Andromeda : a few-body plane-wave calculator

Jonathan Jerke
Jackson Wu
Bill Poirier
Texas Tech University
Jacek Karwowski
Nicolaus Copernicus University

High dimensional Search with Low dimensional output

Digital Quantum Electrons

- No Artificial Intelligence!
- No Machine Learning!
- No Quantum Computing!
- Just classical computing!!?!

Component separation

Reduction to one spacial dimension

Component separation

Sums Of Products = Sum of many $-F(x) G(y) H(z)$

Given a function

Analytically Formulate exact digital Matrix

$$
x^{2}+y^{2}+z^{2}=r^{2}
$$

Pythagorean Theorem

Vector magnitude is separable

$$
e^{-x^{2}} \times e^{-y^{2}} \times e^{-z^{2}}=e^{-r^{2}}
$$

Gaussian is also separable

$$
f(s)=\int_{0}^{\infty} \frac{g(t)}{2 \sqrt{t}} e^{-s t} \mathrm{~d} t=\int_{0}^{\infty} g\left(\beta^{2}\right) e^{-s \beta^{2}} \mathrm{~d} \beta
$$

Laplace Transform of your favorite interaction

Expressed as a sum of Gaussians

$$
\int_{-1}^{1} f(x) d x \approx \sum_{i=1}^{n} w_{i} f\left(x_{i}\right),
$$

Lagendre Quadrature the integral

Lazy like, express as G with integral index

$$
\mathcal{D}(G)_{n m}=\int_{-\infty}^{\infty} \mathrm{d} x\left\{\int_{-\pi}^{\pi} \mathrm{d} p e^{\imath p(x-n)} \int_{-\pi}^{\pi} \mathrm{d} k e^{\imath k(x-m)}\right\} \mathcal{F}(G)(q) e^{\imath q x}
$$

Digitize Gaussian

Any basis is possible but we chose the Sinc as the most local version of plane-waves

Exchange is expressible as SOPs, the few-body computations require this type of term

Average error of a few nanoHartree for 2-body Coulombic interactions

Core Matrix Vector Multiply

$$
M_{n_{1} n_{2} n_{3} m_{1} m_{2} m_{3}}=\sum_{\lambda} X_{n_{1} m_{1}}^{\lambda} Y_{n_{2} m_{2}}^{\lambda} Z_{n_{3} m_{3}}^{\lambda} \quad v_{n_{1} n_{2} n_{3}}=\sum_{\mu} x_{n_{1}}^{\mu} Y_{n_{2}}^{\mu} Z_{n_{3}}^{\mu}
$$

GEOMETRIC GROWTH

$$
M v=\sum_{\lambda \mu}\left(X^{\lambda} x^{\mu}\right)\left(Y^{\lambda} y^{\mu}\right)\left(Z^{\lambda} z^{\mu}\right)
$$

Essential Problem

- Component separated terms geometrically increase in number under matrix-vector multiplication

Solution

ALTERNATING LEAST SQUARES

Algorithms for Numerical Analysis in High Dimensions

Gregory Beylkin, Martin Mohlenkamp

- To cite this version:

Gregory Beylkin, Martin Mohlenkamp. Algorithms for Numerical Analysis in High Dimensions. SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2005, 26 (6), pp.2133-2159. 10.1137/040604959 . hal-02076682

Lifting the curse of dimensionality

"The N ${ }^{3}$ problem has become a 3N problem."

- -Anders Niklasson @ Los Alamos National Laboratory

Elementary...

- Basecamp of 40 Petabyes,
- 34,009 s per iteration on 36 cores
- IBM Qbox can compute upwards of 200 Teraflops on 65K cores
- 3 Gigaflop per core
- That's 32 Gigaflop per core
- 10x algorithmic speedup
- @ 0.1 \% holistic error

Timings to run a quantum 3-body matrix-vector multiply

An exa-sample with $L=100$

SOP Hamiltonian Lithium

SOP wave function Vector state

Matrix-vector multiply on 100 cores

few Gb

Loads in few seconds
few Gb
few hours
hundred Gb

Jackson Wu Jacek Karwowski Bill Poirier

