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EXECUTIVE SUMMARY

Introduction

The Mechanistic-Empirical Pavement Design Guide (MEPDG

has been employed for pavement design by the Indian

Department of Transportation (INDOT) since 2009 and h

generated efficient, lower cost pavement designs. The MEPDG

capable of analyzing the impacts of varying traffic loads on a

pavement structure and providing a more realistic design for the

pavement structure of interest. However, it has been demonstrated

that the success of MEPDG implementation depends largely on a

high level of accuracy associated with the information supplied as

design inputs. Truck traffic volume distribution and axle load

spectra play a critical role in all respects of the pavement structure

design. Inaccurate traffic information will yield an incorrect

estimate of pavement thickness, which can either make the pave-

ment fail prematurely, in the case of under-designed thickness, or

increase construction cost, in the case of over-designed thick-

ness. The traffic input module in the current INDOT MEPDG

pavement design procedures was developed with traffic data

collected through weigh-in-motion stations between 2000 to 2004.

Over the past 10 years, the Indiana highway network has changed

significantly through new construction, roadway expansion

projects, data collection improvement, and safety enhancement.

Consequently, these changes have impacted the statewide traffic in

every respects, such as traffic volume, speed, class distribution,

truck percentage, lane distribution, and growth rate. However, the

current traffic design input module does not reflect the impact of

these improvements and changes. The primary objective of this

study was to update the traffic design input module, therefore

improving the current INDOT pavement design procedures.

Results and Findings

Truck Traffic Distributions and Axle Load Spectra

The traffic data recorded at 143 ATR and WIM stations over

the past 3 years and annual traffic data maintained by INDOT

were utilized in the analysis. The current truck traffic and the

truck traffic in 2008 were compared, and it was found that traffic

volumes and truck traffic volumes had mostly increased,

considerably, on the Indiana highway network. Truck traffic data

in terms of Average Annual Daily Truck Traffic (AADTT) and

axle load spectra were compiled and stored for MEPDG pave-

ment design. Bus traffic data on traffic volumes and axle load

distributions were obtained through WIM and public transporta-

tion information. The equivalent single axle load (ESAL) values

were calculated based on the updated truck volumes and truck

axle load data at WIM sites. Analysis was performed to evaluate

the shifts in truck traffic and axle load spectra for low and high

truck volume roadways, and more reasonable subcategories were

determined. All results and findings were combined to update the

traffic variables in the current traffic design input module, inclu-

ding average annual daily truck traffic; truck volume monthly

adjustment factors; truck volume lane distribution factors; truck

volume directional distribution factors; truck volume class distri-

butions; traffic volume hourly distribution factors; distributions of

single-, tandem-, tridem-, and quad-axle loads; average axle

weight; average axle spacing; and average number of axle types.

Vehicle/Truck Platoon Analysis

Analysis was performed to better understand the traffic

characteristics when vehicles travel in groups with relatively short

headways between vehicles. The critical intervals were established

to define vehicle platoons. Various types of platoons and their

features were analyzed in terms of platoon lengths, leading vehicle

types, and composition of vehicles.

)

a

as

is

Unclassified Vehicles

Analysis of unclassified vehicles was performed with the ATR/

WIM recorded data. A neural network model was established to

determine the appropriate allocations of unclassified vehicles to

truck classes. Since the number of unclassified vehicles is often

fairly high at some ATR or WIM stations, the allocations will help

to improve the accuracy of truck traffic data and thus improve

pavement design. Video records of traffic on an interstate section

and traffic data from a nearby WIM station were utilized to

identify some causes for vehicle misclassifications.

Traffic Database Repository and Visualization

A truck traffic data repository and visualization model and a

Tableau interactive visualization dashboard model were developed

for easy access, view, storage, and analysis of the updated

MEPDG related traffic data.

Implementation

The following recommendations are provided for future

implementation of the research results:

N The updated truck traffic information should be used to

replace the information produced from the last study for

MEPDG pavement design. The information includes aver-

age annual daily truck traffic; truck volume monthly

adjustment factors; truck volume lane distribution factors;

truck volume directional distribution factors; truck volume

class distributions; traffic volume hourly distribution factors;

distributions of for single-, tandem-, tridem-, and quad-axle

loads; average axle weight; average axle spacing; and average

number of axle types.

N The subcategories for low truck volume roads (Group A)

and high truck volume roads (Group D) should be utilized

for pavement design to reflect more realistic traffic

situations.

N Unclassified vehicles should not be discarded or arbitrarily

assigned to truck classes. The developed allocation propor-

tions should be applied to appropriately allocate unclassified

vehicles to vehicle classes for pavement design.

N The updated ESAL values should be adopted for INDOT

applications in areas such as pavement asset management

and construction cost estimate.

N The truck traffic data repository and visualization model

and a Tableau interactive visualization dashboard model can

be used for easy access and analysis and for a visualized view

of the MEPDG related traffic data.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Background

The Mechanistic-Empirical Pavement Design Guide
(MEPDG) has been employed for pavement design by
the Indiana Department of Transportation (INDOT)
since 2009 and has generated efficient pavement designs
with a lower cost (Nantung, 2010). The MEPDG is
capable of analyzing the impacts of varying traffic loads
on a pavement structure and providing a more realistic
design for the pavement structure of interest. However,
it has been demonstrated that the success of MEPDG
implementation depends largely on a high level of accu-
racy associated with the information supplied as design
inputs (Jiang, Nantung, Mangold, et al., 2008; Li
et al., 2005). Vehicular traffic loading is one of the key
factors that may cause not only pavement structural
failures such as fatigue cracking and rutting, but also
functional surface distresses, including friction and
smoothness. In particular, truck load spectra play a
critical role in all aspects of the pavement structure
design. Inaccurate traffic information will yield an
incorrect estimate of pavement thickness, which can
either make the pavement fail prematurely in the case of
under-designed thickness or increase construction cost
in the case of over-designed thickness.

The traffic input module in the current INDOT
MEPDG pavement design procedures was developed
from traffic data collected solely at 47 weigh-in-motion
(WIM) stations over a time period of 2000 to 2004
(Jiang, Nantung, & Chen, 2008). Several major issues
have been raised about the traffic input module by
INDOT pavement engineers over the past years. First,
the current truck traffic volume categories (A, B, C, D)
could not characterize the real truck traffic on INDOT
roadways accurately in many cases. Second, the
MEPDG requires FHWA Class 4 (bus) and above for
the analysis of the impact of truck traffic. However,
there is a serious lack of information on bus traffic in
the current traffic design input module, particularly in
urban areas. This is because INDOT WIM stations were
mostly installed on roads in rural areas. Consequently,
the current traffic design input module cannot accurately
reflect the characteristics of bus traffic in urban areas,
particularly on downtown streets.

Over the past 10 years, great efforts such as I-69 expan-
sion project, Hoosier Heartland project, and ‘‘Major
Moves’’ projects have been made to significantly
improve and expand Indiana’s highway infrastructure.
In 2006, the oversight responsibility of Indiana Toll
Road (ITR) was turned over to the ITR Concession
Company LLC (ITRCC). There is no doubt that all of
the above efforts can have diverse impacts on regional
traffic, such as traffic volume, speed, class distribution,
truck percentage, lane distribution, and growth rate.
However, the current traffic design input module does
not reflect the impact of these improvements and
changes. In addition, traffic data collected by perma-
nently installed automatic traffic recorder (ATR)
systems is also readily available across the entire state.

It was necessary to assess and utilize the ATR traffic
data to improve the traffic input module for two-lane
roads carrying low truck traffic volume and urban
streets. Evidently, there was an urgent need to review
the traffic data in the recent years and to update the
traffic characteristics for the purpose of accuracy in
designing pavement using the MEPDG.

The primary objective of this study was to update the
traffic design input module, and thus to improve the
current INDOT pavement design procedures. Efforts
were made to reclassify truck traffic categories to accu-
rately account for the specific axle load spectra on two-
lane roads and interstate routes with very high truck
traffic volume. The traffic input module was updated
with the most recent data to better reflect the axle load
spectra for pavement design. Vehicle platoons were
analyzed to better understand the truck traffic char-
acteristics. The unclassified vehicles by WIM/ATR
devices were examined and analyzed to identify possible
causes of the inaccuracy of data collection. Bus traffic
in the Indiana urban areas was investigated to provide
additional information for highway engineers with
respect to city streets as well as highway sections pass-
ing through urban areas. New equivalent single axle
load (ESAL) values were determined based on the
updated traffic data. In addition, a truck traffic data
repository and visualization model and a Tableau inter-
active visualization dashboard model were developed
for easy access, view, storage, and analysis of MEPDG
related traffic data.

1.2 Literature Review

Since the MEPDG was developed and utilized by
highway agencies, much research has been conducted in
many aspects related to the pavement design method.
Weigh-in-Motion (WIM) systems, are widely applied
on US highways to record real-time traffic data, inclu-
ding time, lane, vehicle class, speed and axle features
(Jiang, Nantung, & Chen, 2008). Classification results
of vehicle types from the WIM sensors are determined
from screening vehicles in traffic streams and recording
traffic patterns (Nichols & Bullock, 2004). However,
the WIM devices have failed to produce completely
accurate vehicle classification data due to various
causes including system malfunction, traffic conjunc-
tion, and adverse weather conditions. Error reduction
of vehicle classification record in WIM traffic data will
affect prediction of pavement longitudinal cracking in
pavement design. The bias of predicted cracking based
on inaccurate vehicle class distribution lead to over-
estimation or underestimation of pavement thickness
(Tarefder & Rodriguez-Ruiz, 2013).

The Federal Highway Administration (FHWA)
schema on highway vehicle classification is based on
the number of vehicle axles and vehicle units (FHWA,
2016). Computer vision techniques have been employed
to process images and videos for visual detection and
inspection on civil infrastructure systems (Spencer
et al., 2019). Convolution neural networks (CNNs)
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have been rapidly growth and wildly applied on auto-
mation on data recognition (Ng et al., 2015). Li et al.
(2014) analyzed and compared four clustering app-
roaches to generate traffic load inputs. A Wisconsin
study (Titi et al., 2018) used the MEPDG to evaluate
pavement damage and deterioration caused by over-
load heavy truck traffic. Papagiannakis et al. (2006)
used clustering techniques to establish similarities
in vehicle classification and axle load distributions
between traffic data collection sites. Cluster analysis
methodologies were also utilized by Wang et al. (2011)
to identify truck loading groups in order to ease the
preparation of the traffic load spectra inputs for the
MEPDG procedure.

Ziedan et al. (2017) compared the design output
using site-specific traffic input data to the design out-
put using national default values. It was found in the
study that the national input values overestimated
the pavement distresses. Yang et al. (2017) explored the
correlations between distress predictions and various
potential temperature indices and verified the effects of
temperature indices on pavement designs. Various types
of theories and methodologies were applied in the
MEPDG related research, including the finite element
analysis (Gungor, et al., 2017), statistical analysis
(TaghaviGhalesari & Chang-Albitres, 2019; Yang &
Wu, 2012), and support vector regression (SVR) method
(Castro-Neto et al., 2009).

Generally, traffic vehicle platoon can be defined as a
group of vehicles that drive closely with one another
and virtually linked as a whole, either voluntarily or
involuntarily (Bhoopalam et al., 2018; Karim et al.,
2014). The reason of the formation and separation of
platoons varies and can be influenced by different
factors and targets of research, such as the benefits on
traffic congestion, fuel/time save, and driving safety
(Zhao et al., 2018). Many studies have been focused on
modeling vehicle platoons, especially truck only pla-
toons. In order to group vehicles into platoons, time
headway is the most wildly used threshold factors
(Karim et al., 2014). The autonomous truck platoon
behaviors were analyzed in highway exits by Mesa-
Arango and Fabregas (2017). Jiang et al. (2006)
developed an algorithm of traffic signal timing in terms
of real time platoon detections.

1.3 Main Tasks

The following tasks were accomplished in this study:

1. Review of the existing INDOT’s traffic classification
practices. This included a review of the existing ATR/
WIM databases maintained by INDOT, previous studies
related to the accuracy and reliability of INDOT’s ATR/
WIM data, INDOT annual traffic volume reports by ATR
and WIM system, and Indiana Average Annual Daily
Traffic (AADT) data and related GIS maps.

2. Extracting traffic information from the binary ATR/WIM
data files and transferring the data into a format for data
analysis and validation. A computer program was devel-
oped to extract the necessary information from the huge

amount of ASCII raw ATR/WIM data for the purpose of
data validation and MEPDG requirements.

3. Analysis of INDOT’s ATR/WIM traffic data. ATR/WIM
and AADT data maintained by INDOT were compiled,
examined, and analyzed. The data collected over the most
recent 3 years were utilized in the analysis.

4. Determination of possible subcategories for low and high
truck traffic volume roads. An in-depth analysis was per-
formed on ATR/WIM data and more reasonable sub-
categories were determined. Analysis was performed to
evaluate the shifts in truck traffic and axle load spectra for
low and high truck volume roadways.

5. Examination of truck traffic and load conditions. The
truck traffic data in terms of Average Annual Daily Truck
Traffic (AADTT) and axle load spectra were compiled and
illustrated.

6. Creation of bus traffic data. Bus traffic data with respect of
traffic volumes and axle load distributions were obtained
through WIM and public transportation information.

7. Vehicle/Truck platoon analysis: Analysis was performed to
define the characteristics of vehicle/truck platoons on
Indiana roadways.

8. Analysis of unclassified vehicles in ATR/WIM recorded
data. A neural network model was established to determine
the appropriate allocations of unclassified vehicles to truck
classes. Since the number of unclassified vehicles is often
fairly high at some ATR or WIM stations, the allocations
will help to improve the accuracy of truck traffic data and
thus improve pavement design.

9. Update on traffic design input module. All results and
findings were included and combined to update the traffic
variables in the current traffic design input module,
including average annual daily truck traffic, truck volume
monthly adjustment factors, truck volume lane distribu-
tion factors, truck volume directional distribution factors,
truck volume class distributions, traffic volume hourly
distribution factors, distributions of for single-, tandem-,
tridem-, and quad-axle loads, average axle weight, average
axle spacing, and average number of axle types.

10. Determination of ESAL categories. The updated truck
axle load data at WIM sites were utilized to calculate
ESALs at all WIM stations.

11. Traffic database with the most recent WIM/AVC data.
A truck traffic data repository and visualization model and
a Tableau interactive visualization dashboard model were
developed for easy access, view, storage, and analysis of
MEPDG related traffic data.

2. DATABASE AND TRAFFIC VOLUME
DISTRIBUTION

2.1 WIM and ATR Database

Two types of automatic traffic data recording devi-
ces, weigh-in-motion (WIM) and automatic traffic
recorder (ATR), have been employed on Indiana road-
ways. In 2018, there were 95 ATR stations and 63 WIM
stations in Indiana. Figure 2.1 illustrates the distribu-
tion of the 158 ATR and WIM stations in Indiana in
2018, where ATR stations are denoted by blue triangles
and WIM stations are denoted by red squares.

The ATR and WIM data from 2016 to 2018 was
retrieved for data analysis in this study. ATR and WIM
devices are designed to record traffic data continuously.
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Figure 2.1 Distribution of ATR/WIM stations in Indiana.

Ideally, an ATR and WIM station would provide com-
plete traffic data of every vehicle passing the station
at any time. However, it was found during the data
retrieving that the traffic data in many stations were not
complete due to either device problems or road con-
structions. In some stations, the ATR or WIM devices
failed to record traffic data for a long period of time,
even as long as a few months. Tables 2.1 and 2.2 display
the number of sites with complete and incomplete data
and sites without data during the 3 years for ATR and
WIM respectively. Figure 2.2 shows the percent of the

ATR and WIM stations with complete traffic data
within the 3 years. Therefore, only minority of the ATR
and WIM stations recorded complete data within the
3-year period.

2.2 Statewide Traffic Volume Distributions

The first step of data processing was to download
traffic data of the 3 years—2016, 2017, and 2018—from
the ATR and WIM systems. The ATR and WIM data
were stored in binary format. In order to read the
traffic data from the binary files, iAnalyze software was
utilized to decode and to convert the binary data into
the American Standard Code for Information Inter-
change (ASCII) data. The generated output through
iAnalyze is in the form of Comma-Separated Values
(CSV) files, which includes traffic information on vehi-
cle passing time, speed, axle weight, axle spacing, and
air temperature. A computer program in Python was
developed and utilized to extract the necessary infor-
mation for analyzing traffic data with respect to volume
distribution, axle load spectra, and vehicle classifications.
The retrieved traffic data were stored in Excel format.

Vehicles are classified as 13 classes by the Federal
Highway Administration (FHWA), as shown in Figure
2.3. In the 13 classes of vehicles, traffic volumes of Clas-
ses 4 through 13 vehicles, including buses and various
types of trucks, are denoted as truck traffic volumes.
Truck traffic volumes are the primary input for pave-
ment design since the vehicles in the group exert a
significant impact on pavement structure and are the
main forces causing pavement structure damages and
distresses.

In addition to ATR and WIM database, a base map
of Indiana traffic volumes is available. The base map is
updated annually based on INDOT’s statewide traffic
data collection mechanism. It contains traffic volumes
on the roadway network in Indiana in terms of AADT
and AADTT. The base map traffic data can be processed

TABLE 2.1
Status of ATR sites

Data Availability Number of Sites

Sites with complete 3 years of data (2016, 2017, 2018)

Sites with incomplete data (2016, 2017, 2018)

Sites without data (2016, 2017, 2018)

Total

21

71

3

95

TABLE 2.2
Status of WIM sites

Data Availability Number of Sites

Sites with complete 3 years of data (2016, 2017, 2018) 8

Sites with incomplete data (2016, 2017, 2018) 43

Sites without data (2016, 2017, 2018) 6

Sites with ZIP/CSV format data (unreadable) 6

Total 63
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Figure 2.2 Proportions of ATR/WIM stations with complete traffic data.

Figure 2.3 FHWA vehicle classification (FHWA, 2016).
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with GIS software to show statewide traffic volume
distributions in 2D or 3D graphs. Using the base map
in 2017, the AADT distributions were obtained as
exhibited in Figure 2.4 and Figure 2.5. The 2D and 3D
graphs in the two figures present a clear illustration of
the statewide AADT distribution. The areas, locations,
and roadways with different levels of traffic volumes can
be visually identified by using the two graphs together.
Similar to traffic volume distributions, the statewide
truck traffic distributions in terms of AADTT are plot-
ted in Figure 2.6 and Figure 2.7. In these two figures,
the relative magnitudes of truck traffic volumes are
visualized in both 2D and 3D imagines.

In Figure 2.4 and Figure 2.6, the GIS maps include
and display all values of AADT and AADTT, respec-
tively. In order to show different levels of AADT or
AADTT, a GIS map can be divided into a number of
maps with different levels (layers). The individual layer
GIS maps for AADT are shown in Figure 2.8 and those
for AADTT are shown in Figure 2.9. These GIS maps
exhibit more detailed visual information on the state-
wide traffic and truck traffic distributions in various
levels.

2.3 Traffic Volume Changes

The current truck traffic input for INDOT’s mecha-
nistic-empirical pavement design is based on the pre-
vious study (Jiang, Li, Nantung, & Chen, 2008) with
5-year WIM data up to 2004. It was expected that the
traffic volumes should have changed significantly since
then. Therefore, the WIM data in 2004 were compared
to the WIM data in 2016, 2017, and 2018. There were
26 common WIM stations that existed in 2004 as well
as in 2018. The recorded traffic volumes at these WIM
sites in 2004 and 2018 are listed in Table 2.3. As shown
in the table, the traffic volumes (AADT) increased at 17
out of the 26 WIM sites, ranging from 1% to 162%. The
truck traffic volumes (AADTT) increased at 19 out of
the 26 WIM sites, ranging from 3% to 130%. During
the period of 15 years, the average increases in AADT
and AADTT are 15% and 17%, respectively. The
magnitudes of the increases in traffic volumes, espe-
cially in truck traffic volumes, indicate that there was a
significant need to update the statewide traffic for
appropriate pavement design in Indiana.

To further illustrate the changes in traffic conditions,
the traffic data in Table 2.3 are presented in graphs.
The AADT volumes in 2004 and 2018 at the 26 WIM
sites are plotted in Figure 2.10. The corresponding per-
centages of AADT changes are shown in Figure 2.11.
Similarly, the comparisons of truck traffic volumes
(AADTT) in 2004 and 2018 are displayed in Figures
2.12 and 2.13. These figures indicate that traffic
volumes and truck traffic volumes increased in the



Figure 2.4 Average annual daily traffic (AADT) distribution map (2017).

Figure 2.5 Average annual daily traffic (AADT) distribution in 3D (2017).
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15 years at most of the WIM sites. At some of the
WIM sites, the traffic volumes or truck traffic volumes
decreased. However, the magnitudes of the increases
are much greater that those of the decreases as shown in
Figures 2.11 and 2.13. It is interesting to notice in Table
2.3 and in the figures that there were a few cases that
the traffic volume increased while the truck traffic
volume decreased and vise versa at same WIM site.

The distributions of traffic volumes and truck traffic
volumes in 2004 were compared with those in 2016,

2017. An example of such a comparison is demon-
strated in Figures 2.14 and 2.15 with the traffic data at
WIM Site 351 on I-465 in Indianapolis. The differences
are clearly shown in terms of the average hourly traffic
volumes and the average hourly truck traffic volumes
between 2004 and 2016 through 2018. Not only the
hourly volumes had increased significantly since 2004,
but also the volume distributions had changed, as
reflected in the relative volume proportions and the
time periods of peak volumes along the 24 hours.



Figure 2.6 Average annual daily truck traffic (AADTT) distribution map (2017).

Figure 2.7 Average annual daily truck traffic (AADTT) distribution in 3D (2017).
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Figure 2.8 AADT range maps (2017).

Figure 2.9 AADTT range maps (2017).
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TABLE 2.3
Comparison of traffic volumes in 2004 and 2018

AADT AADTT

Site Number 2004 2018 Change 2004 2018 Change

100

120

200

210

220

230

310

340

351

352

360

370

420

430

450

470

520

530

540

600

610

620

630

640

650

660

1,863

16,507

30,121

7,379

10,112

24,340

35,479

88,704

43,427

36,067

37,536

39,655

38,780

45,302

8,800

23,584

4,511

31,217

29,514

9,191

16,609

6,824

13,903

7,664

23,764

20,995

3,537

18,144

26,952

10,080

10,955

30,054

34,881

48,957

94,294

83,206

41,996

33,743

101,761

15,028

6,634

32,298

3,219

35,605

32,562

9,033

16,516

7,647

9,202

9,297

25,829

10,254

90%

10%

-11%

37%

8%

23%

-2%

-45%

117%

131%

12%

-15%

162%

-67%

-25%

37%

-29%

14%

10%

-2%

-1%

12%

-34%

21%

9%

-51%

659

5,257

7,654

1,587

1,914

7,676

3,055

14,948

5,638

4,109

11,797

11,942

8,383

11,952

1,052

3,455

1,003

7,957

4,900

1,643

5,095

2,168

1,429

519

2,284

2,641

1,258

3,671

8,156

2,133

1,794

9,036

2,067

9,109

11,302

9,461

16,235

14,112

14,730

12,558

1,012

4,963

725

7,522

6,835

2,054

5,838

2,564

1,388

695

2,577

871

91%

-30%

7%

34%

-6%

18%

-32%

-39%

100%

130%

38%

18%

76%

5%

-4%

44%

-28%

-5%

40%

25%

15%

18%

-3%

34%

13%

-67%

Figure 2.10 Traffic volumes in 2004 and 2018.
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Figure 2.11 Traffic volume changes (2004 vs. 2018).

Figure 2.12 Truck traffic volumes in 2004 and 2018.

Figure 2.13 Truck traffic volume changes (2004 vs. 2018).
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Figure 2.14 Average hourly traffic volumes (2004 vs. 2016, 2017, and 2018).

Figure 2.15 Average hourly truck traffic volumes (2004 vs. 2016, 2017, and 2018).
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3. TRUCK TRAFFIC AND AXLE LOAD SPECTRA

3.1 Truck Traffic Volumes

In the 13 classes of vehicles in the FHWA classifica-
tion system (FHWA, 2016), Class 4 through Class 13
vehicles are denoted as trucks. It should be noted
that the buses (Class 4) are included in the truck traffic.
Truck traffic volumes are the primary input for pave-
ment design since the vehicles in the group exert a
significant impact on pavement structure and are the
main forces causing pavement structure damages and
distresses.

Box plots are utilized to illustrate the truck traffic
distribution patterns on different types of roadways.
A box plot, also known as box-and-whisker plot, is often
used to study the distribution of data and to visualize
the spread and skew of the data (Subramanian, 2020).

A box plot uses the following values to depict the dis-
tribution of a dataset: minimum, first quartile, median,
third quartile, and maximum. As shown in the diagram
in Figure 3.1, the box plot contains a box and some
horizontal and vertical lines. The box represents the
range from the first quartile to the third quartile. Fifty
percent of the data points are contained inside of
the box. The horizontal line inside the box represents
the median of the data. If the median is not in the
middle of the box, then the distribution is skewed. The
distribution is positively skewed if the median is closer
to the bottom. If the median is closer to the top, then
the distribution is negatively skewed. The first quartile
(Q1) is the 25th percentile value of the data. It is also
called the lower quartile. The third quartile (Q3) is the
75th percentile of the data. It is also called the upper
quartile. Quartiles are a special case of a type of



P

Figure 3.1 Box and whiskers plot (Subramanian, 2020).
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statistics called quantiles, which are numbers dividing
data into quantities of equal size. Extending from both
the ends of the box plot are called whiskers, which
extends till the adjacent values. The lower adja-
cent value is the furthest data point that is within 1.5
times of the interquartile range (IQR) of the lower end
of the box, and the upper adjacent value is the furthest
data that is within 1.5 times of the IQR of the upper
end of the box. The interquartile range is calculated as
IQR 5 Q3 2 Q1. Any data points past the whisker ends
are considered as outliers and represented with circles
or diamonds.

The recorded ATR and WIM data in 2016, 2017, and
2018 were retrieved, compiled, and analyzed to examine
the characteristics of truck traffic in Indiana. The truck
traffic distributions were analyzed for interstate high-
ways, US routes, and state roads. The box plots for the
interstate highways with four to twelve lanes are depic-
ted in Figure 3.2 for the period of 3 years. As shown in
the figure, on four-lane interstate highways, the truck
traffic changed from a relatively symmetric distribu-
tion in 2016 to positively skewed (skewed toward the
bottom) distributions in 2017 and 2018. In addition, the
sizes of the boxes and ranges (distances between mini-
mum to maximum) of the four-lane interstate highways
experienced only minor changes during the 3 years. The
median values of the truck traffic volumes remained
relatively stable on four-lane, six-lane, and eight-lane
interstates, while the median values on ten-lane and
twelve-lane sections experienced a decreasing trend in
the 3 years. The distributions of the truck traffic volumes
are negatively skewed for the eight-lane and twelve-lane
interstates. It should be noted that the truck traffic distri-
bution on ten-lane interstate highways changed from a
negatively distribution in 2016 to symmetric distributions
in 2017 and 2018. In terms of the distribution medians,
the truck traffic volumes on the four-lane, six-lane, and
eight-lane interstate highways remained consistent, while

those on the ten-lane and twelve-lane interstate highways
moved downward in the 3 years.

The box plots for the US routes and state roads
are displayed in Figure 3.3 and 3.4, respectively. The
box plots in Figure 3.3 indicate that the truck traffic
distributions in 2016 and 2017 are similar for both two-
lane and four-lane US routes. However, the truck traffic
volume distributions shifted up with increased max-
imum values on two-lane US routes and shifted down
with decreased median and maximum values on four-
lane US routes in 2018.

As shown in Figure 3.4, the medians for two-lane
and four-lane state roads remained in the same levels
during the 3 years. The maximum values, however,
experienced apparent changes for two-lane state roads.

The 3-year ATR and WIM data of 2016, 2017, and
2018 were used for the data processing and analysis to
update the required traffic inputs for the MEPDG. All
of the required traffic inputs for the MEPDG were
obtained from all the ATR and WIM stations. To illus-
trate the truck traffic and axle load spectra, a WIM
station on I-70 (WIM Site 315) was utilized in this
report to present the processed traffic data. The WIM
station was located on I-70 in Indianapolis as shown in
Figure 3.5. The WIM device recorded traffic data of
five eastbound lanes at this location where the lanes
were numbered with the driving lane as Line 1 and the
lane adjacent to the highway median as Line 5. The
traffic inputs for the MEPDG include the following:

N average annual daily truck traffic,
N truck volume monthly adjustment factors,
N truck volume lane distribution factors,
N truck volume directional distribution factors,
N truck volume class distributions, and
N traffic volume hourly distribution factors.

Truck traffic can be expressed in different forms,
including average annual daily truck traffic (AADTT),
average monthly daily truck traffic (AMDTT), and
average hourly truck traffic (AHTT). The obtained
values of the truck traffic are in the forms of average
monthly daily truck traffic (AMDTT) and average
hourly truck traffic (AHTT) of a year. Table 3.1 pre-
sents the monthly AMDTT values at the I-70 WIM
station. It should be noted that the average values
shown in the last row of Table 3.1 are the values of
AADTT of the corresponding lanes. With the AMDTT
values, the monthly adjustment factors (MAF) can be
calculated by the following equation (ARA, 2004):

MAFi~
AMDTTi

12
i~1 AMDTTi

|12 ðEq: 3:1Þ

Where:
MAFi: monthly adjustment factor for month i.
AMDTTi: average monthly daily truck traffic for

month i.
The monthly adjustment factors calculated with the

data in Table 3.1 are plotted in Figure 3.6. The MAF
values reflect the monthly as well as seasonal impact of
truck traffic on pavement structures.



Figure 3.2 Truck traffic distributions on interstate highways.
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Figure 3.3 Truck traffic distributions on US routes.

Figure 3.4 Truck traffic distributions on state roads.

Figure 3.5 WIM Station 315 on I-70 (Google, n.d.).
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Through processing the WIM data, the average
hourly truck volumes at the I-70 WIM station were
obtained as graphically illustrated in Figure 3.7. The
variations of the hourly truck volumes during the
24 hours at the site are clearly shown in the graph.
Using the average hourly truck volumes, the hourly
distributions factors can be calculated. Figure 3.8
displays the hourly distribution factors. The hourly
distribution factors are the percentages of truck traffic
at each hour out of the total truck volume during the
24-hour period. Thus, the sum of the 24 hourly distri-
bution factors should be equal to 100%.

The truck traffic contains ten types of trucks, Classes
4 through 13, as defined by the FHWA vehicle classi-
fications (FHWA, 2016). The truck volumes of the
vehicle types are of interest to highway engineers for
MEPDG pavement design. The truck volumes of the
ten vehicle types in each month at the WIM station are
presented in Table 3.2. In order to visually illustrate the
distribution of the truck traffic, the truck volumes by
truck classes are drawn in Figure 3.9. The truck
volumes in the figure indicate that most of the trucks
at this location were Class 5 vehicles, followed by Class
9 vehicles. It is interesting to note that in most cases



Class 9 truck volume would be higher than Class 5 truck
volume on freeways. The reason for the higher Class 5
truck volume at this location is probably that the WIM
site is inside Indianapolis where Class 5 trucks, including

TABLE 3.1
Average monthly truck traffic at the I-70 WIM site

Month Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 AMDTTi

January

February

March

April

May

June

July

August

September

October

November

December

Average

1,807

1,400

967

971

1,053

1,126

900

1,142

971

1,033

941

1,013

1,110

3,424

2,985

2,621

1,955

1,614

2,077

2,860

3,102

3,430

3,239

3,291

3,028

2,802

2,280

2,123

1,665

2,866

2,346

2,622

2,050

2,321

3,107

3,544

2,574

3,261

2,563

1,439

1,210

1,637

1,527

431

591

333

1,078

1,923

2,318

2,268

1,948

1,392

1,336

1,440

1,097

1,568

971

1,159

544

1,398

1,429

1,435

1,573

1,813

1,314

10,286

9,158

7,987

8,887

6,415

7,575

6,687

9,041

10,860

11,569

10,647

11,063

—

delivery and construction trucks, are more active for
urban commercial and residential services.

Distributions of truck traffic on roadway lanes at
this WIM site were obtained. Figure 3.10 presents
the average daily truck volumes in each month. Based
on the data in Figure 3.10, the lane distribution
factors of truck traffic can be computed as shown in
Figure 3.11.

The lane distribution factors in Figure 3.11 are the
proportions of all trucks (Class 4 through Class 13) on
the five lanes. It is of interest to highway engineers to
know the lane distributions of individual classes of
trucks. Figure 3.12 and Figure 3.13 display the lane
distributions of individual truck classes in two different
ways. Apparently, the lane distributions of different
vehicle classes are notably different.

The lane distribution factors for the individual vehicle
types are displayed in Figures 3.14 through 3.23. These
lane distribution factors provide specified information
on the impact of individual types of vehicles on roadway
lanes. The lane distribution factors reveal that Lane 2
and Lane 3 carried most of the truck traffic for almost

Figure 3.6 Monthly adjustment factors.

Figure 3.7 Average hourly truck traffic.
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Figure 3.8 Hourly distribution factors of truck traffic.

TABLE 3.2
Average monthly daily truck volumes of different vehicle classes

Month

Vehicle Class

C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

January

February

March

April

May

June

July

August

September

October

November

December

Average

271

262

231

272

199

232

221

281

348

395

308

243

272

6,205

5,270

4,380

4,839

3,668

3,983

3,011

4,412

4,839

4,802

4,680

4,685

4,564

221

209

214

235

167

211

216

281

376

438

347

235

262

39

32

43

50

35

46

59

67

84

100

84

51

57

568

561

550

703

503

678

602

570

608

649

454

316

563

2,787

2,664

2,418

2,604

1,697

2,264

2,428

2,923

4,233

4,654

3,525

2,541

2,895

22

16

16

13

8

8

9

16

30

33

19

10

17

105

89

77

107

72

88

76

94

131

156

105

62

97

57

52

49

56

37

44

41

55

81

93

79

56

58

13

5

10

9

30

22

25

50

131

249

1,046

2,863

371
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all of the truck classes. A unique case is that the majo-
rity of Class 13 trucks traveled on Lane 3 (83%) and
Lane 5 (15%) (Figure 3.23).

Similarly, the directional distributions can be obtained
as shown in Figure 3.24. A directional distribution factor
represents the higher proportion of a given vehicle type
among the two travel directions of the roadway. For
example, in Figure 3.24 the directional distribution factor
for C9 is 0.58 because 0.58 is greater than 0.42 among the
two proportions of 0.58 (westbound) and 0.42 (east-
bound). At this WIM site, for all of the vehicle classes,
except for C13, the westbound truck proportions are the
directional distribution factors as they are greater than
the eastbound proportions. Using the higher values of
the directional proportions, the directional distribution
factors for all classes of trucks are shown in Figure 3.25.
The lane and directional distribution factors are essential

for highway engineers to design appropriate pavement
structures.

3.2 Axle Load Spectra

In addition to truck traffic volumes, truck axle loads
are also part of the key requirements for MEPDG. The
truck axle load data for MEPDG, often denoted as axle
load spectra, include the following:

N single-axle load distributions,

N tandem-axle load distributions,

N tridem-axle load distributions,

N quad-axle load distributions,

N all-axle load distributions,

N average axle weight (kips) and average axle spacing
(feet); (note: 1.0 kip 5 1,000 pounds), and

N average number of axle types.



Figure 3.9 Truck volume distribution by vehicle classes.

Figure 3.10 Truck traffic distribution on roadway lanes.

Figure 3.11 Lane distribution factors.

Figure 3.12 Lane distribution of vehicle classes.

Figure 3.13 Proportions of vehicle classes on roadway lanes.

Figure 3.14 Lane distribution factors of Class 4 vehicles.

Figure 3.15 Lane distribution factors of Class 5 vehicles.

Figure 3.16 Lane distribution factors of Class 6 vehicles.
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Figure 3.17 Lane distribution factors of Class 7 vehicles.

Figure 3.18 Lane distribution factors of Class 8 vehicles.

Figure 3.19 Lane distribution factors of Class 9 vehicles.

Figure 3.20 Lane distribution factors of Class 10 vehicles.

Figure 3.21 Lane distribution factors of Class 11 vehicles.

Figure 3.22 Lane distribution factors of Class 12 vehicles.

Figure 3.23 Lane distribution factors of Class 13 vehicles.
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Same as in the previous section, WIM Site 315 on
I-70 was also selected to demonstrate axle load spectra.
Through processing the WIM data files, the values
of average axle weights, average axle spacing, and
average numbers of axle types were obtained as listed
in Table 3.3 for the I-70 WIM station. In the table,
Wi denotes the average weight of the ith axle of the
vehicle class, Si-j is the average spacing between the
ith and jth axles, and the low part of the table shows
the average numbers of a particular type of axles
(single, tandem, etc.) per vehicle. For example, from
Table 3.3 the following values can be seen for the
vehicles in Class 6:

N There are three axles with average weights of 12.50 kips
(W1), 8.40 kips (W2), and 7.82 kips (W3).



Figure 3.24 Directional distributions.

Figure 3.25 Directional distribution factors.
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N The average axle spacing is 16.83 feet between the first
and second axles (S1-2) and 4.34 feet between the second
and third axles (S2-3).

N The average number of single axles is 1.0 per vehicle, the
average number of tandem axles is 2.0 per vehicle, and
the average numbers of tridem and quad axles are both 0.

The number of average axle weights in the table
implies the maximum number of axles in each class of
trucks. As indicated in Table 3.3, the maximum number
of axles of Class 6 vehicles is three because there are
three weights (W1, W2, and W3), while the maximum
number of axles of Class 13 vehicles is twelve because
there are twelve weights (W1 through W12).

The magnitudes of axle loads are a major parameter
for pavement design. To quantify axle loads, the
MEPDG requires the axle load distributions for all
classes of trucks. The axle load distributions are the
percentages of axle loads in specified weight intervals,
such as zero to three kips, three to four kips, and
four to five kips. The axle load distributions include the
axle weights for all-axle loads, single-axle loads,
tandem-axle loads, tridem-axle load, and quad-axle
loads. The values of the all-axle load distributions are
shown in Tables A.1. The values in the table are the
percentages of the vehicle classes with axle loads within
the given load ranges. For example, in Table A.1, the
value corresponding to vehicle class C4 and axle load

range 0–3 kips is 3.98; meaning that 3.98% of Class 4
vehicles have axle loads less than 3 kips. The value 1.71
(corresponding to C4 and axle load 3–4 kips) indicates
that 1.71% of Class 4 vehicles have axle load between
3 kips and 4 kips.

Similarly, the values of the single-axle load distribu-
tions, tandem-axle load distributions, and tridem-axle
load distributions are presented in Tables A.2. A.3, and
A.4, respectively. Because no quad-axle vehicles were
recorded in the WIM data at this site, a table for quad-
axle load distributions is not presented here. In Table
A.2, the value corresponding to vehicle class C6 and
load range 3–4 kips is 8.33, indicating that 8.33% single
axles of Class 6 vehicles have axle loads between 3–4
kips.

3.3 A Complete Set of Truck Traffic and Axle Load
Spectra at the I-70 WIM Station

Truck Traffic information was obtained from all of the
ATR and WIM station that recorded sufficient data and
processed to provide the required traffic input for the
MEPDG. The compiled truck traffic data for MEPDG
from all the ATR and WIM sites, including the truck
traffic distributions and axle load spectra, will be provi-
ded in Excel files for INDOT. As an example, the com-
plete truck traffic input for the MEPDG at the I-70 WIM



TABLE 3.3
Average axle weight, axle spacing, and number of axle types by vehicle classes

Weight (kips)

Vehicle Classes

C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

Spacing (feet)

S1-2

S2-3

S3-4

S4-5

S5-6

S6-7

S7-8

S8-9

S9-10

S10-11

S11-12

Axle Type

Single

Tandem

Tridem

Quad

11.86

12.92

10.63

—

—

—

—

—

—

—

—

—

22.68

4.45

—

—

—

—

—

—

—

—

—

1.81

0.37

—

—

4.90

4.29

—

—

—

—

—

—

—

—

—

—

12.57

—

—

—

—

—

—

—

—

—

—

2.00

—

—

—

12.50

8.40

7.82

—

—

—

—

—

—

—

—

—

16.83

4.34

—

—

—

—

—

—

—

—

—

1.00

2.00

—

—

14.61

11.17

13.10

13.77

10.46

10.83

—

—

—

—

—

—

11.45

9.35

4.29

4.33

4.07

—

—

—

—

—

—

1.22

1.66

1.27

—

9.16

10.81

8.29

7.8

—

—

—

—

—

—

—

—

14.53

19.49

11.08

—

—

—

—

—

—

—

—

2.14

1.69

0.01

—

11.96

12.29

11.75

11.68

11.39

—

—

—

—

—

—

—

16.69

4.58

32.99

4.70

—

—

—

—

—

—

—

1.19

3.80

0.01

—

12.16

11.40

11.29

7.58

9.73

9.41

6.25

8.77

—

—

—

—

16.45

4.59

23.48

8.47

4.31

4.80

4.41

—

—

—

—

1.47

2.82

1.74

—

11.46

16.63

16.02

13.28

13.20

—

—

—

—

—

—

—

12.95

21.09

9.35

20.97

—

—

—

—

—

—

—

4.75

0.09

0.16

—

12.17

10.18

9.81

12.46

12.39

11.36

—

—

—

—

—

—

15.48

4.51

19.80

9.11

21.12

—

—

—

—

—

—

3.79

1.99

0.21

—

18.32

17.59

19.99

17.69

17.66

18.48

17.89

17.20

17.17

16.97

16.49

15.87

3.31

3.25

3.50

3.28

3.32

3.34

3.27

3.20

3.18

3.12

3.04

0.26

1.25

9.41

—
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site is presented in Appendix B to show the format and
information on the truck traffic. The truck traffic pre-
sented was obtained using the WIM recorded data in 2018.

4. URBAN AREA BUS TRAFFIC

Although bus traffic is recorded at the ATR and
WIM stations as Class 4 vehicles, the bus services
within urban areas are mostly not included in the ATR
and WIM database because the majority of the ATR
and WIM stations are located on the roadways outside
urban areas. The information on bus traffic inside cities
would be useful for pavement design in urban areas.
Effort was therefore made to obtain necessary bus traffic
data in the Indiana urban areas to provide additional
information for highway engineers with respect to city
streets as well as highway sections passing through urban
areas.

The Indiana Public Transit System consists of the
following peer groups: Group One: large fixed route
systems, Group Two: small fixed route systems, Group
Three: urban demand response systems, Group Four:
rural demand response systems, and the Northern
Indiana Commuter Transportation District (INDOT,
2019). Transit systems included in Group One are large
fixed route systems that operate an average of more
than 1 million total vehicle miles per year, with more

than 50% of the total vehicle miles operated in fixed
route service. Group Two systems are small fixed route
systems that operate less than 1 million total vehicle
miles per year, with more than 50% of the total vehicle
miles operated in fixed route service. The transit sys-
tems in Group Three operate in urbanized areas with
populations greater than 50,000. Fifty percent or more
of their total vehicle miles are operated in demand
response or deviated fixed route service. Group Four
systems include transit systems in urban areas with
populations less than 50,000 and rural countywide
and multi-county systems with varying population
sizes. These systems operate 50% or more of their total
vehicle miles in demand response or deviated fixed
route service. The Northern Indiana Commuter Trans-
portation District (NICTD) provides commuter rail
service between South Bend, Indiana, and Chicago,
Illinois. The cities and counties served by the peer
groups are listed in Table 4.1.

Since Group Four systems operate mainly in demand
response and the NICTD system is a commuter rail
service, they are excluded from the urban bus traffic
analysis. There was no existing database of bus traffic
in Indiana urban areas. The Indiana public transit
annual report (INDOT, 2019) and the bus schedule and
route information of Indiana cities were utilized as the
main sources of the urban bus traffic data. The bus



TABLE 4.1
Service areas of the Indiana public transit systems

Peer Group Service Area

Group One: large fixed route systems

Group Two: small fixed route systems

Group Three: urban demand response

systems

Group Four: rural demand response

systems

Northern Indiana commuter

transportation district

Bloomington; Evansville; Fort Wayne; Indianapolis; Lafayette; Muncie; South Bend

Anderson; Central Indiana; Columbus; Elkhart-Goshen; East Chicago; Gary; Michigan City; New

Albany, Clarksville & Jeffersonville; Richmond; Terre Haute

Kokomo; LaPorte; Northwestern Indiana; Valparaiso

Bedford; Boone County; Cass County; Clinton County; Crawford, Harrison, Scott & Washington

Counties; Dearborn, Decatur, Jefferson, Jennings, Ohio, Ripley & Switzerland Counties; DeKalb

County; Fayette County; Franklin County; Fulton County; Hamilton County; Hancock County;

Hendricks & Morgan Counties; Huntingburg; Huntington County; Jasper, Pulaski, Starke &

Newton Counties; Jay, Randolph, Blackford & Henry Counties; Johnson, Shelby & Brown

Counties; Knox County; Kosciusko County; LaGrange County; Madison County; Marion;

Marshall County; Miami County; Mitchell; Monroe, Lawrence, Owen & Putnam Counties; New

Castle; Noble County; Orange County; Rush County; Seymour; Southern Indiana (Daviess,

Dubois, Gibson, Greene, Martin, Perry, Pike, Spencer, Sullivan & Warrick Counties); Steuben

County; Union County; Vigo County; Wabash County; Washington; Waveland; Wells County;

White County; Whitley County

Rail Corridor between South Bend, IN and Chicago, IL

TABLE 4.2
Bus traffic in Lafayette/West Lafayette

Bus Route No.

Number of Daily Services

AADTTMonday–Friday Saturday Sunday

1A 64 50 20 56

1B 72 50 35 63

2A 56 22 0 43

2B 56 22 0 43

3 59 26

4A 63 55 20 56

4B 64 48 20 55

5 80 0

6A 56 46 20 49

6B 50 44 0 42

7 63 46

9 44 0

10 54 22 0 42

21A 89 16 0 66

23 96 24 0 72

24 57 0 0 41

35 128 10 0 93

13 112 0 0 80

20 49

0 57

20 54

0 31
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schedule and route information of each city is available
on the bus service’s web site. Table 4.2 presents the
average annual daily bus traffic in Lafayette (including
West Lafayette) obtained from the bus schedule and
route information as an example of the city bus volume
calculations on the fixed bus routes.

In addition to the bus traffic volumes, the bus axle
load spectra are also needed for pavement design with
MEPDG. The bus axle load values were obtained from
the Indiana public transit annual report (INDOT, 2019)
and from the information provided by bus manufac-
turers. The generated bus axle load data include vehicle
capacity, engine type, curb weight, full-seat weight,

full-bus weight, and gross vehicle weight rating (GVWR).
The curb weight of a bus is the bus weight without any
passengers on the bus. The full-seat weight represents the
bus weight when all seats are occupied without standing
passengers. The full-bus weight refers to the bus weight
when the bus is full of seated and standing passengers.
The gross vehicle weight rating expresses the bus maxi-
mum operating weight. The gross vehicle weight rating
(GVWR) is the maximum operating weight of a vehicle
as specified by the manufacturer, including the vehicle’s
chassis, body, engine, engine fluids, fuel, accessories,
driver, and passengers. Some of the bus weights involve
the number of passengers and their estimated body
weights. The mean body weights of different age groups,
races, and genders in the National Health Statistics
Reports (Fryar et al., 2018) were used as passenger
weights for estimating the full-seat weights and the full-
bus weights. The typical types of buses serving in the
three public transit peer groups are shown in Figure 4.1.
These buses have different vehicle weights, axle arrange-
ments, capacities, and other characteristics. The bus weight
related data for the buses in the urban areas were obtained
in terms of peer groups and types of buses. The data
in public transit system Group One are presented in Table
4.3 and those for Group Two and Group Three are in
Table 4.4.

MEPDG requires the axle loads in pavement design,
thus the bus weights must be appropriately allocated to
the bus axles. In order to allocate a bus weight to the
bus axles, the weight distributions on the axles should
be determined. It was found that one of the WIM
stations was located on a city bus route. The WIM
station was located on I-65, 8.2 miles north of Indiana
and Kentucky state line. On this bus service route,
the type of public transit bus has two single axles.
Comparing the scheduled time that the service bus past
the WIM site and the WIM recorded vehicle dada, the



Figure 4.1 Typical public transit buses.
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bus axle weights were identified. The distribution of
vehicle weights was determined for the bus with two
single axles as illustrated in Figure 4.2. As can be seen
from the figure, the front axle bears 43% of the bus
weight, and the remaining 57% of the bus weight falls
on the rear axle.

In addition to buses with two axles, buses with three
axles were also in service in some cities. However, there
were no WIM stations on the bus transit routes for

those buses with three axles. Since the buses with three
axles did not pass any WIM sites, their axle loads
were not directly measured and recorded. In order to
estimate the load distribution over the three axles, all
buses with three axles were extracted from the WIM
database and the load distributions were calculated.
The mean load distributions for the buses with three
axles were calculated as 62%, 26%, and 12% for the
front axle, the middle axle, and the rear axle, respec-
tively. These calculated load distributions are utilized to
represent the axle load distribution of the three-axle
buses in the public transit system. Figure 4.3 displays
the three-axle bus configuration and axle load alloca-
tions.

The generated public transit bus traffic information
in the Indiana urban areas is stored in ArcMap, which
is an ArcGIS based platform (Esri, 2020). ArcGIS is
a geographic information system (GIS) for working
with maps and geographic information maintained by
the Environmental Systems Research Institute (Esri).
ArcMap, a component of ArcGIS, represents geo-
graphic information as a collection of layers and other
elements on a map. Figure 4.4 shows the ArcMap
interface of the public transit bus traffic information.

In the ArcMap program, the statewide public transit
GIS bus traffic map (Figure 4.5) contains all public
transit bus routes in Indiana. In the map, the bus routes
of the urban areas are stored in the green clusters and
each green cluster represents the bus information on a
set of bus routes in a given area. The ArcMap software
also provides a bus traffic distribution map as shown in
Figure 4.6. This map displays the bus traffic levels in
Indiana in different colors. It can be seen in Figure 4.6
that the bus traffic volumes in Indianapolis, Lafayette,
and Bloomington areas are relatively higher than other
urban areas.

To find detailed bus traffic information, including
street sections, bus volumes, and axle loads, the loca-
tion can be selected on the GIS map shown in Figure
4.5 by clicking the corresponding cluster. For example,
the Indianapolis bus routes can be displayed as shown
in Figure 4.7.

A particular route can be selected to display the
information of that route. As an example, bus route 13
in Indianapolis is selected on the program interface
(Figure 4.8) and the route 13 is displayed on a new map
in blue color (Figure 4.9). The bus traffic information
can be retrieved and displayed as shown in Figure 4.10.



TABLE 4.3
Bus weights in peer group one

Peer

Group City

Vehicle

Capacity Engine Type

Number of

Vehicles Curb Weight (lbs)

Full-Seat

Weight (lbs)

Full-Bus

Weight (lbs)

Gross Vehicle

Weight Rating

(GVWR) (lbs)

G
ro

u
p

O
n

e:
L

ar
g
e

F
ix

ed
R

o
u

te
S

y
st

em
s

Lafayette

Indianapolis

Bloomington

Evansville

Fort Wayne

Muncie

South Bend

11

13

35

40

42

45

54

60

38

39

54

13

16

29

31

32

40

12

15

17

18

21

22

26

29

31

14

26

32

37

38

13

27

32

33

35

11

12

29

Diesel

CNG

Diesel

CNG/Diesel

CNG

Diesel

CNG

Diesel

Diesel

Electric/Diesel

Diesel

CNG

CNG

Electric/Hybrid/Diesel

Diesel

Electric/Hybrid/Diesel

Diesel

Diesel

Diesel

Diesel

Diesel

Diesel

CNG

Electric/Diesel

Diesel

Diesel

Diesel

Diesel

Hybrid/Diesel

Diesel

Hybrid

CNG/Diesel

Diesel

Electric/Diesel

Electric/Diesel

Diesel

Diesel

Diesel

CNG/Diesel

1

5

5

39

15

3

1

8

123

55

11

1

1

3

2

23

9

3

1

7

6

2

1

20

2

6

6

3

25

3

5

15

3

20

10

1

16

1

48

7,500

10,000

25,100

28,500

30,000

27,000

38,000

39,000

25,700

31,200

35,000

10,000

13,000

29,000

24,500

29,300

26,000

8,000

11,000

11,900

12,000

14,000

15,500

21,000

21,500

24,500

10,000

17,500

27,000

25,000

28,500

10,000

18,000

29,300

29,400

25,100

7,500

8,000

24,000

9,685

12,549

31,656

35,966

37,830

35,377

48,016

50,108

32,802

38,484

45,016

12,549

16,096

34,463

30,327

35,309

33,466

10,367

13,914

15,178

15,460

18,006

19,688

25,917

26,963

30,327

12,732

22,417

33,009

31,920

35,602

12,549

23,099

35,309

35,591

31,656

9,685

10,367

29,463

10,414

13,460

38,029

43,250

45,479

43,571

57,849

61,034

39,722

45,586

54,849

13,460

17,553

37,012

35,972

41,137

40,750

11,278

15,188

16,635

17,099

19,827

21,691

28,284

29,512

35,972

13,824

24,784

38,837

38,658

42,522

13,460

25,466

41,137

41,601

38,029

10,414

11,278

32,012

12,000

15,000

40,000

45,000

47,000

45,000

59,000

63,000

41,000

47,000

56,000

15,000

19,000

39,000

37,000

43,000

42,000

13,000

17,000

18,000

19,000

21,000

23,000

30,000

31,000

37,000

15,000

26,000

40,000

40,000

44,000

15,000

27,000

43,000

43,000

40,000

12,000

13,000

34,000
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TABLE 4.4
Bus weights in peer group two and group three

Peer Group City

Vehicle

Capacity Engine Type

Number of

Vehicles Curb Weight (lbs)

Full-Seat

Weight (lbs)

Full-Bus

Weight (lbs)

Gross Vehicle

Weight Rating

(GVWR) (lbs)

u
p

G
ro

T
w

o
:

ll
S

m
a

d
F

ix
e

e
R

o
u

t
S

y
s

s
te

m

Anderson

Columbus

Elkhart-Goshen

Gary

Michigan City

Richmond

New Albany,

Clarksville, &

Jeffersonville

Terre Haute

11

17

18

12

15

22

44

22

25

26

25

31

14

16

30

11

16

17

28

35

36

38

40

14

16

22

26

Diesel

Diesel

Diesel

CNG

CNG

Diesel

Diesel

Diesel

Diesel

Diesel

Diesel

Diesel

Diesel

Diesel

Diesel

CNG

CNG

CNG

Diesel

Electric/Diesel

Electric/Diesel

Electric/Diesel

Electric/Diesel

CNG

Diesel

CNG/Diesel

Diesel

4

7

7

4

1

5

4

1

10

2

17

3

1

2

9

2

11

1

33

11

9

38

185

1

1

6

6

7,500

11,900

12,000

8,800

12,500

14,100

26,500

14,100

17,000

17,500

17,000

24,500

10,000

11,900

24,000

8,250

13,100

13,150

21,000

31,000

31,300

31,500

32,000

11,000

11,900

15,600

17,500

9,685

15,178

15,460

11,167

15,414

18,288

34,695

18,288

21,735

22,417

21,735

30,327

12,732

14,996

29,645

10,435

16,196

16,428

26,281

37,556

38,038

38,602

39,466

13,732

14,996

19,788

22,417

10,414

16,635

17,099

12,078

16,688

20,291

42,707

20,291

23,920

24,784

23,920

35,972

13,824

16,453

35,108

11,164

17,653

17,885

28,830

43,929

44,593

45,522

46,750

14,824

16,453

21,791

24,784

12,000

18,000

19,000

14,000

18,000

22,000

44,000

22,000

25,000

26,000

25,000

37,000

15,000

18,000

37,000

13,000

19,000

19,000

30,000

45,000

46,000

47,000

48,000

16,000

18,000

23,000

26,000

G
r
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o

u
ee

:
T

h
r
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an

U
em

D
d
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p

o
R

es
e

n
s

st
S
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s

em Kokomo

Valparaiso

12

14

31

45

16

53

CNG/Diesel

CNG

Diesel

Diesel

CNG

Diesel

17

6

4

3

5

5

8,800

0011,0

24,500

27,000

13,100

34,600

11,167

13,732

30,327

35,377

16,196

44,433

12,078

14,824

35,972

43,571

17,653

54,085

14,000

16,000

37,000

45,000

19,000

56,000

Figure 4.2 Axle load distribution on two axles. Figure 4.3 Axle load distribution on three axles.
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Figure 4.4 ArcMap interface of the public transit bus traffic information.

Figure 4.5 GIS public transit bus map in Indiana. Figure 4.6 Public transit bus traffic volume distribution.
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Figure 4.7 Indianapolis public transit bus routes. Figure 4.8 Bus route selection.

Figure 4.9 Bus route 13 displayed on map.
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5. TRUCK WEIGHT ROAD GROUPS

The primary objective of this study is to update the
traffic design input module, and thus to improve the
current INDOT pavement design procedures. The cur-
rent Truck Weight Road Groups (TWRG) are specified
in 2013 Indiana Design Manual (page 44 in Chapter
304) (INDOT, 2013) as presented in Table 5.1. The
AADTT values in the table include the truck traffic on
all lanes and in both directions. It had been observed
that the truck traffic volumes on many two-lane roads
were much lower than 2,000 AADTT. On the other
hand, the truck traffic volumes in some interstate seg-
ments were much higher than 20,000 AADTT. There-
fore, it was necessary to examine groups A and D and
determine if the groups should be further divided into
more subgroups to accurately reflect the updated truck
traffic and axle load spectra with respect to very low
truck traffic on two-lane roads as well as very high
truck traffic on interstate routes.

5.1 Truck Class Distributions

The truck traffic data from 90 ATR stations and 51
WIM stations in 2016, 2017, and 2018 were utilized to
reveal the truck traffic distributions in terms of the
truck weight road groups. The large amount of the
truck traffic volumes in the 3 years from the 141 ATR
and WIM stations were processed and sorted to exa-
mine their patterns and features. The processed data
indicate that about 85% of the AADTT values on
two-lane road are lower than 3,000. On the other hand,
the truck traffic volumes on some interstate sections are

much higher than 20,000 trucks per day. The statewide
distribution of vehicle classes in the 3 years is shown in
Figure 5.1. As can be seen in the figure, the highest
number of trucks on Indiana highways are Class 9
vehicles followed by Class 5 vehicles.

The truck traffic data were then sorted according
to the TWRG groups shown in Table 5.1 so that the
truck class distributions in the TWRG groups can be
examined separately. The truck class distributions
for Groups A, B, C, and D are plotted in Figures 5.2,
5.3, 5.4, and 5.5, respectively. The most significant
difference among the five groups is that in Group A
(AADTT # 3,000) the Class 5 volumes are much higher
than Class 9 volumes as can be seen in Figure 5.2. That
is, most of the trucks on low volume roads are Class 5
vehicles. Although the truck class distributions are all
different in Groups B, C, and D, the general patterns of
their vehicle class distributions are similar as illustrated
in Figures 5.3, 5.4, and 5.5.

5.2 Truck Weight Road Group A

To further investigate truck volumes in Group A, the
truck traffic data from the INDOT GIS maps in the
same 3 years (2016, 2017, and 2018) were also utilized in
addition to the ATR and WIM recorded truck traffic
data. The GIS data contain of 21,506 data points with
AADTT # 3,000. The frequency distribution of the
21,506 data points is presented in Figure 5.6. The
frequency distribution reveals that most of the truck
volumes in Group A are concentrated in the lower end
of the range. The mean value of AADTT in Group A is
58. The four quartiles of 25%, 50%, 75%, and 100%

are 16, 27, 73, and 3,000, respectively. Apparently, the
truck traffic distribution in Group A is significantly
skewed toward the very low end of the truck traffic.

The locations of ATR and WIM sites with lower
than 3,000 AADTT are displayed in Figure 5.7. There
are 43 ATR sites and 14 WIM sites with lower than
3,000 AADTT in the map. The truck traffic distribu-
tions in the ATR sites and in the WIM sites are shown
in Figure 5.8. This figure indicates that at the ATR sites

TABLE 5.1
INDOT truck weight road groups

Group Truck Traffic

A

B

C

D

AADTT # 3,000

3,000 , AADTT # 6,000

6,000 , AADTT # 20,000

AADTT . 20,000

Figure 5.1 Statewide truck class distribution.
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Figure 5.2 Statewide Group A truck class distribution (AADTT # 3,000).

Figure 5.3 Statewide Group B truck class distribution (3,001 , AADTT # 6,000).

Figure 5.4 Statewide Group C truck class distribution (6,001 , AADTT # 20,000).
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the highest frequencies of the truck volumes are in the
truck traffic volume range less than 500. However, at
the WIM sites the higest frequencies are within the
AADTT range from 1,000 to 2,000.

Based on the above analysis and the practical
experience of the Study Advisory Committee members,
the subgroups of Group A as listed in Table 5.2 are
proposed for future use in MEPDG pavement design.

The truck class distributions with respect to the pro-
posed subgroups are drawn in Figure 5.9. As can be
seen in the figure, Class 5 vehicles are the dominating
type of trucks in all subgroups. As the truck volume
increases, the proportion of Class 9 vehicles increases
and that of Class 5 vehicles decreases. The patterns of
the truck class distributions are generally similar for all
four subgroups.



Figure 5.5 Statewide Group D truck class distribution (AADTT . 20,000).

Figure 5.6 Group A truck volume distribution (AADTT # 3,000).

5.3 Truck Weight Road Group D

Group D is the truck weight road group with the
highest truck volumes (AADTT . 20,000). The truck
traffic volumes more than 20,000 occurred only on inter-
state highways as depicted in Figure 5.10, in which the
locations of the Group D sites are marked in terms of
WIM, ATR, and GIS data points. There were 136
road sections on interstate highways recorded AADTT
values greater than 20,000. The truck traffic data
in 2016, 2017, and 2018 indicate that the AADTT
values at most of the sites in Group D were in the
range between 20,000 and 40,000. An exception is the
WIM site 402 on I-80 where the AADTT exceeded
70,000.

The statistical characteristics of the truck traffic data
were calculated in order to explore the appropriate
divisions of Group D truck traffic into subgroups. The
calculated values of mean (m), standard deviation (s),
m-0.5s, and m+0.5s are shown in Table 5.3.

If the truck traffic volumes in Group D were divided
into the three subgroups in terms of mean and standard
deviation: 0 , AADTT # m-0.5s, m-0.5s , AADTT #

Figure 5.7 Locations of ATR and WIM stations in Group A
(AADTT # 3,000).
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Figure 5.8 Truck traffic distributions at ATR sites and WIM sites in Group A.

Figure 5.9 Truck class distributions with combined ATR and WIM data in Group A.

TABLE 5.2
Truck weight road subgroups of Group A

Group A (AADTT # 3,000)

Subgroup Truck Traffic

A1

A2

A3

A4

0 , AADTT # 100

100 , AADTT # 500

500 , AADTT # 1,000

1,000 , AADTT # 3,000

m + 0.5s, and AADTT . m + 0.5s, the ranges of the
three subgroups would be as follows:

N Subgroup 1: 0 , AADTT # 25,810

N Subgroup 2: 25,810 , AADTT # 39,697

N Subgroup 3: AADTT . 39,697

TABLE 5.3
Truck traffic statistics in Group D

m s m-0.5s m+0.5s

32,753.5 13,887 25,810 39,697
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The truck traffic volumes were also arranged in terms
of quartiles to further inspect the ranges of the sub-
groups in a different way. The recorded truck traffic
data in Group D are displayed as a scatter plot in
Figure 5.11 to assess their spread along the four quar-
tiles. The corresponding AADTT values of the quartiles
are 25,027 for 25% quartile, 27,542 for 50% quartile,
and 33,121 for 75% quartile. It should be noted that the
50% quartile is also the median of the data set. That is,
in the Group D data set, half of the AADTT values are
greater than 27,148 and half of those are less than
27,148.

Similar to the method using mean and standard
deviation, Group D can be divided into the following
three subgroups according to quartiles:

1. 20,000 , AADTT # 25% quartile

2. 25% quartile , AADTT # 75% quartile

3. AADTT . 75% quartile

The specific values of the three subgroups in terms of
quartiles are as follows:

N Subgroup 1: 20,000 , AADTT # 25,027

N Subgroup 2: 25,027 , AADTT # 33,121

N Subgroup 3: AADTT . 33,121

Figure 5.10 Locations of in Group D (AADTT . 20,000).

Figure 5.11 Scatter plot of Group D truck volumes.
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The subgroups obtained through mean and standard
deviation as well as quartiles are presented in Table 5.4.
The values of the subgroups from the two methods
are actually quite close except for the up values in
Subgroup 2 with 39,697 from the mean and standard
deviation method and 33,121 from the quartile method.
In fact, the ATR and WIM recorded truck traffic
data actually showed the AADTT values at most of the
sites in Group D were in the range between 20,000 and
40,000. Therefore, the value of 39,697 from the mean
and standard deviation method should be a reasonable
choice. For the purpose of practical and easy to use,
the values are rounded to the nearest thousand for

the proposed truck road subgroups of Group D in
Table 5.5.

The truck class distributions of the proposed sub-
groups D1, D2, and D3 are illustrated in Figures 5.12,
5.13, and 5.14, respectively. All three figures demonstrate
that Class 9 vehicles are the dominating type of trucks in
all three subgroups. The patterns of the truck class distri-
butions of the subgroups are generally similar. Group D
truck traffic sections are all on interstate highways. The
truck weight road groups, including subgroups D1, D2,
and D3, are exhibited in a three-dimensional graph in
Figure 5.15. The graph clearly indicates that Group D road
groups are primarily located in three concentrated areas.

TABLE 5.4
Possible subgroups of Group D

Subgroup

AADTT Range

Mean and Standard Deviation Quartile

1

2

3

20,000–25,810

25,810–39,697

. 39,697

20,000–25,027

25,027–33,121

. 33,121

TABLE 5.5
Truck weight road subgroups of Group D

Group D (AADTT $ 20,000)

Subgroup Truck Traffic

D1 20,000 , AADTT # 25,000

D2 25,000 , AADTT # 40,000

D3 AADTT . 40,000

Figure 5.12 Truck class distribution of Subgroup D1 (20,000 , AADTT # 25,000).

Figure 5.13 Truck class distribution of Subgroup D2 (25,000 , AADTT # 40,000).
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Figure 5.14 Truck class distribution of Subgroup D3 (AADTT . 40,000).

Figure 5.15 Three-dimensional display of truck weight road groups on Indiana interstate.
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6. EQUIVALENT SINGLE AXLE LOAD VALUES

The Equivalent Single Axle Load (ESAL) values have
been utilized in the American Association of State High-
way and Transportation Officials pavement design
method (AASHTO, 1993) to establish a damage rela-
tionship for comparing the effects of axles carrying
different loads. In order to assess the impact of different
types of vehicles on a pavement structure on a common
basis, all vehicle axle loads are converted to a number
of 18,000-lbs (80 kN) Equivalent Single Axle Loads
(ESALs). WIM data were used 20 years ago to deter-
mine ESAL values for INDOT pavement design (Gulen
et al., 2000). Although ESAL values are no longer used
in pavement design with MEPDG, they are still useful in

such areas as pavement asset management, pavement
pay item calculation, safety analysis, and financial ana-
lysis. Therefore, it was desired to update ESAL values
with the most recent available traffic data. In this study,
new ESAL values were determined through two meth-
ods, the AASHTO equation method (AASHTO, 1993)
and the axle group divisor method (Indiana Admini-
strative Code, 2020), as described in the following sections.

6.1 AASHTO Equations

ESAL values are affected by not only the weights of
individual axles, but also the configurations and arran-
gements of axles, such as single axles, tandem axles, and
tridem axles. In order to use the traffic data for ESAL



calculation, the WIM data were processed to group
axle weights in terms of axle configurations. Because
the vehicle loads impact rigid and flexible pavement
differently, the ESAL equations for the two types of
pavements are different. The WIM stations with axle
load data on rigid (Portland cement concrete pavement
or PCCP) and flexible (hot mix asphalt or HMA)
pavements are listed in Table 6.1.

The AASHTO ESAL equation for rigid pavement is
as follows (Pavement Interactive, n.d.a):

Wx

W18

~
L18zL2s

LxzL2x

4:62
10G=bx

10G=b18
L2xð Þ3:28 ðEq: 6:1Þ

� � � �

Where:
W18 5 predicted number of 18,000 lb single axle load

applications
Wx 5 predicted number of x61,000 lb single axle

load applications. e.g., W30 5 number of 30,000 lb
single axle applications

Lx 5 axle load being evaluated (kips). e.g., L30 5 30
L18 5 18 (standard axle load in kips)
L2x 5 code for axle configuration: 1 for single axle;

2 for tandem axle; 3 for triple axle
L2s 5 code for standard axle 5 1 (single axle)� �

4:5{pt
G~log ; a function of the ratio of loss in

4:5{1:5
serviceability at time, t, to the potential loss taken at a
point where pt 5 1.5

pt 5 ‘‘terminal’’ serviceability index (point at which
the pavement is considered to be at the end of its useful
life)

b~1:0z
3:63(LxzL2x)

(Dz1)8:46L3:52
22x

; function which
5:20

 !

determines the relationship between serviceability and
axle load applications. Where D 5 slab depth in inches.

The AASHTO ESAL equation for flexible pavement
is as follows (Pavement Interactive, n.d.b):

Wx

W
~

L18zL2s

L zL

4:79
10G=bx

10G=b18
L2x

4:33
Eq: 6:2

18 x 2x

� � � �
ð Þ ð Þ

Where:
W18 5 number of 18,000 lb single axle load

applications
Wx 5 predicted number of x61,000 lb single axle

load applications. e.g., W30 5 number of 30,000 lb
single axle applications

Lx 5 axle load being evaluated (kips). e.g., L30 530
L18 5 18 (standard axle load in kips)

L2x 5 code for axle configuration: 1 for single axle; 2
for tandem axle; 3 for triple axle

L2s 5 code for standard axle 5 1 (single axle)

4:2{pt
G~ log

� �
; a function of the ratio of loss in

4:2{1:5
serviceability at time, t, to the potential loss taken at a
point where pt 5 1.5

pt 5 ‘‘terminal’’ serviceability index (point at which
the pavement is considered to be at the end of its useful
life)

�~0:4z
0:081(LxzL2x)3:23

(SNz1)5:19L3:23
2x

 !
; function which

determines the relationship between serviceability and
axle load applications. Where SN 5 structure number

In addition to the WIM traffic data, the slab thick-
ness (D) and terminal serviceability index (pt) are needed
to calculate the ESAL values for rigid pavement. The
PCCP slab thickness of 10 inches and terminal service-
ability index of 2.5 were assumed in ESAL calculation.
For flexible pavement, the structural number (SN) of 5
and the terminal serviceability index (pt) of 2.5 were
utilized in the ESAL calculation of HMA pavements.

6.2 Axle Group Divisors

The Indiana Administrative Code specifies the
following axle group divisor method for calculating
ESAL values (Indiana Administrative Code, 2020):

1. The ESAL value for each axle group shall be calculated as

follows:

a. The ESAL value for each axle shall be calculated as

the actual axle weight, divided by the axle group

divisor (as defined in (4), below), all raised to the
fourth power ((weight/divisor)4).

b. The numerator for each axle group is the sum of the

axle weights of all individual axles within that axle

group, or the combined gross axle weight (GAW).

c. The divisor for each axle group depends on the num-

ber of axles in the group.

d. Divisors shall be as follows:

i. If the axle group consists of a single axle, the

divisor is eighteen thousand (18,000) pounds.

ii. If the axle group consists of a tandem axle (that is,

two (2) individual axles), the divisor is thirty-three
thousand two hundred (33,200) pounds.

iii. If the axle group consists of a tridem axle (that is,

three (3) individual axles), the divisor is forty-six

thousand (46,000) pounds.

TABLE 6.1
WIM stations on rigid and flexible pavements

Pavement Type WIM Station No.

Rigid (PCCP) 120, 200, 230, 351, 352, 401, 402, 420, 441, 442, 481, 482, 560, 630, 990, 999

Flexible (HMA) 100, 102, 106, 109, 210, 220, 270, 310, 315, 316, 321, 325, 326, 331, 332, 340, 360, 370, 406, 430, 436, 450, 460, 470, 490,

507, 520, 530, 540, 600, 610, 620, 640, 650, 660
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iv. If the axle group consists of a quad axle (that is,

four (4) individual axles), the divisor is fifty-seven

thousand (57,000) pounds.

v. If the axle group consists of a quintuple axle (that

is, five (5) individual axles), the divisor is sixty-five

thousand (65,000) pounds.

e. The resultant fraction quantity is raised to the fourth

power.

2. ESAL value for the sum of all axles of the vehicle shall be

calculated as follows: (ESAL 5 Axle1 ESAL + Axle2

ESAL + Axle3 ESAL +…+ AxleN ESAL).

For example, if a Class 9 vehicle has the following
axle load data:

N GAW 5 71.2 kips

N Axle 1: single axle, axle load 5 9.2 kips

N Axle 2: tandem axle, axle loads 5 14.2 kips and 13.9 kips

N Axle 3: tandem axle, axle loads 5 17.4 kips and 16.6 kips

The ESAL of the Class 9 truck can be calculated with
the axle group divisors:

ESAL 5 ESAL(9.2 kips, single) + ESAL(14.2 + 13.9
kips, tandem) + ESAL(17.4 + 16.6 kips, tandem) 5 (9.2/
18)4 + [(14.2 + 13.9)/33.2]4 + [(17.4 + 16.6)/33.2)4 5

1.681353

6.3 ESAL Values

The 3-year WIM data of 2016, 2017, and 2018 were
used for the data processing and analysis to calculate
ESAL values. ESAL values were calculated for all of
the WIM stations listed in Table 6.1 using both the
AASHTO method and axle group divisor method. To
describe the ESAL calculations, a WIM station on I-70
(WIM Site 106) was utilized to present the ESAL
results. The location of the WIM station is shown in
Figure 6.1. This section of the interstate highway has
four lanes with HMA pavement. The ESAL values were
calculated in groups of gross vehicle weight (GVW)
consistent with the current INDOT practice. The maxi-
mum GVW of 126 kips, which is the current GVW
limit for INDOT ESAL groups, was applied in the
ESAL calculation. The ESAL values obtained with the
AASHTO method and the axle load divisor method are
shown in Table 6.2 and Table 6.3, respectively.

As can be seen in Tables 6.2 and 6.3, the ESAL values
are presented in terms of GVW groups and vehicle
classes. The vehicle class C0 represents the unclassified
vehicles and C1, C2, and C3 are the first three types
of the FHWA vehicle classification or the lightweight
vehicles, including motorcycles, passenger cars, and four-
tire single unit vehicles as depicted in Figure 6.2. It should
be pointed out that the number of unclassified vehicles
(C0) could be substantial in many WIM sites. Although
they were not classified into particular types of vehicles
due to various reasons, their axle loads were captured
and recorded in the WIM database. In addition, the
axle loads of unclassified vehicles tend to be consider-
ably large. Therefore, it is essential to include unclassified
vehicles in ESAL calculations.

The ESAL values on individual lanes at this WIM
site were also obtained through the two calculation
methods as listed in Table 6.2. This table includes the
ESALs on all four lanes and the average of the four
ESALs. The critical ESAL value in the last column of
the table is defined as the highest lane ESAL value
among the ESALs of the four lanes. It is important to
identify the critical lane and its corresponding critical
ESAL because the critical lane controls the pavement
design, performance, and management. As shown in
Table 6.2, the critical lane at this WIM site is Lane 3
(the eastbound driving lane) with a critical ESAL of
15,986,424 from the AASHTO method or a critical
ESAL of 14,386,275 from the axle group divisor method.

With the traffic data at WIM 106, the average annual
ESALs per truck for all types of trucks (C4 through
C13) and for all types of trucks combined were also
calculated with AASHTO and axle group divisor methods
as presented in Table 6.3.

The ESAL values contained in Tables 6.2, 6.3, A.5,
and A.6 are included in the final database along with
truck volume and axle load spectra for this WIM site.
Similar ESAL values for all WIM sites were obtained
and will be provided for INDOT to use.

With all WIM sites combined, the obtained statewide
average annual ESAL values for state roads, US routes,
and interstate highways are included in Table 6.4.
The values in the table contains ESAL values in terms
of average of all ESALs as well as average of critical
ESALs.

Figure 6.1 WIM Station 106 on I-70 (Google, n.d.a).
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TABLE 6.2
Annual ESAL values on roadway lanes (WIM Site 106)

Method Lane 1 Lane 2 Lane 3 Lane 4 Average Critical

AASHTO

Axle Group Divisor

2,595,924

2,599,606

1,419,681

1,258,462

15,986,424

14,386,275

675,872

635,848

5,169,475

4,720,048

15,986,424

14,386,275

TABLE 6.3
Average annual ESALs per truck (WIM Site 106)

Method C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 All Types

AASHTO 0.67 0.14 0.67 2.58 0.40 1.49 1.35 3.08 1.28 1.77 1.32

Axle Group Divisor 0.69 0.15 0.69 2.70 0.43 1.53 1.44 3.29 1.34 1.89 1.36

TABLE 6.4
Average annual ESALs on different highways (all WIM sites)

State Roads US Routes Interstate All Roads Combined

All ESALs (AASHTO) 5,145,581 2,097,309 34,249,589 21,817,344

All ESALs (Axle Group Divisor) 4,425,600 1,850,587 24,497,963 15,794,815

Critical ESALs (AASHTO) 4,102,108 1,461,136 20,894,434 13,480,725

Critical ESALs (Axle Group Divisor) 3,491,718 1,257,990 14,654,550 9,595,831
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Figure 6.2 Lightweight vehicles (C1, C2, C3).

6.4 Analysis and Observations

6.4.1 Comparison of the Two ESAL Calculation
Methods

As described above, two methods were utilized
to calculate the ESAL values at WIM Site 106. To

compare the two methods, the ESAL values from the
two methods are listed in Table 6.5 along with the
calculated differences. The ESAL differences (%)
between the two methods are plotted in Figure 6.3.

If the first two points (GVW , 6 kips) are excluded
as outliers, it is shown in Table 6.5 and Figure 6.3 that,
compared with the AASHTO method, the axle group
divisor method yielded greater ESALs up to about
80 kips of GVW and smaller ESALs beyond 80 kips.
The maximum of the differences is about 20%.

6.4.2 Effect of Unclassified Vehicles

The WIM data at Site 106 as well as at many other
WIM sites contain a sizable number of unclassified
vehicles. It was observed that most of the unclassified
vehicles tend to have axle loads similar to heavy trucks.
Furthermore, ESAL calculations use axle loads but do
not require vehicle classifications. Therefore, unclassi-
fied vehicles should be included in the ESAL calcu-
lations to reflect the actual vehicle load impact on
pavement structures. The ESAL values and the ESAL
differences between with and without unclassified vehi-
cles are included in Table 6.6 for both AASHTO and
axle group divisor methods. The ESAL differences are
illustrated in Figure 6.4 for the two ESAL calculation
methods. It is apparent that the ESAL differences
are generally larger when GVW is greater than 90 kips.
It is also apparent that most of the differences are
significant, from 30% to near 100%. The graph in
Figure 6.4 shows that percent differences in the AASHTO



TABLE 6.5
Comparison of ESALs from two methods

AASHTO ESAL Axle Group Divisor ESAL Difference % Difference

GVW (kips) (A) (B) (B-A) (B-A)/A

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

63

66

69

72

75

78

81

84

87

90

93

96

99

102

105

108

111

114

117

120

123

126

31

3,108

3,801

2,876

3,339

5,981

12,824

19,271

23,756

31,474

41,675

56,665

65,705

80,915

101,453

125,889

139,144

156,611

179,363

209,774

251,389

302,622

378,500

469,329

604,400

761,022

891,603

882,049

785,073

736,137

633,135

620,597

646,601

710,163

831,802

982,091

1,066,800

1,159,984

1,346,141

1,644,927

1,736,871

1,973,012

20

3,043

4,338

3,368

3,775

6,546

13,606

20,064

24,562

32,666

43,630

60,028

70,399

87,579

109,884

135,785

150,533

169,099

192,524

223,580

265,599

316,712

392,335

482,229

615,399

769,659

897,404

881,451

777,672

717,072

609,340

580,651

594,248

642,883

739,189

856,504

925,419

989,977

1,128,282

1,350,679

1,411,937

1,580,520

-11

-65

537

492

436

565

782

794

807

1,192

1,955

3,363

4,694

6,664

8,431

9,896

11,389

12,489

13,162

13,806

14,210

14,090

13,835

12,900

10,999

8,637

5,801

-598

-7,401

-19,065

-23,795

-39,945

-52,353

-67,280

-92,614

-125,587

-141,381

-170,007

-217,859

-294,248

-324,934

-392,492

-35.1%

-2.1%

14.1%

17.1%

13.1%

9.5%

6.1%

4.1%

3.4%

3.8%

4.7%

5.9%

7.1%

8.2%

8.3%

7.9%

8.2%

8.0%

7.3%

6.6%

5.7%

4.7%

3.7%

2.7%

1.8%

1.1%

0.7%

-0.1%

-0.9%

-2.6%

-3.8%

-6.4%

-8.1%

-9.5%

-11.1%

-12.8%

-13.3%

-14.7%

-16.2%

-17.9%

-18.7%

-19.9%
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Figure 6.3 ESAL differences between AASHTO and axle group divisor methods.

Figure 6.4 Differences between ESAL values with and without unclassified vehicles.
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method and in the axle group divisor are fairly close. It is
evident that unclassified vehicles must be included in
ESAL calculation. Otherwise, the ESAL values would
be considerably underestimated.

6.4.3 Effect of Lightweight Vehicles

Lightweight vehicles (C1, C2, C3) were included in
the ESAL calculations as the WIM data also contain
axle load values of lightweight vehicles. To evaluate the
effect of lightweight vehicles on ESALs, the ratios of

ESAL from lightweight vehicles to ESAL from trucks
are calculated and show in Table 6.7. The values indi-
cate that, except for a few of low GVW values, the majo-
rity of the ratios are as low as 0 or close to 0. Therefore, it
appears that the lightweight vehicles contribute to ESAL
values insignificantly.

It should be emphasized that the analysis in this
section was based on the traffic data from WIM Site
106. It is site specific and might not draw general con-
clusions. However, it provides a set of procedural steps
for analyzing effects of different factors.



TABLE 6.6
ESALs with and without unclassified vehicles

AASHTO Axle Group Divisor

ESAL with C0 ESAL w/o C0 % Diff ESAL with C0 ESAL w/o C0 % Diff

GVW (kips) (A) (B) (A-B)/A (A) (B) (A-B)/A

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

63

66

69

72

75

78

81

84

87

90

93

96

99

102

105

108

111

114

117

120

123

126

31

3,108

3,801

2,876

3,339

5,981

12,824

19,271

23,756

31,474

41,675

56,665

65,705

80,915

101,453

125,889

139,144

156,611

179,363

209,774

251,389

302,622

378,500

469,329

604,400

761,022

891,603

882,049

785,073

736,137

633,135

620,597

646,601

710,163

831,802

982,091

1,066,800

1,159,984

1,346,141

1,644,927

1,736,871

1,973,012

31

3,104

3,741

2,606

2,738

4,550

10,202

14,982

16,994

21,161

26,905

34,432

40,604

52,340

68,687

88,499

95,951

105,596

115,189

134,226

161,479

204,544

261,864

334,082

430,157

565,664

679,638

609,944

466,068

349,153

217,996

120,996

78,173

61,302

56,537

56,106

54,694

50,565

47,518

42,630

35,673

30,379

0%

0%

2%

9%

18%

24%

20%

22%

28%

33%

35%

39%

38%

35%

32%

30%

31%

33%

36%

36%

36%

32%

31%

29%

29%

26%

24%

31%

41%

53%

66%

81%

88%

91%

93%

94%

95%

96%

96%

97%

98%

98%

20

3,043

4,338

3,368

3,775

6,546

13,606

20,064

24,562

32,666

43,630

60,028

70,399

87,579

109,884

135,785

150,533

169,099

192,524

223,580

265,599

316,712

392,335

482,229

615,399

769,659

897,404

881,451

777,672

717,072

609,340

580,651

594,248

642,883

739,189

856,504

925,419

989,977

1,128,282

1,350,679

1,411,937

1,580,520

20

3,040

4,272

3,055

3,097

4,993

10,861

15,649

17,600

21,952

28,125

36,353

43,110

55,708

72,918

93,461

101,717

111,763

121,005

140,123

167,608

211,122

268,758

341,368

437,525

573,261

687,371

616,987

472,559

355,371

223,706

126,163

83,364

66,595

62,109

62,226

61,168

56,930

53,798

48,517

40,880

35,005

0%

0%

2%

9%

18%

24%

20%

22%

28%

33%

36%

39%

39%

36%

34%

31%

32%

34%

37%

37%

37%

33%

31%

29%

29%

26%

23%

30%

39%

50%

63%

78%

86%

90%

92%

93%

93%

94%

95%

96%

97%

98%
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TABLE 6.7
Effect of lightweight vehicles on ESALs

AASHTO Axle Group Divisor

Truck Lightweight Ratio Truck Lightweight Ratio

GVW (kips) (A) (B) B/A (A) (B) B/A

3

6

9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

63

66

69

72

75

78

81

84

87

90

93

96

99

102

105

108

111

114

117

120

123

126

0

40

1,124

2,117

2,810

5,436

12,237

18,646

23,169

30,740

40,822

55,437

64,646

79,403

99,722

124,302

137,421

154,210

178,955

209,660

251,251

302,473

378,480

469,220

604,316

760,931

891,563

881,993

784,962

736,069

633,135

620,597

646,601

710,163

831,802

982,091

1,066,800

1,159,984

1,346,141

1,644,927

1,736,871

1,973,012

31

3,067

2,677

759

529

545

587

624

587

734

853

1,228

1,059

1,512

1,731

1,586

1,723

2,401

407

114

138

150

20

109

84

92

40

56

111

67

0

0

0

0

0

0

0

0

0

0

0

0

—

76.34

2.38

0.36

0.19

0.10

0.05

0.03

0.03

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.01

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0

43

1,303

2,482

3,180

5,959

12,991

19,422

23,961

31,906

42,738

58,710

69,250

85,891

107,916

133,976

148,571

166,378

192,067

223,452

265,443

316,542

392,312

482,103

615,303

769,555

897,358

881,386

777,544

716,995

609,340

580,651

594,248

642,883

739,189

856,504

925,419

989,977

1,128,282

1,350,679

1,411,937

1,580,520

20

3,000

3,035

886

595

587

615

642

601

759

892

1,317

1,149

1,688

1,968

1,810

1,963

2,722

458

128

156

170

23

126

95

104

46

64

128

77

0

0

0

0

0

0

0

0

0

0

0

0

—

69.35

2.33

0.36

0.19

0.10

0.05

0.03

0.03

0.02

0.02

0.02

0.02

0.02

0.02

0.01

0.01

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
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7. VEHICLE PLATOON ANALYSIS

Automated vehicle platooning has emerged as a new
potential way to increase road capacity and improve
travel efficiency. However, in this study, the analysis
dealt with only the naturally formed vehicle platoons.
As can be often observed, vehicles often move in groups
or platoons with relative short headways between them
(Figure 7.1). Vehicle platoons affect not only traffic
flows and highway operations, but also the mechanism
of axle loads impacting pavement. Platoon analysis in
this study focused on the longitudinal vehicle platoons
because they are directly related to loading conditions
of highway pavement. In the longitudinal platoon
analysis, traffic flows on individual lanes were exam-
ined and analyzed with respect to the distances or time
headways between leading and following vehicles.

7.1 Platoon Critical Intervals

The critical interval must be first established for
conducting vehicle platooning analysis (Aziza et al.,
2014). A critical interval (CI) is the time headway bet-
ween two consective moving vehicles that is used to
define if the two vehicles belong to a vehicle platoon.
A small CI would result in very few vehicle platoons. On
the other hand, a large CI would involve more vehicles
in the traffic flow into vehicle platoons. Therefore, it is
important to choose a reasonalbe CI value in platoon
analysis.

In statistics, ordinary least squares (ols) is a type of
linear least squares method for estimating the unknown
parameters in a linear regression model (Neter et al.,
1996). As a critical interval increases, the percent of
vehicles on the roadway increares. A critical interval
should be at a point where a increased time headway
would not cause a large percent increase of platooned
vehicles. In order to establish such a pattern, the ols
regression model was utilized to analyze cumulative
traffic flow data from all WIM sites. A series of time
headways (in seconds) were applied to examine the pro-
portions of vehicles in platoons. At each step, a head-
way increase of 0.05 seconds was used and the percent
of vehicles belonging to platoons was recorded. Thus, a
diagram of the grouped vehicle percentages versus the
corresponding headway threholds can be plotted as
displayed with the blue line in Figure 7.2.

The data points in the blue line in Figure 7.2 were
then separeated into two sets: one including the left side
portion and the other including the right side portion.
Ols regressions were conducted with the left set of the
data points and with the right set of the data points.
The data separations and consequent ols regressions
were repeated several times. The regression line with the
highest r2 value was select from the left side and another
was similarly selected from the right side. The headway
value corresponding to the intersection of the two
selected regression lines was then determined as the
critercal interval. As indicated in Figure 7.2, the crtical
interval in this example is about 2.7 seconds. The graph

on the right side of Figure 7.2 shows that, with a critical
interval of 2.7 seconds, the increase of platooned
vehicles is relatively low.

Through this method, the critical interval (rounded
to the nearest 0.5 seconds) is 2.5 seconds for Lines 1, 2,
3, and 5 are 2.5 seconds, and 1.5 seconds for Line 5.
A lower crtical interval for Line 5 could be attributed to
the fact that traffic flow on Line 5 was comprised of
more lightweight and faster moving vehicles than other
lanes. Using the critical intervals as platoon thresholds,
it was found that on average about 50%–58% of
all vehicles and about 35%–49% of trucks are grouped
into platoons and the platoon sizes range from 3 to 17
vehicles.

7.2 Platoon Characteristics

The behavior of a vehicle platoon is largely deter-
mined by the leader of the platoon. The most
commonly observed vehicles in Indiana are led by
lightweight vehicles (Classes 1, 2, and 3). Some of the
typical platoons in terms of leading vehicles are illus-
trated in Figure 7.3.

With the established critical intervals, the vehicle
volume and platoon distributions by leading vehicle
types were obtained using a month of data from one
WIM station as shown in Figure 7.4. The figure indi-
cates that vehicle volumes and platoons are directly
related for all types of leading vehicles. As most of the
vehicles in the traffic flow were lightweight vehicles, the
largest portion of the platoons were led by lightweight
vehicles. It is interesting to note in Figure 7.4 that Class
13 vehicle volume was higher than other types of trucks
at this location. In fact, it was observed Class 13
volumes were fairly high during the winter months on
interstate highways.

The relationships between leading vehicle weights
and platoon sizes were explored to reveal the effect of
leading vehicles. Figure 7.5 shows these relationships
for platoons led by lightweight vehicles (top left chart),
Class 5 vehicles (top right), Class 9 vehicles (bottom
left), and Class 13 vehicles (bottom right). The four
graphs in Figure 7.5 demonstrate the following effects:

1. Platoons led by lightweight vehicles (Classes 1, 2, and 3
vehicles) spread widely in platoon sizes, ranging from 2 to
17 vehicles.

2. The maximum platoon sizes of platoons led by trucks
are smaller than those of platoons led by lightweight
vehicles.

3. For a given platoon size, platoons led by trucks cover a
wide range of GVW values.

Similarly, the relationships between leading vehicle
weights and platoon travel speeds were also examined.
It was expected that platoon speeds would decrease as
the GVW of leading vehicles increase. However, it was
not always the case as displayed in Figure 7.6 for pla-
toons led by lightweight vehicles and Class 13 trucks.
For these two types of platoons, the platoon speeds
were in an upward trend as the vehicle weights increase.

40 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/21



Figure 7.1 An example of vehicle platoon.

Figure 7.2 Relationship between headway and percent of vehicles in platoons.

Figure 7.3 Platoons led by lightweight, Class 5, Class 9, and Class 13 Vehicles.
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The distributions of axle load with respect to the for
cases of platoons are shown in Figures 7.7 and 7.8,
where Cases 1, 2, 3, and 4 represent the platoons led by
lightweight, Class 5, Class 9, and Class 13 vehicles,
respectively. Figure 7.7 shows the distribution of
individual axle loads, while Figure 7.8 is the distribu-
tion of average axle load per platoon with respect to the
four cases of platoons. The observations in the figures
include the following:

1. In Figure 7.7, platoons of Cases 1, 2, and 3 appear in high

proportions within axle load less than 4 kips, indicating all

three types of platoons are mix of trucks and lightweight

vehicles.

2. Figure 7.8 shows very low proportion of Case 3 platoons

are in the average platoon axle load less than 4 kips range.

This means that most of the vehicles in platoons led by

Class 9 trucks are trucks rather than lightweight vehicles.

3. Figure 7.7 and Figure 7.8 demonstrate that both the indi-

vidual axle load and the average platoon axle load of Case



4 platoons spread beyond 14 kips, which implies that most

platoons led by Class 13 trucks are truck only platoons.

The WIM traffic data showed that vehicle platoons
in rural areas, especially in rural areas adjacent to urban
areas, consist of more trucks. In order to examine the
platoon patterns in rural areas, the traffic data from
WIM Site 507 on I-65 near Seymour and WIM Site 430

on I-94 near Michigan City were utilized for the ana-
lysis. The traffic volumes on the two sections are high at
the two sections of interstate highways. To show the
platoon patterns in different time periods (morning and
afternoon) and on different lanes, the proportions of
Class 9 trucks that were grouped into platoons were
calculated. Class 9 trucks were used because their
volumes were the highest among all types of trucks.
The critical intervals from 2.0 seconds to 4.5 seconds
were applied to reflect the effects of vehicle headways on
platoons. The proportions of Class 9 vehicles grouped
into platoons based on traffic volumes as well as truck
volumes are plotted in Figures 7.9, 7.10, 7.11, and 7.12
for the two WIM sites. The plots indicate that higher
proportions of trucks travel in platoons in the afternoon
than in the morning on both driving lane (Lane 1) and
passing lane (Lane 2). The plots also exhibit that trucks
on passing lane are more likely to move in platoons than
on driving lane.

7.3 Statistical Tests of Highway Vehicle Platoons

In order to analyze the variations of platoons, weekly
platoons were obtained for each month in 2018 at WIM
Site 315 on I-70 in Indianapolis. Three weekly platoon
distributions in January, April, and August among the
12 months are presented in Figures 7.13, 7.14, and 7.15
to display the number of platoons every 15 minutesFigure 7.4 Platoon distributions by type of leading vehicles.

Figure 7.5 Relationship between leading vehicle load (kips) and platoon size.
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Figure 7.6 Relationship between leading vehicle load (kips) and platoon speed (mph).

Figure 7.7 Distribution of axle loads of platoons
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within a week. As can be seen in these figures, the
number of platoons fluctuate continuously. Because the
calculated platoon values cover different hours, days,
and months, it was necessary to analyze the effects of
time of day, weekdays, weekends, and seasons with
appropriate statistical experimental design.

A factorial design expressed by the following equa-
tion was constructed to test the effects of several factors,
including roadway lanes, time periods of day, days of

week, and months or seasons:

yijklm~mztizbjzckzdlz tbð Þijz bcð Þjkz cdð Þkl

z tcð Þikz tdð Þilz bdð Þjlz(tbc)ijk

z(tbd)ijlz(tcd)iklz(bcd)jklzeijlkm Eq: 7:1

Where:

m 5 grand mean



Figure 7.8 Distribution of average axle loads of platoons.

Figure 7.9 Proportions of Class 9 vehicles in platoons on I-65 (based on traffic volume).
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ti 5 ith level effect of factor A

bj 5 jth level effect of factor B

ck 5 kth level effect of factor C

dl 5 lth level effect of factor D

e 2
ijlkm 5 residuals with normal distribution N(0, s )

Applying the factorial design, test Model 1 with the
effects of lane, time period of day, month, and day of
week was established as listed in Table 7.1. The statis-
tical test results are presented in Table 7.2. Similarly,
test Model 2 was formed to test the effects of lane, time
period of day, season, and weekday and weekend as
shown in Table 7.3. The statistical test results from
Model 2 are presented in Table 7.4.

The distribution of the model resuduals is depicted in
Figure 7.16. The nomality of the model resuduals was
tested with the normal Q-Q plot in Figure 7.17. The two
figures indicate that the model residuals are normally
distributed. In addition, no apparent outliers or influ-
ential points can be found in the plots. The residuals
seem to satisfy the model assumptions of normality,
random, and independence.

Based on the statistical outputs in Table 7.2 and 7.4,
with a significant level a 5 0.1%, it can be concluded
that the effects of all the selected factors of the two
models are statistically significant. It means that these
factors, including of lane, time, month, season, day of
week, and weekday/weekend, will significantly affect



Figure 7.10 Proportions of class 9 vehicles in platoons on I-65 (based on truck volume).

Figure 7.11 Proportions of Class 9 vehicles in platoons on I-94 (based on traffic volume).
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the number of platoons. In addition, most of the inter-
action effects of these factors are also statistically
significant. The few of factor interactions that are not
statistically significant include the following: Lane*
Month*Week, Lane*Time*Month*Week, Lane*Season*
Work, and Lane*Time*Season*Work.

Through the statistical tests, it can be concluded that
number of vehicle platoons are affected by the main
factors of roadway lanes, time periods of day, days of
week, months, and seasons. The vehicle platoons are
also affected by many forms of combinations of the
main factors.



Figure 7.12 Proportions of Class 9 vehicles in platoons on I-94 (based on truck volume).

Figure 7.13 Weekly platoon distributions in January.

Figure 7.14 Weekly platoon distributions in April.
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Figure 7.15 Weekly platoon distributions in August.

TABLE 7.1
Factorial design Model 1

Factor Levels Values

t: Lane

b: Time

c: Month

d: Day of Week

5

4

(0:00–6:00, 6:00–12:00, 12:00–18:00, 18:00–0:00)

12

7

1, 2, 3, 4, 5

1, 2, 3, 4

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

1, 2, 3, 4, 5, 6, 7

TABLE 7.2
AVOVA table of Model 1

Source of Variation Degree of Freedom

Type III Sum of

Squares Mean Square F Value Pr . F

Lane

Time

Lane*Time

Month

Lane*Month

Time*Month

Lane*Time*Month

Week

Lane*Week

Time*Week

Lane*Time*Week

Month*Week

Lane*Month*Week

Time*Month*Week

Lane*Time*Month*Week

4

3

12

11

44

33

132

6

24

18

72

66

264

198

792

984,407.18

12,923,864.74

436,030.34

740,102.02

265,862.06

170,177.74

220,447.39

920,171.22

36,068.96

1,049,086.67

49,663.01

352,070.22

56,660.66

570,216.76

110,093.72

246,101.79

4,307,954.91

36,335.86

67,282

6,042.32

51,547.81

1,670.06

153,361.87

1,502.87

58,282.59

689.76

5,334.4

214.62

2,879.88

139.01

1,089.28

19,067.6

160.83

297.8

26.74

228.16

7.39

678.8

6.65

257.97

3.05

23.61

0.95

12.75

0.62

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

0.7102

, 0.0001

1.0
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TABLE 7.3
Factorial design Model 2

Factor Levels Values

� : Lane 5 1, 2, 3, 4, 5

�: Time 4 1, 2, 3, 4

(0:00–6:00, 6:00–12:00, 12:00–18:00, 18:00–0:00)

�: Season 4 1, 2, 3, 4

(Spring: March–May, Summer: June–August, Fall: September–November,

Winter: December–February)

�: Weekday vs. Weekend 2 1, 2

(Monday–Friday, Saturday–Sunday)

TABLE 7.4
AVOVA table of Model 2

Source of Variation Degree of Freedom

Type III Sum of

Squares Mean Square F Value Pr . F

Lane

Time

Lane*Time

Season

Lane*Season

Time*Season

Lane*Time*Season

Work

Lane*Work

Time*Work

Lane*Time*Work

Season*Work

Lane*Season*Work

Time*Season*Work

Lane*Time*Season*Work

4

3

12

3

12

9

36

1

4

3

12

3

12

9

36

900,099.9

8,501,537.737

334,243.321

209,105.033

56,014.091

754,546.683

62,103.921

773,957.48

27,042.286

1,003,439.816

34,594.98

56,803.079

6,140.987

138,978.632

9,134.307

225,024.975

2,833,845.912

27,853.61

69,701.678

4,667.841

83,838.52

1,725.109

773,957.48

6,760.572

334479.939

2,882.915

18,934.36

511.749

15,442.07

253.731

803.46

10,118.3

99.45

248.87

16.67

299.35

6.16

2,763.44

24.14

1,194.27

10.29

67.61

1.83

55.14

0.91

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

, 0.0001

0.0384

, 0.0001

0.6304

Figure 7.16 Model residual distribution.
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Figure 7.17 Normal Q-Q plot of model residuals.
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8. EFFECTS OF UNCLASSIFIED VEHICLES

In the WIM dataset the unclassified vehicles, denoted
as Class 0 or C0, are those that the WIM device failed
to identify their vehicle types based on the integrated
criteria. The quantities of unclassified vehicles have
great effect on pavement design. There are many pos-
sible reasons for a vehicle not to be classified, such as
vehicle tailgating, lane changing, irregular vehicle size,
and WIM equipment problems. An unreasonably large
value of unclassified vehicles usually indicates that the
WIM device is not working properly. These unclassi-
fied vehicles could be any types of vehicles, including
passenger cars, buses, and trucks. Overestimate or
underestimate of the truck percentages in the unclassi-
fied vehicles will undoubtedly affect the axle load inputs
in pavement design. This issue is more critical when
part of the unclassified vehicles in WIM data have
empty or extreme large measurements on vehicle speed,
axle load and vehicle weight, and axle configuration. In
order to minimize the effects of unclassified vehicles,
a neural network (NN) based deep learning approach
(Paszke et al., 2019) was employed to identify the
feature attributes of the unclassified vehicles and to
assign them into appropriate vehicle groups.

8.1 Dataset Processing and Neural Network Input

A dataset with a total of 100,000 classified vehicles
was retrieved from one of the WIM sites for attribute
analysis with the neural network (NN) based deep
learning method. There are more than a hundred
attributes in the WIM dataset. It is essential to use only
the most relevant attributes for effective data train-
ing. As an example, the distributions of the three key
attributes of speed, vehicle length, and gross vehicle

weight are displayed with boxplots in Figures 8.1, 8.2,
and 8.3. Boxplots are a standardized way of displaying
the distribution of data based on a five number sum-
mary, including minimum, first quartile (Q1), median
(second quartile: Q2), third quartile (Q3), and maxi-
mum. It can be observed in the figures that:

1. The differences between speeds of lightweight vehicles (C1,

C2, C3) and trucks do not exhibit a clear pattern. Thus, the

attribute of speed might provide only limited information

in the NN training and learning process.

2. Distributions of vehicle lengths vary among individual

vehicle classes. However, the differences of vehicle lengths

between some vehicle classes are not significant. Therefore,

vehicle length data would provide some indications of

particular types of vehicles.

3. There exist significant differences in GVW distribution

between lightweight vehicles and trucks, which would add

key measures to the training model.

Based on the principles of WIM vehicle classifica-
tions, attributes related to vehicle axles are essential to
accurately further divide vehicles into multiple types.
However, the attributes must be processed before the
information can be efficiently applied in NN model
training. In addition to speed, length, and GVW, the
mean of the axle weights (meanAxleWeight) and the
mean of axle spaces (meanAxleSpace) were included as
numerical variables in the NN model training. The
distributions of these two variables are displayed in
Figure 8.4 and Figure 8.5. The boxplots of meanAxle
Weight (Figure 8.4) reveal clear distinctions among
truck classes in terms of four quartiles and thus provide
additional features of vehicle characteristics. Axle
spacing distributions shown in Figure 8.5 would offer
further clues to distinguish different types of vehicles.



Figure 8.1 Speed distributions.

Figure 8.2 Vehicle length distributions.
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For instance, the largest axle spaces can be used to
identify Class 4 vehicles (buses).

Through this primary process, three types of axle
configurations (single, tandem, and tridem) were found
to be major factors affecting vehicle classifications.
Therefore, altogether eight features related to the WIM
data were identified as influencing characteristic vari-
ables and were embedded as the categorical input of the
NN model as presented in Table 8.1.

8.2 Model Training and Testing

8.2.1 Main Terminologies Related to the Neural Network
Model

Before further discussing the NN process, it is
necessary to briefly introduce some terminologies used

in the learning algorithms. ‘‘Error’’ is the term represents
the difference between the actual output and the pre-
dicted output. The function that is used to compute this
error is known as ‘‘Loss Function.’’ Different loss func-
tions will yield different errors for the same prediction,
and thus have a considerable effect on the performance
of the model. ‘‘Cross-entropy’’ is commonly used in
machine learning as a loss function. ‘‘Cross-entropy
loss’’ measures the performance of a classification model
whose output is a probability value between 0 and 1.
Cross-entropy loss increases as the predicted probability
diverges from the actual label. A ‘‘confusion matrix’’ is a
table that is often used to describe the performance of a
classification model on a set of test data for which the
true values are known.

The following example of a simple confusion matrix
is presented to explain the main concept. If there are



Figure 8.3 Gross vehicle weight distributions.

Figure 8.4 Boxplots of meanAxleWeight distribution.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/21 51

180 classified vehicles from WIM data. It is verified that
110 of the 180 vehicles are Class-9 vehicles and 70 of the
180 vehicles are other types of vehicles (or Non-Class-9
vehicles). The actual and predicted vehicle types are
listed in Table 8.2 as a confusion matrix. In the con-
fusion matrix, the basic terms can be defined as following:

N True positives (TP): These are cases in which the vehicles
are actually Class-9 and predicted vehicles are also Class-
9. In this example, TP 5 110.

N True negatives (TN): When the vehicles are actually
Non-Class-9 vehicles and the predicted vehicles are also
Non-Class-9. In this example, TN 5 40.

N False positives (FP): When the vehicles are actually Non-

Class-9 vehicles and the predicted vehicles are Class-9
(Also known as a ‘‘Type I error’’). In this example,
FP 5 20.

N False negatives (FN): When the vehicles are actually
Class-9 vehicles and the predicted vehicles are Non-
Class-9 (Also known as a ‘‘Type II error’’). In this
example, FN 5 10.

N Accuracy: Overall frequency of correct classification. In
this example, Accuracy 5 (TP + TN)/total 5 (110 + 40)/
180 5 0.83.

N Precision: When the model predicts Class-9, the fre-
quency that the prediction is correct. In this example,
Precision 5 TP/(Predicted Class-9) 5 110/130 5 0.85.

8.2.2 Design of the Neural Network Model

The characteristic variables listed in Table 8.1 were
applied as the input layer in the NN model. The 13
vehicle classes were designed as the neurons in the out-
put layer. The topology of the NN model is illustrate in



Figure 8.5 Boxplots of meanAxleSpace distribution.

TABLE 8.1
Characteristic variables of the NN model inputs

Feature No. Variable Description

1 GVW Gross vehicle weight

2 length Total vehicle length

3 speed Vehicle driving speed

4 meanAxleWeight Mean value of vehicle axle weight

5 meanAxleSpace Mean value of spaces between adjacent vehicle axles

6 Single Number of single axles of the vehicle

7 Tandem Number of tandem axles of the vehicle

8 Tridem Number of tridem axles of the vehicle

TABLE 8.2
Example of confusion matrix

n 5 180

Actual Vehicle Class

Class-9 Non-Class-9

Predicted Vehicle Class Class-9 110 20

Non-Class-9 10 40
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Figure 8.6. As the topology shows, between the input
and output layers there are three hidden layers with
200, 100, and 50 neurons, respectively. The code of the
training model structure with functions and layer
neurons is shown in Figure 8.7.

The dataset with the processed feature variables was
divided into a labeled set (WIM-classified data or C1,
C2, …, C13) and an unlabeled set (unclassified data or
C0). The labeled set was served as the learning database
to train and test the model. A total of 80,000 randomly
selected labeled vehicles were divided into two groups,
one as the training dataset and the other as the testing
dataset.

The training dataset was first utilized to train the
model. In the training process, the Cross Entropy Loss
function was used to measure the performance of the
training and optimizing process. In terms of the train-
ing process, an epoch refers to one cycle through the
full training dataset. The training model was performed
300 epochs. The learning curve of the model is depicted
in Figure 8.8. The learning curve indicates that the
training loss reduced rapidly initially and gradually
stabilized as the number of epochs increased. After 300
epochs, the loss reached 0.1571.

After the training process, the testing dataset was
then applied to evaluate the accuracy of the NN model
in identifying vehicle class. The confusion matrix in
Figure 8.9 was produced. As the values in the diagonal
cells represent the correct predictions in a confusion
matrix, the high diagonal values in then confusion
matrix in Figure 8.9 shows an evidence that the model
yielded predictions with high accuracy. The computer
output indicates that the overall accuracy score is
0.9525 and the average precision is 0.9500. It is worth
pointing out that the low values corresponding to Class
13 vehicles in the confusion matrix are caused by lack of



Figure 8.6 Topology of the neural network model.

Figure 8.7 The neural network model training sample code.

Figure 8.8 The learning curve of the training process.
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Figure 8.9 The confusion matrix.
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Class 13 vehicles in the dataset, but not because of poor
accuracy.

8.3 Model Application

After the NN model was trained and validated using
the labeled dataset, it was applied to evaluate the
unlabeled dataset from the same WIM site. That is, the
model was used to process the unlabeled dataset to
assign the unclassified vehicles (C0) into other vehicle
classes (C1, C2, …, C13) through the neural network
learning algorithm based on the characteristic features.
A total of 3,409 unclassified vehicles were processed
through the NN model and they were allocated to the
vehicle classes of C1, C2, …, C13. The allocations of the
unclassified vehicles are shown in Figure 8.10. For
comparison purpose, the original distribution of classi-
fied vehicles is presented in Figure 8.11. The distribu-
tions in the two figures are fairly similar in the general
patterns. However, the details indicate that the
proportions of vehicles in C6, C8, and C11 in Figure
8.10 are higher than their counterparts in Figure 8.11,
which may mean that C6, C8, and C11 vehicles are
more prone to misclassification. On the other hand, the
proportions of C9 vehicles in the two figures may imply
that C9 vehicles are less likely to be misclassified.

The proportions displayed in Figure 8.10 are highly
important for AADTT values with respect to MEPDG.
Without these proportions, the unclassified vehicles are
either discarded or assigned to the truck groups arbi-
trarily. The proportions from the NN model can be
used to allocate the unclassified vehicles into the 13
classes of vehicles in a rational manner so that pave-
ment designs through MEPDG would produce more
appropriately and realistically results.

Since unclassified vehicles vary considerably on diffe-
rent roadways, the NN model should be applied at each
WIM site separately to reflect the particular character-
istics of the site. The unclassified vehicle data in 2019
from 43 WIM stations were processed for the NN
model. The data from each WIM station were utilized to
go through the learning and testing steps and then the
calculating and predicting steps. The proportions of
unclassified vehicles to be allocated to the vehicle classes
for all WIM sites were obtained as shown in Table 8.3.
Also shown in Table 8.3 are the percent of unclassified
vehicles, the WIM recorded AADTT, the updated
AADTT after allocations, and the percent of AADTT
increase. The results from the NN model indicate that
the average accuracy of the model predictions is 0.943.
The only WIM site with a low accuracy (0.8605) is WIM
Site 482. At this site, 98.1% of the recorded vehicles
were unclassified vehicles. The NN model could not
effectively classify the vehicles because the number of
unclassified vehicles is extremely higher than that of
classified vehicles in the WIM data. It is most likely that
the WIM device at WIM Site 482 malfunctioned and the
traffic data were not valid.

Using the obtained proportions for allocations, the
AADTT values are updated by adding the allocated
unclassified vehicles in the original AADTT. As can be
seen in the Table 8.3, the AADTT increases range from
1.0% to 86.5% with an average increase of 14.4%. To
illustrate the effects of allocated unclassified vehicles,
Figures 8.12, 8.13, and 8.14 are drawn for low, medium,
and high C0 volumes, respectively. Apparently, the
effects of unclassified vehicles on pavement design could
be significant if they were not appropriately allocated.
The allocations resulted from the NN model will imp-
rove the quality of truck volume input for MEPDG and
will consequently improve pavement design.



Figure 8.10 Proportions of unclassified vehicle allocations.
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Figure 8.11 Distribution of classified vehicles.

It should be noted that the NN model was estab-
lished based on the characteristic features in the WIM
recorded data with respect to unclassified vehicles.
The allocations obtained from the NN model provide a
much better way for including the unclassified vehicles
in the truck volumes than disregarding or arbitrarily
assign them to truck classes. However, the NN method
could be further enhanced by including additional
information, such as image and video sources.

8.4 Validation with Traffic Videos

The morning traffic stream was video recorded for a
few hours on April 13, 2018 near the WIM Site 370

on I-70 for a previous study (Bunnell et al., 2018).
The video data were provided by INDOT to analyze
unclassified vehicles in this study. In order to match the
WIM recorded data and the video images during the
200-minute time period, a total of 124 unclassified
vehicles were retrieved from the WIM data. All of the
124 unclassified vehicles were detected and properly
labeled by comparing with the video records. Three of
the images of misclassified vehicles are shown in Figure
8.15. Image (a) shows a Class 3 vehicle that was
recorded as an unclassified vehicle. Image (b) is a Class
9 vehicle that was marked as an unclassified vehicle.
Image (c) displays two adjacent Class 2 vehicles that
were assigned as one unclassified vehicle. During the
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Figure 8.12 Allocation of low unclassified vehicle volume
(WIM Site 436).

Figure 8.13 Allocation of medium unclassified vehicle
volume (WIM Site 442).

Figure 8.14 Allocation of high unclassified vehicle volume
(WIM Site 210).
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labeling process, some cases of failing to classify vehi-
cles were identified by comparing the WIM data and
the video records as listed below:

1. WIM device failed to capture or measure the features

(speeds, axle loads, and axle spaces) of vehicles while they

were changing lanes and thus placed the vehicles as
unclassified. WIM data often contain zero values of
speeds, axle loads, and axle spaces.

2. One vehicle was classified as two vehicles (misclassified
and/or unclassified) during lane changing movement, one
vehicle per lane. Thus, there is one non-existing vehicle
under this situation.

3. Two adjacent vehicles were recorded as one because they
moved very closely as shown in Figure 8.15(c).

4. Passenger cars with trailers and some types of recrea-
tional vehicles (RV) were recorded as unclassified
vehicles in the WIM data.

As presented in Table 8.1 in the previous section, the
characteristic variables of the NN model include GVW,
length, speed, meanAxleWeight, meanAxleSpace, Single,
Tandem, and Tridem. However, among the 124 unclas-
sified vehicles matched with the video records, only 75 of
them have WIM data with non-zero values related to the
eight characteristic variables. The WIM data of the other
49 unclassified vehicles have incomplete and inaccu-
rate values or even all zero values of the characteristic
variables.

The NN model was applied to process the 124 labeled
unclassified vehicles that matched WIM data and the
video files, including the 75 with non-zero data values
and the 49 with incomplete or zero data values. The
model predicts all of the 49 unclassified vehicles with
incomplete or zero data values as Class 2 vehicles (pass-
enger cars), while the video shows that 11 of them are
trucks and 11 of them are actually the double counted
(non-existing) ones during lane changing. The reason
for this inaccurate prediction is that the WIM data
contain incomplete or zero values. That is, the low
quality of input data resulted in the low quality of the
model output. A total of 38 out of the 75 unclassified
vehicles with non-zero inputs were correctly classified by
the NN model. Among the 37 vehicles that were mis-
classified by the NN model, 17 of them were mis-
classified as Class 8 and Class 9 trucks, while they are
actually Class 2 and Class 3 vehicles with a trailer
attached (see Figure 8.15(a)). The NN model failed to
distinguish the trailer axles from the semi-truck axles.
Another 11 of the 37 vehicles were misclassified as Class
8 and Class 9 trucks by the NN model, while the video
shows they are in reality two adjacent lightweight vehi-
cles (Class 2 or Class 3) moving closely. The comparison
of the video labeled and the model predicted vehicle
types is demonstrated in Figure 8.16. In the figure, ‘‘0’’
in the horizontal axis represents the group of double
counted or non-existing vehicles.

As Figure 8.16 shows, the NN model produced fairly
good predictions with the limited and incomplete WIM
data and with the video of only a few hours at one
location. Through manually examining the videos and
matching the WIM data, some causes for misclassi-
fying vehicles were identified. It is believed that the
accuracy of assigning unclassified vehicles can be
considerably improved if more video data are available
at more WIM stations. Video and image data can be
used to identify additional key features of moving



Figure 8.15 Images of misclassified vehicles.

Figure 8.16 Comparison between video labeled and model predicted classifications.
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vehicles that WIM devices are not able to detect and
record. The combination of video/image and WIM
data will provide key information and sources for
further improving vehicle classification efficiency and
quality. It is proposed that the neural network algo-
rithms and image processing techniques are employed
to tackle the unclassified vehicles issues related to WIM
data.

9. TRUCK TRAFFIC DATA REPOSITORY AND
VISUALIZATION

9.1 Data Repository

The compiled truck traffic data in this study will be
utilized for pavement design with MEPDG software.
The required truck traffic related data for MEPDG
include truck volume distributions and axle load spec-
tra. As described in Chapter 3, the truck traffic and axle
load information has been compiled and stored in Excel
files for all ATR and WIM stations. In an attempt to
make the truck data in an easily accessible manner for
pavement design, the truck volume distributions and

axle load spectra were converted into the Extensible
Markup Language (XML) format for the MEPDG
pavement design software.

The truck traffic data repository module was created
with MicroStation V8i. MicroStation (Bentley, 2020) is
a computer-aided design (CAD) software platform
for two- and three- dimensional design and drafting,
developed and sold by Bentley Systems and used in the
architectural and engineering industries. It generates
2D/3D vector graphics objects and elements and inclu-
des building information modeling (BIM) features. For
easy access and identification, in the repository the
ATR and WIM stations were grouped in terms of the
nearest cities that they located. Figure 9.1 is an illu-
stration of an interface of the repository model. The
interface shows the cities on the Indiana map, where
the blue bars are actually the city names that can be
exhibited if the map view is enlarged by zooming in.

A user can double click on a city name to display
the ATR and WIM stations near and around the city.
The information on each of the ATR and WIM stations
includes the type of station (ATR or WIM), station



Figure 9.1 Interface of the repository model.

number, route ID and mile marker, AADT and
AADTT of 3 years (2016, 2017, and 2018). As an
example, Figure 9.2 shows the essential information on
a WIM station after double-clicking on the city name
‘‘Lafayette.’’

The interface shown in Figure 9.2 contains only
general truck traffic information. The detailed truck
traffic information can be exported to a computer or a
hard drive following the following steps.

1. Generate templates: Click the ‘‘Element’’ R ‘‘Tags’’ R
‘‘Generate Templates’’ (see Figure 9.3).

2. Select parameters: Choose a tag set, such as West

Lafayette, and then add tags into the report columns,

and name the report file, such as wls1. Leave other

settings unchanged. (see Figure 9.4)

3. Save templates: Click ‘‘File’’ R ‘‘Save as’’ R Use the report

file name to save the template (wls1.tmp) at a selected

location on a computer or hard drive. (see Figure 9.5)

4. Generate report: Click ‘‘Element’’ R ‘‘Tags’’ R ‘‘Gene-

rate Reports’’ (see Figure 9.6).

5. Save report: Choose a location, name the file, add it into the

‘‘Selected Files’’ and then click ‘‘Done’’ (see Figure 9.7).

6. View report: Go to the default location of tag files (the

default path is Drive:\Bently\Microstation\WorkSpace

Figure 9.2 Tag information of a WIM station.

Figure 9.3 Generating templates.
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Figure 9.4 Select parameters.

Figure 9.5 Save templates.

Figure 9.6 Generate report.

Figure 9.7 Save report.
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Figure 9.8 Link GIS files.

Figure 9.9 Add link.
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\Projects\Examples\General\out) and open the file. You

may save the file format from rpt to csv.

9.2 Link Other Sources or Files to the Repository

INDOT produces annual GIS maps of statewide
traffic volumes. The CAD based truck traffic repository
model and the GIS maps are in different formats and
on different platforms. It may be necessary or helpful to
link the truck traffic repository to the GIS map. The
steps to link are as follows:

1. In the MicroStation V8i project explorer, click the ‘‘Create

Link’’ R ‘‘Link from File’’ and then select all GIS files that

need to be associated (Figure 9.8).

2. Add link: Right-click on any GIS file in the project

explorer and select ‘‘add link to element’’ and then put the

link on a selected city tag, such as Indianapolis (Figure

9.9). The link can then be opened, edited, or removed. In

addition to GIS maps, other types of files, including pdf,

image, and data sheet files, can also be linked with the

repository model if needed.

9.3 Data Storage and Visualization Model

In order to better demonstrate the road and traffic
conditions of individual ATR and WIM stations, a BIM
based data storage and visualization model was also
created for traffic and truck volume and road condition
at each ATR and WIM station. The data storage and
visualization model is based on the Revit BIM software.

At each ATR or WIM station, the BIM model can
show not only the traffic related data, such as AADT,
AADTT, lane distribution, directional distribution, and
truck volumes in terms of C1 to C13, but also 2D and
3D images of pavement structure, pavement lanes, and
pavement thickness. Figure 9.10 illustrates a portion of
the data storage and visualization model at one WIM
station, which includes data storage and 2D and 3D
displays of the roadway section.



Figure 9.10 Data storage and visualization.
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10. TABLEAU INTERACTIVE VISUALIZATION
DASHBOARD

10.1 Data Visualization

The traffic input module for MEPDG design has
been updated and discussed in the previous chapters.
The results from this study, including averaged annual
daily (truck) traffic distributions, axle load spectra,
and monthly and directional factors, are stored and
presented in the forms of detailed tables, figures, and
spatial files. The analyses on vehicle platooning and
unclassified vehicles are provided with structured data
results. In order to provide a tool for INODT engineers
to have easy and effective access to the traffic data,
additional efforts were made to create an interactive
visualization dashboard. The dashboard is based on
Tableau desktop software (Tableau, 2020). Tableau
is a data visualization tool used to help in simplify-
ing raw data into the easily understandable format.
The visualizations created with Tableau are in the form
of dashboards and worksheets.

The intention to develop the visualization dashboard
was to enable user to access the truck traffic data,
compare traffic performances of ATR and WIM sites,
identify missing data problems, and examine the
changing patterns and trends of truck volumes. The
functions of the visualization dashboard implemented
include:

1. Access needed information, identify traffic patterns, and
compare the characteristics of truck traffic in different
sites.

2. Create a basis for determining appropriate locations of
possible new ATR or WIM stations to be added in the
future to the system. This is because the visualized
information, including yearly volume change tendencies,

site density in area of selection, and the level of traffic

volumes, should all be considered for the choice of

desired new locations.

3. Identify potential road sections of traffic congestion,

which are the locations with relatively high traffic volu-

mes and less roadway lanes.

4. Signal possible malfunctions of ATR or WIM devices.

The identifications of device malfunctions, such as

missing data or uncharacteristic data values, could be

captured and displayed by the visualization dashboard.

5. Catch significant changes in terms of traffic and truck

traffic volumes.

6. Provide user friendly functionality and compatibility for

future data expansion. The Excel worksheets of data

sources can be displayed, modified, and updated to

include new data.

10.2 Visualization Dashboard

10.2.1 Data Features and Main Displays

As presented in the previous chapters, this study has
generated various types of tables, figures, and maps. To
create a suitable data structures for the dashboard, data
rearrangement was first processed before extracted into
the Tableau platform. The AADTT data were divided
into directional data at the ATR and WIM stations
with recorded traffic data in two directions. A spatial
file was used to transfer the spatial geometry into lati-
tude and longitude coordinates so that different data
sources could be collaborated in the roadway maps.
The data features behind the Excel worksheet are listed
in Table 10.1.

Figure 10.1 shows an overview of the interactive visua-
lization dashboard, which is composed of the following
five views displaying different aspects of traffic data.



TABLE 10.1
Data features for the interactive visualization dashboard

Feature Description

Latitude/Longitude

Site

Year

Counted Days

Direction

Direction Order

Lanes Counted

C4, C5, …, C13

AADT

AADTT

C4%, C5%, …, C13%

City

County

District

Mile Marker

Distance

Route No.

Site ID

Site Type

Coordinates of the data site

Site name

Year of data (2016–2019)

Number of the days in the year with recorded data

Vehicle travel direction

Direction(s) order in data

Number of recorded lanes of road

Annual average daily truck volume in truck classes

Average annual daily traffic

Average annual daily truck traffic

% of C4, C5, …, C13 in AADTT

The closest city near the site

The name of county the site is located

The name of district the site is located

Route mile marker of the site location

Distance in miles a rural site from city (zeros for urban sites)

Roadway route no.

ATR or WIM Station ID

Type of device (WIM or ATR)

Figure 10.1 Visualization dashboard.
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1. A grouped bar chart of truck traffic class distributions

with selected district, county, route, traffic directions,

and sites.

2. A line chart showing the traffic changing patterns in time

series.

3. Boxplots displaying the ranges of traffic volumes

(AADT) and truck traffic volumes (AADTT) among

the selected sites in rural and urban areas.

4. A map showing the all locations of ATR and WIM

stations with highlighted abnormal sites.



5. A Tableau butterfly chart alongside the map view
displaying side by side directional truck class distribu-
tions of selected sites.

In the dashboard, the data filters and the selection
actions are connected with all five views so that the
views will filtered/zoomed simultaneously with user’s
selection on data of interest. Scatterplots with regression
equations are also created in the meantime in a
workbook that is not displayed on the dashboard. The
worksheet contains additional information on truck
traffic distributions and their changing trends. The main
visualization worksheets are described in the following.

10.2.2 Map Visualization

The first worksheet is the visualization of map as
shown in Figure 10.2. In this visualization worksheet,
the map of the state of Indiana is formed with the
traffic data in Excel produced for MEPDG and the
route geometries from a spatial data file. The primary
roadway spatial file is connected with the tabular data
by transferring the route geometry into points with
latitude and longitude coordinates. Filters on route
geometry and county names is applied so that only
highways and counties with available WIM or ATR
sites are displayed in the map along with the selection
lists. The map has two layers. The first layer is the
highway routes displayed in grey in the map as the
reference information of site locations. The second
layer consisting shape markers aligned with the map to
represent the locations of the WIM and ATR sites. Two
icons with different shapes are utilized to denote urban
and rural areas. The tabular data sources in the

dashboard include all data recorded during 2016 to
2019. The red-blue color bar indicate the days that the
device recorded traffic data during a year, with deep red
representing the number of days with no data recorded
and deep blue representing the number of days with full
data recorded.

The value of truck traffic directional ratio on the map
is the ratio of eastbound-volume to westbound-volume
or the ratio of northbound-volume to southbound-
volume. A ratio value close to 1.0 indicates good
balance between the truck traffic in two directions,
while a ratio value of 0 or extremely large implies that
the ATR or WIM device at the site records the truck
volume in only one direction. The tooltip hovered
provides detailed information on traffic volumes and
distributions.

10.2.3 Butterfly Charts

Butterfly charts are embeded in the map and are
visible in the form of tooltips. Figure 10.3 presents an
example of butterfly chart view for ATR Site 204. The
information pertaning to the site indicates that it is a
two-way six-lane ATR site on I-69 with other location
information, such as district, county, and city. The
butterfly charts show that the volumes of Class 9 and
Class 13 vehicles are not balanced in the two directions
in terms of of the bar lengths on the two sides of the
central certical axis. The truck traffic directional ratio
of 1.492 implies that the northbound truck traffic
volume is considerably greater than the southbound
truck traffic volume. The average values of AADT and
AADTT are also displayed. In addition, it is indicated

Figure 10.2 Map visualization.
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Figure 10.3 Butterfly charts.

Figure 10.4 Truck traffic bar charts.
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that the truck weight road category is C on this
roadway section.

10.2.4 Truck Traffic Bar Charts

Bar charts are commonly utilized to visually show
the realtive differences of quantitative data. Truck

traffic volume distributions are displayed in bar charts
as shown in Figure 10.4 in the dashboard. The bar
charts demonstrate the 4-year truck volumes in terms of
truck classes. The relative differences in truck traffic
volumes can be clearly perceived and compared by the
bar lengths. If a single site is selected, the visualization
will show the AADTT vlaues of truck classes in the site.



Figure 10.5 Boxplots of different areas.

Figure 10.6 Lane charts of AADTT.
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A user can also select multiple sites to compare various
features for specifc truck class or truck weight road
category. For comparison of multiple sites, the truck
traffic volumes are illustrated with stacked bar charts.
The specific information related to the truck traffic
volumes and distribitions is readily visible through
tooltips.

10.2.5 Boxplots

Boxplots are used in the dashboard to show the
difference ranges of traffic levels between sites in rual
areas and sites in urban areas. As discussed in Chapter
8, boxplots are a standardized way of displaying the
distribution of data based on a five number summary,



including minimum, first quartile (Q1), median (second
quartile: Q2), third quartile (Q3), and maximum.
Figure 10.5 presents an example of boxplots showing
the distributions of traffic volumes (AADT) and truck
traffic volumes (AADTT) on roadway sections in rural
and urban areas of several selected counties.

10.2.6 Line Charts

Line charts are used in combination with tooltips to
view truck traffic volumes in time series. An example of
line charts is illustrated in Figure 10.6. In this example,
demonstrated are the AADTT values of all ATR and
WIM stations in District Seymour in the 4 years from
2016 to 2019. There are nine ATR and WIM stations
on different roadway sections in the district. It can be
seen that at ATR Site A510 the truck traffic volume
in 2019 contains no values, indicating possible device
malfunction.

11. CONCLUSIONS

The primary objective of this study was to update the
traffic design input module, and thus to improve the
current INDOT pavement design procedures. The
traffic data recorded at 143 ATR and WIM stations
over the most recent 3 years and annual traffic data
maintained by INDOT were utilized in the analysis.
The current truck traffic and the truck traffic in 2008
were compared and it was found that traffic volu-
mes and truck traffic volumes had changes, mostly
increased, considerably on the Indiana highway net-
work. Truck traffic data in terms of Average Annual
Daily Truck Traffic (AADTT) and axle load spectra
were compiled and stored for MEPDG pavement
design. Bus traffic data with respect of traffic volumes
and axle load distributions were obtained through
WIM and public transportation information.

The equivalent single axle load (ESAL) values were
calculated based on the updated truck volumes and
truck axle load data at WIM sites. New ESAL values
were obtained using AASHTO equations and Axle
Group Divisors. The ESAL values include annual
ESAL values on roadway lanes, average annual ESALs
per truck, average annual ESALs on different high-
ways, and average annual ESALs on all roadways.

Analysis was performed to evaluate the shifts in
truck traffic and axle load spectra for low and high
truck volume roadways and more reasonable subcate-
gories were determined.

Analysis was performed to better understand the
traffic characteristics when they travel in groups with
relative short headways between vehicles. The critical
intervals were established to define vehicle platoons.
Various types of platoons and their features were
analyzed in terms of platoon lengths, leading vehicle
types, and composition of vehicles.

Analysis of unclassified vehicles was performed
with the ATR/WIM recorded data. A neural network
model was established to determine the appropriate

allocations of unclassified vehicles to truck classes.
Since the number of unclassified vehicles is often fairly
high at some ATR or WIM stations, the allocations will
help to improve the accuracy of truck traffic data and
thus improve pavement design. Video records of traffic
on an interstate section and traffic data from a nearby
WIM station were utilized to identify some causes for
vehicle misclassifications.

A truck traffic data repository and visualization
model and a Tableau interactive visualization dash-
board model were developed for easy access, view,
storage, and analysis of the updated MEPDG related
traffic data.

All results and findings were included and combined
to update the traffic variables in the current traffic
design input module, including average annual daily
truck traffic, truck volume monthly adjustment factors,
truck volume lane distribution factors, truck volume
directional distribution factors, truck volume class
distributions, traffic volume hourly distribution factors,
distributions of for single-, tandem-, tridem-, and quad-
axle loads, average axle weight, average axle spacing,
and average number of axle types.

The following recommendations are provided for
future implementation of the research results:

N The updated truck traffic information should be used to
replace the information produced from the last study for
MEPDG pavement design. The information includes
average annual daily truck traffic, truck volume monthly
adjustment factors, truck volume lane distribution fac-
tors, truck volume directional distribution factors, truck
volume class distributions, traffic volume hourly distri-

bution factors, distributions of for single-, tandem-,
tridem-, and quad-axle loads, average axle weight,
average axle spacing, and average number of axle types.

N The subcategories for low truck volume roads (Group A)
and high truck volume roads (Group D) should be
utilized for pavement design to reflect more realistic
traffic situations.

N Unclassified vehicles should not be discarded or arbi-
trarily assigned to truck classes. The developed allocation
proportions should be applied to appropriately allo-
cate unclassified vehicles to vehicle classes for pavement
design.

N The updated ESAL values should be adopted for
INDOT applications in the areas, such as pavement
asset management and construction cost estimate.

N The truck traffic data repository and visualization model
and a Tableau interactive visualization dashboard model
can be used for easy access and analysis and for
visualized view of the MEPDG related traffic data.

N It should be pointed out that the results of vehicle
platoon analysis may not be implemented directly in
MEPDG pavement design. However, the results and
findings from the platoon analysis would provide a basis
for future pavement structural analysis with respect to

material fatigue under repeated loading.

The neural network model provided fairly good
allocations of unclassified vehicles into the 13 classes
of vehicles. As demonstrated in this study, with only
limited traffic video records at one WIM site, some
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causes for misclassifying vehicles were able to be iden-
tified. It is believed that the accuracy of assigning
unclassified vehicles to the correct vehicle classes can be
considerably improved with sufficient amount of video
data in combination of WIM data at more WIM
stations. The combination of video/image and WIM
data will provide key information and sources for
further improving vehicle classification efficiency and
quality. It is therefore proposed that future research to
be conducted with the neural network algorithms and
image processing techniques to further tackle the
unclassified vehicle issues related to WIM data.
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Appendix A. Axle Load Spectra and Annual ESAL Values
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APPENDIX A. AXLE LOAD SPECTRA AND ANNUAL ESAL VALUES 

Table A.1 All-axle load distribution (percentage) for each truck class 

Axle Vehicle Load Range 
(kips) C4 C5 C6 C7 C8 
0–3 3.98 52.95 18.26 11.80 17.40 
3–4 1.71 18.11 13.77 3.22 9.66 
4–5 1.92 7.48 9.86 3.57 9.99 
5–6 2.39 4.07 6.89 4.13 8.50 
6–7 3.22 2.91 5.69 4.00 7.09 
7–8 4.78 2.38 4.78 4.04 5.92 
8–9 6.74 2.14 4.65 3.95 4.87 

9–10 8.34 1.94 4.37 4.23 4.13 
10–11 9.03 1.52 4.30 4.35 3.50 
11–12 8.88 1.16 4.02 4.63 3.00 
12–13 8.18 0.90 3.65 5.07 2.63 
13–14 7.05 0.69 3.33 5.51 2.36 
14–15 6.21 0.54 2.96 5.74 2.29 
15–16 5.22 0.43 2.60 5.66 2.27 
16–17 4.39 0.36 2.30 5.22 2.40 
17–18 3.70 0.31 1.92 4.50 2.44 
18–19 3.24 0.25 1.59 3.73 2.26 
19–20 2.71 0.21 1.24 3.22 1.87 
20–21 2.03 0.18 0.93 2.63 1.34 
21–22 1.52 0.15 0.65 2.01 0.89 
22–23 1.16 0.12 0.51 1.59 0.62 
23–24 0.82 0.10 0.38 1.30 0.45 
24–25 0.58 0.09 0.27 1.04 0.37 
25–26 0.34 0.08 0.17 0.85 0.33 
26–27 0.25 0.07 0.14 0.57 0.28 
27–28 0.19 0.07 0.10 0.38 0.26 
28–29 0.17 0.07 0.09 0.31 0.24 
29–30 0.11 0.06 0.07 0.25 0.24 
30–31 0.10 0.05 0.05 0.19 0.24 
31–32 0.08 0.05 0.05 0.13 0.23 
32–33 0.08 0.05 0.03 0.15 0.21 
33–34 0.07 0.05 0.04 0.12 0.21 
34–35 0.06 0.04 0.03 0.17 0.21 
35–36 0.06 0.04 0.02 0.11 0.19 
36–37 0.05 0.04 0.03 0.11 0.16 
37–38 0.07 0.04 0.02 0.10 0.15 
38–39 0.03 0.03 0.02 0.12 0.13 
39–40 0.05 0.03 0.02 0.15 0.11 
>40 0.51 0.22 0.22 1.16 0.56 

Classes 
C9 C10 C11 C12 C13 

2.13 16.23 0.00 0.00 0.00 
3.05 4.63 0.60 0.56 0.04 
4.29 4.95 1.45 2.34 0.14 
5.20 5.37 1.92 4.43 0.25 
6.02 5.48 2.51 6.34 0.22 
6.33 6.01 3.23 8.54 0.21 
6.32 6.02 4.05 11.48 0.19 
6.12 5.73 4.94 13.10 0.18 
5.80 5.59 5.81 12.20 0.18 
5.54 5.17 6.56 9.92 0.26 
5.75 5.21 7.18 7.66 0.52 
6.49 5.07 7.77 6.12 1.77 
7.35 4.59 8.12 4.54 9.53 
7.64 4.09 8.01 3.17 21.54 
6.89 3.62 7.72 2.12 22.10 
5.40 2.92 6.75 1.45 15.77 
3.72 2.33 5.71 0.96 8.25 
2.41 1.55 4.58 0.68 6.29 
1.50 1.29 3.51 0.51 2.44 
0.88 1.07 2.51 0.46 2.46 
0.50 0.66 1.78 0.35 1.50 
0.27 0.43 1.23 0.26 0.60 
0.15 0.31 0.85 0.23 0.37 
0.08 0.20 0.59 0.17 0.21 
0.04 0.16 0.44 0.14 0.15 
0.03 0.13 0.34 0.18 0.14 
0.02 0.11 0.22 0.13 0.18 
0.01 0.08 0.19 0.12 0.26 
0.01 0.12 0.12 0.15 0.42 
0.01 0.10 0.11 0.13 0.49 
0.01 0.04 0.09 0.16 0.63 
0.00 0.05 0.07 0.16 0.61 
0.00 0.03 0.07 0.13 0.56 
0.00 0.07 0.07 0.19 0.49 
0.00 0.03 0.08 0.16 0.35 
0.00 0.05 0.07 0.11 0.24 
0.00 0.05 0.07 0.11 0.14 
0.00 0.06 0.09 0.12 0.09 
0.02 0.40 0.58 0.42 0.22 
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Table A.2 Single-axle load distribution (percentage) for each truck class 

Axle Load Range 
(kips) 

Vehicle Classes 
C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

0–3 4.16 52.95 16.67 11.33 3.23 8.68 52.82 0.00 0.00 0.00 
3–4 1.16 18.11 8.33 3.71 8.08 5.49 4.60 0.30 0.57 0.26 
4–5 0.90 7.48 16.67 5.11 11.48 4.58 3.93 0.75 2.43 0.55 
5–6 1.19 4.07 8.33 5.63 9.41 3.99 3.48 1.34 4.50 0.71 
6–7 1.87 2.91 8.33 4.25 7.07 3.67 3.41 2.18 5.41 0.61 
7–8 3.57 2.38 8.33 2.99 5.88 3.51 2.65 3.12 6.05 0.54 
8–9 6.04 2.14 8.33 2.41 5.21 3.44 3.59 4.10 6.85 0.47 

9–10 8.08 1.94 0.00 2.13 4.84 3.45 2.58 5.09 8.79 0.51 
10–11 9.29 1.52 8.33 3.20 4.45 3.48 2.44 6.04 11.00 0.35 
11–12 9.28 1.16 0.00 2.94 4.00 3.59 1.78 6.86 12.02 0.38 
12–13 8.92 0.90 0.00 3.38 3.62 4.15 1.85 7.53 11.09 0.62 
13–14 7.85 0.69 16.67 4.50 3.23 5.04 2.30 8.11 9.42 1.80 
14–15 6.85 0.54 0.00 5.08 2.99 6.09 2.12 8.48 6.93 8.65 
15–16 5.73 0.43 0.00 4.85 2.74 7.23 1.74 8.33 4.86 13.97 
16–17 4.75 0.36 0.00 4.85 2.65 7.56 1.36 8.00 3.15 11.20 
17–18 4.00 0.31 0.00 4.09 2.57 7.27 1.29 7.03 2.09 12.96 
18–19 3.62 0.25 0.00 3.72 2.40 5.87 1.01 5.94 1.28 11.06 
19–20 3.14 0.21 0.00 3.70 2.19 4.33 1.08 4.75 0.82 7.01 
20–21 2.32 0.18 0.00 3.61 1.76 2.99 0.59 3.63 0.54 5.91 
21–22 1.79 0.15 0.00 2.99 1.34 1.92 0.77 2.56 0.43 7.56 
22–23 1.36 0.12 0.00 2.65 1.08 1.20 0.59 1.80 0.35 4.36 
23–24 0.93 0.10 0.00 2.80 0.87 0.76 0.66 1.22 0.22 1.95 
24–25 0.66 0.09 0.00 2.21 0.75 0.49 0.21 0.83 0.18 1.20 
25–26 0.38 0.08 0.00 1.84 0.68 0.29 0.17 0.55 0.12 0.49 
26–27 0.27 0.07 0.00 1.09 0.61 0.18 0.24 0.41 0.09 0.30 
27–28 0.20 0.07 0.00 0.81 0.56 0.12 0.17 0.29 0.08 0.29 
28–29 0.20 0.07 0.00 0.79 0.55 0.09 0.10 0.18 0.08 0.48 
29–30 0.12 0.06 0.00 0.57 0.54 0.07 0.21 0.14 0.04 0.47 
30–31 0.12 0.05 0.00 0.37 0.55 0.06 0.35 0.07 0.07 0.73 
31–32 0.11 0.05 0.00 0.29 0.52 0.05 0.35 0.06 0.05 0.44 
32–33 0.09 0.05 0.00 0.24 0.48 0.04 0.14 0.04 0.05 0.65 
33–34 0.09 0.05 0.00 0.22 0.48 0.04 0.10 0.02 0.03 0.56 
34–35 0.08 0.04 0.00 0.21 0.47 0.03 0.14 0.02 0.03 0.61 
35–36 0.08 0.04 0.00 0.15 0.42 0.04 0.17 0.02 0.04 0.54 
36–37 0.06 0.04 0.00 0.12 0.37 0.02 0.03 0.03 0.04 0.37 
37–38 0.09 0.04 0.00 0.08 0.33 0.02 0.00 0.02 0.03 0.24 
38–39 0.04 0.03 0.00 0.10 0.28 0.02 0.17 0.02 0.04 0.20 
39–40 0.05 0.03 0.00 0.10 0.24 0.02 0.21 0.02 0.03 0.11 
>40 0.57 0.22 0.00 0.89 1.09 0.13 0.59 0.11 0.16 0.87 
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Table A.3 Tandem-axle load distribution (percentage) for each truck class 

Axle Load Range 
(kips) 

Vehicle Classes 

C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
0–6 15.63 0.00 48.77 30.33 54.85 14.01 22.81 13.30 7.50 2.21 

6–8 13.56 0.00 10.46 9.40 13.10 12.63 11.14 8.55 20.93 1.57 

8–10 17.15 0.00 9.03 9.20 8.30 12.75 11.66 7.46 39.50 0.98 

10–12 16.45 0.00 8.32 8.54 5.16 11.59 11.09 6.12 22.62 0.63 

12–14 11.87 0.00 6.98 9.19 3.72 12.44 11.84 4.96 4.65 1.81 

14–16 8.95 0.00 5.56 9.29 3.75 15.13 11.13 6.93 1.31 21.40 

16–18 6.62 0.00 4.22 8.08 4.58 12.21 8.83 7.18 0.78 37.59 

18–20 4.22 0.00 2.83 5.64 3.82 5.95 5.27 4.71 0.53 13.80 

20–22 2.33 0.00 1.59 3.64 1.63 2.26 2.88 4.29 0.38 1.99 

22–24 1.30 0.00 0.88 2.05 0.45 0.71 1.16 3.73 0.19 0.92 

24–26 0.67 0.00 0.44 1.39 0.18 0.20 0.65 3.24 0.18 0.88 

26–28 0.36 0.00 0.24 0.73 0.10 0.06 0.31 3.10 0.19 1.01 

28–30 0.18 0.00 0.15 0.44 0.06 0.02 0.19 2.88 0.12 1.94 

30–32 0.08 0.00 0.11 0.32 0.04 0.01 0.20 2.57 0.17 3.75 

32–34 0.09 0.00 0.07 0.22 0.04 0.01 0.10 2.57 0.13 3.60 

34–36 0.05 0.00 0.05 0.28 0.04 0.00 0.11 2.15 0.13 2.27 

36–38 0.06 0.00 0.05 0.18 0.03 0.00 0.10 2.50 0.14 1.49 

38–40 0.06 0.00 0.04 0.23 0.04 0.00 0.11 3.24 0.14 1.00 

40–42 0.07 0.00 0.04 0.17 0.03 0.00 0.07 3.24 0.11 0.48 

42–44 0.07 0.00 0.05 0.17 0.02 0.00 0.11 3.27 0.10 0.28 

44–46 0.06 0.00 0.04 0.16 0.02 0.00 0.10 1.72 0.07 0.17 

46–48 0.10 0.00 0.04 0.22 0.02 0.00 0.04 1.72 0.09 0.12 

48–50 0.08 0.00 0.04 0.13 0.02 0.00 0.12 0.60 0.06 0.11 

>50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.4 Tridem-axle load distribution (percentage) for each truck class 

Axle Load 
Range (kips) 

Vehicle Classes 

C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 
0–12 0.00 0.00 0.00 38.36 34.07 97.05 74.54 62.88 9.75 1.07 

12–15 0.00 0.00 0.00 20.16 3.40 0.55 12.80 3.70 15.52 12.37 

15–18 0.00 0.00 0.00 19.14 6.17 0.39 6.55 5.31 13.40 60.97 

18–21 0.00 0.00 0.00 11.27 6.74 0.49 3.08 3.98 10.11 17.04 

21–24 0.00 0.00 0.00 5.13 7.05 0.45 1.79 3.66 9.59 4.71 

24–27 0.00 0.00 0.00 2.26 4.91 0.18 0.36 2.75 6.04 0.61 

27–30 0.00 0.00 0.00 0.80 4.22 0.13 0.31 2.57 6.44 0.29 

30–33 0.00 0.00 0.00 0.34 4.28 0.10 0.11 2.06 6.88 0.92 

33–36 0.00 0.00 0.00 0.37 3.90 0.07 0.08 2.20 9.30 1.36 

36–39 0.00 0.00 0.00 0.38 5.23 0.10 0.07 2.38 6.67 0.54 

39–42 0.00 0.00 0.00 0.54 5.48 0.13 0.11 3.55 3.20 0.07 

42–45 0.00 0.00 0.00 0.40 6.80 0.09 0.11 2.63 2.02 0.01 

45–48 0.00 0.00 0.00 0.54 5.60 0.14 0.05 1.72 0.89 0.02 

48–51 0.00 0.00 0.00 0.30 2.14 0.13 0.05 0.63 0.18 0.01 

>51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A.5 Annual ESAL values from AASHTO method (WIM Site 106) 
Vehicle Class 

GVW 
(kips) C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Total 

3 0 1 30 1 0 0 0 0 0 0 0 0 0 0 31 

6 4 2 1517 1548 0 37 0 0 0 0 0 0 0 0 3,108 

9 60 4 94 2579 0 1059 1 0 4 0 0 0 0 0 3,801 

12 270 6 23 730 5 1765 5 0 72 1 0 0 0 0 2,876 

15 601 11 29 488 20 1874 39 1 270 5 0 0 0 0 3,339 

18 1430 29 46 470 519 2464 430 2 574 17 0 0 0 0 5,981 

21 2622 44 50 494 3150 3429 2220 5 757 53 1 0 0 0 12,824 

24 4289 76 48 500 4976 4612 3602 7 929 226 2 4 0 0 19,271 

27 6762 53 39 494 5327 5397 3260 21 1308 1068 4 23 0 0 23,756 

30 10313 83 64 586 4910 5993 4111 36 2083 3243 10 42 0 0 31,474 

33 14770 88 55 710 4398 5025 5079 78 3172 8228 27 43 1 0 41,675 

36 22232 105 161 962 3209 4036 3607 83 4296 17848 46 75 5 0 56,665 

39 25101 142 96 821 2260 3218 2791 142 5131 25671 75 232 25 0 65,705 

42 28575 192 250 1070 2056 3206 4723 173 5833 34128 118 513 76 1 80,915 

45 32766 269 151 1311 2012 3551 9899 205 6585 43780 154 623 147 2 101,453 

48 37390 94 226 1266 2302 3885 17981 329 6221 54944 169 835 240 7 125,889 

51 43193 80 245 1398 1968 5583 11233 512 5583 66857 235 1797 451 10 139,144 

54 51015 148 435 1817 1823 4971 6618 661 5405 79006 240 3692 762 18 156,611 

57 64174 0 9 398 1205 2536 4796 1228 5140 91160 286 7093 1299 39 179,363 

60 75548 0 0 114 806 1348 3128 2266 4042 107167 335 12658 2277 83 209,774 

63 89910 0 0 138 793 1231 1593 5212 3520 124585 403 20119 3735 149 251,389 

66 98078 0 46 103 733 1025 1249 12888 3354 148433 444 30435 5680 154 302,622 

69 116636 0 0 20 361 473 1373 24329 2502 183809 492 40413 8011 80 378,500 

72 135247 0 0 109 389 950 1060 22513 2678 247704 596 48205 9823 54 469,329 

75 174243 0 0 84 428 433 699 14220 2596 350763 621 49518 10720 75 604,400 

78 195358 0 0 92 132 567 407 7530 1917 497324 875 46757 9968 96 761,022 

81 211965 0 0 40 125 195 340 3867 1419 624396 996 40087 8083 91 891,603 

84 272105 0 0 56 87 315 333 2096 1286 569122 1012 29662 5833 142 882,049 

87 319005 0 0 111 74 287 371 1427 1229 435912 1025 21498 4022 114 785,073 

90 386984 0 0 67 37 328 220 1075 1138 325876 841 16898 2571 102 736,137 

93 415139 0 0 0 17 221 111 856 1055 196961 678 16176 1744 178 633,135 

96 499601 0 0 0 103 88 205 587 817 101897 658 15119 1382 138 620,597 

99 568428 0 0 0 57 95 171 688 1001 58780 555 15596 1043 187 646,601 

102 648862 0 0 0 0 0 151 397 831 41695 589 16287 1111 240 710,163 

105 775266 0 0 0 0 0 242 397 685 35551 708 17513 1129 311 831,802 

108 925985 0 0 0 0 0 0 436 636 33542 493 19410 1298 290 982,091 

111 1012106 0 0 0 37 0 37 231 275 32498 476 19938 878 324 1,066,800 

114 1109419 0 0 0 45 0 36 145 424 27333 486 20905 875 316 1,159,984 

117 1298624 0 0 0 0 0 362 365 506 23946 410 20548 902 479 1,346,141 

120 1602297 0 0 0 50 0 49 258 436 18137 576 21811 869 445 1,644,927 

123 1701198 0 0 0 0 0 0 326 389 12322 338 20919 918 461 1,736,871 

126 1942633 0 0 0 0 0 56 345 333 7242 325 20882 733 464 1,973,012 

Total 14920201 1428 3616 18580 44414 70195 92585 105935 86433 4631233 15299 596324 86611 5049 20,677,902 
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Table A.6 Annual ESAL values from axle group divisor method (WIM Site 106) 
Vehicle Class 

GVW 
(kips) C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Total 

3 0 1 19 0 0 0 0 0 0 0 0 0 0 0 20 

6 3 2 1415 1583 0 40 0 0 0 0 0 0 0 0 3,043 

9 66 5 104 2926 0 1232 1 0 4 0 0 0 0 0 4,338 

12 313 6 26 853 5 2075 6 0 83 1 0 0 0 0 3,368 

15 678 12 32 552 23 2113 44 1 316 6 0 0 0 0 3,775 

18 1553 29 48 510 574 2673 466 2 670 20 0 0 0 0 6,546 

21 2745 44 50 521 3359 3602 2353 5 866 61 1 0 0 0 13,606 

24 4415 77 49 517 5160 4733 3803 8 1046 250 2 5 0 0 20,064 

27 6963 55 40 506 5434 5480 3438 23 1432 1160 4 27 0 0 24,562 

30 10713 89 68 602 4985 6090 4310 38 2222 3489 11 48 1 0 32,666 

33 15505 97 60 735 4484 5154 5287 83 3339 8807 29 49 1 0 43,630 

36 23674 118 180 1019 3306 4231 3737 89 4488 19047 49 83 5 0 60,028 

39 27289 163 110 877 2365 3483 2883 152 5323 27392 80 255 27 0 70,399 

42 31871 222 288 1179 2172 3568 4840 185 6019 36464 126 562 83 1 87,579 

45 36966 311 174 1483 2097 4026 10058 218 6789 46763 164 673 161 2 109,884 

48 42324 109 259 1441 2383 4429 18163 348 6397 58600 179 886 260 7 135,785 

51 48817 92 279 1592 2043 6354 11349 548 5760 71065 251 1884 489 11 150,533 

54 57337 168 493 2061 1937 5643 6692 693 5581 83559 253 3841 823 19 169,099 

57 71519 0 9 448 1252 2873 4868 1301 5372 95802 300 7341 1396 42 192,524 

60 83457 0 0 128 829 1523 3215 2376 4232 111905 352 13043 2431 90 223,580 

63 97991 0 0 156 832 1401 1660 5438 3748 129188 425 20642 3958 160 265,599 

66 105591 0 53 118 788 1166 1310 13410 3615 152967 469 31093 5969 165 316,712 

69 123577 0 0 23 388 537 1449 25279 2706 188250 519 41164 8358 84 392,335 

72 140860 0 0 126 422 1079 1139 23343 2934 252465 632 48996 10176 57 482,229 

75 177873 0 0 95 473 493 753 14735 2842 356031 654 50336 11033 79 615,399 

78 196398 0 0 104 147 649 447 7823 2104 503157 924 47593 10211 101 769,659 

81 210033 0 0 46 139 223 376 4047 1591 630540 1052 41009 8252 94 897,404 

84 264464 0 0 64 100 360 375 2222 1467 574597 1063 30642 5946 150 881,451 

87 305114 0 0 128 83 329 419 1524 1409 440771 1087 22567 4123 118 777,672 

90 361701 0 0 77 42 376 249 1158 1313 330400 887 18103 2659 107 717,072 

93 385634 0 0 0 19 252 125 926 1231 200753 713 17678 1819 188 609,340 

96 454488 0 0 0 118 100 234 644 970 104996 693 16795 1468 146 580,651 

99 510884 0 0 0 66 107 194 758 1187 61696 583 17448 1126 199 594,248 

102 576288 0 0 0 0 0 172 445 1004 44586 627 18299 1206 257 642,883 

105 677080 0 0 0 0 0 275 449 829 38472 760 19750 1237 337 739,189 

108 794278 0 0 0 0 0 0 491 784 36707 527 21958 1448 310 856,504 

111 864251 0 0 0 43 0 42 263 349 35962 512 22685 967 345 925,419 

114 933047 0 0 0 52 0 42 165 527 30503 522 23822 967 331 989,977 

117 1074484 0 0 0 0 0 415 413 626 26803 443 23586 1002 510 1,128,282 

120 1302161 0 0 0 58 0 57 296 539 20400 631 25079 980 479 1,350,679 

123 1371058 0 0 0 0 0 0 374 495 13871 369 24233 1036 503 1,411,937 

126 1545514 0 0 0 0 0 65 397 409 8151 357 24307 820 501 1,580,520 

12938978 1599 3756 20471 46180 76392 95310 110672 92616 4745656 16250 636484 90439 5391 18,880,191 Total 
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APPENDIX B. COMPLETE TRUCK TRAFFIC INPUT FOR THE MEPDG AT THE I-70 
WIM SITE 

Truck Traffic and Axle Load Spectra 
WIM Site 950315, I-70, RP 83.44, Indianapolis 

Five Lanes in One Direction 

AADTT Jan 1807 3424 2280 1439 1336 10286 1.12 
AADTT Feb 1400 2985 2123 1210 1440 9158 1.00 
AADTT Mar 967 2621 1665 1637 1097 7987 0.87 
AADTT Apr 971 1955 2866 1527 1568 8887 0.97 
AADTT May 1053 1614 2346 431 971 6415 0.70 
AADTT Jun 1126 2077 2622 591 1159 7575 0.83 
AADTT Jul 900 2860 2050 333 544 6687 0.73 

AADTT Aug 1142 3102 2321 1078 1398 9041 0.98 
AADTT Sep 971 3430 3107 1923 1429 10860 1.18 
AADTT Oct 1033 3239 3544 2318 1435 11569 1.26 
AADTT Nov 941 3291 2574 2268 1573 10647 1.16 
AADTT Dec 1013 3028 3261 1948 1813 11063 1.20 

Avg 1110 2802 2563 1392 1314 9181 

DDF 0.58 0.59 0.57 0.55 0.54 0.58 0.70 0.64 0.61 0.98 0.57 
LDF- Ln 1 0.21 0.17 0.25 0.29 0.11 0.05 0.08 0.01 0.04 0.00 0.12 
LDF- Ln 2 0.31 0.22 0.37 0.33 0.28 0.47 0.34 0.27 0.38 0.00 0.31 
LDF- Ln 3 0.27 0.21 0.22 0.24 0.41 0.29 0.38 0.47 0.32 0.83 0.28 
LDF- Ln 4 0.12 0.16 0.11 0.09 0.12 0.17 0.13 0.22 0.22 0.02 0.15 

All Lanes Combined AADTT 
C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Total 

Jan 271 6205 221 39 568 2787 22 105 57 13 10288 
Feb 262 5270 209 32 561 2664 16 89 52 5 9159 
Mar 231 4380 214 43 550 2418 16 77 49 10 7987 
Apr 272 4839 235 50 703 2604 13 107 56 9 8888 
May 199 3668 167 35 503 1697 8 72 37 30 6414 

AADTT: Two-way annual average daily truck traffic 
MAF: Truck traffic monthly adjustment factors (note: twelve-month MAF total = 12.0) 
DDF: Directional distribution factors, or percent trucks in the design direction 
LDF: Truck lane distribution factors, or the percent trucks in the design lane 
TCD: Truck class distribution (percent) 
HDF: Hourly distribution factors (percent) 
C4, C5, … C13: Class 4, Class 5, …, Class 13 of vehicle classifications 

AADTT Ln 1 AADTT Ln 2 AADTT Ln 3 AADTT Ln 4 AADTT Ln 5 Total MAF 

Sum 13324 33626 30759 16703 15763 110175 

C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 All Truck 

LDF- Ln 5 0.09 0.24 0.05 0.06 0.07 0.03 0.07 0.03 0.04 0.15 0.14 

Jun 232 3983 211 46 678 2264 8 88 44 22 7575 
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Jul 221 3011 216 59 602 2428 9 76 41 25 6687 
Aug 281 4412 281 67 570 2923 16 94 55 50 8749 
Sep 348 4839 376 84 608 4233 30 131 81 131 10861 
Oct 395 4802 438 100 649 4654 33 156 93 249 11569 
Nov 308 4680 347 84 454 3525 19 105 79 1046 10647 
Dec 243 4685 235 51 316 2541 10 62 56 2863 11062 

Total 3262 54774 3149 689 6761 34739 199 1161 699 4452 109885 
Average AADTT Yearly Decrease = 7.85% 

Monthly Adjustment Factor (MAF) 
C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 Total 

Jan 1.02 1.39 0.86 0.68 1.03 0.98 1.37 1.10 1.00 0.03 1.15 
Feb 0.89 1.06 0.73 0.51 0.92 0.85 0.86 0.85 0.82 0.01 0.92 
Mar 0.87 0.98 0.83 0.76 1.00 0.85 0.97 0.81 0.85 0.03 0.89 
Apr 0.99 1.05 0.88 0.86 1.23 0.89 0.74 1.10 0.95 0.02 0.96 
May 0.74 0.82 0.65 0.62 0.91 0.60 0.46 0.75 0.64 0.08 0.71 
Jun 0.84 0.86 0.79 0.78 1.19 0.77 0.50 0.90 0.74 0.06 0.82 
Jul 0.83 0.67 0.84 1.04 1.09 0.85 0.57 0.80 0.72 0.07 0.74 

Aug 1.06 0.99 1.09 1.18 1.03 1.03 0.95 0.99 0.97 0.14 0.97 
Sep 1.26 1.05 1.41 1.45 1.06 1.44 1.81 1.34 1.37 0.34 1.17 
Oct 1.48 1.07 1.70 1.78 1.18 1.64 2.02 1.64 1.63 0.68 1.29 
Nov 1.12 1.01 1.30 1.43 0.80 1.20 1.12 1.07 1.34 2.75 1.15 
Dec 0.91 1.05 0.91 0.90 0.57 0.89 0.62 0.65 0.98 7.79 1.23 
Sum 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 
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Hourly Volume 
Start Time C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 All Truck 

A
ll 

L
an

es
 C

om
bi

ne
d

 

0:00 5.67 168.40 6.05 0.88 18.82 120.50 0.47 3.44 2.35 20.24 346.83 
1:00 4.82 132.88 5.12 0.73 14.78 103.70 0.42 3.27 2.67 15.95 284.34 
2:00 3.76 104.62 4.46 0.55 12.54 91.61 0.32 3.86 2.65 11.24 235.61 
3:00 3.19 86.00 4.06 0.52 10.67 80.02 0.23 3.62 2.92 8.23 199.47 
4:00 2.87 62.01 3.76 0.41 9.22 70.88 0.22 3.59 2.86 6.08 161.90 
5:00 2.91 48.63 3.47 0.43 8.43 66.79 0.21 4.08 2.75 5.31 143.02 
6:00 4.15 44.38 4.17 0.56 9.36 66.67 0.26 4.78 2.75 5.59 142.65 
7:00 7.09 52.49 5.24 0.67 9.87 69.02 0.33 4.45 2.59 6.36 158.12 
8:00 10.11 85.68 8.53 1.04 13.06 75.22 0.45 4.59 2.64 11.77 213.10 
9:00 12.83 128.97 10.35 1.82 16.25 81.22 0.52 3.81 2.39 18.27 276.42 

10:00 14.64 182.45 13.34 2.71 22.76 98.14 0.77 4.07 2.29 20.47 361.63 
11:00 17.05 217.07 13.79 3.52 28.10 114.60 1.05 4.32 2.40 16.50 418.40 
12:00 16.82 231.98 14.94 4.06 31.10 128.50 1.05 3.78 2.10 18.72 453.06 
13:00 17.35 250.25 16.10 4.45 33.10 138.43 1.00 4.22 2.28 20.80 487.99 
14:00 17.15 250.88 16.78 5.33 34.49 150.79 1.05 4.25 2.15 20.93 503.79 
15:00 17.22 261.86 17.49 5.13 34.81 159.46 0.98 4.38 2.18 22.06 525.57 
16:00 18.25 275.74 18.39 5.05 37.22 170.07 1.17 4.68 2.30 17.14 550.02 
17:00 18.22 298.60 19.21 4.86 36.23 173.39 0.99 4.48 2.28 16.63 574.88 
18:00 18.21 313.85 18.52 4.36 36.87 171.42 1.06 4.92 2.43 17.40 589.03 
19:00 16.65 315.05 16.81 3.65 35.54 166.47 0.99 4.53 2.37 16.07 578.13 
20:00 14.32 303.82 14.22 2.57 31.81 163.30 0.89 3.85 2.31 17.88 554.97 
21:00 11.77 280.12 11.40 1.85 29.78 154.14 0.86 3.33 2.20 18.75 514.19 
22:00 8.99 250.42 9.28 1.30 25.69 147.31 0.72 3.18 2.10 22.65 471.65 
23:00 7.76 212.27 7.06 1.10 22.42 132.28 0.59 3.19 2.25 19.69 408.60 

AADTT Sum 271.76 4558.43 262.55 57.53 562.92 2893.95 16.62 96.67 58.23 374.74 9153.40 
TCD Percent 2.97 49.80 2.87 0.63 6.15 31.62 0.18 1.06 0.64 4.09 100.00 
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Hourly Distribution Factor (HDF) (%) 
Start Time C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 All Truck 

0:00 2.08 3.69 2.31 1.54 3.34 4.16 2.85 3.55 4.04 5.40 3.79 
1:00 1.77 2.91 1.95 1.26 2.63 3.58 2.55 3.38 4.59 4.26 3.11 
2:00 1.38 2.30 1.70 0.95 2.23 3.17 1.94 4.00 4.55 3.00 2.57 
3:00 1.18 1.89 1.55 0.91 1.89 2.77 1.40 3.74 5.02 2.20 2.18 
4:00 1.06 1.36 1.43 0.71 1.64 2.45 1.32 3.71 4.91 1.62 1.77 
5:00 1.07 1.07 1.32 0.75 1.50 2.31 1.29 4.23 4.72 1.42 1.56 
6:00 1.53 0.97 1.59 0.97 1.66 2.30 1.55 4.94 4.73 1.49 1.56 
7:00 2.61 1.15 2.00 1.17 1.75 2.38 1.96 4.61 4.45 1.70 1.73 
8:00 3.72 1.88 3.25 1.81 2.32 2.60 2.74 4.75 4.54 3.14 2.33 
9:00 4.72 2.83 3.94 3.16 2.89 2.81 3.12 3.94 4.10 4.88 3.02 

10:00 5.39 4.00 5.08 4.71 4.04 3.39 4.63 4.21 3.93 5.46 3.95 
11:00 6.27 4.76 5.25 6.11 4.99 3.96 6.35 4.46 4.13 4.40 4.57 
12:00 6.19 5.09 5.69 7.05 5.52 4.44 6.33 3.91 3.61 4.99 4.95 
13:00 6.38 5.49 6.13 7.74 5.88 4.78 6.02 4.37 3.92 5.55 5.33 
14:00 6.31 5.50 6.39 9.26 6.13 5.21 6.33 4.39 3.69 5.59 5.50 
15:00 6.34 5.74 6.66 8.91 6.18 5.51 5.88 4.53 3.75 5.89 5.74 
16:00 6.71 6.05 7.00 8.78 6.61 5.88 7.05 4.84 3.95 4.57 6.01 
17:00 6.70 6.55 7.32 8.44 6.44 5.99 5.97 4.64 3.91 4.44 6.28 
18:00 6.70 6.89 7.05 7.58 6.55 5.92 6.36 5.09 4.17 4.64 6.44 
19:00 6.13 6.91 6.40 6.34 6.31 5.75 5.95 4.69 4.07 4.29 6.32 
20:00 5.27 6.66 5.42 4.47 5.65 5.64 5.37 3.98 3.96 4.77 6.06 
21:00 4.33 6.15 4.34 3.22 5.29 5.33 5.18 3.44 3.78 5.00 5.62 
22:00 3.31 5.49 3.54 2.25 4.56 5.09 4.30 3.29 3.60 6.04 5.15 
23:00 2.86 4.66 2.69 1.90 3.98 4.57 3.56 3.30 3.86 5.25 4.46 
Sum 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Single-Axle Load Distribution (Percentages) for Each Truck Class 

Class 4 5 6 7 8 9 10 11 12 13 
3 kips 4.16 52.95 16.67 11.33 3.23 8.68 52.82 0.00 0.00 0.00 
4 kips 1.16 18.11 8.33 3.71 8.08 5.49 4.60 0.30 0.57 0.26 
5 kips 0.90 7.48 16.67 5.11 11.48 4.58 3.93 0.75 2.43 0.55 
6 kips 1.19 4.07 8.33 5.63 9.41 3.99 3.48 1.34 4.50 0.71 
7 kips 1.87 2.91 8.33 4.25 7.07 3.67 3.41 2.18 5.41 0.61 
8 kips 3.57 2.38 8.33 2.99 5.88 3.51 2.65 3.12 6.05 0.54 
9 kips 6.04 2.14 8.33 2.41 5.21 3.44 3.59 4.10 6.85 0.47 
10 kips 8.08 1.94 0.00 2.13 4.84 3.45 2.58 5.09 8.79 0.51 
11 kips 9.29 1.52 8.33 3.20 4.45 3.48 2.44 6.04 11.00 0.35 
12 kips 9.28 1.16 0.00 2.94 4.00 3.59 1.78 6.86 12.02 0.38 
13 kips 8.92 0.90 0.00 3.38 3.62 4.15 1.85 7.53 11.09 0.62 
14 kips 7.85 0.69 16.67 4.50 3.23 5.04 2.30 8.11 9.42 1.80 
15 kips 6.85 0.54 0.00 5.08 2.99 6.09 2.12 8.48 6.93 8.65 
16 kips 5.73 0.43 0.00 4.85 2.74 7.23 1.74 8.33 4.86 13.97 
17 kips 4.75 0.36 0.00 4.85 2.65 7.56 1.36 8.00 3.15 11.20 
18 kips 4.00 0.31 0.00 4.09 2.57 7.27 1.29 7.03 2.09 12.96 
19 kips 3.62 0.25 0.00 3.72 2.40 5.87 1.01 5.94 1.28 11.06 
20 kips 3.14 0.21 0.00 3.70 2.19 4.33 1.08 4.75 0.82 7.01 
21 kips 2.32 0.18 0.00 3.61 1.76 2.99 0.59 3.63 0.54 5.91 
22 kips 1.79 0.15 0.00 2.99 1.34 1.92 0.77 2.56 0.43 7.56 
23 kips 1.36 0.12 0.00 2.65 1.08 1.20 0.59 1.80 0.35 4.36 
24 kips 0.93 0.10 0.00 2.80 0.87 0.76 0.66 1.22 0.22 1.95 
25 kips 0.66 0.09 0.00 2.21 0.75 0.49 0.21 0.83 0.18 1.20 
26 kips 0.38 0.08 0.00 1.84 0.68 0.29 0.17 0.55 0.12 0.49 
27 kips 0.27 0.07 0.00 1.09 0.61 0.18 0.24 0.41 0.09 0.30 
28 kips 0.20 0.07 0.00 0.81 0.56 0.12 0.17 0.29 0.08 0.29 
29 kips 0.20 0.07 0.00 0.79 0.55 0.09 0.10 0.18 0.08 0.48 
30 kips 0.12 0.06 0.00 0.57 0.54 0.07 0.21 0.14 0.04 0.47 
31 kips 0.12 0.05 0.00 0.37 0.55 0.06 0.35 0.07 0.07 0.73 
32 kips 0.11 0.05 0.00 0.29 0.52 0.05 0.35 0.06 0.05 0.44 
33 kips 0.09 0.05 0.00 0.24 0.48 0.04 0.14 0.04 0.05 0.65 
34 kips 0.09 0.05 0.00 0.22 0.48 0.04 0.10 0.02 0.03 0.56 
35 kips 0.08 0.04 0.00 0.21 0.47 0.03 0.14 0.02 0.03 0.61 
36 kips 0.08 0.04 0.00 0.15 0.42 0.04 0.17 0.02 0.04 0.54 
37 kips 0.06 0.04 0.00 0.12 0.37 0.02 0.03 0.03 0.04 0.37 
38 kips 0.09 0.04 0.00 0.08 0.33 0.02 0.00 0.02 0.03 0.24 
39 kips 0.04 0.03 0.00 0.10 0.28 0.02 0.17 0.02 0.04 0.20 
40 kips 0.05 0.03 0.00 0.10 0.24 0.02 0.21 0.02 0.03 0.11 
41 kips 0.57 0.22 0.00 0.89 1.09 0.13 0.59 0.11 0.16 0.87 
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Tandem-Axle Load Distribution (Percentages) for Each Truck Class 

Class 4 5 6 7 8 9 10 11 12 13 
6 kips 15.63 0.00 48.77 30.33 54.85 14.01 22.81 13.30 7.50 2.21 
8 kips 13.56 0.00 10.46 9.40 13.10 12.63 11.14 8.55 20.93 1.57 
10 kips 17.15 0.00 9.03 9.20 8.30 12.75 11.66 7.46 39.50 0.98 
12 kips 16.45 0.00 8.32 8.54 5.16 11.59 11.09 6.12 22.62 0.63 
14 kips 11.87 0.00 6.98 9.19 3.72 12.44 11.84 4.96 4.65 1.81 
16 kips 8.95 0.00 5.56 9.29 3.75 15.13 11.13 6.93 1.31 21.40 
18 kips 6.62 0.00 4.22 8.08 4.58 12.21 8.83 7.18 0.78 37.59 
20 kips 4.22 0.00 2.83 5.64 3.82 5.95 5.27 4.71 0.53 13.80 
22 kips 2.33 0.00 1.59 3.64 1.63 2.26 2.88 4.29 0.38 1.99 
24 kips 1.30 0.00 0.88 2.05 0.45 0.71 1.16 3.73 0.19 0.92 
26 kips 0.67 0.00 0.44 1.39 0.18 0.20 0.65 3.24 0.18 0.88 
28 kips 0.36 0.00 0.24 0.73 0.10 0.06 0.31 3.10 0.19 1.01 
30 kips 0.18 0.00 0.15 0.44 0.06 0.02 0.19 2.88 0.12 1.94 
32 kips 0.08 0.00 0.11 0.32 0.04 0.01 0.20 2.57 0.17 3.75 
34 kips 0.09 0.00 0.07 0.22 0.04 0.01 0.10 2.57 0.13 3.60 
36 kips 0.05 0.00 0.05 0.28 0.04 0.00 0.11 2.15 0.13 2.27 
38 kips 0.06 0.00 0.05 0.18 0.03 0.00 0.10 2.50 0.14 1.49 
40 kips 0.06 0.00 0.04 0.23 0.04 0.00 0.11 3.24 0.14 1.00 
42 kips 0.07 0.00 0.04 0.17 0.03 0.00 0.07 3.24 0.11 0.48 
44 kips 0.07 0.00 0.05 0.17 0.02 0.00 0.11 3.27 0.10 0.28 
46 kips 0.06 0.00 0.04 0.16 0.02 0.00 0.10 1.72 0.07 0.17 
48 kips 0.10 0.00 0.04 0.22 0.02 0.00 0.04 1.72 0.09 0.12 
50 kips 0.08 0.00 0.04 0.13 0.02 0.00 0.12 0.60 0.06 0.11 

Tridem-Axle Load Distribution (Percentages) for Each Truck Class 

Class 4 5 6 7 8 9 10 11 12 13 
12 kips 0.00 0.00 0.00 38.36 34.07 97.05 74.54 62.88 9.75 1.07 
15 kips 0.00 0.00 0.00 20.16 3.40 0.55 12.80 3.70 15.52 12.37 
18 kips 0.00 0.00 0.00 19.14 6.17 0.39 6.55 5.31 13.40 60.97 
21 kips 0.00 0.00 0.00 11.27 6.74 0.49 3.08 3.98 10.11 17.04 
24 kips 0.00 0.00 0.00 5.13 7.05 0.45 1.79 3.66 9.59 4.71 
27 kips 0.00 0.00 0.00 2.26 4.91 0.18 0.36 2.75 6.04 0.61 
30 kips 0.00 0.00 0.00 0.80 4.22 0.13 0.31 2.57 6.44 0.29 
33 kips 0.00 0.00 0.00 0.34 4.28 0.10 0.11 2.06 6.88 0.92 
36 kips 0.00 0.00 0.00 0.37 3.90 0.07 0.08 2.20 9.30 1.36 
39 kips 0.00 0.00 0.00 0.38 5.23 0.10 0.07 2.38 6.67 0.54 
42 kips 0.00 0.00 0.00 0.54 5.48 0.13 0.11 3.55 3.20 0.07 
45 kips 0.00 0.00 0.00 0.40 6.80 0.09 0.11 2.63 2.02 0.01 
48 kips 0.00 0.00 0.00 0.54 5.60 0.14 0.05 1.72 0.89 0.02 
51 kips 0.00 0.00 0.00 0.30 2.14 0.13 0.05 0.63 0.18 0.01 
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All-Axle Load Distribution (Percentages) for Each Truck Class 

Class 4 5 6 7 8 9 10 11 12 13 
3 kips 3.98 52.95 18.26 11.80 17.40 2.13 16.23 0.00 0.00 0.00 
4 kips 1.71 18.11 13.77 3.22 9.66 3.05 4.63 0.60 0.56 0.04 
5 kips 1.92 7.48 9.86 3.57 9.99 4.29 4.95 1.45 2.34 0.14 
6 kips 2.39 4.07 6.89 4.13 8.50 5.20 5.37 1.92 4.43 0.25 
7 kips 3.22 2.91 5.69 4.00 7.09 6.02 5.48 2.51 6.34 0.22 
8 kips 4.78 2.38 4.78 4.04 5.92 6.33 6.01 3.23 8.54 0.21 
9 kips 6.74 2.14 4.65 3.95 4.87 6.32 6.02 4.05 11.48 0.19 
10 kips 8.34 1.94 4.37 4.23 4.13 6.12 5.73 4.94 13.10 0.18 
11 kips 9.03 1.52 4.30 4.35 3.50 5.80 5.59 5.81 12.20 0.18 
12 kips 8.88 1.16 4.02 4.63 3.00 5.54 5.17 6.56 9.92 0.26 
13 kips 8.18 0.90 3.65 5.07 2.63 5.75 5.21 7.18 7.66 0.52 
14 kips 7.05 0.69 3.33 5.51 2.36 6.49 5.07 7.77 6.12 1.77 
15 kips 6.21 0.54 2.96 5.74 2.29 7.35 4.59 8.12 4.54 9.53 
16 kips 5.22 0.43 2.60 5.66 2.27 7.64 4.09 8.01 3.17 21.54 
17 kips 4.39 0.36 2.30 5.22 2.40 6.89 3.62 7.72 2.12 22.10 
18 kips 3.70 0.31 1.92 4.50 2.44 5.40 2.92 6.75 1.45 15.77 
19 kips 3.24 0.25 1.59 3.73 2.26 3.72 2.33 5.71 0.96 8.25 
20 kips 2.71 0.21 1.24 3.22 1.87 2.41 1.55 4.58 0.68 6.29 
21 kips 2.03 0.18 0.93 2.63 1.34 1.50 1.29 3.51 0.51 2.44 
22 kips 1.52 0.15 0.65 2.01 0.89 0.88 1.07 2.51 0.46 2.46 
23 kips 1.16 0.12 0.51 1.59 0.62 0.50 0.66 1.78 0.35 1.50 
24 kips 0.82 0.10 0.38 1.30 0.45 0.27 0.43 1.23 0.26 0.60 
25 kips 0.58 0.09 0.27 1.04 0.37 0.15 0.31 0.85 0.23 0.37 
26 kips 0.34 0.08 0.17 0.85 0.33 0.08 0.20 0.59 0.17 0.21 
27 kips 0.25 0.07 0.14 0.57 0.28 0.04 0.16 0.44 0.14 0.15 
28 kips 0.19 0.07 0.10 0.38 0.26 0.03 0.13 0.34 0.18 0.14 
29 kips 0.17 0.07 0.09 0.31 0.24 0.02 0.11 0.22 0.13 0.18 
30 kips 0.11 0.06 0.07 0.25 0.24 0.01 0.08 0.19 0.12 0.26 
31 kips 0.10 0.05 0.05 0.19 0.24 0.01 0.12 0.12 0.15 0.42 
32 kips 0.08 0.05 0.05 0.13 0.23 0.01 0.10 0.11 0.13 0.49 
33 kips 0.08 0.05 0.03 0.15 0.21 0.01 0.04 0.09 0.16 0.63 
34 kips 0.07 0.05 0.04 0.12 0.21 0.00 0.05 0.07 0.16 0.61 
35 kips 0.06 0.04 0.03 0.17 0.21 0.00 0.03 0.07 0.13 0.56 
36 kips 0.06 0.04 0.02 0.11 0.19 0.00 0.07 0.07 0.19 0.49 
37 kips 0.05 0.04 0.03 0.11 0.16 0.00 0.03 0.08 0.16 0.35 
38 kips 0.07 0.04 0.02 0.10 0.15 0.00 0.05 0.07 0.11 0.24 
39 kips 0.03 0.03 0.02 0.12 0.13 0.00 0.05 0.07 0.11 0.14 
40 kips 0.05 0.03 0.02 0.15 0.11 0.00 0.06 0.09 0.12 0.09 
41 kips 0.51 0.22 0.22 1.16 0.56 0.02 0.40 0.58 0.42 0.22 
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Average Axle Weight (kip) and Average Axle Spacing (feet) 

Class 4 5 6 7 8 9 10 11 12 13 
W1 11.86 4.90 12.50 14.61 9.16 11.96 12.16 11.46 12.17 18.32 
W2 12.92 4.29 8.40 11.17 10.81 12.29 11.40 16.63 10.18 17.59 
W3 10.63 0.00 7.82 13.10 8.29 11.75 11.29 16.02 9.81 19.99 
W4 0.00 0.00 0.00 13.77 7.8 11.68 7.58 13.28 12.46 17.69 
W5 0.00 0.00 0.00 1.37 0.00 11.39 9.73 13.20 12.39 17.66 
W6 0.00 0.00 0.00 10.46 0.00 0.00 9.41 0.00 11.36 18.48 
W7 0.00 0.00 0.00 10.83 0.00 0.00 6.25 0.00 0.00 17.89 
W8 0.00 0.00 0.00 0.00 0.00 0.00 8.77 0.00 0.00 17.20 
W9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.17 

W10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.97 
W11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16.49 
W12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15.87 
S1-2 22.68 12.57 16.83 11.45 14.53 16.69 16.45 12.95 15.48 3.31 
S2-3 4.45 0.00 4.34 9.35 19.49 4.58 4.59 21.09 4.51 3.25 
S3-4 0.00 0.00 0.00 4.29 11.08 32.99 23.48 9.35 19.80 3.50 
S4-5 0.00 0.00 0.00 4.33 0.00 4.70 8.47 20.97 9.11 3.28 
S5-6 0.00 0.00 0.00 4.07 0.00 0.00 4.31 0.00 21.12 3.32 
S6-7 0.00 0.00 0.00 0.00 0.00 0.00 4.80 0.00 0.00 3.34 
S7-8 0.00 0.00 0.00 0.00 0.00 0.00 4.41 0.00 0.00 3.27 
S8-9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.20 

S9-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.18 
S10-11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.12 
S11-12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.04 

Average Axle Spacing (feet) and Average Number of Axle Types 

Class 4 5 6 7 8 9 10 11 12 13 
S1-2 22.68 12.57 16.83 11.45 14.53 16.69 16.45 12.95 15.48 3.31 
S2-3 0.84 0.00 4.34 9.35 19.49 4.58 4.59 21.09 4.51 3.25 
S3-4 0.00 0.00 0.00 4.28 9.32 32.99 23.48 9.35 19.80 3.50 
S4-5 0.00 0.00 0.00 0.57 0.00 4.70 8.47 20.97 9.11 3.28 
S5-6 0.00 0.00 0.00 0.06 0.00 0.00 4.31 0.00 21.12 3.32 
S6-7 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 3.34 
S7-8 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 3.22 
S8-9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.07 

S9-10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.83 
S10-11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.23 
S11-12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.10 
Single 1.81 2.00 1.00 1.22 2.14 1.19 1.47 4.75 3.79 0.26 

Tandem 0.37 0.00 2.00 1.66 1.69 3.80 2.82 0.09 1.99 1.25 
Tridem 0.00 0.00 0.00 1.27 0.01 0.01 1.74 0.16 0.21 9.41 
Quad 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Quinate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Hexad 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
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Highway Commission to cooperate with and assist Purdue University in developing the best 
methods of improving and maintaining the highways of the state and the respective counties 
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP) 
to reflect the state and national efforts to integrate the management and operation of various 
transportation modes. 

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering 
characteristics of stabilized materials. After World War II, the JHRP program grew substantially 
and was regularly producing technical reports. Over 1,600 technical reports are now available, 
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue 
University and what is now the Indiana Department of Transportation. 

Free online access to all reports is provided through a unique collaboration between JTRP and 
Purdue Libraries. These are available at http://docs.lib.purdue.edu/jtrp. 

Further information about JTRP and its current research program is available at 
http://www.purdue.edu/jtrp. 
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