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Abstract

This paper examines airplane response to rapid flap extension on seven general aviation airplanes. The scenario involves a pilot flying
in the traffic pattern becoming distracted, abruptly extending flaps while looking outside the airplane, and failing to notice airspeed and
pitch-attitude changes. The airplanes tested reached pitch forces of up to 36 lbf, meeting FAA requirements but exceeding the capability
of 55% of the population. Flight data showed a pitch-up to more than 30˚ in 5 s after flap extension, causing airspeed to drop below stall
speed for four of the airplanes. At traffic pattern altitudes, stalling an airplane can be fatal. The NTSB lists over 1000 accidents caused by
loss of control in the traffic pattern between 1982 and 2017. As general aviation airplanes do not carry flight data recorders, it is unknown
how many of those accidents may have involved stalls caused by uncommanded response after flap extension. From the data gathered in
flight, it seems possible some were. To improve safety, flight training should prepare students to anticipate rapid pitch changes during flap
extension and retraction. In addition, airplane developers could interconnect flaps with the elevator, reduce horizontal tail size, or use a
T-tail. The FAA should consider reducing the maximum pitch stick and wheel forces in 14 CFR 123.143 to 20 lbf or less.
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LOC 5 Loss of control
MIL-HDBK 5 Military handbook
MOC 5 Means of compliance
MSL 5 Mean sea level
NTSB 5 National Transportation Safety Board
POH 5 Pilot’s operating handbook
Vs0 5 stall speed or minimum flight speed in landing configuration

I. Introduction

Aviation safety must be considered one of the greatest
engineering accomplishments of the past 100 years. For
2018, the National Transportation Safety Board (NTSB)
reports a total of 38,515 U.S. transportation fatalities, of
which only 393 were incurred in aviation (NTSB, 2018).
Compared with air carrier operations, however, general
aviation (GA) with 330 fatalities has a disproportionate
accident rate. The NTSB publishes detailed annual aviation
safety reviews (NTSB, 2020). In the period 2012–2017,
the NTSB recorded 7630 accidents in GA, of which 18%
(1396) resulted in fatalities. About 63% of the GA acci-
dents occurred with fixed-wing aircraft flown in personal
use. The defining event for about 45% of fatal accidents is
inflight loss of control (LOC), defined by the NTSB as
‘‘loss of aircraft control while in flight, or extreme devi-
ation from intended flightpath’’ (NTSB, 2011). In other
words, a pilot either is distracted from the piloting tasks or
is not paying sufficient attention to the airplane, leading to
a significant loss in airspeed and/or altitude, ultimately
resulting in a crash. To counter the high incidence of LOC
accidents, the focus of past and current GA safety research
has been on improving pilot awareness for energy, air-
speed, and angle of attack through information and warning
systems, designing airplanes for benign stall characteristics,
and designing airplanes for benign post-stall spin char-
acteristics. However, a detailed look at the published NTSB
accident data shows that only 26% of all fatal accidents
occur ‘‘en route,’’ so at or around cruising altitude, whereas
35% occur during initial climb and approach, below 1000 ft
in altitude. If a stall or spin starts at such low altitude,
the pilot does not have enough altitude/time to recover the
airplane and convert altitude into airspeed before ground
impact. This is highlighted by research conducted by the
European Union Aviation Safety Agency (EASA). In 2008,
the EASA analyzed 57 stall/spin accidents and determined
their exact locations; 10 of the accidents occurred in the
period 1999–2008 and involved airplanes designed to be
‘‘spin resistant,’’ namely Cirrus SR-20 and SR-22; the rest
were fatal fixed-wing GA accidents occurring in 2006. The
analysis found that 79% of the accidents happened at
altitudes below 1000 ft and 84% of those low-altitude acci-
dents occurred within the traffic pattern (Hankers et al.,
2009). The available data clearly show that focusing on

stall and spin qualities of airplanes is too late in the mishap
chain to prevent 35% of the total fatalities in fixed-wing,
personal use GA. In the USA alone, this represents on
average 73 fatalities per year, or one every five days.

Therefore, additional research and development must be
devoted to identifying and mitigating factors contributing
to setting a pilot up to lose control of an airplane, resulting
in a stall or spin. Some countermeasures are common sense,
such as reducing distractions during the flight, heeding the
‘‘sterile cockpit’’ rule, and improving the accessibility of
airspeed, altitude, and energy information through glass
cockpits or heads-up displays. However, these counter-
measures only address those pilots that pay attention to the
piloting task and are fully aware of the cockpit environ-
ment. More critical are factors that can surprise inexperi-
enced or distracted pilots during the most accident-prone
phases of flight, in particular the final approach and the
upwind leg during takeoffs and go-arounds. It is the expe-
rience of the test pilots involved in this study, gained over
more than 15,000 cumulative flight hours accrued over 100
years of cumulative flight experience in aircraft of all types,
that the airplane configuration changes during these flight
phases, i.e. extending and retracting trailing edge flaps, can
be a major contributor to the mishap chain leading to fatal
accidents. The extension of flaps causes the shedding of
flap-edge vortices which, under the wrong geometric con-
ditions, can significantly alter downwash and dynamic
pressure at the horizontal tail, changing the forces gene-
rated by the horizontal tail and thus the pitching moment of
the airplane (Kimberlin, 2003). This can lead to an abrupt
increase in longitudinal control forces and, if not compen-
sated by the pilot, to rapid changes in pitch attitude, poten-
tially setting the airplane up for a stall and ground impact.

Normal category (‘‘general aviation’’) airplanes with less
than 19 passengers and 19,000 lb maximum takeoff weight
are regulated by the Code of Federal Regulations (CFR),
Title 14, Part 23. Prescriptive control force limits were
effectively removed from regulatory language with a 2017
rewrite of Part 23 (Amendment 64) with deference to a yet-
to-be-determined industry consensus standard. Therefore,
the controllability requirement stated in 14 CFR 123.2135
is that airplanes must be controllable and maneuverable
during all phases of flight within the operating envelope
and during configuration changes without exceptional pilo-
ting skill, alertness or strength (14 CFR 123.2135, 2017).
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Up until the issuance of Part 23 Amendment 64, 14 CFR
123.143(c) actually prescribed the maximum allowable
control forces: For temporary application, the maximum
pitch control force on a control stick was specified as 60 lbf
and the maximum pitch control force with one hand on a
control wheel was specified as 50 lbf (14CFR 123.14,
2012).

The maximum force limits specified in 14 CFR 123.143(c)
have long been considered too high by the flight test and
flying qualities community. A Federal Aviation Adminis-
tration (FAA) study published in 2019 found that 68% of a
representative sample of the current pilot population (male
and female between 18 and 69 years of age) could not meet
the 123.143(c) single-handed wheel (yoke) pitch require-
ment, and 80% could not meet the stick pitch force require-
ment (Beringer, 2019). The Department of Defense (DOD)
guidelines for flying qualities of piloted aircraft, publi-
shed in military handbook MIL-HDBK-1797, actually limit
the maximum control forces due to pitch trim changes
caused by the extension of secondary control devices such
as flaps to 20 lbf for a wheel and 10 lbf for center-sticks
(DOD, 1997).

Therefore, even when the rapid buildup of longitudinal
control forces during flap extension stays within the 14
CFR 123.143(c) limits, they can prove to be overwhelming
for the majority of the pilot population and lead to low-
level stalls and inflight LOC. Research into the interaction
of transient flap-edge vortices and horizontal stabilizers is
thus needed, in order to quantify the problem and to develop
airplane design and flight training countermeasures.

The aviation safety aspects of flap-edge vortices have
been studied quite exhaustively for transport category air-
craft as defined in 14 CFR Part 25. However, these studies
have almost exclusively focused on the contributions of the
flap-edge vortices to the overall wake vortex during takeoff
and landing (Breitsamter, 2011; Gerz et al., 2002; Özger
et al., 2001; Rossow, 1999). For GA airplanes, literature
research does not produce any detailed tests, simulations, or
analyses focusing on the transient wake–tail interactions
due to flap configuration changes. The purpose of this paper
is to stimulate research in this critical area by demonstrating
the severity of the configuration change response problem
through flight test data for seven single-engine GA aircraft
covering all typical wing–tail configurations; by proposing a
suitable test methodology for manufacturers and regulators;
by providing a phenomenological explanation of the con-
figuration change effects based on airplane geometry; and by
proposing a way for including the trim control forces and
free airplane response in airworthiness certification methods.
It is the intent of the authors that the data provided in
this paper will lead to increased efforts in modeling and
simulation of the response of small airplanes to configura-
tion changes, serve the validation of such simulations, and
ultimately change the way small airplanes are designed
in order to minimize the configuration change effects.

The ultimate result of these efforts will be enhanced GA
safety and a reduction in the number of GA fatalities.

The paper is organized as follows. Section II describes
characteristics of the airplanes tested, and the flight test
methods and procedures required to reproduce the work;
section III reports the results of the flight test campaign;
section IV provides the phenomenological analysis of the
data; and section V discusses proposed countermeasures.
Section VI concludes the paper.

II. Materials and Methods

1. Test Aircraft

Trim changes are fundamentally caused by changes
in downwash at the horizontal tail due to configuration
changes such as flap extension and retraction. Typically,
airplanes with conventional tails undergo large changes in
downwash and dynamic pressure at the tail with changes
in power and flap position, and hence large trim changes
(Kimberlin, 2003). To study the severity of airplane pitch
response and pitch control force change during flap
configuration changes and to evaluate the impact on flight
safety, seven single-engine GA airplanes were subjected to
a series of flight tests. The relevant characteristics of the
airplanes are reported in Table 1.

The airplanes evaluated represent some of the most popular
and most typical types of GA airplanes, with conventional
tails and T-tails, high wings and low wings, aluminum and
composite construction. Except for the Mooney M20C, all
airplanes have fixed landing gear. For all airplanes, full flaps
is the standard position for landing. Six of the airplanes were
certified by the FAA, one by the EASA, and all seven have
been in service for more than a decade. The specific airplanes
were selected because they were readily available as part of
Florida Tech’s aviation fleet or from local flight schools, not
because any point was to be made regarding any model or
manufacturer.

2. Test Objectives and Procedures

The test program had two objectives. The first test
objective was to measure the pitch control forces required
to maintain airspeed after a flap change. The second test
objective was to measure airplane response with no pitch
control inputs after a flap change. To increase test safety,
the first test objective was always accomplished prior to the
second test objective. This safety ‘‘buildup’’ enabled pre-
dictions of which configuration change would cause the
most airplane response. Both test objectives were accom-
plished at nominal centers of gravity (CG) at near maxi-
mum gross weight. As the focus was on the effects of flap
extension, power was kept constant during the experiments.
In the absence of updated regulatory guidance, the flight
tests followed the guidance in 14 CFR 123.143 and 14 CFR
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123.145, measuring the single-hand pitch control force
required to reestablish trim airspeed as flaps were extended
to various positions (14 CFR 123.143, 2012; 14 CFR
123.145, 2012). The maneuvers were repeated with no pilot
correction to reestablish trim airspeed. In other words, the
airplane was allowed to respond freely to a change in flap
setting. The collected data can be used to show what
happens if the pilot is distracted and does not apply any
corrections.

3. Instrumentation

For the first test objective, a hand-held force gauge
inserted between the palm of the pilot’s left hand and the
control wheel or stick was used to measure pitch control
forces. Simulating the downwind leg of the traffic pattern,
the airplane was trimmed with 0˚ of flaps at normal
approach airspeed and power setting. The altitude band for
testing was 2000 to 5000 ft mean sea level (MSL). The
pilots’ only task was to maintain airspeed. Data were only
gathered in smooth air. Once the pilots extended flaps, they
recorded the pitch control force required to maintain
airspeed.

For the second test objective, two cameras were installed
in the cabin. One camera looked over the shoulder of the
pilot to record the values on the cockpit instruments. The
second camera looked over the right or left wing to get
direct images of the pitch angles. The test procedure was as
follows. Simulating the downwind leg of the traffic pattern,
the airplane was trimmed with 0˚ of flaps at normal
approach airspeed and power setting. The altitude band for
testing was 2000 to 5000 ft MSL. Air quality was smooth.
The pilots then abruptly extended flaps to full down and let
the airplane respond with no further pitch control inputs.
The pilots were allowed to apply small roll inputs to main-
tain wings-level flight, but no pitch controls were permit-
ted. The pilots terminated the maneuver when they felt the
airplane was about to stall. This means that the recorded
free pitch response may in some cases not reflect the
complete magnitude possible.

III. Results

The test pilot and flight test engineer read the force
values directly off the hand-held force gauge and noted the
values on the flight cards. The data for the changes in air-
plane pitch attitude and airspeed were reduced post-flight,
by analyzing video of the cockpit instruments. Partial sets
of the data provided here have been presented at confer-
ences (Kish et al., 2016, 2019).

1. Objective 1: Longitudinal Control Forces

The first test objective was met on all airplanes. Table 2
lists the static pitch control forces required to maintain alti-
tude after the final flap setting was achieved. As is typical
for flight tests, the number of available data points is small
and the data reported represent the consensus of the three
test pilots involved after executing the test point multiple
times. They account for variations in pilot technique along
with measurement uncertainties. As expected for airplanes
certified by the FAA, all of the forces were less than the
50 lbf maximum required by 14 CFR 123.143(c).

The forces measured for the M20C, DA40, and PA-28-
180 were negligible. This suggests that extending the flaps
into any setting will be uneventful. A pilot could even fly
the airplane for a long time at those forces without re-trim-
ming. These pitch force results were a substantial contrast
compared to the results for the PA-32, PA-28-181, and
C172N. The required 35 lbf of push force must be considered

Table 2
Longitudinal control force after full flap extension.

Airplane Force (lbf)

PA-32 36 push
PA-28-181 35 push
C172N 35 push
SR20 22 push
M20C 5 pull
DA40 4 push
PA-28-180 2 push

Table 1
Airplane specifications (Cessna, 1978; Cirrus Aircraft, 2003; Diamong Aircraft, 2000; Mooney Aircraft Corporation, 1974; Piper Aircraft Corporation,
1968, 1979, 1994).

Airplane
Max. takeoff
weight (lb)

Length
(ft)

Wing span
(ft)

Wing area
(ft2)

Tail span
(ft)

Aspect
ratio

Wing
loading
(lb/ft2)

Power
loading
(lb/hp)

Piper PA-28-181 2550 24 35.5 170 12.9 7.41 15.0 14.2
Piper PA-32 3400 27.7 32.8 174.5 12.9 6.17 19.5 13.1
Cirrus SR20 3000 26 35.5 135.2 12.9 9.21 22.2 15.0
Diamond DA40 2535 26.3 39.2 145.7 10.9 10.53 17.4 14.1
Cessna C172N 2300 26.9 36 174 11.3 7.45 13.2 14.4
Mooney M20C 2575 23.2 35 170.5 11.8 7.18 15.1 14.3
Piper PA-28-180 2400 23.5 30 160 10.0 5.63 15.0 13.3
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dangerous, as recent FAA research has shown that 55% of
the population are not able to meet this force level for left-
handed yoke push (Beringer, 2019). Holding those forces
without re-trimming would also not pass maximum force
requirement for prolonged application specified in 14 CFR
123.143(c). Using the trim wheel to compensate for the
additional control force is possible with forces achievable
by all pilots. However, during one of the flights on the
C172N, it took 9.5 turns of the trim wheel to balance
the aircraft after arresting the pitch-up motion with the
yoke. The experienced test pilot completed this in about
4 s. As Figure 1 shows, the airplane would have pitched up
by 25˚ over this time.

2. Objective 2: Free Pitch Response

The second test objective was also met on all airplanes.
Figure 1 shows pitch attitude versus time for the different
pitch trim forces required to maintain altitude. For four of
the seven airplanes, the change in pitch attitude is very
rapid, with rates at 4–10 /̊s. The free responses in Figure 1
represent what happens if the pilot does not apply the
required force. As can be expected, the airplanes with the
highest trim force changes have the highest pitching
moment and thus the largest magnitude and highest rate
in the free pitch response. In the PA-32, PA-28-181,
C172N, and SR20, the pilot actually had to come on the

controls to prevent the airplane from continuing to pitch up
and stall.

Airspeed over time for the seven airplanes is reported in
Figure 2. The airspeed is normalized over the stall speed in
landing configuration, Vs0. As is clearly evident, the C172N
and PA-32 reached stalling conditions within 5–5.5 s. The
PA-28-181 would have stalled within 4 s, had the pilot not
aborted the maneuver.

Figures 1 and 2 show how quickly an airplane can get to an
unsafe condition during abrupt configuration changes if the
pilot response is lagging. With control forces of up to 36 lbf
overpowering an unprepared pilot, the airplanes can reach
stall attitude and speed within as little as 4 s. If this happens in
the traffic pattern, a fatal outcome is likely, as evident in the
accident statistics. Therefore, the authors consider the airplane
response of the PA-32, PA-28-181, C172N, and SR20 to
abrupt flap extension from 0˚ to 40˚ to be unsafe. The
remaining questions are: What could be the root causes and
what can be done about mitigating the problem?

IV. Analysis

The horizontal tail of an airplane is typically designed to
meet requirements for longitudinal stability and control
characteristics around common trim points. The pitching
moment of an airplane is dominated by the contributions of
the wing and of the horizontal tail, in terms of both their

Figure 1. Pitch attitude versus time.
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zero-lift pitching moments and the angle-of-attack-depen-
dent pitching moments. The simple flap systems used on
GA airplanes function by changing the camber of the
airfoil, thus increasing the lift at zero angle of attack. At the
same time, increasing the camber of an airfoil also gene-
rates a negative zero-lift moment. Therefore, extending the
flaps should result in a nose-down pitching moment and an
associated pull force. The significant nose-up moment
observed in flight tests cannot be explained by wing aero-
dynamics, but only by the aerodynamic interaction of the
wing and the horizontal tail. The interaction between the
wing and the tail is typically accounted for by the down-
wash angle (Etkin & Reid, 1995; Phillips et al., 2002;
Silverstein & Katzoff, 1939). The downwash at the tail
is caused by the circulation around the wing, which is
an inevitable byproduct of the generation of lift. As the
horizontal tail is typically trimmed at negative angle of
attack to produce a downward lift force and thus a nose-up
pitching moment, any increase in downwash from the wing
would generate a more downward force at the tail and
thus an increased nose-up pitching moment. Therefore, an
abrupt change in downwash angle with the extension of the
flaps is the best candidate to explain the abrupt pitching
response and rapid change in longitudinal control forces
observed.

The downwash cannot be measured directly in flight tests
without installation of a suite of dedicated instrumentation

that would require the recertification of the airplane. Wind
tunnel experiments using scaled models to accurately
reproduce the aerodynamic conditions over the short length
between wings and tail were outside the scope of the project
presented in this paper. Computational fluid dynamics simu-
lations require experimental validation from either flight
tests or wind tunnel experiments. Therefore, the team deci-
ded to use analytical methods to determine whether the
effects observed in flight tests can be explained by down-
wash–tail interaction, or whether more complex flap-edge
vortex–tail interaction must be considered.

1. Downwash–Tail Interaction

The magnitude of the downwash can be estimated by
using the lifting line theory (Phillips et al., 2002) or
methods based on empirical data (Finck, 1978). Literature
does not provide any closed-form analytical model that can
be used to directly calculate the change in downwash angle
due to a change in flap setting. However, the U.S. Air Force
Stability and Control DATCOM provides a method based
on empirical data (Finck, 1978, pp. 4.4.1–8). The method
uses the change in lift coefficient due to flap extension,
calculated from the change in stall speed given in the pilot’s
operating handbook (POH), and the height of the tail in
relation to the wing span to estimate the change in down-
wash angle on the horizontal tail. Assuming that all other

Figure 2. Airspeed versus time.
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aerodynamic parameters remain unchanged during flap
extension, the change in downwash angle directly drives
the change in tail lift coefficient and the resulting change in
airplane pitching moment. Figure 3 shows the control force
changes measured versus the changes in pitching moment
expected from the estimated changes in downwash angle
due to flap extension.

As expected, the C172N, with the tail below the wing,
exhibits the highest change in downwash angle, whereas
the DA40, with a T-tail, exhibits the lowest. The results
also show almost identical changes in downwash angle for
the PA-28-181 and PA-28-180. This also fits expectations,
as the two airplanes are almost identical in configuration
and very similar in dimensions and weight.

For aircraft with reversible, mechanical control systems
such as typical GA airplanes, changes in pitching moment
translate linearly into changes in longitudinal control force.
With the PA-32 and PA-28-181 having almost identical
control systems and tails of almost identical size, the fact
that they should exhibit comparable pitching moments and
control force changes meets expectations. The differences
in moment-to-force ratios between PA-32/PA-28-181,
C172N, and SR20 can potentially be explained by different
nose-down, zero-lift moment of the cambered airfoil and by
different gear ratios in the mechanical control linkages, but
a detailed analysis of the control systems is beyond the
scope of this paper. What can definitely not be explained

using the downwash–tail interaction and control system
gear ratios is the negative (pull) control force change for the
M20C, and the large difference in control force change
between the PA-28-180 and PA-28-181. As can be seen in
Figure 5, the PA-28-181, PA-28-180, and PA-32 are almost
identical airplanes, with the primary difference being the
span, not the area, of the horizontal tail.

2. Flap-Edge Vortex–Tail Interaction

Vortices are typically thought of as a wingtip phenom-
enon. However, when flaps are extended, stable vortices
form around both the inboard and outboard edges of the
flap and flow off tailwards and inboard (Devenport et al.,
1996; Lombardi & Skinner, 2005; Schell et al., 2000;
Shekarriz et al., 1993; Zuhal, 2001). For a number of span
lengths, the wingtip vortices and flap-edge vortices are
distinct vortex structures, with the flap-edge vortices being
the strongest (Breitsamter et al., 2002; Greenblatt et al.,
2009). The vortices then merge behind the airplane,
becoming a major safety concern in commercial aviation
(Crouch, 2005).

The span-wise location of a rolled-up tip vortex is not
directly at the tip or outer edge of the lifting surface, but
rather a certain distance inboard, depending on the aspect
ratio and the taper ratio (Phillips et al., 2002). For certain
combinations of flap location, flap span, and tail span, the

Figure 3. Comparison of expected pitching moment change and measured control force change.
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flap-edge vortices may touch the horizontal tail. In that
case, the outboard flap vortex, which is the dominating
vortex in the wake of the wing (Breitsamter et al., 2002),
would add significant downwash, whereas the inboard flap
vortex would reduce the downwash at the tail. Flight tests
demonstrate that significant flap-edge vortices form on GA
airplanes during flap extension. Figure 4 shows photos
taken on a PA-28-181, making visible the formation of the
flap-edge vortex and the interaction with the horizontal tail.
In Figure 4(a) the flaps are retracted. The streamers taped
to the wing around the outer flap edge flow off straight and
the tufts on the horizontal tail are pressed flat against the
surface by the steady flow. Figure 4(b) shows the situation
4 s after flap extension. The streamers are twisted into the
vortex flowing off the flap edge. The tufts are detached
from the tail and are moving with the turbulence of the flap-
edge vortex interacting with the tail.

The PA-28-181, PA-28-180, and PA-32 are good test
cases for the interaction between flap-edge vortex and
horizontal tail. The PA-28-181 and PA-28-180 have flaps
with identical area and span. The flaps start flush at the
fuselage, thus assumedly preventing the formation of a
defined inboard flap vortex. Figure 5(a) shows how an
outer flap-edge vortex flowing off the flap at 85% span,
combined with some additional inwards drift, would
directly impact the tail of the PA-28-181, but not the tail
of the PA-28-180, matching the flight test data shown in
Figure 4. The outer flap-edge vortex directly impinging on
the horizontal tail would impart an additional downwash
onto the tail, which may account for the significant differ-
ence in control force change between the two airplanes.
In comparison, the PA-28-181 and PA-32 also have almost

identical flap locations and spans, but also tails of identical
span (see Figure 5(b)). Therefore, both tails would be
impacted by the outboard flap-edge vortex, resulting in
similar changes in control forces during flap extension.

If this hypothesis is correct, similar effects should be
evident for the other airplanes of this study. The C172N
(Figure 6(a)) has the inner edge of the flaps flush against
the fuselage. The ratio between flap span and tail span
seems conducive for interaction between the tail and the
outboard flap-edge vortices. However, as the change in
pitching moment expected from the conventional down-
wash analysis for the combination of high wing and
conventional tail is almost twice that for the PA-32/PA-28-
180/PA-28-181, the flap-edge vortex–tail interaction may
not be needed to explain the high longitudinal control force
change measured. The flaps of the SR20 (Figure 6(b))
extend far enough outboard of the horizontal tail, so that an
impact of the outboard flap-edge vortex on the tail is not
expected. The inboard flap edge is sufficiently separated
from the fuselage, so that a defined inboard flap vortex
forms. The inboard flap vortex circulates in the opposite
direction to the outboard flap tip. As the fuselage is nearby,
the inboard flap vortex is expected to be weaker than the
outboard flap vortex. Whether the interaction of the inboard
flap vortex and the tail has any significant effect on the
change in pitching moment and control force during flap
extension cannot be answered based on the available data.
The combination of low wing and T-tail in the DA40
(Figure 6(c)) leads to the downwash analysis resulting in a
very low pitching moment. The outboard flap vortex passes
well outboard and under the horizontal tail, so that no
impact is expected. Therefore, the low control force change

Figure 4. Flap-edge vortex and flap-tail interaction on PA-28-181.
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measured for the DA40 fits expectations. The nose-down
pitching response and resultant negative control force change
for the M20C (Figure 6(d)) can be attributed to three factors.
First, the flap span of the M20C is substantially larger than
for any of the other airplanes, spanning far beyond the tips of
the horizontal tail, thus preventing effects from the flap-edge
vortices. Second, although not a T-tail, the horizontal tail of
the M20C is mounted higher up than on the PA-32, PA-28-
180, PA-28-181, and C172N, thus reducing the downwash
and nose-up moment. Third, based on the flight experience
gained during the test campaign, the authors suspect that the
airfoil used on the M20C generates a high nose-down, zero-
lift moment with flaps extended, thus overcoming the nose-
down moment generated by the tail.

V. Discussion

The combination of flight test data and analytical
modeling of the downwash changes during flap extension
provides strong support for the hypothesis that the inter-
action of flap-edge vortices and the horizontal tail can
cause unexpected, abrupt changes in airplane flight charac-
teristics. As flaps are typically deployed and retracted at
low altitude in the traffic pattern, the flap-edge vortex–tail
interaction is assumed to be a significant contributor to
LOC accidents. The scenario involving a pilot flying in the
traffic pattern who becomes distracted, abruptly extends
flaps while looking outside the airplane, and fails to notice
any rapid changes in airspeed and pitch attitude is likely to
occur. Another possible scenario involves a less experi-
enced, single pilot in a high-workload, instrument meteor-
ological conditions (IMC) approach. Many pilots execute
configuration changes at critical points during such app-
roach. Approach flaps may be selected upon intercepting the
glideslope. Full flaps may be selected upon visually acquiring
the runway at low altitude during the IMC approach.

The airplane free response should not add to the pilot
workload problem. Ideally, a pilot should be able to extend
the flaps and have the airplane remain in balance, with zero
pitch rate. Addressing the issue of abrupt pitching motion
after flap extension requires changes to pilot training and
efforts by airplane manufacturers, supported and encour-
aged by the regulating authorities.

First, the potential for significant pitch response and
changes in stick/wheel forces must be included in pilot
training. Students must be trained to anticipate a rapid
buildup of forces and to be ready to stop the pitching motion
before the airplane attitude reaches critical limits. But this
must be connected with an overall increased emphasis on a
pilot’s attention to the flying task and awareness of the
energy state of the airplane. Although certainly not all LOC
accidents are caused by the configuration change response,
the majority of these accidents can be prevented by pilots
having a better understanding of the energy reserves of the
aircraft in relation to stall speed and above-ground altitude
(Merkt, 2013). Changes to pilot training can be a highly
effective and the most immediate measure to counter the
configuration change problem.

Second, for new airplane designs, the effects of flap-edge
vortex–tail interaction must be considered in tail sizing.
This could result in favoring horizontal tails with shorter
span or T-tails, and in interconnecting the flaps with the
elevator. At the time of writing, no sufficient body of test
data exists to adapt design software and parametric sizing
methods. Therefore, the authors encourage civil aviation
authorities and national aerospace research agencies to sup-
port efforts in numerical simulation, wind tunnel experi-
mentation, and flight testing to close this knowledge
gap. To give direction to designers of new airplanes, the
maximum allowable temporary control force must be
reduced. Based on their experience in multiple flight test
campaigns, the authors recommend setting the maximum

Figure 5. Airplane comparison and hypothesized flow of flap-edge vortex towards horizontal tail: (a) PA-28-181 versus PA-28-180;
(b) PA-28-181 versus PA-32.
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single-handed control force to 20 lbf, instead of the current
50 lbf.

Third, electromechanical measures can be taken to
modify existing airplanes. If an airplane shows a direct
and linear relationship between flap extension angle and
control force change, interconnects between the flaps and
elevator can reduce or eliminate the force change. A design
change of this magnitude would require recertification by
the authorities.

Fourth, the authors recommend that civil aviation
authorities set the framework for changes in airplane
design by amending the existing regulations and the asso-
ciated means of compliance (MOC). With the introduction
of performance-based regulations and MOC using air-
worthiness certification scores, such as the recently accep-
ted ASTM standard specification for low-speed flight
characteristics of airplanes (ASTM International, 2018),

a portion of the available scores can be dedicated to the
magnitude and direction of control force changes along
with the free response angle and rates resulting from flap
extension/retraction.

The combination of measures described can contribute
significantly to reducing the number of fatal LOC accidents
by moving the emphasis of pilot training, airplane design,
and certification away from stalling and post-stall behavior
to detrimental effects higher up in the mishap chain.

VI. Conclusion

GA has an unacceptably high rate of fatal accidents, a
substantial fraction of which can be attributed to inflight
LOC. The majority of fatal LOC accidents occur in the
traffic pattern around airfields, where the airplane is low
and slow, leaving the pilot insufficient time to correct

Figure 6. Hypothesized impact of flap-edge vortices on horizontal tails.
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control errors. At the same time, the pilot cannot devote
undivided attention to piloting, as configuration manage-
ment, communication with air traffic control, and traffic
observation consume significant fractions of attention
bandwidth. In this critical phase of flight, any abrupt and
unexpected change in the flying behavior of the aircraft can
set up a pilot for a fatal accident. The flight tests docu-
mented in this paper, conducted with seven common and
popular GA airplanes, show that the required longitudinal
control force after rapid extension of flaps almost instanta-
neously reaches levels not achievable by the majority of the
current pilot population. The tests also show that, if the pilot
is not able to exert the control force required to stop the
pitching motion of the airplane, the airplane’s free pitching
response results in rapid buildup of pitch angles and asso-
ciated airspeed decrease, within seconds leading to stall
conditions. Both control force change and free pitching res-
ponse are caused by the change in airplane pitching moment
due to flap extension, which is typically explained in terms
of (1) additional nose-up moment due to the wing-induced
downwash angle at the tail increasing with the wing lift
coefficient and (2) an additional nose-down moment due to
the camber of the wing increasing with flap extension. For
the majority of the airplanes tested in this research, neither of
the two contributions can explain the substantial nose-up
change in pitching moment. Instead, the flight test data show
strong indications that the direct interaction between the outer
flap-edge vortices and the horizontal tail must be considered.
If the horizontal tail is mounted at about the same height as
the wings, and if the span of the flaps is similar to the span of
the tail, the flap-edge vortex can impact the horizontal tail,
adding substantial downwash and thus causing the large
change in pitching moment, longitudinal control force, and
nose-up pitching motion. In general, airplanes with T-tails and
airplanes with high flap spans show the lowest configura-
tion change effects. Based on the available data, (1) aircraft
designers should consider this interaction when sizing flap
systems and aircraft empennages, (2) regulators should
include the configuration change response in airworthiness
certification and decrease the maximum permissible long-
itudinal control force, and (3) after-market means for
elevator–flap interconnects could be developed. In combi-
nation, these methods could eliminate abrupt airplane beha-
vior during configuration change from the incident chain
leading to LOC accidents. In addition, the authors also
encourage the field to conduct further numerical and expe-
rimental research to better understand the phenomenon.
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Schell, I., Özger, E., & Jacob, D. (2000). Influence of different flap
settings on the wake-vortex structure of a rectangular wing with flaps
and means of alleviation with wing fins. Aerospace Science and
Technology, 4(2), 79–90.

Shekarriz, A., Fu, T. C., Katz, J., & Huang, T. T. (1993). Near-field
behavior of a tip vortex. AIAA Journal, 31(1), 112–118.

Silverstein, A., & Katzoff, S. (1939). Design charts for predicting
downwash angles and wake characteristics behind plain and flapped
wings, NACA-TR-648, Washington, DC.

Zuhal, L. R. (2001). Formation and near-field dynamics of a wing tip
vortex [Doctoral dissertation]. California Institute of Technology.

56 R.D. Kimberlin et al. / Journal of Aviation Technology and Engineering

https://www.ntsb.gov/investigations/data/SiteAssets/Pages/Data_Stats/US-Transportation-Fatalities-2018.pdf
https://www.ntsb.gov/investigations/data/SiteAssets/Pages/Data_Stats/US-Transportation-Fatalities-2018.pdf
https://www.ntsb.gov/investigations/data/SiteAssets/Pages/Data_Stats/US-Transportation-Fatalities-2018.pdf
https://www.ntsb.gov/investigations/data/Pages/aviation_stats.aspx

	Airplane Pitch Response to Rapid Configuration Change: Flight Test and Safety Assessment

