapors.   

For concrete, Simmons and Colbeck found a surface deposition velocity for a 

concrete slab of 25.6 m/hr whereas Grøntoft and Raychaudhuri reported a range of 0.6-

3.6 m/hr [62,63].  Poppendieck et al. [32] found that the initial reaction probability for 

sealed concrete when exposed to high doses of ozone to have a reaction probability of 2.6 

x 10-6. 

No data could be found for rubber tires, however rubber crumb had a decay rate 

of 18.1 (1/hr g of rubber crumb) and rubber floor tiles had a reaction probability of 7.5 

x10-6 [64,65]. Simmons and Colbeck found a reaction probability of 5.5 x 10-6 for clean 

glass, and 2.9 x 10-6 for dirty glass [62].  This is not the tempered glass that are on cars 

but reaction probability is fairly unimportant in comparison to other materials. There 

were no data found for painted metal.  

The ozone deposition velocity for treated gypsum board was found to be between 

0.6- 5.0 m/hr according to Grøntoft and Raychaudhuri [63] and 28.8 ±14.4 (m/hr) 

according Klenø et al. [66]. For gypsum board that is painted, the ozone deposition 

velocity ranges from 1.1 to 24.1 m/h depending on the binding agent that is used [66].  

Lin and Hsu [29] reported an ozone reaction probability for gypsum board of 2.6 x 10-6. 

The ozone reaction probability for latex paint ranges from 7 x 10-7
 at low 

humidity to 2 x 10-5 at high humidity [67]. 

There are no reported values of ozone decay rates (kdep) for garages. Based on the 

relatively large area of painted and unpainted gypsum board in most garages, these 
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materials likely have a significant impact on ozone removal. But other materials that vary 

significantly between garages will impact ozone removal as well.  For this screening 

analysis the ozone decay rate for garages is assumed to be somewhat less than that for the 

occupied space as described below.   

Garage air exchange rates have been studied multiple times. Batterman et al. 

measured outdoor air exchange rates (AERs) and flows between the garage and the 

occupied space in 15 houses. The average AER for garages was 0.77 ± 0.51 h-1  [68].  

Batterman et al. also measured the 4-day average AER for a single garage to be 0.80 h-1 

[69]. These occurred when the garage door was closed.  Emmerich et al. (2003) reported 

results by Furtaw et al. who observed garage AERs of 17-104 h-1 with an open garage 

door [14,70]. 

Treating the garage as a single zone with airflow in from outdoors, the steady 

state equation becomes 

𝐶

𝐶𝑜𝑢𝑡
=

1

1 +
𝑘𝑑𝑒𝑝

𝜆

 
(Equation 10) 

Using an assumed kdep of 1-4 (1/hr) and an air exchange rate of 0.5-1 (1/hr) to 

simulate a garage with a closed door, the C/Cout has a range of 0.2-0.5 However, if the 

garage door is open, and the AER becomes 35 h-1, the ratio becomes 0.9-0.97. This 

means that periods during which the garage door is open can provide a significant 

reservoir of potential O3 entry to the occupied space. 

There may be several connections between a garage and other zones. Garages, 

especially attached garages, are attached to the occupied space, either by means of the 
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basement, in the case of a tuck-under garage, or directly to the occupied space, usually by 

means of a mud room, laundry room, or kitchen [14,71]. There are also connections 

through the wall separating the garage and the occupied space, via cracks and pores in the 

wall. 

Dodson et al.[53] determined the flow rate from the garage to the occupied space 

to change between the summer and winter months for a home in Boston, Massachusetts. 

In the summer, the flow rate was 67 m3/h, and in the winter the flow rate was 174 m3/h. 

Batterman et al. [72]measured air exchange rates and flows between the garage and the 

occupied space in 15 houses and found that the average air exchange rates of the houses 

and garages were 0.43 h-1 and 0.77 h-1, respectively, and the flow contribution from the 

house to the garage and the garage to house was 4.9 and 6.5% respectively. 

There are also connections between the garage and the attic in some homes. 

However, we were unable to find any reported flow rates for this connection.  

Ozone chemistry in attics 

Materials with large surface areas in attics usually include bare wood and 

insulation. There may be other materials that vary from house to house, such as cardboard 

boxes, paints, and HVAC ducts, but these vary considerably between houses.  Only wood 

and insulation are considered here. 

Reported ozone deposition velocities to wood range from 0.08-3.2 (m/hr) 

depending on the type of wood [63]. To the author’s knowledge, there are no reaction 
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probabilities available in the literature for wood. The reported ozone reaction probability 

with fiberglass insulation ranges from 1 x 10-7 – 6 x 10-6 [58]. 

There are no reported values of ozone decay rates (kdep) for attics. Based on the 

relatively large area of wood and insulation in most garages, these materials likely 

dominate ozone removal in many attics. But other materials that vary significantly 

between garages will impact ozone removal in attics as well.     

Very few studies have been performed on the connections between attics and the 

occupied space. Walker et al. [73] modeled attic ventilation rates, including a flow into 

the occupied space, calculating an exchange rate from the attic to the occupied space to 

be 0.03-0.23 air changes/ hour for a 63 m3 attic.  

We were unable to find any publications related to contaminant transport from 

attics to occupied spaces. This may be because temperature differences between the attic 

and the occupied space often creates a “stack effect” which results in air rising from the 

cooler, higher pressure, occupied space, to the warmer, lower pressure attic space [74–

77]. However, these effects are shown to be greater in the winter than in the summer, 

when ozone levels are normally lower[22,78]. There are conditions for which it is likely 

that attic air may flow to the occupied space. For example, if one or more exhaust fans 

are turned on in the bathroom or the kitchen, the underpressurized occupied space may 

draw in attic air. In addition, for HVAC systems that are ducted into the attic, there is 

potential for attic air to flow into leaky return-side duct work. The leakage rate for HVAC 

ducts generally rages from 10-30% [79,80]. This is the most likely transfer pathway for 
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contaminants from attics to the occupied space, although, there are chances that air can 

flow through cracks in the ceiling, as well as through spaces in recessed lighting [81].   

Iffa and Tariku [75] determined overall attic AERs ranging from 10 to 20 h-1. This is 

much higher than air exchange rates found in the closed door garage and the occupied 

space. Using a value of 10-20 1/hr and assumed reaction rate constants of 1-4 1/hr leads 

to a C/Cout of 0.71 to 0.95 based on equation 10. So, because the AER is so large, even 

with a relatively large reaction rate, the concentration of ozone in the attic might be 

substantial on days with high outdoor ozone concentrations, which means that there is 

potential for transport of ozone to the occupied space under favorable conditions. 

Ozone chemistry in crawl spaces 

Crawl spaces are mostly composed of wood and dirt, and sometimes insulation. 

The dirt is often covered by a plastic sheet to prevent moisture and odors soil microbial 

activities from getting into the air in the crawlspace.  

No data could be found for reactions between ozone and soil.  The ozone reaction 

probability with plastic was found by Sutton et al. [82] to have a reaction probability of 7 

x 10-7 – 1.4 x 10-6. 

Mechanically ventilated crawl space air exchange rates have been determined by 

Kurnitski [83] to be between 2.3 and 4.4 1/hr depending on the number of supply and 

exhaust fans. Nazaroff and Doyle [84] determined that between 30 and 65% of the air 

entered from the crawl space to the living space. There were no data reported for the 

opposite flow from the occupied space to the crawl space.  
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For the single zone, steady state concentration in the crawl space, the kdep is 

assumed to be 1-3 1/hr and the air exchange rate is 1-4 1/hr. Using this information, the 

steady state C/Co is 0.25-0.8. Because the connections will mostly be to the occupied 

space, if there is a large amount of air entering the occupied space, then the crawl space 

could have a large influence on the occupied space. 

Ozone chemistry in Occupied Spaces 

Surfaces in the occupied space include building materials, furnishings, and 

occupants (skin oils on the body, on clothing, or shed skin flakes to interior surfaces). 

Heterogeneous reactions between ozone and indoor surfaces have been studied for a large 

number of materials, including carpet, painted gypsum wallboard, cabinetry, concrete, 

paper, linoleum, ceiling tile, and more [12,14,74–78] .  Ozone reactions with surface 

modifiers such as cooking oils have also been studied [27,88–91].  

Materials in residences differ from house to house, but there has been a fair 

amount of research investigating the decay rates of ozone in residences.  Lee et al. [15] 

found the mean decay rate to be 2.8 ± 1.3 1/hr. Sabersky et al. [92] reported a reaction 

rate of 2.9 and 5.4 1/hr with non recirculated and recirculated air, respectively. For the 

purposes of the screening model described below, we will assume that the decay rate in 

the occupied space will be 3 1/hr.  

Ozone chemistry in wall spaces 

Researchers have also studied how ozone transfers from outdoors to the occupied 

space through wall cavities. Liu and Nazaroff modeled ozone penetration across the 
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building envelope and found that, based on how reactive the fiberglass insulation was to 

ozone, ozone penetration through wall cavities can range anywhere from >90% to 10-

40% [58]. Because there is such discrepancy, our model does not include ozone reactions 

for air transport from outdoors through wall cavities. 

Flow rates 

Data related to flow rates between zones in residential buildings is sparse. There 

are two methods for doing this. First, blower door tests have been used to measure the 

leakage areas of a single zone as well as the interface between two zones (e.g., the garage 

and the residence) [14]. These areas, coupled with differential pressure measurements can 

be used to estimate air flows. This is useful for approximations of the overall leakage area 

between zones, but it is challenging to perform for multiple zones. For multi-zone 

airflows, it is more common to utilize tracer gases. Ideal tracer gases are inert. Common 

tracer gases utilized in field experiments include carbon dioxide (CO2), sulfur 

hexafluoride (SF6), and perfluorocarbon tracers (PFTs), [53,93].  

There has been little study on flow rates between zones in buildings, especially 

when considering more than two zones. It is difficult to gain anything but a rough 

estimate of the actual flow rates because weather patterns and human activity changes 

these flow rates, the flow rates employed in this screening analysis are meant solely as 

“reasonable” values.   
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Model Simulations 

Because of the high uncertainties in several model parameters, we provide several 

simulation results here for illustrative purposes. We present three different scenarios 

resulting in six different simulations. For scenario 1, the concentration in each zone with 

respect to the outdoor ozone concentration will be modeled against a changing ozone 

decay rate. Each zonal decay rate will change at the same rate, going from a decay rate of 

zero to the maximum decay rate for each room (shown in table 1). A value of 75 ppb for 

outdoor ozone will be used, the highest 8-hour value of ozone in the Austin, Texas, area 

recorded through June of 2017[94]. Also in scenario 1, a simulation will be run keeping 

the ozone decay rate at 3 hr-1 for the occupied space. All other spaces will follow the 

same decrease as in simulation 1. For scenario 2, an exploration into the contribution of 

ozone from each of the three unoccupied spaces by removing each zone in succession is 

completed. Finally, scenario 3 explores increasing the flow rates into the respective 

zones. One simulation will look at increasing the AER of the garage, as if the garage door 

opens. For scenario 1, a steady-state concentration will be calculated, whereas for 

scenarios 2 and 3 the ozone concentration in each zone will start with a value of zero.  
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Table 1. kdep values for simulation 1 

% of           

kdep maximum 
kdep (h

-1) value for each zone 

 Garage Occupied Space Attic Crawl Space 

kmax 2.25 3.5 3.25 2 

90% 2.025 3.15 2.925 1.8 

80% 1.8 2.8 2.6 1.6 

70% 1.575 2.45 2.275 1.4 

60% 1.35 2.1 1.95 1.2 

50% 1.125 1.75 1.625 1 

40% 0.9 1.4 1.3 0.8 

30% 0.675 1.05 0.975 0.6 

20% 0.45 0.7 0.65 0.4 

10% 0.225 0.35 0.325 0.2 

0% 0 0 0 0 

 

The values for all of the variables for the base case are shown in Table 2. Simulations 

were performed using a differential equation solver, Polymath 6.10. 

Table 2. Base case values for simulation 

 

V1 (m3) 160 Q10 (m3/h) 106.6 

V2 (m3) 500 Q11 (m3/h) 910 

V3 (m3) 63 Q12 (m3/h) 912.4 

V4 (m3) 50 Q13 (m3/h) 174.25 

Q1 (m3/h) 6.4 Q14 (m3/h) 151 

Q2 (m3/h) 10.75 Q15 (m3/h) 140 

Q3 (m3/h) 15 Q16 (m3/h) 105 

Q4 (m3/h) 20 kdep1 (1/h) 1.575 

Q5 (m3/h) 20 kdep2 (1/h) 2.45 

Q6 (m3/h) 12.6 kdep3 (1/h) 2.275 

Q7 (m3/h) 45 kdep4 (1/h) 1.4 

Q8 (m3/h) 10 Cout (ppb) 75 

Q9 (m3/h) 97.25   
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Results 

Figure 2 shows the results of scenario 1. In simulation 1, as kdep increases in each 

zone, the ratio between the respective zone and the outside ozone concentration 

decreases. This is to be expected, as kdep measures how quickly ozone reacts with 

surfaces in the zone. When kdep increases, the rate that ozone decays also increases. 

Therefore, the ozone concentration will be lower when kdep is larger. What is interesting 

is that the rate of decrease in each zone is not constant, but rather it goes in order of AER, 

where the zone with the smallest AER is the zone where kdep had the most effect on the 

ozone concentration.  

 

Figure 2. Steady state ratio of concentrations as kdep changes 

 

For simulation 2, as decay rate changes in the three unoccupied spaces, it can be 

seen that the ozone concentration in the occupied space does not change at all. This could 

indicate that the unoccupied spaces do not greatly affect the occupied space. 
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In scenario two, each of the unoccupied spaces were removed from the simulation in 

succession. The results of these simulations are presented in Figures 2 a-c. These 

simulations can be compared to the base case presented in Figure 2d. As can be seen in 

these figures, the unoccupied spaces have little effect on the ozone concentration of the 

occupied space. Taking away each unoccupied space in succession does little to change 

the occupied space concentration. The space with the largest effect is the crawl space. 

Removing this space does not change the concentration of the occupied space but it 

increases the concentration in the garage and decreases in the attic. The full steady state 

results from all four runs is found in Table 3. These results show that at the present flow 

rates, none of the unoccupied spaces had much of an impact on the ozone concentration 

of the occupied space. 
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Table 3. indoor to outdoor ozone concentration ratios in each zone 

Scenario Steady State ratio zone: outside 

 Occupied 

Space 

Crawl Space Attic Garage 

Base Case 0.123 0.642 0.837 0.336 

No Crawl 

Space 

0.120 -- 0.777 0.381 

No Attic 0.111 0.641 -- 0.327 

No Garage 0.120 0.642 0.846 -- 

 

Finally, a scenario involving the change in the air exchange rate in the garage was 

tested. The AER increased for one hour to 15 h-1 (simulating a garage door opening), and 

then decreased to the original value (0.8 h-1). The resulting simulation is shown in Figure 

3. As can be seen, the garage ozone concentration increases to a high level from 0-1 

hours. Once the AER changes at 1 hour, the concentration drops to a level similar to the 

base case Figure 2d. The attic concentration rises to a value that is just below the base 

case value. However, once the AER changes, the value actually increases slightly, 

resulting in an ozone concentration that is slightly elevated in comparison to the base 

case. These are the most significant changes due to the change in air exchange rate for the 

garage. There is, however, one other result. Both the occupied space and the crawl space 

exhibited no discernable change in ozone concentration when the AER changed. This is 

an interesting result. Even though the flow rates into the living space changed, once the 

ozone concentration reached steady state, a change in the flow rate did not affect its 

steady state concentration. This is most likely due to the occupied space having such a 

large volume, so only a large change in flow rates would affect the concentration of 

ozone in the zone. Because flows from the unoccupied spaces to the occupied space are 
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so low, the occupied space has a lot of “buffering” ability and can withstand increases in 

airflow to its space. This results in relatively constant concentrations of ozone within the 

space.  

 

 

Figure 4. Simulation results with opening and closing of garage door 
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temperature was also not considered, and it was assumed that all zones were at the same 

temperature. Some of the zones used, especially attics and crawl spaces, when poorly 

insulated, can be at drastically different temperatures than the occupied space. This would 

change the density of the air which would affect the flow rates from one zone to another. 

While we did not address this issue, we felt it was more beneficial to present the 

contributions of these unoccupied spaces to the ozone concentration of the occupied 

space, and the needed information directly pertaining to this problem, and temperature 

effects would fall under the needed information. Therefore, for the purpose of the model, 

the temperature was assumed to be constant. Finally, as stated before, this model does not 

assume any homogenous reactions are involved separately in the reaction, and that the 

reaction rate of each zone is only dependent on the concentration of the ozone in that 

space. While it is known that ozone will react with other compounds in the gaseous state, 

we did not consider it for the purposes of this screening assessment. 

Conclusion 

In this paper, a model for a four-zone residence, with three unoccupied spaces and 

one occupied space, was presented for the purpose of determining the contribution of 

each zone to the occupied space ozone concentration. We presented the equations needed 

to model this problem, and all of the knowns and unknowns so far associated with 

solving the problem. In order to find the solution for such a residence, deposition 

velocities and reaction probabilities were found for materials commonly associated with 

the zones used in the model. These were then used to estimate approximate reaction rates 
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for ozone in those zones. Also, data on interzonal transport of air was used to determine 

the airflow from the unoccupied spaces to the occupied space. All of these values were 

then used in the created model to estimate the contribution of the unoccupied spaces to 

the concentration of ozone for the occupied space. From this model, it was found that the 

contribution from all four zones was minimal. However, because the data came from 

many different studies, and there was no single study on a complete house, it is still 

beneficial to find a reaction rate of ozone in each of the three unoccupied space, as well 

as to determine the actual flow rate from each of these zones to the occupied space, and 

in the case of connections between the garage and the attic, to contribute an unknown 

value to the literature. If this is accomplished, then we will truly be able to learn if the 

contribution of the unoccupied spaces to the occupied space is really as minimal as the 

model makes it out to be.  
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APPENDIX 2 

OZONE DECAY RATES WITH GARAGES 

Jonathan Gingrich and Richard L. Corsi 

Introduction 

Increased concentrations of outdoor ozone have shown to have a variety of 

negative health effects on humans [24,97–99]. Ozone causes inflammation in the 

epithelial lining of the lungs which can exacerbate symptoms in asthma patients [25]. 

Many studies have shown that there is a link between ozone exposure and premature 

mortality [8, 21, 22, 98–100]. About one third of Americans live in areas that exceed 

National Ambient Air Quality standards for ozone [101]. 

Ozone does not only exist outdoors. Ozone concentrations in buildings, including 

residences, have been reported by many researchers [20, 44, 45, 47, 49, 102]. These 

concentrations are lower than outdoor ozone concentrations, but Americans and those in 

many other developed countries spend almost 90% of their time indoors [11]. As such, 

the exposure to indoor ozone constitutes up to 60% of a person’s total exposure [8]. 

Ozone exposure indoors also results in exposure to ozone reaction byproducts. Ozone 

reacts with many different surfaces in the indoor environment [46, 102]. It also reacts 

homogeneously with many chemicals in indoor air, including terpenes and terpene 

alcohols used in many consumer products [34,103,104]. These reactions often produce 

byproducts that can be irritating or worse to building occupants [27, 105]. 

Ozone may originate indoors from sources like photocopiers and ionic air purifiers 

[50,106–108]. However, the majority of ozone entering the occupied space comes from 
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outdoors [58, 109]. This ozone enters the building through cracks in walls and through 

openings like windows and doors. Stephens et al.[12] calculated a mean penetration 

factor of ozone into the occupied space of 0.79 ± 0.13, i.e., on average 21% of the 

outdoor ozone is removed before the ozone enters the occupied space[12]. 

Ozone enters the occupied space through cracks in walls and through openings in 

spaces between doors and windows. However, there are other openings in homes that 

may allow ozone into the occupied space. For example, a relatively unexplored pathway 

for ozone entry into homes are unoccupied spaces, such as crawl spaces, attics, and 

garages. These spaces normally have a high air exchange rate and direct connection to 

both the outdoors and the occupied space. Batterman et al. [72] reported that benzene is 

transported from the garage to the occupied space. Zielinska et al. [110] reported that 

turning a car on in the garage could result in a spike of many different compounds in the 

connected kitchen. Because of these studies it can be assumed that ozone may also enter 

the occupied space through this pathway.  

In order to determine the extent to which ozone enters the occupied space through 

garages, the interactions of ozone with surfaces in garages must also be characterized, 

along with air exchange rates when the garage door is closed. Ozone reactions with 

materials in garages are missing in the published literature. Because of this, we measured 

the air exchange rate and ozone decay rate in 12 different garages in Austin, Texas. This 

study reports the results of those experiments and the resulting implications. 

 



 33 

Methods and Analysis 

A convenience sample of garages were chosen based on garage volume and 

connections to the occupied space. No cars were present in the garages during 

experiments. The dimensions of the garages were measured to determine the empty 

volume. Surface areas of gypsum wallboard and concrete floors were also determined for 

each garage. A list of the 12 garages are shown in Table 4, as well as qualitative 

measures of the degree of connectedness to the occupied space and level of clutter in 

each garage. A score from one to five was given for the level of clutter, with 1 being 

clean and 5 having a large amount of clutter. Comments about general contents of each 

garage and their connectedness are also provided in Table 4. 

Air exchange rates were measured by increasing the carbon dioxide concentration 

using a pressurized tank of CO2. The CO2 was released in the garage to increase the 

concentration to over 2000 ppm. The decay was measured over time using a Telaire 7001 

CO2 sensor and a HOBO data logger. Simultaneously, the outdoor CO2 concentration was 

measured.  

The ozone concentration both within the garage and outside of the house was 

measured using Horiba-APOA 370 ambient ozone monitors. If there was a connection 

between the garage and the occupied space, simultaneous ozone measurements were 

made in the occupied space using a model 202 ozone monitor (2B technologies). Ozone 

monitors were calibrated with a calibration source (2B technologies model 306) before 

each field study was performed. For each run, ozone levels were increased in the garage 
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using an ozone generator and mixed using a fan. This generally led to peak ozone 

concentrations of 40-250 ppb, depending on the garage tested. 

 

Table 4. List of garages used in study as well as respective empty volumes, surface areas 

and qualitative scoring of clutter and connectedness. 

# 
Age of 
House 

Connected vs Unconnected 
(C vs U) 

Empty garage 
volume (m3) 

Empty garage 
surface area (m2) 

Clutter 
rating 

Comments 

1 1968 C 128 163 2 

Connection to attic and mod 

room, also window 

connection 

2 1984 C 100 144 2 

Connection to attic and 

laundry room also window 

connection 

3 1994 C 107 157 2 
Connection to attic and 

occupied space 

4 2010 C 143 184 1 Connected to kitchen 

5 1990 U 93 135 3 

Cardboard boxes and 

workbench attic above 
detached garage 

6 2003 U 139 197 3 

Two doors exiting to outside 

apartment above garage, but 
no connections, bikes washer 

and dryer, large plastic and 

cardboard boxes 

7 2003 C 100 139 2 
Connected to attic and 

laundry room 

8 2005 C 55 101 4 

Connected to kitchen couch 

with plastic covering, washer 
and dryer, 2 mini fridges, 

lots of wooden bookcases 

and shelving 

9 1929 U 48 84 2 

Small attic connection, 

adjacent apartment but no 

direct connections to 
apartment, garage door only 

exit and entrance to garage 

10 1942 U 57 92 4 

10 bikes, bundles of vinyl 

flooring, tools, work bench, 
jmetal shelves, paint, lawn 

mower, adjacent apartment, 

but no direct connection 

11 1971 C 56 98 5 

Window, bookcases, lots of 

plastic and cardboard boxes, 

washer and dryer, bikes. 
wooden shelves, chalkboard 

and a tire, connected to 

occupied space and attic 

12 2010 U 41 76 4 

Shelving, bikes, table, rack 

with tools, connected to 

occupied space only via attic, 
and shard back wall with 

occupied space 
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After forty minutes, both the ozone generator and the fan were turned off and 

recording of the decay of both CO2 and O3 began. The decay of both the ozone and the 

CO2 was measured until the CO2 was less than half the value of the peak concentration. 

The CO2 and ozone tests were restarted. This protocol was completed at least three times 

for each garage. 

Air exchange rate 

Air exchange rates were calculated using a dynamic mass balance on an assumed 

well-mixed garage atmosphere. The resulting equation assuming CO2 entry dominated by 

outdoor air is: 

− ln (
𝐶𝑡 − 𝐶𝑜𝑢𝑡

𝐶𝑡=0 − 𝐶𝑜𝑢𝑡
) = 𝜆𝑡 

(Equation 11) 

where 𝜆 is the air exchange rate (1/hr), t is the time (hr), Ct is the concentration of 

CO2 at time t (ppm), Cout is the concentration of CO2 outside (ppm), and Ct=0 is the peak 

concentration of CO2 in the garage at the time the analysis began (ppm). The right side of 

the above equation was plotted against time and a best-fit line was forced through the 

zero intercept to determine the air exchange rate from the resulting slope. An example 

decay curve is shown in Figure 5 and all other air exchange rate curves are provided in 

the supplementary information. For the example shown here, the air exchange rate was 

0.29 hr-1. 
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Figure 5. Air exchange rate analysis with AER = 0.29 1/hr 

Ozone decay rate 

The following mass balance equation was used to determine the decay rate for 

ozone:  

𝑉
𝑑𝐶

𝑑𝑡
= 𝑄𝐶𝑜𝑢𝑡 − 𝑄𝐶 − 𝑉𝑘𝑑𝑒𝑝𝐶 

(Equation 12) 

where V is the volume (m3), dC/dt is the change in concentration of ozone 

(ppb/hr), Q is the flow rate of air into and out of the garage (it is assumed that the flow 

into and out of the garage is equal) (m3/hr), Cout is the outside ozone concentration (ppb), 

C is the garage ozone concentration (ppb), and kdep is the decay rate of ozone due to 

reactions, primarily with indoor surfaces (1/h). This equation was solved for C to obtain 

the following equation: 
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𝐶 = 𝐶𝑡=0𝑒−𝛽𝑡 +
𝜆

𝛽
𝐶𝑜(1 − 𝑒−𝛽𝑡) 

(Equation 13) 

where Ct=0 is the peak ozone concentration in the garage (ppb), 𝜆 is the air 

exchange rate calculated by equation 1 and 𝛽 is found by: 

𝛽 = 𝜆 + 𝑘𝑑𝑒𝑝 (Equation 14) 

Equation 13 was used assuming the outdoor ozone concentration remained 

relatively steady. If this was not the case, a discretized form of the mass balance equation 

was used: 

𝐶𝑛+1 =
𝐶𝑛 (

1 − 𝛽Δ𝑡
2 ) + 𝜆Δ𝑡 (

𝐶0
𝑛+1 − 𝐶0

𝑛

2 )

(1 +
𝛽Δ𝑡

2 )
 

(Equation 15) 

where Cn+1 is the next concentration in the time step (ppb), Cn is the current 

concentration in the time step (ppb), Δ𝑡 is the time step (h), C0
n+1, is the next outdoor 

concentration in the time step (ppb) and C0
n is the current outdoor concentration in the 

time step (ppb). 𝛽 is the rate of removal for ozone in the garage as described in Equation 

14. 

The ozone data were recorded in 3-minute intervals throughout the experiment. 

The peak concentration during each ozone release experiment was used as Ct=0 in the 

decay analysis. The decay analysis continued until the ozone concentration reached a 

minimum or dropped below 5 ppb. These data and the time they occurred were then 

plotted against results for equations 13 or 15. The sum of the residual difference was 

minimized by iterating the value of kdep. The value of kdep that resulted in the lowest 
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summed residual was taken as the kdep of that experimental run. This was done for each 

experimental run. An example of this is shown in Figure 6.   

 

Figure 6. Ozone decay rate with model kdep = 3.2 /hr 

 

For garages that were connected directly to the occupied space by a door, the 

ozone concentration measured in the interior space adjacent to the door over the day of 

testing was averaged throughout the day to obtain a single ozone concentration indoors. 

Indoor concentrations were generally low and relatively constant. Then, using equation 

13, the decay rate of ozone in the garage was calculated, assuming 100% of the air 

entering the garage came from the occupied space. This then provided a range of decay 

rates for attached garages, with one bound assuming all of the air entering from the 

occupied space, and the other assuming all of the air entering from outdoors. In general, 
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these two approaches led to only small differences in back-calculated kdep, i.e, less than 7 

percent. 

Results and Discussion 

Air Exchange rates 

A total of 30 air exchange rate measurements were completed over all 12 garages. 

The arithmetic mean (± standard deviation) air exchange rate of a garage with the garage 

door closed was 0.47 (±0.18) hr-1. A cumulative frequency plot of these air exchange 

rates is shown in Figure 7.  

 

Figure 7. Cumulative frequency of air exchange rates in garages 

 

This air exchange rate was slightly lower than the mean air exchange rates for 

garages reported previously in the literature. For example, Furtaw et al. (1993) reported a 
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garage air exchange rate between 0.3 and 1.5 hr-1. Graham et al. (1999) estimated garage 

air exchanges between 1.8 h-1 and 2.7 h-1. Batterman et al. (2006) measured an air 

exchange rate of 0.77 (±0.51) in 15 garages [68]. Our data are within one standard 

deviation of these studies, with the exception of Graham et al. (1999).  

Ozone decay rates 

The mean ozone decay rate for garages, over all ozone decay tests was 2.7 (± 1.1) 

hr-1.  For two of the garages (garages 2 and 4) five and four ozone decay tests were run 

over two days, respectively, instead of the normal three tests in one day. In order to 

ensure that these extra tests did not skew the results of the mean decay rate, a mean of the 

means was calculated for each garage and averaged. This mean decay rate was 2.7 (± 1.1) 

hr-1, which shows that the extra data taken on the two garages does little to skew the 

results. Because of this, the individual runs are all used for the remaining analysis. 

The cumulative frequency plot for ozone decay rates is shown in Figure 8. This figure 

contains all of the garage tests and all types of garages. The median decay rate was equal 

to the mean, i.e., 2.7 hr-1
, with a first and third quartile of 2.0 and 3.4 hr-1, respectively. 

This shows that there is very little skewness and that the data appear to be normally 

distributed. 
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Figure 8. Cumulative Frequency ozone decay rate with individual tests 

 

Multiple types of garages were tested in this study, both one car and two car 

garages, as well as attached and detached garages of each type. The differences in garage 

type resulted in slightly different ozone decay rates. One car garages had a higher average 

decay rate (3.5 ± 0.4 hr-1) than did two car garages (2.5 ± 1.1 hr-1). However, there was 

little change between average decay rates of attached (2.6 ± 1.4 hr-1) and detached 

garages (2.9 ± 0.5 hr-1). This gives good evidence that most of the air entering from the 

garage comes from outdoors rather than indoors. In fact, after further separating into two 

car attached, two car detached, one car attached and one car detached, it is evident that 

very little change exists between the level of attachment and the average decay rate of 

ozone (Figure 9).  
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Figure 9. Decay rate for each garage type for both CO2 and O3 

 

In order to confirm that the assumption that a large fraction of air is coming from 

outdoors as opposed to the occupied space indoors, we did the reverse analysis on the 

attached garages. These changes do not significantly affect the overall results that ozone 

decay rates don’t differ greatly from the occupied space decay rates. 

The ozone decay rates observed in this study are similar to decay rates found in 

residences [15]. Several researchers have observed that skin lipids associated with 

occupants in a building or aircraft are an important reactive sink for ozone [16, 37, 111]. 

Garages are not normally occupied for long periods of time. Therefore, the human 

influenced sink observed inside residences should not be as pronounced in garages.  

One garage of interest was garage 7. This garage had a much lower ozone decay rate than 

any of the other garages tested. There was no apparent reason for the low values, as much 
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of the materials in the garage were found in the other garages. One reason that this garage 

could have a lower decay rate could be due to the location of the air entering the garage. 

Contrary to results for the other 11 garages, an assumption of all air entering the garage 

from the occupied spaces had a significant effect for this garage. In that case, the average 

decay rate was 1.7 /hr, which is much closer to the average decay rate of the other 

garages. If this garage was removed from the overall data set, the new decay rate would 

be 2.9 (±0.9). The average decay rate of two-car attached garages would be 2.6 (±1.0). 

So, while the individual garage has a low ozone decay rate, the result does not greatly 

affect the average decay rate of the overall data set. 

As can be seen in Figure 9, one car garages on average had larger decay rates than 

two car garages. However, when deposition velocities are calculated (Figure 10), the 

deposition velocities are much closer. This makes sense as the deposition velocity is the 

ozone decay rate multiplied by the volume/area ratio. One car garages have a larger 

empty volume surface area/volume ratio so their ozone decay rates are much higher. By 

normalizing the ozone decay rates by the surface area/volume ratio, it shows that the 

decay rate of the garage is proportional to its empty room surface area to volume ratio.  

There are other variables that could be at play though. One car garages were largely used 

for storage. Much of the space was filled with other items and had a higher amount of 

clutter. Owners of two car garages were much more likely to park cars in the garage. 

Though they were not parked in the garage during the tests, there was still a much larger 

space, in two car garages that was empty. Therefore, more testing needs to be done in 
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order to ensure that the major contribution to ozone decay rate in garages is ozone 

deposition onto the walls, ceilings and floors.  

 

Figure 10. Deposition velocity for each garage type 

Implications 

The time for ozone to decay following a garage door being open affects the period 

of potentially elevated ozone penetration to the occupied space. Using Equation 3 with 

mean values of air exchange rate and ozone decay rate suggests a time of 40 minutes for 

ozone to decay from 90% of its outdoor concentration to 10% of its outdoor 

concentration. 

A simple two-zone steady-state mass balance model was developed to explore the 

exent of ozone penetration from a garage to the occupied space. A diagram showing 

volumetric flow rates (Qx), ozone decay rates (kx), concentrations (Cx), and volumes (Vx) 

is provided in Figure 11. Resulting well-mixed mass balance equations are provided 

0

0.5

1

1.5

2

2.5

3

3.5

2 Car attached 2 Car detached 1 Car attached 1 Car detached

D
ep

o
si

ti
o

n
 v

el
o

ci
ty

 (
m

/h
)

Garage type

vd (m/h)



 45 

below as Equations 17 and 18. The flow from the outside to the occupied space was 

multiplied by the penetration factor reported by Stephens et al. (2012) [12].  

0 =  
𝑄1

𝑉1
𝐶𝑜𝑢𝑡 +

𝑄5

𝑉1
𝐶2 −

𝑄6

𝑉1
𝐶1 −

𝑄2

𝑉1
𝐶1 − 𝑘1𝐶1 

(Equation 17) 

 

0 =  0.79 ∗
𝑄3

𝑉2
𝐶𝑜𝑢𝑡 +

𝑄2

𝑉2
𝐶1 −

𝑄4

𝑉2
𝐶2 −

𝑄5

𝑉2
𝐶2 − 𝑘2𝐶2 

(Equation 18) 

 

 

 

Figure 11. Two-zone model for ozone removal in a garage and occupied space 

 

The volume of the garage (V1) was assumed to be 100 m3 and the occupied space 

(V2) was assumed to be 600 m3. Two scenarios where considered, one with the garage 

door closed (AER in the garage is the reported value) and one with the garage door open. 

For the open garage door case, the AER was determined using a single zone steady state 

model. We observed in our tests that with the garage door open, 
𝐶𝑖𝑛

𝐶𝑜𝑢𝑡
 was about 0.9, 
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which results in an air exchange rate of about 27 h-1. Assuming infiltration conditions, it 

was assumed that air flow into the garage from the occupied space was negligible. 

Batterman et al. (2007) found that 6.5% of the total occupied space air exchange rate 

(assumed to be 0.5 h-1) was due to air flow from the garage, so our value for Q2 was taken 

to be 13.5 m3h-1 [72]. The other flow rates were determined by using air exchange rates 

calculated in our field tests as well as the calculated open garage door air exchange rate 

of 27 h-1.  

A case 0 was also created as a single zone occupied space with an ozone decay 

rate of 2.80 hr-1 and a penetration factor of 0.79. The outdoor concentration was set at 80 

ppb which is above the National Ambient Air Quality Standard (NAAQS) of 70 ppb (set 

by the EPA) [101]. This case 0 had an occupied space ozone concentration of 9.6 ppb and 

an indoor/ outdoor (I/O) ratio of 0.12. For case 1, with the garage door closed, the 

occupied space concentration was 9.1 ppb with an I/O ratio of 0.11. For case 2, with the 

garage door open, the occupied space concentration was 9.7 ppb with an I/O ratio of 0.12.  

As can be seen, while the occupied space ozone concentration changes slightly by 

having the garage door open on a bad ozone day, the change is not substantial. First, the 

volume of the garage is much smaller than the volume of the occupied space. At a ratio of 

1 to 6 in our simulation, a value which matches the average of the attached garages in our 

study to the average home size, assuming 10 foot ceiling heights, A large concentration 

of ozone in the garage results in only a small difference in the much larger occupied 

space. Therefore, even with the garage door open and the I/O ratio in the garage being 

0.9, as it was in both the study and our simulation, the indoor ozone concentration did not 
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change much. Secondly, our research showed that the reaction rate of the garage is very 

similar to the reaction rate in the occupied space as recorded by Lee et al. (1999). 

Because of this, much of the ozone that entered the garage reacted with surfaces, 

lowering the concentration that enters the occupied space. But because ozone reacts 

readily with surfaces and chemicals in the air, reaction byproducts of ozone could very 

well transfer into the occupied space. Further study of reaction byproducts of ozone with 

surfaces in garages, as well as chemicals stored in garages, is needed to determine if this 

occurs to an appreciable extent.  

If, however, the garage door is open and the door connecting the garage and 

occupied space is open, the change in I/O ratio is much greater. For this scenario the 

same flow directions apply, but the flow from the garage to the occupied space is much 

greater (assumed to be .1 m/s multiplied by the area of a door, about 1.85 m2 which 

results in a flow rate of 670 m3/hr). This results in an indoor concentration of 37.1 ppb 

and an I/O of 0.46. So, by increasing the connection between the garage and the house, a 

scenario does exist in which the ozone concentration could increase dramatically. 

Conclusion 

Garage air exchange rates and the ozone decay rates were determined using 12 

garages in the Austin, Texas area. The average air exchange rate for the garages with the 

garage door closed was 0.47 (± 0.18) h-1. The average ozone decay rate in garages was 

determined to be 2.7 (±1.1) hr-1. This is similar to the occupied space ozone decay rate 

calculated by Lee et al. (1999). Ozone decay rates did not change substantially from 
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attached garages to detached garages, suggesting that most of the air entering the garage 

comes from outdoors. Our results also indicate that the increased surface area to volume 

ratio for one- car garages leads to higher ozone decay rates relative to two-car garages. 

Finally, simulations were run with the air exchange rate and ozone decay rate data found 

in this study to determine if garages could be a potentially important pathway for ozone 

penetration into the occupied space. When both the garage door and the door connecting 

that occupied space and the attached garage are closed, it is likely that ozone infiltration 

into the occupied space via garages will have little impact on the overall occupied space 

ozone concentration. However, if both the garage door and the door connecting the 

occupied space are both open for a long period of time, then the concentration of ozone in 

the occupied space will rise dramatically. More research is needed to identify and 

quantify reaction byproducts of ozone in garages and whether such products are cause for 

concern in the occupied space.   
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