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In stark contrast to progress on almost all the UN Sustainable Development 
Goals, clean water supply and safety issues are worsening globally, threat
ened by groundwater depletion, shrinking glacial melt, major rivers running 
dry, increasing salinity of soils and groundwater, more dangerous and tena
cious waterborne pathogens, worsening water pollution with new emerging 
contaminants, and more frequent conflicts around water (Boretti and Rosa 
2019; Gunasekara et al. 2014; Mekonnen and Hoekstra 2016). And the 
challenges are widespread: today 3.6 billion people face water scarcity for at 
least part of the year (Mekonnen and Hoekstra 2016), and this number is 
expected to grow to ~5.6 billion by 2050 (Boretti and Rosa 2019). 

To address this crisis, the global water supply must be substantially 
increased through the purification and reuse of water from large sources that 
have salts or small contaminants. This purification is called desalination, but 
the term applies to any water process that removes the smallest compounds. 

Needed Technological Improvements 

Although use of desalination has emerged rapidly in some parts of the world, 
there remain significant barriers. These vary by location, because water is 
typically a local resource (long-distance water transport is expensive and 
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requires energy-intensive pumping), and by whether a 
system is inland or seaside and whether it is a large-scale 
grid-connected or remote off-grid system. Barriers to the 
widespread use of desalination must be overcome with 
new technological solutions. 

High-Salinity Capabilities 
Current desalination technologies are competitive for 
seawater and mild-salinity groundwater in many regions, 
but they are rarely economically viable for treating 
salinities beyond seawater brine (i.e., >7 percent salt 
by weight; Swaminathan et al. 2018). This challenge is 
particularly important for inland regions where there 
is no large body of water (such as the ocean) for disposal 
of the brine. 

Current desalination 
technologies are rarely 
economically viable for 

treating salinities beyond 
seawater brine. 

Technologies for inland application require extremely 
high recovery of the pure water and, ideally, the ability 
to dispose of the solutes as solid waste (so-called zero-
liquid discharge, ZLD) (Tong and Elimelech 2016). To 
achieve ZLD, technologies need to have much better 
prediction and control of salt crystallization to avoid 
forming blocking layers on membranes (Warsinger et al. 
2015) or heat exchangers (Tong and Elimelech 2016), 
depending on the technology. Unfortunately, the 
energy requirements of these high-salinity technologies 
dominate costs and must decrease dramatically through 
efficiency improvements. 

Resource Recovery 
The byproduct streams of high-concentration desali
nation are not just another waste product: with proper 
approaches they can be used to recover valuable salts 
and resources from saline sources. Such resources would 
include not only specific salts such as easier-to-extract 
magnesium but also, potentially, highly sought ele
ments like gold and lithium. Selective removal of these 
compounds will require new and improved versions of 

technologies such as crystallization, electrodialysis, and 
ion-selective membranes (Tong and Elimelech 2016). 

While today resource recovery from desalination is 
minimally used, to be sustainable and widely cost com
petitive, large or inland desalination must capitalize on 
this option to extract resources while minimizing poten
tial contaminants (Du et al. 2018). 

Renewable Integration and Time-Varying 
Capabilities 
A major challenge for desalination technologies is their 
integration in a changing and more renewable electric 
grid while minimizing their CO2 production. Current 
large-scale desalination plants run as steady-state base-
load power electricity users. However, as grids become 
more dependent on renewable energy sources, it may 
become uneconomical to run desalination plants during 
peak demand (in Israel some plants idle operation in 
those scenarios; Dreizin 2006). 

Desalination must switch to adaptive, time-varying 
technology to improve efficiency and meet the needs 
of renewable power through, for example, demand 
response and salinity-gradient power using desalination 
system components for peak prices. Approaches will 
include process innovations, such as novel components 
for batch desalination (Warsinger et al. 2016), as well 
as modified and new control methods and other com
ponents (e.g., pumps and energy recovery devices) to 
run in varied operating conditions (Khiari et al. 2019). 

The control and optimization of time-varying desali
nation will be a major target for innovations in artificial 
intelligence (Dudchenko and Mauter 2020). 

Better Membrane Technology 
Current membranes for some desalination technologies, 
such as reverse osmosis, as well as pretreatment steps are 
highly effective. However, membranes still need further 
research and development. 

Reverse osmosis membranes don’t block small 
uncharged solutes well, such as boron (in the form of 
boric acid) and disinfection byproducts like NDMA 
(N-nitrosodimethylamine; Al-Obaidi et al. 2018; 
Warsinger et al. 2018). Other membrane-based tech
nologies, such as membrane distillation or forward 
osmosis, require significant improvement before full-
scale deployment. 

Most membrane technologies also need further 
chemical modification and surface design to minimize 
membrane fouling (She et al. 2016), more resistance to 
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destructive cleaning chemicals, and they may benefit 
somewhat from increases in permeability. Resilience to 
high pressures remains a challenge for reverse osmosis 
membranes in particular (Davenport et al. 2018). 

Other Innovations 
Widespread adoption of desalination will depend on 
a variety of additional innovations in pre- and post-
treatment and in the operation of these systems. For 
example, 

• Better control of biological and other types of mem
brane fouling is needed; innovative areas include novel 
cleaning compounds, backwashing processes, phage-
based technologies, and reactive nanoswimmers. 

• Novel catalytic processes may destroy emerging con
taminants and provide safe reject brine (Hodges et al. 
2018; Warsinger et al. 2018). 

• Substantial process intensification will improve per
formance by combining different driving forces (e.g., 
pressure, heat, electric fields) with reactive systems. 

• New manufacturing techniques, including additive 
manufacturing, will be key in making membrane 
modules that minimize concentration gradients, pres
sure losses, and fouling. 

The Future 

As water supplies decline in quantity and quality, 
demand is increasing because of population growth, 
shifts to meat-based diets, population concentrations in 
cities, and economic growth. The need for safer water, 
water reuse (Warsinger et al. 2018), and expanded water 
supplies means that much of the world’s water treatment 
will need to include desalination membranes. Although 
it is a scarce technology today, desalination will one day 
be a ubiquitous cornerstone of the world’s clean water. 
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