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EXECUTIVE SUMMARY

High torsional rigidity and attractive aesthetics in construc-

tion of twin-tub girder bridges make them preferable for the

design of curved bridges. However, according to the concepts

associated with the term ‘‘Fracture Critical (FC)’’ that are in

place today, all two-girder bridges are classified as having FC

members (FCMs) due to their perceived lack of load path

redundancy. For a steel bridge with FCMs, the fracture of any

of the FCMs is assumed to result in complete catastrophic

failure or significant loss of serviceability; hence, every two

years twin-tub girder bridges undergo very expensive hands-on

field inspections.

Recent works performed by Purdue University researchers—

including NCHRP Project 12-87a (Connor et al., 2018) reported

in NCHRP Report 883 Fracture-Critical System Analysis for Steel

Bridges (Connor et al., 2018), Ramp TH over Interstate 43/894 in

Milwaukee (Connor & Korkmaz, 2016), and Analytical Evaluation

of the Post-fracture System Performance of Typical Steel Twin-Tub

Girder Bridges in the State of Wisconsin Phase I (Korkmaz et al.,

2018)—showed that twin-tub girder bridges often possess

significant reserve capacity even when one girder is completely

severed. The bridges were evaluated using the system analysis

procedures defined in the AASHTO Guide Specifications for

Analysis and Identification of Fracture Critical Members and

System Redundant Members (AASHTO, 2018). A reliability-based

approach was used, and all load combinations were in accordance

with the AASHTO Guide Specifications (AASHTO, 2018). In the

first phase of the research completed for the Wisconsin DOT

(Korkmaz et al., 2018), 18 multi-span twin-tub girder bridge units

(in total 2.4 miles, 70 spans) were analyzed to determine if the steel

tub girders could be classified as System Redundant Members

(SRMs). Full 3D non-linear dynamic finite element analysis

(FEA) was required to complete the evaluations. The results from

Phase I demonstrated that all bridges analyzed in the project

possess considerable reserve strength in the faulted state and that

the steel tub girders do not meet the definition of having a fracture

critical member. It is important to note that all of the twin-tub

girder bridges analyzed in Phase I (Korkmaz et al., 2018) have

multiple full-depth and full-width intermediate diaphragms and

continuous spans. These features provide additional load paths

and help to make the bridges redundant, thereby avoiding many

failure modes which simple span bridges and continuous bridges

without full-depth and full-width intermediate diaphragms are

likely to experience.

To avoid the need for complex FEA, it would be advantageous

to have a simple guideline that could be used during the design of

future twin-tub girder bridges. These guidelines would ensure that

these bridges would satisfy the loading requirements and failure

criteria included in the AASHTO Guide Specifications (AASHTO,

2018). However, no such guidelines currently exist for designers.

By simply meeting AASHTO LRFD (AASHTO, 2020) Strength I

requirements in the unfaulted state during design, there are no

assurances that the bridge would meet the AASHTO Guide

Specifications (AASHTO, 2018) requirements.

This report presents a simplified approach to ensure newly

designed twin-tub girder bridges will meet all the requirements

defined in the AASHTO Guide Specifications (AASHTO, 2018)

without performing in-depth FEA. In brief, this report explains

the following:

1. The geometric limitations and configurations to which the

proposed criteria apply.

2. How to design and detail such bridges in order to meet the

criteria and satisfy minimum strength and serviceability

performance requirements to avoid expected failure modes.

AASHTO-ready proposed specifications are included in

Appendix A. Proposed Specifications. It is anticipated that these

provisions could be incorporated into the AASHTO LRFD BDS

as a new article 6.6.3 Special Provisions for Twin Tub Girder

Bridges. An example of how to use the provisions is demonstrated

in Appendix B. Design Example.
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1. INTRODUCTION

1.1 Background

The concepts associated with the term Fracture
Critical (FC) that are in place today were developed
in the mid-1970s when shop fabrication and inspection,
fatigue design, detailing practices, material toughness,
and analytical tools were very different. These processes
have evolved and improved substantially over the past
30 to 40 years. The bridges built today present a much
lower risk of fracture compared to those built prior to
about 1980 due to enhanced quality standards for FC
member fabrication and shop inspection. In addition,
there have been significant advancements in the areas of
fatigue design and detailing to prevent in-plane fatigue
and to address distortion cracking issues.

Interestingly, there is little evidence that FC in-ser-
vice inspection contributes significantly to the improved

overall reliability of modern bridges (Connor et al.,

2005). FC inspection practices were initiated to help

identify fatigue cracking that was prevalent in older

bridges. Once initiated, fatigue cracks often continue

to grow larger until they present a brittle fracture risk.

The rationale for FC in-service inspection was to ensure

these cracks were found at an early stage, i.e., before

they present a fracture risk. This needs to be critically

re-evaluated for modern structures as contemporary

fatigue design practice has greatly reduced the prob-

ability of fatigue cracking in most structures. Therefore,

it is logical that new FC bridges have less need for

in-depth inspection as compared to older FC bridges.

Further, the maximum allowable interval between FC
inspections (i.e., 24 months) specified in the Code of
Federal Regulations (CFRs) (Inspection Frequency,
2013) was not developed using any quantitative
engineering-based criteria. Rather, it was based on the
perception that this was the ‘‘right’’ interval. Never-
theless, concerns remain regarding the performance of
bridges classified as having FCMs if one of the two
primary load carrying members should completely
fracture.

There are a number of case studies reported in the
literature where full-depth fractures have been observed
in multiple bridges made of two I-girders, as shown in
Table 1.1. Even though after-fracture system perfor-
mance was not a consideration in design for any of
these bridges, in all cases the bridges remained standing,
and in most cases, continued to carry service loads (see
Table 1.1). Thus, in all cases, the bridges, several of
which were non-composite, were capable of redistribut-
ing loads through system performance.

Similar to I-girder bridges, recent work performed
by Purdue University researchers including NCHRP
Project 12-87a (Connor et al., 2018) reported in NCHRP
Report 883 Fracture-Critical System Analysis for Steel
Bridges (Connor et al., 2018), Ramp TH over Interstate
43/894 in Milwaukee (Connor & Korkmaz, 2016), and
Analytical Evaluation of the Post-fracture System Per-
formance of Typical Steel Twin-Tub Girder Bridges in
the State of Wisconsin Phase I (Korkmaz et al., 2018)
showed that twin-tub girder bridges often possess
significant reserve capacity even when one girder is
completely severed. The bridges were evaluated using

TABLE 1.1
List of the bridges with FC members where fractures have been observed in main members

Bridge Type of Failure Structural Type Span Length (ft.)

Conditions After

Fracture

Lafayette St.

Minneapolis, MN

Full-depth

I-girder fracture

2-Girder

cont. span

362 Some sagging,

carried traffic

US 422 over

Schuylkill River,

Pottstown, PA

Partial-depth

I-girder fracture

2-Girder

cont. span

150 No perceptible

deflection, carried traffic

Neville Island

over Ohio River,

Pittsburgh, PA

Full-depth

I-girder fracture

2-Girder

cont. span

300 No perceptible

deflection, carried traffic

Hoan Bridge

Milwaukee, WI

Multiple full-depth

I-girder fractures

3-Girder

cont. span

217 Considerable

deflection, carried light

traffic for a brief period

Dan Ryan

Expressway

Chicago, IL

Full-depth box

girder fracture

Cross Girder 40 Some deflection,

still carried traffic

Diefenbaker

Bridge, Prince

Albert, Canada

Full-depth

I-girder fracture

2-Girder

cont. span

150 No perceptible

deflection, carried traffic

I-40 over Rio

Grande, NM

Simulated

full-depth

I-girder fracture

2-Girder

cont. span

163 Testing demonstrated

considerable load capacity

after simulated fracture
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the system analysis procedures defined in the AASHTO
Guide Specifications for Analysis and Identification of
Fracture Critical Members and System Redundant
Members (AASHTO, 2018). A reliability-based appro-
ach was used, and all load combinations were in
accordance with the AASHTO Guide Specifications
(AASHTO, 2018). In the first phase of the research
completed for the Wisconsin DOT (Korkmaz et al.,
2018), 18 multi-span twin-tub girder bridge units (in
total 2.4 miles, 70 spans) were analyzed to determine
if the steel tub girders could be classified as System
Redundant Members (SRMs). Full 3D non-linear
dynamic finite element analysis (FEA) was required
to complete the evaluations. The results of all 18 bridge
units analyzed for the state of Wisconsin demonstrated
that all bridges analyzed in the project possess con-
siderable reserve strength in the faulted state and that
the steel tub girders do not meet the definition of a
fracture critical member. The behavior of tub girder
bridges in which an individual tub is assumed to have
completely fractured is presented in detail in this pro-
ject. Extension of the inspection intervals or the use of a
more economical inspection method may be performed
for twin-tub girder bridges that are determined to be
redundant (i.e., not classified as having FCMs).

1.2 Project Objective

To avoid the need for complex FEA to evaluate post-
fracture behavior, it would be advantageous to have
a simplified methodology that could be used during
the design of future twin-tub girder bridges. This gui-
dance must also ensure that these bridges would satisfy
the loading requirements and failure criteria included
in the AASHTO Guide Specifications (AASHTO, 2018).
However, no such simple guidance currently exists for
designers. Further, simply by meeting AASHTO LRFD
(AASHTO, 2020) Strength I requirements in the un-
faulted state during design, there are no assurances that
the bridge would meet the requirements of the
AASHTO Guide Specifications (AASHTO, 2018).

This report presents a simplified approach to ensure
newly designed twin-tub girder bridges will meet all the
requirements defined in the AASHTO Guide Specifi-
cations (AASHTO, 2018) without performing in-depth
FEA. In brief, this report explains the following:

1. The geometric limitations and configurations to which the
proposed criteria apply.

2. How to design and detail such bridges to meet the criteria
and satisfy the minimum strength and serviceability per-
formance requirements defined in the AASHTO Guide

Specifications (AASHTO, 2018).

These results of the project will be applicable not
only to the state of Wisconsin, but also to the many
other states which use similarly designed and detailed
twin-tub structures as they would likely be classified as
SRMs and not FCMs. Doing so will allow for a more
rational use of limited inspection funds and increase
the safety of inspectors and the public since unneeded

interruptions in traffic will not be required for inspec-
tions. Proposed AASHTO ready specifications that can
be directly incorporated into the AASHTO LRFD
Bridge Design Specifications (AASHTO, 2020) are
included in Appendix A of this report. Further, an
example of how to use the provisions is included in
Appendix B. Design Example.

1.3 Project Tasks

The primary task of this project was to develop a
very simple methodology that can be used in lieu of
complex non-linear FEA to determine if the girders
could be classified as SRMs. If the bridge does not meet
the defined criteria or follow the steps and tasks
outlined in this project, it is recommended to follow
the evaluation methodology contained in the AASHTO
Guide Specifications (AASHTO, 2018) to evaluate the
bridge redundancy to make this determination.

Specifically, the following were developed during this
project:

1. Various limitations were developed to ensure future
designs display similar behavior in the faulted state as

the multi-span twin-tub girder bridge units analyzed for

the state of Wisconsin (Korkmaz et al., 2018). Eighteen

multi-span twin-tub girder bridge units (in total 2.4 miles

and 70 spans) from WisDOT were used to develop the

proposed simplified guidance. By studying the post-
fracture behavior of these bridges and understanding the

common characteristics of these bridges, it was possible to

develop simple criteria that if met, future twin-tub girders

can be automatically classified as having SRMs without

the necessity of explicitly modeling fracture in a FEA. In

other words, when a bridge is designed and detailed to
meet the proposed criteria, acceptable post-fracture

behavior is ensured. The specific criteria and limitations

are explained in Chapter 3 in detail. The limitations and

criteria include the following:

a. Geometric Limitations: Limits were imposed on a

number of geometric characteristics to ensure that

future bridges are similar in overall configuration

and layout to those used to develop the criteria.

b. Pre-Fracture Dead Load Displacement Limitations:

The ratio of the length of the span (where the fracture

is assumed to occur) to the pre-fracture dead load

displacement (of that span) was found to heavily

influence the overall load redistribution character-

istics of the bridge. When the ratio is ‘‘low,’’ a

significant amount of displacement will be observed
in the fractured girder following a fracture. With

lower ratios (i.e., a more flexible bridge), the relative

displacement between the intact and the fractured

girder increases significantly. This will generally

cause localized or even significant plasticity in the

concrete deck or steel girders and possible buckling in
negative moment regions. However, bridges which

were found to satisfy the requirements of the

AASHTO Guide Specifications (AASHTO, 2018) all

possessed certain dead load deflection characteristics

in the unfaulted state. These characteristics were used

to develop the deflection criteria proposed herein.

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/09



2. Chapter 4 explains the proposed steps for designing a new
twin-tub girder bridge without explicitly modeling fracture
while ensuring acceptable post-fracture behavior. An
attractive feature of this approach is that it simply utilizes
the pre-fracture resistance capacities under the AASHTO
LRFD (AASHTO, 2020) Strength I load combination.

In the discussion below, it will be shown that post-
fracture demands (i.e., those because of Redundancy I and
II in the faulted state required by the AASHTO Guide

Specifications (AASHTO, 2018)) are satisfied by setting
additional limitations on the demand/capacity ratios asso-
ciated with the Strength I loading in the unfaulted state.

The proposed approach ensures the following failure
modes are prevented:

a. Properly designed and detailed studs have also been
shown to be critical in the post-fracture performance
of twin-tub girder bridges. To increase ductility for
concrete breakout capacity, shear studs shall extend a
minimum of 2 inches above bottom layer of rein-
forcement. As discussed below, the proposed metho-
dology specifies the required placement and geometry of
intermediate diaphragms to avoid shear stud pull-out.

b. The load after fracture is primarily redistributed
from the faulted girder to the intact girder through
the intermediate diaphragms. This report provides
minimum section details, location and number of
intermediate diaphragms to ensure adequate load
transfer in the faulted state.

c. The parametric study has demonstrated that bottom
flange local buckling in the negative moment region is
the most likely failure mode in the faulted state due to
the redistribution of positive moment in span which
contains the fracture. It is also important to note that
the most critical section may not be directly over the
pier. For example, wherever the bottom flange section
changes, the thinner section’s capacity needs to be
sufficient to avoid local bottom flange buckling in the
post-fracture behavior. To eliminate this form of
failure, locations of flange thickness changes are
recommended based on the parametric study as a
function of span length. Thus, using a very simply
criterion, this failure mode can be prevented. It has also
been observed that the maximum pre-fracture dead
load displacement is a strong indicator of the potential
for bottom flange buckling in the faulted state.

d. After fracture occurs, a significant amount of the
load is redistributed from the fractured girder to the
intact girder. In the fractured span, the positive
moment flexural resistance of the intact girder should
be checked. The most critical location for this check
is at the maximum positive moment closest to the
assumed fracture.

e. Shear in the web increases close to the pier and
abutment in the intact girder following a fracture. It
is recognized that shear stresses in the web are
combined with total direct shear and shear due to
torsion. However, the use of intermediate dia-
phragms detailed as prescribed in the proposed
criteria combined with span continuity reduce the
change between pre- and post-fracture torque sig-
nificantly. It will be shown that when the proposed
criteria are met, failure due to shear is not a concern.

f. When the proposed criteria related to deflection and
diaphragm detailing are met, excessive cracking due

to flexure, shear, and torsion cracking that would
compromise the overall performance of the bridge
will not occur when designed and detailed to meet
typical AASHTO Strength I requirements.

g. Finally, when the criteria proposed herein are
satisfied, it is not necessary to check; (1) changes in
support reactions and displacements, (2) post-frac-
ture vertical displacement, and (3) internal and lateral
brace failures.

2. GUIDE LIMITATIONS

2.1 Geometric Limitations

Geometric limitations were developed to ensure the
desired post-fracture behavior is achieved. These
limitations are based on the types of bridges analyzed
in the Wisconsin study that were used to develop the
simplified methodology (Korkmaz et al., 2018). Details
of the 18 bridge units used in this study are shown
below in Table 2.1. In order for the methodology to
apply, the following limitations need to be satisfied:

N Minimum two continuous spans: The methodology is
only applicable to bridges with two or more continuous
spans.

N Composite section with properly detailed studs: The
methodology is only applicable to bridges designed for
full composite action.

N Maximum total deck width 50 feet: During the parametric
study, maximum deck width was 45.896 feet shown in
Table 3.1. Hence a limit of 50 feet was selected.

N Maximum number of design lanes # 3: All of the bridges
analyzed during the parametric study possessed three or
fewer design lanes.

N Center to center girder spacing # 25 feet: As shown in
Table 3.1, maximum center to center girder spacing was
25 feet. Hence a limit of 25 feet was selected.

N 60 inches # Web height # 90 inches: All of the bridges
analyzed during the parametric study had web heights
between 60 and 90 inches (shown in Table 2.1).

N 70 feet # Interior span length # 250 feet: As shown Table
2.1, all of the bridges analyzed during the parametric
study had spans lengths between 70 and 250 feet. The
methodology was developed for span lengths within this
range.

N 100 feet # Exterior span length # 200 feet: The reason
for limiting exterior span length is the same as the reason
for limiting interior span length.

N 0.60 # Adjacent span length/Fractured span length #

1.70: All bridges included in the study fell within this
criterion.

N 1.85 # Radius of Curvature/Longest span length: All
bridges included in the study fall within this criterion.

N Maximum skew # 10 degrees: All of the bridges analyzed
during the parametric study had a skew less than 10
degrees.

2.2 Pre-Fracture Dead Load Displacement Limitations

The ratio of span length to pre-fracture (unfactored)
dead load displacement has been found to be a use-
ful predictor in providing insight into the expected

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/09 3



TABLE 2.1
The details of 18 bridge units for WisDOT used in the parametric study

Bridge Units # Span

Deck

Width

(ft.)

Girder

Spacing

(ft.)

Web

Height

(in.)

Span Lengths (L) (ft.)

(Fractured)

Maximum

Adjacent Span

Length/Fractured

Span Length

Minimum

Adjacent Span

Length/Fractured

Span Length

Curvature

Over Longest

Span Length

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

Unit-1

Unit-2

—

Unit-3

Unit-4

Unit-5

Unit-1

Unit-2

—

—

Unit-1

Unit-2

—

—

Unit-1

Unit-3

Unit-2

—

4

6

2

4

4

5

5

5

3

3

4

4

3

2

5

3

6

2

35.896

35.896

44.896

44.896

41.896

31.896

44.896

41.896

29.896

44.896

33.896

45.896

19.0

19.0

25.0

25.0

21.0

16.0

23.0

21.0

16.0

23.0

17.0

23.5

86

72

86

86

60

60

84

60

60

84

84

69

170-210-210-169

199-250-250-250-235-170

187-187

137-192-229-180

176-241-241-176

151-247-247-247-146

168-248-248-248-170

170-248-248-248-181

105-102-105

111-111-119

150-215-215-160

146-196-196-140

112-73-116

100-100

146-225-225-194-136

157-220-157

151-220-220-200-200-160

123-150

1.24

1.38

1.00

1.40

1.37

1.69

1.48

1.46

1.03

1.07

1.43

1.40

1.59

1.0

1.54

1.40

1.46

1.22

0.80

0.72

1.00

0.72

0.73

0.59

0.68

0.69

0.97

0.93

0.70

0.71

0.63

1.00

0.65

0.71

0.69

0.82

6.49

5.45

7.20

6.15

5.85

5.70

5.68

5.68

2.17

1.85

3.91

4.30

1.88

2.13

6.64

6.79

6.37

1.90
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TABLE 2.2
Dead load displacement vs. inelasticity

Bridge Units Deck Crushing

Plastic Strain in the

Main Girder # of Diaphragms

Exterior Span Dead Load

Deflection (Pre-fracture)

B05-658 Unit-1 No No 3 L/630

Unit-2 Insignificant Insignificant 3 L/415

B05-661 — Insignificant Insignificant 3 L/375

B05-678 Unit-3 No No 3 L/545

Unit-4 No No 3 L/610

Unit-5 No No 3 L/2160

B05-679 Unit-1 No No 3 L/850

Unit-2 No No 3 L/670

B40-776 — No Insignificant 2 L/365

B40-783 — No Insignificant 2 L/410

B40-786 Unit-1 No No 3 L/570

Unit-2 No No 3 L/770

B40-834 — No Insignificant 2 L/350

B40-837 — No No 2 L/1250

B40-854 Unit-1 No No 2 L/850

Unit-3 No No 2 L/750

B40-856 Unit-2 No No 2 L/550

B40-868 — Localized Localized 3 L/210

post-fracture behavior. If the displacement is high
compared to span length, there will likely be
moderate to significant inelastic behavior and the
developed methodology will not be able to estimate
behavior accurately. A review of the results pre-
sented in Table 2.2 shows the level of damage that
was observed as function of deflection for structure.
Based on the overall behavior of observed, it is
apparent that as the flexibility of the bridge in the
unfaulted stated increases, so does the level of damage.

Note in particular Bridge B40-868 where the deflections
were about L/210 and the level of inelasticity observed
almost exceeded the limitations contained in the
AASHTO Guide Specifications (AASHTO, 2018). To
ensure acceptable performance, a limit was selected
based on the worst (i.e., most flexible) performing
bridge while adding a bit of conservatism. Hence, using
limit of LF/DF $ 300, it has been determined that this
methodology can be applied. This is because the overall
structure is too flexible and excessive plasticity may



occur. In such cases, the engineer would need to analyze
the bridge using the provisions of the AASHTO Guide
Specifications (AASHTO, 2018). It should be noted
here, positive displacements are in the downward
direction, whereas negative displacements show upward
deflections. This same limit (i.e., LF/DF $ 300) can be
conservatively applied to interior spans as well.

2.3 Bridges Not Within the Limitations

If the bridge under design or an existing bridge is
not within the required limitations, 3D detailed FEA
is the most suitable analysis tool to adequately eval-
uate the redundancy of the twin-tub girder bridges. It is
recommended to follow the approach defined in
AASHTO Guide Specifications (AASHTO, 2018) and
NCHRP Report 883 (Connor et al., 2018). The twin-
tub girder modeling approach should be benchmarked
to the three full-scale experiments performed at the
University of Texas at Austin (Barnard et al., 2010).
A detailed FEA study corresponding to the experiments
was also presented in Korkmaz (2018) that may also be
used for comparative purposes. It is recommended to
develop or replicate the benchmark study from the full-
scale testing explained in the NCHRP Report 883
(Connor et al., 2018) to provide confidence in the
results. The bridges used in the calibration process were
Neville Island Bridge (Connor et al., 2018), Hoan
Bridge (Connor et al., 2018), University of Texas Twin-
tub Girder Bridge Experiments (2018), Milton Madison
Bridge (Connor et al., 2018), White River Bridge
(Connor et al., 2018), and Dan Ryan Expressway
Transit Structure (Connor et al., 2018). The twin-tub
girder modeling approach could also be benchmarked
to the three full-scale experiments performed at the
University of Texas at Austin (Barnard et al., 2010).
The software used for the detailed FEA should be
capable of modeling three-dimensional geometry,
material nonlinearity, geometric nonlinearity, material
features (density, damping, field variable dependent
properties), kinematic constraints, contact (friction and
hard), and boundary conditions.

3. PROPOSED GUIDANCE FOR DESIGNING
SRMS IN TWIN-TUB GIRDER BRIDGES

In this chapter, the development of the proposed
simplified guidance will be presented in detail. The
guidance was developed using detailed FEA results,
bridge plans, and the original design calculations for
each bridge. As stated, this included 18 multi-span twin-
tub girder bridge units with a total length in total 2.4
miles and 70 spans in the state of Wisconsin. The FE
analysis results were used to obtain the post-fracture
demand/capacity ratios under the Redundancy I and II
load combinations. These ratios were compared to the
demand/capacity ratios under the familiar Strength I
load combination or the component capacity.

In many cases, the demand/capacity ratio in the
faulted state under the Redundancy load combinations

were very low. In addition, in many cases, the demand/
capacity ratio in the faulted state under the Redundancy
load combination was almost always less than under
Strength I in the unfaulted state. In a few isolated cases,
the ratio in the faulted state exceeded the ratio in in the
unfaulted state, but only by a few percent. Hence, as
will be shown many failure modes listed below will not
need to be considered under Redundancy load factors
in the faulted state. However, they will be discussed for
completeness.

The demand/capacity ratios under the Strength I
load combination do provide some insight into the
outcome following a fracture. However, they cannot
be used directly. In other words, one cannot simply
assume acceptable behavior if the Strength I
demand/capacity ratios are less than 1.0 in the
unfaulted state. For example, for some bridges evalu-
ated, higher demand/capacity ratios were observed
under the Redundancy load combinations in the faulted
state than were observed under Strength I in the
unfaulted state. In such cases, the main concern
would be a case where the demand/capacity ratio is
acceptable in the unfaulted state but unacceptable in
the faulted state. After a detailed evaluation of all the
data and all failure modes in all bridges, it was found
that by setting additional limits on the Strength
I demand/capacity ratios (e.g., limiting D/C # 0.8
for some limit state during design), will ensure adeq-
uate headroom for potential increases in faulted sta-
ted. The proposed guidance addresses all the failure
modes defined in the AASHTO Guide Specifications
(AASHTO, 2018). With this simplified guidance, a
twin-tub girder bridge whether has FCMs or not can be
determined easily.

The proposed guidance ensures the following failure
modes are prevented:

1. Shear stud pull-out and shear failure (Section 4.1.1).

2. Flexural and shear failure of intermediate diaphragms
(Section 4.1.2).

3. Local bottom flange buckling of the girder in compres-
sion (Section 4.1.3).

4. Positive moment flexural failure (girder and deck)
(Section 4.1.4).

5. Web shear buckling in the girder (Section 4.1.5).

6. Excessive torsional cracking in the deck according to
ACI 318-14 Section 22.7.6 Torsional Strength (Section
4.1.6) (ACI Committee 318, 2014).

7. Excessive concrete cracking in the deck due to flexure or
shear (Section 4.1.7).

8. Excessive support reaction increases and unacceptable
horizontal displacements (Section 4.1.8).

9. Vertical deflection of the fractured girder is less than L/50
(Section 4.1.8).

3.1 Stud Pull-Out Failure (Haunch Separation)

The tensile and shear behavior of shear studs is
critical in the load transfer between the steel members
and the concrete slab in composite steel bridges as they
help provide additional load paths after the failure of a

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2020/09 5



TABLE 3.1
Shear stud properties of WisDOT bridges

Bridge Units

Dead Load Deflection at

First Intermediate Diaphragm

(Pre-fracture)

# of Shear Stud

Transversely Spaced Stud Height (in.) Stud Spacing (in.) Stud Failure

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

U1

U2

—

U3

U4

U5

U1

U2

—

—

U1

U2

—

—

U1

U3

U2

—

L/810

L/740

L/415

L/865

L/890

L/2185

L/1010

L/880

L/460

L/650

L/570

L/850

L/430

L/1425

L/1120

L/1070

L/765

L/270

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

6

6

7

7

7

7

7

7

7

6

6

6

8

6

8

8

6

8

22

20

17

12

12

12

12

12

8

12

12

12

10

9

14

16

12

9

NO

NO

YES

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

NO

YES
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primary steel member. The superior ability of com-
posite steel bridges to transfer load was shown by

Bernard et al. (2010), who performed full-scale experi-

ments in a simple span twin-tub girder bridge that

underwent failure of the bottom flange and web of one

of the tub girders. Therefore, given their essential role

in composite action, shear studs need to be designed

properly to make to the bridge stay in composite

behavior in the post-fracture performance of twin-tub

girder bridges.

In some of the WisDOT bridges a few isolated shear
stud failures were observed but were not found to be
critical. Hence, the overall layout of the studs in these
bridges provide a template for how to layout studs
in other bridges since they exhibited very good per-
formance. Using that data and the observed behavior, a
simplified set of criteria were developed that ensure no
shear studs will pull-out of the deck in the faulted state.

It is also noted that the behavior of shear studs (i.e.,
the tension demand) was found to be directly affected
by the pre-fracture (unfactored) dead load displacement
at the location where the first intermediate diaphragm
is located. According to Table 3.1, two of the bridges
(B05-661 and B40-868) had the first diaphragm placed
at the location where the dead deflection was more
than L/500. In these two bridges (and only these two
bridges), some isolated shear stud failures were
observed. There were no other failures in any of the
other bridges when the first diaphragm was located
where the dead deflection was less than L/500.
Therefore, it is proposed that the first diaphragm be
placed as close as practical to the location where the
pre-fracture dead load deflection is less than L/500 to
avoid shear stud failure.

The specific guidance on how to best detail and
layout shears studs were developed by using the lay-
outs found in the Wisconsin bridges as a starting point
and the recommendations from the research at the
University of Texas at Austin (Barnard et al., 2010).
Table 3.1 presents the layouts of the shear studs in the
family of bridges included in the study. Based on these
data, the following recommendations are:

1. To ensure the shear studs are evenly distributed and

ensure continuity, the maximum longitudinal spacing

between studs should not be more than three times the

effective stud height (i.e., height of shaft) as specified in

the AASHTO Guide Specification (AASHTO, 2018).

2. The layout of all shear studs was obtained from the

design plans and summarized in Table 3.1. It is noted

that for all of the bridges considered, three shear studs

were placed transversely on the flange. The shear stud

design and detailing was based on the AASHTO

requirements that are used in normal design and do not

consider tension pull-out. In all cases, the ‘‘normal’’

design requirements which apply before a fracture,

provided more than sufficient shear and tension pull-

out capacity in the faulted state. It was found that when

all other criteria contained in these proposed guidelines

are satisfied, the normal AASHTO shear stud design will

ensure adequate performance in the faulted state. Since

the greatest longitudinal spacing that was included in the

study was 22 inches, this was selected as an upper limit

when three shear studs are used transversely.

3. In cases where two studs are to be placed transversely, it

is proposed to simply use a maximum longitudinal

spacing for two studs that is 2/3 of the maximum

longitudinal spacing used for three studs, or 14 inches (2/

3 6 20 < 140).

4. Based on the AASHTO Guide Specifications (AASHTO,

2018), the minimum edge distance between outermost



TABLE 3.2
WisDOT bridges girder top flanges vs. diaphragm top flanges

Bridge Units

Minimum Top Flange

Size in Longest

Exterior Span (in.)

Minimum Web

Size in Longest

Exterior Span (in.)

Diaphragm Top

Flange Section (in.)

Diaphragm Web

Section (in.)

Post-Fracture

Demand/Capacity

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

U1

U2

—

U3

U4

U5

U1

U2

—

—

U1

U2

—

—

U1

U3

U2

—

2061

2261

2261

2261

2261

2261

2261

2261

1863/4

1863/4

2061

2061

1863/4

1663/4

2261

2067/8

2061

2067/8

8663/4

8663/4

7263/4

8663/4

8663/4

8663/4

8663/4

8663/4

6065/8

6065/8

8465/8

8465/8

6065/8

6065/8

84611/16

84611/16

8465/8

69611/16

2067/8

2067/8

2067/8

2061

2061

2061

2061

2061

1663/4

1663/4

1661

1661

1663/4

1663/4

1661

1661

1661

1663/4

8663/4

8663/4

7263/4

8663/4

8663/4

8663/4

8663/4

8663/4

6061/2

6061/2

8465/8

8465/8

6061/2

6061/2

8465/8

8465/8

8465/8

6961/2

0.44

0.59

0.38

0.58

0.57

0.47

0.49

0.47

0.73

0.46

0.62

0.72

0.87

0.46

0.42

0.58

0.61

0.82
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stud and edge of haunch should be a minimum 1.5 inch.
This limitation is adopted here.

5. Based on the work at Mouras et al. (2008), in order to
provide increased ductility for concrete breakout capa-
city, shear studs should extend a minimum of two inches
above the bottom layer of reinforcement.

3.2 Intermediate Diaphragm Web Shear and Flexural
Yielding

Intermediate diaphragms are required to be designed
to guarantee adequate load distribution between girders
in the faulted state. The required size, location and the
number of the intermediate diaphragms proposed
herein is also based on the details observed in the
Wisconsin Bridges. In the bridges evaluated, the inter-
mediate diaphragms were full-depth and full-width
and include both internal and external sections between
the girders. Hence, this recommendation is included in
the proposed guidance. It is also recommended that
the same basic cross-section be used between and within
the girders. Obviously, the diaphragms between the
girders only need to have top flanges whereas external
diaphragm requires to include both bottom and top
flanges. It is recommended to provide shear studs on
the top flanges of the diaphragms to increase stiffness,
though it is not required to achieve acceptable
performance.

3.2.1 Diaphragm Plate Size Recommendations

The details of the diaphragms used in the existing
bridges analyzed in Phase I (Korkmaz et al., 2018)
are shown in Table 3.2. In all cases, the diaphragms
were capable of transferring both shear and moment
during post-fracture behavior and in most cases had

substantial reserve strength. Further, the FEA also
confirmed these diaphragms also possessed adequate
stiffness to transfer the load to the intact girder. The
demand/capacities of the intermediate diaphragms in
the faulted state were calculated and are summarized in
Table 3.2. (It is noted that the value listed is the worst
case from flexure, shear, and combined flexure and
shear.) It is clear that in almost every case there is
significant reserve strength in the faulted state.

A study of Table 3.2 reveals that the flange sections
of the diaphragm (5th column) were never larger than
the top flange sections used in the minimum exterior
span exterior girder (3rd column). For simplicity, it is
proposed that the top and bottom flanges of the
diaphragms be the same as the smallest top flange used
in the longer exterior span. While this is conservative, it
will provide adequate stiffness and hence load distribu-
tion. Similarly, it is also proposed that the web sections
of the diaphragms be equal to minimum web section of
the longer exterior span exterior girder. The connections
should be designed using normal AASHTO procedures.

3.2.2 Recommended Number and Location of the
Diaphragms

The optimal number and location of the diaphragms
in a span were studied to understand how to (1)
distribute the loads between the intact and fractured
spans; (2) reduce the post-fracture moment at the pier;
and (3) minimize the damage to the deck; and (4)
eliminate shear stud pull-out failures. As shown in
Figure 3.1, the total moment change at the pier is the
greatest when no diaphragms were included as expected.
(Note this figure presents the total change in moment or
in other words, the summation of the change in moment in
both girders at the pier). It can be seen that the total



Figure 3.1 Total moment change considering different diaphragm locations—L/8 increments.
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moment change was also large when only two diaphra-
gms were placed at the eighth points (1/8 and 7/8) or the
quarter points (2/8 and 6/8). The lowest changes were
observed when the first diaphragm is located at about
30% of the span length and the second diaphragms is
placed symmetrically within the span. Similar behavior
is observed when three diaphragms are used if one is
located in the middle of the span (see Figure 3.1).

It is also very important to note that the number and
location of the diaphragms has a significant influence
on the distribution of the negative moment transferred
to the pier between the girders. The behavior is shown in
Figure 3.2. In the figure, the fracture is assumed to be
located in the exterior girder. Note that nearly all of the
moment transferred to the pier remains in the fractured
girder when no diaphragms are present. This is because
the concrete deck alone is not stiff enough to transfer the
load into the intact girder. Thus, it is not valid to simply
assume that all the load is transferred to the intact
girder (for both negative and positive moment) as some
other simplified approaches have proposed. While this
may appear to be a conservative assumption (i.e., that
all the load in the fractured girder is transferred to the
intact girder), there must also be a valid load path to
satisfy the assumption. Since the deck is very flexible,
especially after longitudinal cracking begins, the
faulted girder simply deflects, and the moment is
transferred to the pier when no diaphragms are present.
Thus, the fractured girder carries nearly all of the
redistributed moment at the pier location and very little
of the moment is transferred to the intact girder. This
is shown clearly in Figure 3.2. Studies have shown
that this can result in buckling of the fractured girder
in the negative moment region Korkmaz (2018). In
short, the deck alone is not capable of reliably
distributing the moments between the fractured and
intact girder when considering negative moment at
the pier. The parametric study has confirmed that
properly spaced and detailed diaphragms are required
in multi-span bridges.

As stated, the location and number of the dia-
phragms is important in ensuring acceptable behavior.
For example, it is obvious that a diaphragm placed just
a few feet from a support will do little in transferring
load to the intact girder following a fracture at mid-
span (see Figure 3.2). Hence, it is important to develop
criteria prescribing the placement and number of
diaphragms.

After much study, it was found that the placement
and quantity of the intermediate diaphragms can be
easily determined in relation to the pre-fracture dead
load deflection. For exterior spans, if the dead load
deflection at 30% of the span length (0.3L) from the
abutment is less than or equal to L/500, two inter-
mediate diaphragms are recommended. The first
diaphragm should be placed between 0.3L and 0.4L
and should not be located beyond the location where
the displacement is equivalent to L/500. The second
diaphragm should be placed symmetrically within the
same span. If the deflection at 30% of the span length
(0.3L) is more than L/500, the study found that a
minimum of three intermediate diaphragms should be
placed in the span. The first diaphragm should be
placed as close as practical to the location where the
deflection is L/500. The second diaphragm should be
placed at mid-span. The third diaphragm should be
placed symmetrically with the first diaphragm within
the span. For interior spans, two intermediate dia-
phragms should be placed as close as is practical to the
third points of the span. The intermediate diaphragms
of interior spans should possess the same cross-section
as the exterior span diaphragms.

3.2.3 Local Bottom Flange Buckling in Negative Moment
Zone

Korkmaz (2018) noted that bottom flange buckling
might be one of the most common post-fracture failure
mode under Redundancy load factors. The bottom
flanges are commonly made of slender or non-compact



Figure 3.2 Post-fracture moment in the girders considering different diaphragm locations—L/8 increments.
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Figure 3.3 Fractured girder local bottom flange buckling next to pier in fractured span.

sections in twin-tub girder bridges. As observed in
Figure 3.3, one of the most critical sections is directly
over the pier and it must be evaluated in both the intact
and fractured girders in the fractured span as well as in
the adjacent span. However, another, often more
critical location is wherever the bottom flange changes
thickness, as shown in Figure 3.4 (i.e., at a flange
transition).

To develop simple criteria for preventing this failure
mode, the local buckling capacities and design stresses
were compared at the pier and where the sections
change both in exterior spans and interior spans for all
bridges. The local buckling capacities, the longitudinal
stresses from design calculations, and the maximum
nominal longitudinal stresses from the FEA were
compared at the center of the bottom flange of the

fractured girder at the pier and at the bottom flange
transition closest to the pier.

As can be seen in Table 3.3, the demand/capacity
ratios for buckling in the design calculations were
always higher than those in the faulted stated directly
over the pier (see column 3). This strongly suggests that
when the other criteria are met (i.e., overall geometry,
dead load deflection and diaphragm requirements),
local bottom flange buckling at the pier is unlikely in
the faulted state. The main reason for this is that the
negative moments generated in Strength I are greater
than those produced during Redundancy load combi-
nations in the faulted state. Interestingly, as shown in
Table 3.3, where there is a bottom flange thickness
transition, the ratios are more critical in the faulted
state than under Strength I in some cases. Based on



Figure 3.4 Fractured girder thinner section local bottom flange buckling at the section change in fractured span.
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these observations, guidance was developed regarding
where to locate flange thickness transitions and a cor-
responding recommended maximum demand/capacity
ratio under Strength I load combinations to prevent
this failure mode. Used together, these two criteria
ensure bottom flange buckling will not occur in the
faulted state.

3.2.3.1 Recommended Criteria to Prevent Flange
Buckling. According to a close study of Table 3.3,
there is really no need to check the sections between the
pier for a distance of 0.2L away from this pier, since all
of the demand/capacity ratios under Strength I are
generally higher than those produced in the faulted state
using the Redundancy load combinations. Thus, no
additional criteria appear needed in this region (see
column 4 through 7 of Table 3.3). However, to avoid
the high demand/capacity ratios in the faulted state at a
flange transition between 0.2L and 0.3L away from a
pier, (see column 4 through 7 of Table 3.3). For the
sections between 0.2L and 0.3L away from a pier, the
pre-fracture demand/capacity ratio should be less than
0.7 for the Strength I load combination. The sections
more than 0.3L away from a pier do not need to be
checked.

Additional FE analysis was to evaluate the criticality
of buckling in the negative moment region when a
fracture is assumed to occur within an interior span.
Due to the double cantilever behavior at an interior
span, the effects were found to be insignificant does not
need to be considered. In summary, it was observed
that fracture in an end or exterior span was more
critical than a fracture within an interior span.

3.2.4 Flexural Yielding in Positive Moment Region of
Flanges in Intact Girder

As expected, a significant amount of the load is
redistributed from the fractured girder to the intact
girder. In the fractured span, the flexural resistance of

the positive moment capacity of the intact girder should
be checked. The most critical location for this check
is at the maximum positive moment closest to the
assumed fracture.

When the intact girder substantially exceeds its
elastic moment capacity, the post-fracture moment
redistribution is difficult to estimate with simplified
methods. For example, a considerable amount of pla-
sticity in the positive moment region causes more
moment to be redistributed to the cross-sections close
to the pier. The overall method developed herein
ensures there will be little to no yielding in the positive
moment region of the intact girder.

A review of Table 3.4 reveals that when the pre-
fracture demand/capacity ratio in the exterior girder
under Strength I load combinations is less than 0.8, no
plasticity was observed in intact girder for post-fracture
behavior. It is therefore proposed to limit the pre-
fracture demand/capacity ratio less than or equal to 0.8
for both girders.

3.2.5 Web Shear Failure Close to Pier and Abutment in
Intact Girder

In the parametric studies, this failure mode was
only observed in simple span bridges and when loads in
excess of the Redundancy load combinations were
applied. This behavior is illustrated for informational
purposes as shown in Figure 3.5 which was developed
during a portion of the work in which simple span
bridges were evaluated. However, in continuous span
bridges that are within the span and stiffness criteria
outlined above, increases in web shear close to the
pier and at the abutment only in the intact girder
were generally found to be small. As expected, there
was no increase in shear observed in a fractured girder,
therefore it does not have to be studied in that location.
Only the fractured span needed to be evaluated. It
should be noted here that shear stresses on the web are
combined with direct shear and shear due to torque.
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TABLE 3.4
WisDOT bridges flexural moment in tension demand/capacity ratios

Bridge Units

Interior Girder Exterior Span Flexure in

Positive Moment Demand/Capacity

Ratios (Strength I)

Exterior Girder Exterior Span Flexure

in Positive Moment Demand/Capacity

Ratios (Strength I)

Interior Girder Exterior Span Flexure

in Positive Moment Demand/Capacity

Ratios After Fracture (Redundancy)

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

U1

U2

—

U3

U4

U5

U1

U2

—

—

U1

U2

—

—

U1

U3

U2

—

0.59

0.70

0.75

0.41

0.62

0.59

0.39

0.37

0.39

0.57

0.50

0.56

0.68

0.62

0.57

0.36

0.46

0.49

0.49

0.50

0.65

0.78

0.40

0.71

0.59

0.70

0.75

0.41

0.62

0.59

0.39

0.37

0.39

0.57

0.57

0.64

0.75

0.66

0.60

0.37

0.47

0.50

0.50

0.51

0.68

0.81

0.46

0.79

0.61

0.93

0.80

0.54

0.83

0.79

0.55

0.51

0.51

0.76

0.67

0.74

0.95

0.89

0.77

0.48

0.61

0.63

0.63

0.64

0.81

1.05

0.53

0.89

Figure 3.5 Web shear failure in a simple span bridge.
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TABLE 3.5
WisDOT web shear demand/capacity ratios

Bridge Units

Interior Girder Web Shear Demand/

Capacity Ratios (Strength I)

Interior Girder Exterior Span Flexure in Positive

Moment Demand/Capacity Ratios (Redundancy)

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

U1

U2

—

U3

U4

U5

U1

U2

—

—

U1

U2

—

—

U1

U3

U2

—

0.37

0.43

0.56

0.46

0.62

0.51

0.51

0.37

0.50

0.51

0.52

0.73

0.68

0.62

0.57

0.36

0.70

0.58

0.40

0.37

0.64

0.78

0.53

0.30

0.55

0.62

0.47

0.71

0.83

0.68

0.61

0.51

0.59

0.60

0.62

0.62

0.75

0.61

0.59

0.29

0.81

0.64

0.60

0.51

0.64

0.72

0.45

0.28
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According to Table 3.5, the post-fracture demand/
capacity ratio in the intact interior girder under the
Redundancy load combinations were never found to
be critical. Therefore, it is concluded that for bridges
meeting the criteria (geometry, stiffness, possessing
diaphragms) web shear buckling does not need be
checked under post-fracture behavior.

3.2.6 Excessive Deck Torsional Cracking

The parametric study revealed that some increases in
torsional moment in the deck were observed, in
particular close to the abutment and pier in the span
containing the fracture. In this report, the post-fracture
concrete deck torsional demand was compared to be
calculated deck torsional capacities (see Table 3.6). The
reinforcement details for the bridges included in the
study are also summarized in Table 3.6 as this affects
the torsional capacity of the deck. It is recognized that
the number and the spacing of the deck transverse
reinforcement may be different in other bridges.

According to Table 3.6, the torsional demand/
capacity ratio in deck under the Redundancy load
combinations were never found to be critical, in other
words, maximum demand was always lower that 52%

of the capacity. Therefore, it is concluded that for
bridges meeting the criteria (geometry, stiffness, posses-
sing diaphragms torsional cracking does not need be
checked under post-fracture behavior. The deck tor-
sional strength was calculated according to ACI 318-14

Section 22.7.6 Torsional Strength (ACI Committee 318,
2014).

3.2.7 Flexural and Shear Failures Checks for the Deck

In the parametric study by Korkmaz (2018), it was
shown that the intermediate diaphragms transferred the
majority of the shear and corresponding moment from
the fractured girder to the intact girder. This is due to
the fact the intermediate diaphragms possess signifi-
cantly greater stiffness as compared to the stiffness of
the concrete deck. To illustrate this, the stiffness of a
given diaphragm arrangement to an effective length of
the slab is made and summarized in Table 3.7. The
comparison assumes two or three intermediate dia-
phragms are present within a given exterior span. For
the two-diaphragm case, the effective concrete section is
assumed to be between the mid-span of the span and
the first intermediate diaphragm. (The stiffness of the
deck between the abutment and the first diaphragm is not
engaged since the relative deflections between girders is
very small in this region and in fact, zero at the
abutment.) When there were three intermediate dia-
phragms used for the comparison, the second dia-
phragm is assumed to be located at the center of the
span (as recommended herein). As expected, when the
fracture is located near midspan, the load is mostly
transferred by the second diaphragm to the intact
girder. However, for this comparison, the fracture was
also assumed to occur at various locations within the



TABLE 3.6
WisDOT deck torsional shear demand/capacity ratios and transverse reinforcement details

Bridge Units

Demand/Capacity

Ratios (Redundancy)

Transverse Reinforcement

Details (Two Layers)

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

U1

U2

—

U3

U4

U5

U1

U2

—

—

U1

U2

—

—

U1

U3

U2

—

0.40

0.52

0.16

0.47

0.46

0.36

0.29

0.31

0.32

0.22

0.40

0.39

0.17

0.32

0.43

0.25

0.33

0.53

No. 5 rebars with 6.5 in. spacing

No. 5 rebars with 6.5 in. spacing

No. 5 rebar with 7 in. spacing

No. 6 rebar with 7 in. spacing

No. 6 rebar with 7 in. spacing

No. 6 rebar with 7 in. spacing

No. 5 rebar with 6.5 in. spacing

No. 5 rebar with 6.5 in. spacing

No. 6 rebar with 7 in. spacing

No. 5 rebar with 6 in. spacing

No. 6 rebars with 7 in. spacing

No. 6 rebars with 7 in. spacing

No. 6 rebar with 7 in. spacing

No. 5 rebar with 7 in. spacing

No. 6 rebar with 7 in. spacing

No. 6 rebar with 7 in. spacing

No. 5 rebar with 7 in. spacing

No. 6 rebar with 7 in. spacing
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span to identify other critical locations. It was found
that for the case when three-diaphragms are used, the
next critical location is when the fracture is located
between the first and second diaphragms. Since the
fracture is between diaphragms, the effective deck
length (that could participate in load transfer) is half
of the distance between the first and second diaphragm.
Basically, half the distance between diaphragms.

For all comparisons, a design concrete deck strength
of 4 ksi was used as specified for all WisDOT bridges.
The elastic modulus ratio between the concrete and
steel is about 8. The transverse span of the deck and
the diaphragms is nearly equal and set at the spacing
between the girders and therefore can be factored out
of the calculations. As is well known, the uncracked
stiffness of concrete is much higher than the cracked
stiffness. The non-cracked section was used. This was
done to demonstrate that even under the best circum-
stances, i.e., with uncracked concrete, the deck only
provides a fraction of the stiffness of the diaphragms.

The results of the comparisons are summarized in
Table 3.7. For example, when the number of the
diaphragms are equal to three, the deck stiffness is
consistently less than 7% of the diaphragm stiffness and
in most cases, less than 5%. For case when two-
diaphragms are used, the stiffness ratios are always less
than 10% except B40-834 in which the deck is about
19% as stiff as the diaphragm. This is because the first
diaphragm was located within the first 25% of the span
length. (As noted above, the recommendations developed
herein state that if the first diaphragm needs to be placed
at a location less than 0.3L, three intermediate
diaphragms need to be used.) Additional analyses were
performed and it was found that if three intermediate
diaphragms have been used, the ratio would have been
equal to 9%. It is also worth noting that as shown in

Table 3.2, the diaphragm flange (which was 16 inches
wide) was narrower than minimum exterior span top

flange (18 inches wide), which is less than would be

recommended herein. If 18 inches was used, the ratio

for three intermediate diaphragms would be 7%. If two

diaphragms were located at 0.3L and 0.7L, with 18 inch

flanges, the ratio would be 9%.

In summary, the diaphragm location and minimum
stiffness values recommended herein always ensure that

the diaphragm is the main path to transfer the load

from the fractured girder to the intact girder and

eliminates the need to check flexural and shear failures

of the deck as well as shear stud pull-out.

3.2.8 Items That Do Not Require Specific Checks

While there are a few items that need be checked to
ensure acceptable behavior in the faulted state, there are
also a number of items that do not need to be checked
when the other recommended criteria or checks are
satisfied. As discussed, the full-depth intermediate dia-
phragms used by WisDOT and pre-fracture dead-load
deflection limitations have been found to ensure the
following:

N Failure due to overload at a bearing does not occur:

As shown in Table 3.8, with the exception of a less

than 10% overload for B05-660, there were no cases

where bearings were loaded in excess of the design

limit. This level of overload in this one bridge was

deemed acceptable. It is noted that this would not

be the case if this bridge met the recommendations

proposed herein.

N Significant horizontal displacements of girders at bear-

ings does not occur: A shown in Table 3.9, the horizontal

displacements are bearings were found to be within

acceptable limits. It is noted that the 6.1-inch movement
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TABLE 3.8
WisDOT support bearing demand/strength

Bridge Units Pier Bearing Strength (kips)

Worst-Case Bearing Demands in

Faulted State (kips)

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

U1

U2

—

U3

U4

U5

U1

U2

—

—

U1

U2

—

—

U1

U3

U2

—

4480

2450

3360

3360

2940

2940

3360

4480

1960

1960

2975

2975

3150

1592

2975

2975

2975

2520

1276

1693

1410

1710

1693

1633

1615

1666

932

725

1693

1526

913

597

1570

1690

1187

1649

TABLE 3.9
WisDOT maximum horizontal support displacement

Bridge Units Span Length (ft.)

Pre-Fracture Dead Load

Displacement

Post-Fracture Horizontal Support

Displacement (in.)

B05-658 U1 170 L/630 3.45

U2 199 L/415 5.41

B05-661 — 187 L/375 5.01

B05-678 U3 180 L/545 4.58

U4 176 L/610 4.03

U5 151 L/2160 1.53

B05-679 U1 170 L/850 3.85

U2 181 L/670 4.29

B40-776 — 105 L/365 1.70

B40-783 — 119 L/410 2.39

B40-786 U1 160 L/570 3.47

U2 146 L/770 2.18

B40-834 — 117 L/350 1.81

B40-837 — 100 L/1250 0.48

B40-854 U1 136 L/850 2.05

U3 157 L/750 1.85

B40-856 U2 160 L/550 3.37

B40-868 — 150 L/210 4.61
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at B05-660 was at a pier and hence, could not ‘‘fall off’’
the bearing. According to AASHTO Guide Specifications
(AASHTO, 2018), the change in the maximum vertical
deflections of the superstructure should not exceed L/50.
The deflection change is defined as a displacement
difference between before fracture and after fracture
cases, but only under Redundancy II factored dead
loads. As a load factor of 1.05 is applied, the limit is
taken as L/50. As shown in Table 3.10, the maximum
deflection change (L/240 for B40-868) is much lower than
specified limit. As shown, the vertical displacements were

never found to be critical and not need to be consider in
this simplified redundancy check for the twin-tub girder
bridges meeting the limitations described in Chapter 3.

N Failure of lateral braces either does not occur or is not
significant: While the specific details are not reported
herein, the results of the FEA confirmed there were either
no or insignificant failure of secondary cross bracing
within the tub girders.

N As stated above, other checks related to excessive deck
cracking and shear stud pull-out also need not be
checked.



TABLE 3.10
WisDOT maximum vertical displacement under unfactored dead load in fractured exterior span

Bridge Units Span Length (L) (ft.)

Pre-Fracture Dead Load

Displacements

Post-Fracture Max.

Vertical Displacement

(in.) Vertical Displacements

B05-658

B05-661

B05-678

B05-679

B40-776

B40-783

B40-786

B40-834

B40-837

B40-854

B40-856

B40-868

U1

U2

—

U3

U4

U5

U1

U2

—

—

U1

U2

—

—

U1

U3

U2

—

170

199

187

180

176

151

170

181

105

119

160

146

117

100

136

157

160

150

L/630

L/415

L/375

L/545

L/610

L/2160

L/850

L/670

L/365

L/410

L/570

L/770

L/350

L/1250

L/850

L/750

L/550

L/210

3.25

4.14

3.30

4.18

3.22

1.51

2.54

3.23

1.50

1.54

2.79

1.94

2.20

0.51

1.08

1.20

2.47

7.50

L/628

L/577

L/680

L/517

L/656

L/1200

L/803

L/672

L/840

L/927

L/688

L/903

L/638

L/2353

L/1511

L/1570

L/777

L/240
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4. CONCLUSION

Today (2019), all twin-tub girder bridges are auto-
matically classified as having FCMs; hence, twin-tub

girder bridges are subjected to very expensive hands-on

field inspection every two years. On the other hand,

Purdue University researchers showed in the recent

projects (Connor et al., 2018; Connor & Korkmaz,

2016; Korkmaz et al., 2018) that some twin-tub-girder

bridges were able to be classified as redundant struc-

tures, since they possess significant reserve capacity even

when one girder is completely severed. These studies

were reviewed by Wisconsin DOT and the FHWA.

These bridges are no longer classified as having FCMs,

but rather has been classified as having SRMs.

This report explained the simplified guideline and
design checks to ensure new designed twin-tub girder

bridges will meet the requirements of AASHTO Guide

Specifications (AASHTO, 2018) without the need for

full non-linear FEA. The simple guidance in this pro-

ject is believed to be sufficient to classify continuous

composite twin-tub girder bridges which have similar

features with WisDOT bridges described as having

SRMs.

The methodology requires that future twin-tub girder
bridges need to have intermediate diaphragms to be
redundant. The full-depth intermediate diaphragms
used by WisDOT also appear to reduce the likelihood
of shear stud failures, bottom flange buckling at/close
to support, deck and parapet crushing, deck reinforce-
ment yielding, lateral brace failing, and torsional
buckling in the intact girders. These diaphragms were
shown to be very effective in transferring load in the
faulted condition and significantly contributed to the
excellent system performance of the bridges in the

Wisconsin inventory. Although some of the WisDOT
bridges exhibited minor plasticity in the flanges of the
intermediate diaphragms and a few shear stud failures,
the level of plasticity is localized and number of failed
studs is not significant. Properly designed and detailed
studs have also been shown to be critical in the post-
fracture performance of twin-tub girder bridges.
Although the diaphragm typically used by WisDOT
generally prevent issues with shear stud concrete break-
out, specific guidance on how to best detail and layout
shears studs were studied and explained in the report.
In addition, the locations of bottom flange section
changes in a span and thickness changes are limited
to avoid this failure in any location of the span. The
unfaulted positive moment demand/capacity ratio was
determined for the Strength I load combination in
order to not have any bottom flange buckling, deck and
parapet crushing or reinforcement yielding in post-
fracture condition.

The proposed ballot ready specification language
provided in Appendix A presents a method on how
twin-tub girder bridges can be easily and reliably
designed as redundant structures. With the attached
Appendix A. Proposed Specifications and Appendix B.
Design Example, an engineer can simply design a new
twin-tub girder bridge as redundant structure without
the need for advanced non-linear FEA. If the bridge
does not meet the criteria defined above, the user
should follow The AASHTO Guide Specifications for
Analysis and Identification of Fracture Critical Mem-
bers and System Redundant Members, 1st Edition
(AASHTO, 2018). The overall behavior may be similar
for I-girder bridges. In the future projects, the similar
methodology can be developed for I-girder bridges
which have fracture critical members.
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APPENDIX A. PROPOSED SPECIFICATIONS FOR DESIGNING SRMS IN 

COMPOSITE CONTINUOUS TWIN-TUB GIRDER BRIDGES  

Foreword  

LRFD Bridge Design Specifications (BDS) (AASHTO, 2020) defines “Fracture Critical 

Members” (FCMs) as that the fracture of any of the FCMs is assumed to result in complete 

catastrophic failure or significant loss of serviceability. The decision to define members as FCMs 

has often been made without considering actual system redundancy or performance of the 

structure. According to the concepts associated with the term “Fracture Critical,” all two-girder 

bridges (including twin-tub-girder bridges) are classified as having FCMs due to their perceived 

lack of load path redundancy; hence, every two years twin-tub girder bridges undergo very 

expensive hands-on field inspections.  

Prior to the development of the specifications contained herein, no such simple guidance currently 

exists to design continuous twin-tub girder bridges as having SRMs. However, recent works 

performed by Purdue University researchers including Ramp TH over Interstate 43/894 in 

Milwaukee (Connor & Korkmaz, 2016) and Analytical Evaluation of the Post-fracture System 

Performance of Typical Steel Twin-Tub Girder Bridges in the State of Wisconsin Phase I 

(Korkmaz et al., 2018) showed that twin-tub girder bridges often possess significant reserve 

capacity even when one girder is completely severed. The bridges analyzed in these references 

were evaluated using the system analysis procedures defined in the AASHTO Guide Specifications 

for Analysis and Identification of Fracture Critical Members and System Redundant Members 

(AASHTO, 2018), and full 3D non-linear dynamic finite element analysis (FEA) was required to 

complete the evaluations The twin-tub girder bridges which have multiple full-depth and full-

width intermediate diaphragms, certain geometric details, and continuous spans classified as 

having SRMs. 

This simplified guidance was developed to ensure newly designed twin-tub girder bridges will 

meet all the requirements defined in this AASHTO Guide Specifications without performing in-

depth FEA. How to design and detail such bridges in order to meet the criteria and satisfy minimum 

strength and serviceability performance requirements and the geometric limitations and 

configurations to which the proposed criteria apply were explained. With this guidance, it becomes 
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possible to design future twin-tub girders can be automatically classified as having SRMs without 

the necessity of explicitly modeling fracture in a FEA. 

The commentary directs attention to other documents that provide suggestions for carrying out the 

requirements and the intent of this guidance. the commentary is not intended to provide every 

detail as to the development of this guidance, nor is it intended to provide a detailed summary of 

the studies and research data reviewed in formulating the provisions of this guidance. The reader 

is encouraged to review the final report for A Simplified Approach to Design Composite 

Continuous Twin-tub Girder Bridges as Redundant Structures, which include more complete 

details and background related to the development of these guidance. 
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Definitions  

Component (of a primary 
member) 

= A portion of a (primary) member with a specific design 
function; for example, the flange of a girder, the web of a 
girder, a plate in an axial member. 

Fracture Critical 
Member 

(FCM)  

= A steel primary member or portion thereof subject to tension 
whose failure would probably cause a portion of or the entire 
bridge to collapse. 

Member Failure (Failed 
Member)  

= Inability of a particular cross-section of a FCM to carry any 
load. In these provisions, this state is introduced via element 
deletion or material softening. This results in the faulted state. 

Faulted State = State of the bridge with an assumed failed FCM, as opposed to 
the unfaulted state. 

Redundancy = Ability of a structure to provide an alternate 
mechanism after the failure of a primary member. 

resistance 

System Redundant 
Member (SRM)  

= A steel primary member or portion thereof subject to tension 
for which the redundancy is not known by engineering 
judgment, but which is demonstrated to have redundancy 
through a refined analysis. SRMs must be designated on the 
contract documents to be fabricated according to Clause 12 of 
the AASHTO/AWS D1.5M/D1.5 Bridge Welding Code 
(AASHTO/AWS, 2015). A SRM need not be subject to the 
inspection protocols for a FCM as described in 23 CFR 
650.305 (Regulatory Information, 2009).  
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Notation  

𝑫𝑭 = Pre-fracture dead load displacement (feet) of the fractured span. 

𝑳 = Each span length (feet). 

𝑳𝑭 = Span length of fractured span (feet). 
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6.6.3 Special Provisions for Twin-tub Girder 
Bridges 

1.0−General
 The provisions contained in these articles shall be used 

when it is desired to design continuous twin-tub girder 
bridges as having System Redundant Members (SRMs). 
These provisions are not applicable to single span 
bridges. 

SUGGESTED NEW ARTICLE WHERE THESE 
PROVISIONS WOULD BE INCORPORATED 
INTO THE AASHTO LRFD BDS. 

C1.0 
The provisions described herein are applicable to newly 
designed but yet to be constructed continuous twin-tub 
girder bridges.  

These provisions are primarily based on the work 
reported in A Simplified Approach to Design Composite 
Continuous Twin-tub Girder Bridges as Redundant 
Structures. Newly designed twin-tub girder bridges that 
satisfy these provisions will meet all the requirements 
defined in the AASHTO Guide Specifications for Analysis 
and Identification of Fracture Critical Members and 
System Redundant Members (AASHTO Guide, 2018) 
without performing in-depth FEA. Members satisfying 
these provisions may also be classified as System 
Redundant Members (SRMs) and need not be subject to 
the inspection protocols for FCMs as described in 23 CFR 
650.305 (Regulatory Information, 2009).

 Traditional simple elastic structural analysis models 
and hand calculations are sufficient to fulfil all the steps 
defined. 

The damage scenario that was considered included 
complete full-depth fracture (including the top flanges) of 
one of the tub girders. The load model used were based 
on the Redundancy I and Redundancy II load 
combinations defined in the AASHTO Guide (2018). 

1.1−Approach 
The following steps shall be followed in the assessment 

of the redundancy using these provisions: 

 Perform the Screening according to the provisions 
specified in Article 2. 

 If the bridge satisfies Article 2, the design shall be 
evaluated further as specified in Articles 3. 

C1.1 
The Engineer may choose to follow the provisions 

described in Article 2 and Article 3 in a different order 
than that shown in Figure A.1. However, the process 
shown in Figure A.1 is usually the most efficient. 

A-5



 

 

   Figure A.1 Flowchart describing all guideline steps. 
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2.0−Screening 

Prior to analyzing a structure according to the 
provisions specified in Article 3, the requirements of 
Article 2.1 shall be satisfied. 

C2.0 

The rationale for the screening process specified in this 
article is to ensure that this guidance is not applied to 
bridges for which either the system or a particular 
member assumed to remain intact may demonstrate 
unacceptable performance or reliability. For example, 
when satisfied, excessive shear stud pull-out failures 
would not be expected to occur in the faulted state under 
the Redundancy load combinations.  

The user must recognize that while a structure may not 
comply with the simple screening and evaluation 
provisions herein, this does not necessarily mean it would 
not meet the AASHTO Guide (2018) since they were 
developed to be reasonably conservative and very simple 
to apply. In such cases, 3-D detailed FEA may show that 
the structure has sufficient reserve strength can be 
demonstrated to satisfy the requirements of the AASHTO 
Guide (2018). For such cases, it is recommended to 
follow the approach defined in the AASHTO Guide 
(2018) and NCHRP Report 883 (Connor et al., 2018). 

2.1−Screening Criteria 
The provisions shall be satisfied in order to use the 

provisions contained herein. 

2.1.1 There shall be a minimum of two or more 
continuous spans. 

2.1.2 Composite section with shear stud details as 
defined in Article 3.2. 

2.1.3 Maximum out-to-out deck width ≤ 50 feet; 
2.1.4 The maximum number of design lanes shall 

be limited to three. 
2.1.5 Maximum center-to-center girder spacing ≤ 

25 feet. 
2.1.6 60 inches ≤ web depth ≤ 90 inches. 
2.1.7 70 feet ≤ interior span length ≤ 250 feet. 
2.1.8 100 feet ≤ exterior span length ≤ 200 feet 
2.1.9 The ratio of the unfractured adjacent span 

length to the fractured span length with in 
0.6 and 1.7. 

2.1.10 The ratio of the radius of curvature to the 
longest span length no less than 1.85. 

2.1.11 Skew angle no more than 10 degree 
2.1.12 Maximum dead load displacement at both 

interior and exterior spans (LF/DF) over 
corresponding span length less than 300. 

Where: 
Lf is the span length of fractured span (ft) 
Df is the pre-fracture dead load displacement (ft) 

of the fractured span 

C2.1 
Geometric limitations were developed to ensure that 

post-fracture behavior is predicted accurately and to 
ensure there are no unexpected failure modes. These 
limitations are based on the wide range of types and 
geometry of bridges analyzed in the study of Analytical 
Evaluation of the Post-fracture System Performance of 
Typical Steel Twin-tub Girder Bridges in the State of 
Wisconsin Phase I (Korkmaz et al., 2018). The results of 
that and other research were used to develop the 
simplified methodology summarized in A Simplified 
Approach to Design Composite Continuous Twin-tub 
Girder Bridges as Redundant Structures. The 
requirements were developed to be (1) easy to use and (2) 
ensure behavior that satisfies the Guide Specifications 
(AASHTO, 2018) in the faulted without the need for 
detailed nonlinear FEA. 

The criteria in Articles 2.1.1 through 2.1.12 were 
developed based on the parameters studied during the 
development of these criteria. 

The ratio of the length of the span that is assumed to 
have fractured to the pre-fracture dead load displacement 
of that span has been found to be a strong predictor in 
estimating the post-fracture behavior. In effect, it is an 
indicator of the overall flexibility of the structure in the 
faulted state. If the displacement is high compared to span 
length, it is likely the bridge will undergo moderate to 
significant inelastic behavior in the faulted state. In other 
words, if this ratio is lower than the specified limit, these 
provisions may not be able to accurately estimate the 
behavior because of the occurrence of significant local 
plasticity in some cases. It should be noted here, positive 

A-7



    
     

         
      

      
      

 

  

displacements are in the downward direction, whereas 
negative displacements show upward deflections. If the 
span length where the fracture is assumed to occur over 
the maximum dead load displacement at mid-span 
(LF/DF) is less than 300, this methodology cannot be 
applied as the overall structure is too flexible and 
excessive inelastic behavior may occur. 
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3.0−Design Methodology 
3.1−General

 The requirements specified herein shall be considered 
applicable to steel bridges that satisfy Article 2.1.

 The following twin-tub girder members and/or 
components shall be designed as a minimum to satisfy: 

1. the shear stud provisions specified in article 3.2; 
2. the provisions for intermediate diaphragms 

specified in article 3.3; 
3. the bottom flange buckling resistance provisions 

specified in Article 3.3; 
4. the maximum positive moment flexural 

resistance specified in Article 3.4. 

C3.1 
 The requirements of Article 3 were developed 

according to detailed FE analysis results, section details, 
and demand/capacity ratios of 18 multi-span twin-tub 
girder bridge units (in total 2.4 miles and 70 spans) that 
were studied in detail using the procedures outlined in the 
AASHTO Guide (2018) as performed by (Korkmaz et al., 
2018). The FE analysis results were used to obtain post-
fracture demand/capacity ratios under the Redundancy 
load combinations and compared to the demand/capacity 
ratios under the familiar Strength I load combination. 
Many ratios using the Redundancy load factors were 
equal to, insignificantly higher, or in most cases less than 
ratios for the Strength I limit state in the unfaulted state. 
The study revealed that when the requirements of Article 
3 are satisfied, the following failure modes need not be 
considered under the Redundancy load factors in the 
faulted state: 

 web shear buckling; 
 deck related failure modes due to flexure, shear 

and torsion; 
 support bearing failure due to excessive 

reactions and excessive horizontal 
displacements; 

 excessive vertical displacement in the faulted 
state; 

 brace failures. 
However, some of the failure modes that were evaluated 
at times were shown to have higher demand/capacity 
ratios using the Redundancy load factors in the faulted 
states as compared to the Strength I in the unfaulted state. 
To ensure these failure modes never exist in post-fracture 
behavior, the requirements of Article 3 were developed. 

3.2−Shear Stud Design Details
 Basic Geometric Requirements  

1. Shear stud diameter shall be a minimum of 7/8 
inches. 

2. Minimum edge distance between the outermost 
stud and edge of haunch shall be a minimum 1.5 
inches. 

3. Shear studs shall extend a minimum of 2 inches 
above the bottom layer of reinforcement.

 Spacing Details 
 Shear studs shall be used through the entire girder.

 When two shear studs are placed transversely. 
1. The maximum longitudinal spacing between 

studs shall not exceed three times the effective 
stud height. 

2. The maximum longitudinal spacing between 
studs shall not exceed 14 inches. 

C3.2 
The tensile and shear behavior of shear studs is critical 

in the load transfer between the steel members and the 
concrete slab in composite steel bridges as they help 
provide additional load paths after the failure of a primary 
steel member. The superior ability of composite steel 
bridges to transfer load was shown by Barnard et al. 
(2010), who performed full-scale experiments in a simple 
span UT twin-tub girder bridge that underwent failure of 
the bottom flange and web of one of the tub girders. 
Therefore, given their essential role in composite action, 
shear studs need to be designed properly to make to the 
bridge stay in composite behavior in the post-fracture 
performance of twin-tub girder bridges. 
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 When three shear studs are placed transversely. 
1. The maximum longitudinal spacing between 

studs shall not be more than three times the 
effective stud height. 

2. The maximum longitudinal spacing between 
studs shall not be more 22 inches. 

3.3−Intermediate Diaphragm Design Details 
Diaphragms shall be placed within every span and be 

full-depth and full-width (i.e., both internal and external 
sections shall be used between the girders).

 The intermediate diaphragms of interior spans shall 
possess the same cross-section as used in the exterior 
span diaphragms. 

C3.3 

3.3.1 Diaphragm Plate Size Requirements 
1. The top and bottom flange of all the diaphragms 

shall be equal to the smallest top flange used in 
the longer exterior span outside girder. 

2. Web sections of the diaphragms shall be as close 
as practical to the minimum web section utilized 
in the longer exterior span outside girder. 

3. The connections shall be designed using normal 
AASHTO procedures. 

C3.3.1 
The required size, location and number of the 

intermediate diaphragms is also based on the details 
observed in this study. Obviously, intermediate 
diaphragms are required to be designed to guarantee 
adequate load distribution between girders in the faulted 
state. The diaphragms between the girders only need to 
have top flanges whereas external diaphragm requires to 
include both bottom and top flanges. It is recommended 
to provide shear studs on the top flanges of the 
diaphragms to increase stiffness. 

3.3.2 Number and Location of the Diaphragms 
The number and location of diaphragms differs based on 

whether an exterior span or interior span is being 
considered. 

Exterior Spans
 When the unfactored dead load deflection is less than 

or equal to L/500 at 30% of the span length (0.3L) from 
the abutment. 

1. Two intermediate diaphragms shall be used. 
2. The first diaphragm shall be placed between 

0.3L and 0.4L and shall not be placed beyond 
the location where the displacement is 
equivalent to L/500. 

3. The second diaphragm shall be placed 
symmetrically within the same span.

 When the unfactored dead load deflection is greater 
than L/500 at 30% of the span length (0.3L) from the 
abutment. 

1. Three intermediate diaphragms shall be used. 
2. The first diaphragm shall be placed as close as 

practical to the location where the deflection is 
L/500. 

3. The second diaphragm shall be placed as close 
as practical to mid-span. 

C3.3.2 
In this study, it was found that the placement and 

quantity of the intermediate diaphragms can be easily 
determined in relation to the pre-fracture dead load 
deflection. 

The optimal number and location of the diaphragms in a 
span were developed to (1) best distribute the loads 
between the intact and fractured spans; (2) reduce the 
post-fracture moment at the pier; and (3) avoid significant 
damage to the deck, including stud pull-out. The best 
responses were observed when the first diaphragm is 
located at about 30% of the span length and the second 
diaphragm is placed symmetrically within the span. 
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4. The third diaphragm shall be placed as close as 
practical to be symmetrical with the first 
diaphragm within the span. 

Interior Spans 
1. Two intermediate diaphragms shall be used in 

all cases. 
2. The diaphragms shall be placed as close as is 

practical to the third points of the span. 

3.4−Local Bottom Flange Buckling in the 
Negative Moment Regions  

The maximum demand/capacity ratio in the negative 
moment region shall not be greater than 0.7 under the 
Strength I load combination in the region between 0.2L 
and 0.3L away from a pier in the unfaulted state. 

C3.4 
This study explains that there is no need to check 

negative moment buckling in the faulted state in the 
region between the pier and for a distance of up to 0.2L 
away from the pier as it was found all of the 
demand/capacity ratios for the Strength I load 
combination are generally higher than those produced in 
the faulted state using the Redundancy load 
combinations. The only area of concern was in the region 
between 0.2L and 0.3L for a few bridges when flange 
transitions were introduced within this region. This 
criterion is intended to prevent the possibility of buckling 
in this region due to the placement of flange transitions. 
No added checks were found to be needed at distances 
greater than 0.3L away from a pier as the typical sections 
utilized to satisfy the Strength I requirements were 
sufficient in the faulted state. 

3.5−Flexural Yielding in Positives Moment 
Region of Flanges in Intact Girder Design 
Details 

The maximum demand/capacity ratio in the composite 
positive moment region of each span shall not be greater 
than 0.8 under the Strength I load combination in the 
unfaulted state. 

C3.5 
 It has been found that the when demand/capacity ratio 

in the exterior girder under the Strength I load 
combination in the unfaulted state is greater than 0.8, the 
intact girder may exceed the elastic moment capacity at 
mid-span in the faulted state. A considerable amount of 
plasticity in the positive moment region will result in 
significantly more moment being redistributed to the 
girders in the negative moment region close to the pier. 
To ensure unacceptably high levels of inelastic behavior 
in the positive moment regions does not occur, this limit 
was introduced. 
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APPENDIX B. DESIGN EXAMPLE  

A continuous three span twin-tub girder bridge will be evaluated and modified as needed using the 

methodology described in the proposed guide specification in Appendix A. In this example, the 

“baseline” bridge has been designed to satisfy the AASHTO LRFD Bridge Design Specifications. 

All required strength and service criteria in the AASHTO LRFD Bridge Design Specifications were 

satisfied in the initial design. First, attributes described in the screening criteria will be evaluated. 

Second, the proposed design methodology will be applied to ensure the primary girders may be 

classified as SRMs instead of FCMs.  

The structure has three spans measuring 111-111-119 feet long, and it is uniformly curved with a 

radius of 220.5 feet (measured from bridge centerline). The two trapezoidal box girders have 

bottom flanges that are 7.5-feet wide, 60-inch high webs and 18-inch wide top flanges throughout 

all spans; with variable plate thicknesses. The reinforced concrete slab is approximately 32 feet 

wide between outer exterior edges of the concrete barriers and is fully composite with the girders. 

The end supports are multi-rotational unidirectional bearings, and the supports over the pier are 

multi-rotational fixed bearings.  

Table B.1 provides details related to the geometry and material properties associated with the 

structure. 
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Table B.1 The bridge geometry and material properties 

Bridge Details 
Bridge Name Example Bridge 
Radius of Curvature 220.5 ft. (measured from bridge centerline) 
Span Lengths 111.0 – 111.0 – 119.0 ft. 

Girder Details 
Girder Steel ASTM A709 HPS 50WF 
Box Girder Width (from the centers of 
interior top-flange to the center of 7.5 ft. 
exterior top-flange) 
Girders Spacing (from the centers of the 

16.0 ft
girders’ bottom flanges) 

18.0-in. wide 
Top Flange 

Varies, 0.75-in. to 1.125-in. thick 
60-in. high 

Web 
0.625-in. thick 
63-in. wide 

Bottom Flange 
Varies, 0.75-in. to 1.25-in. thick 

Internal Cross Frames 2L6×4×1/2 (Top), 2L6×3-1/2×3/8 (Inclined) 
Strut Braces 2L6×4×1/2 
Lateral Braces WT7×30.5, WT8×33.5, WT8×38.5 
Longitudinal Stiffeners on Bottom 

— 
Flanges 

Deck Details 
Concrete Material Strength 4 ksi (HPC) 

31.896-ft. wide, 8.5-in. thick 
Composite Deck  

3-in. haunch thick 

Transverse Reinforcement No. 5 rebar with 6-in. spacing 
Longitudinal Reinforcement No. 4 & No. 6 rebar with 7-in. spacing 
Overhang Reinforcement No. 5 rebar with 6-in. spacing 

7-in. height. Longitudinal spacing is 12 in. 
Shear Studs Three shear studs spaced equally in the 

transverse direction 
Parapet Type 32SS (Interior)–42SS (Exterior) 

Load Details 
Maximum Number of Design Lane Two lanes of HL-93 traffic 
Future Wearing Surface 20 lb/ft2 

Maximum Dead Load Displacement 
(before fracture) 

L/485 (Span 1) Span 2 deflected upward, 
L/410 (Span 3) 
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B.1 Screening Criteria (Article 2)  

A review of Table B.1 indicates this bridge satisfies all the screening criteria specified in Article 

2.1. Specifically: 

1. The bridge has three continuous spans thereby satisfying the criterion defined in Article 

2.1.1 “there shall be a minimum of two or more continuous spans.” 

2. The reinforced concrete slab is fully composite with the girders through the use of shear 

studs. This satisfies the criterion defined in Article 2.1.2 “composite section with shear 

studs.” 

3. The reinforced concrete slab is approximately 32 feet wide between outer exterior edges of 

concrete barriers that satisfies the criterion defined in Article 2.1.3 that “maximum out-to-

out deck width ≤ 50 feet.”  

4. The maximum number of design lanes is two thereby satisfying the criterion defined in 

Article 2.1.4 “the maximum number of design lanes no more than three.” 

5. The girder spacing (measured as the center to center distance between bottom flanges) is 16 

feet wide. This satisfies the criterion defined in Article 2.1.5 “maximum center-to-center 

girder spacing ≤ 25 feet.” 

6. Each of the trapezoidal box girders have 60 inch deep webs thereby that satisfying the 

criterion defined in Article 2.1.6 “60 inches ≤ web depth ≤ 90 inches.” 

7. The interior span is 111 feet length and hence satisfies the criterion defined in Article 2.1.7 

“70 feet ≤ interior span length ≤ 250 feet.” 

8. The exterior or exterior spans are 111 and 119 feet length thereby satisfying the criterion 

defined in Article 2.1.8 “100 feet ≤ exterior span length ≤ 200 feet.” 

9. The ratio of the unfractured adjacent span length to the fractured span lengths are between 

0.93 and 1.07. This satisfies the criterion defined in Article 2.1.9 “the ratio of the 

unfractured adjacent span length to the fractured span length with in 0.6 and 1.7.″ In this 

three span bridge this is 111 feet / 119 feet to 119 feet / 111 feet. 

10. The ratio of the radius of curvature to the longest span length is 1.85 that satisfies the 

criterion defined in Article 2.1.10 “the ratio of the radius of curvature to the longest span 

length no less than 1.85″. This is calculated as 220.5 feet / 119 feet = 1.85. 

11. The bridge skew angle is 0 degrees and satisfies the criteria defined in Article 2.1.11 “skew 

angle no more than 10 degrees.” 

B-3



         

   

     

 

 

           

         

 

 

 

 

 

 

 

 

12. The maximum dead load displacement at both interior and exterior spans (LF/DF) dived by 

the corresponding span length are LF/485 (1st span) and LF/410 (3rd span) which satisfies 

the criterion defined in Article 2.1.12 which states “the maximum dead load displacement 

at both interior and exterior spans (LF/DF) over corresponding span length less than 300.″ 

Since this bridge satisfies all the screening criteria specified in Article 2.1 it is a candidate for using 

the simplified approach to determine if the girders can be classified as SRMs. The screening 

assessment is also shown graphically in Figure B.1. 

Figure B.1 Screening criteria flowchart. 

B-4



        

        

  

  

 

  

 

      

  

  

 

          

 

   
    

         
  

          

   
         

  
  

 

   

       

 

B.3 Design Methodology (Article  3)  

B.3.1 Shear  Stud Design Details (Article 3.2) 

Basic Geometric Requirements:  

During the original design, it was determined that three 7/8 inch diameter shear studs spaced 

transversely were needed in order to meet the strength and service limit states required by the 

AASHTO LRFD Bridge Design Specification. These shear studs were detailed by the designer as 

follows: 

(1) 7/8-inch diameter shear studs were used. 

a. This satisfies the minimum specified limit of 7/8 inch.  

(2) The distance between outermost stud and edge of the haunch was set at 2 inches. 

a. This satisfies the minimum specified limit of 1.5 inch. 

(3) The shear studs were detailed to extend 2.25 inches above the bottom layer of 

reinforcement. 

a. This satisfies the minimum specified limit of 2.0 inches. 

The distance that the shear studs extend above the bottom layer of reinforcement calculated 

as follows: 

Shear stud effective height +  minimum top flange thickness – (clearance distance 
+  rebar diameter +  haunch thickness) =  2.25 inches 

 The required shear stud effective height was found to be 6.625 inches based on the 
geometry of the deck and haunch. 

 The clear distance between bottom reinforcement to the bottom surface of the deck is 
1.5 inch. 

 All reinforcement in the lower matt were #5 bars (diameter is 0.625 inch). 
 The maximum haunch thickness (distance between bottom of top flange to underside 

of slab) is conservatively set at 3 inches. 
 Minimum top flange thickness is 0.75 inch. 

Spacing Details of Shear Studs: 

Based on the original design the longitudinal spacing between studs was to 12 inches. This is less 

than the maximum permitted spacing of three times the smaller of effective stud height (3 × 6.625 

= 19.875 or 22 inches. Hence, the longitudinal spacing is also acceptable. 
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B.3.2 Intermediate  Diaphragm Design Details (Article 3.3) 

The proposed specifications require that diaphragms be placed within every span and be full-depth 

and full-width (i.e., both internal and external sections shall be used between the girders). The 

requirements also stipulate that the intermediate diaphragms of interior spans possess the same 

cross-section as used in the exterior span diaphragms. The specific provisions are included in 

Article 3.3. 

Required Diaphragm Plate Sizes: 

1. A review of the original design plans indicates that smallest top flange used in the longer 

exterior span of the outside girder is 18 inches wide and 0.75 inches thick. In the original 

design, the flanges of the diaphragms were 16 inches wide and 0.75 inches thick. The 

diaphragms were located at the 1/3 points of the span. However, per Article 3.3.1(1), the 

top and bottom flange of all the diaphragms shall be set equal to the smallest top flange 

used in the longer exterior span outside girder. Hence, the flanges of all diaphragms will 

be set at 18 inches × 0.75 inches. 

2. A review of the original design plans indicates the minimum web section used in the 

longest outside girder in an exterior span is 60 inch high and 0.625 inch thick. In the 

original design, the flanges of the webs of the diaphragms were 60 inches high and 0.5 

inches thick. However, per Article 3.3.1(2), the diaphragm webs shall be equal to minimum 

web section utilized in the longer exterior span outside girder. Hence, the web depth will 

be set at 60 inches and the thickness will be set at 0.625 inches. 

3. The connections were designed using normal AASHTO procedures. 

Number and Location of the  Diaphragms of Exterior Spans: 

The design calculations were reviewed to obtain the needed deflection data. It was found that the 

unfactored dead load deflection within an exterior span located at 33% of the span length (0.33L) 

from the abutment is L/650. Per Article 3.3.2, when the unfactored dead load deflection is less 

than L/500 at 30% of the span length (0.3L) from the abutment: 

1. Two intermediate diaphragms shall be used. 

2. The first diaphragm shall be placed between 0.3L and 0.4L, where L is the length of the 

exterior span of interest. 

3. The second diaphragm shall be located symmetrically within the same span. 
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Number and Location of the  Diaphragms of Interior Spans: 

Per Article 3.3.2, regardless of the number of diaphragms used in the exterior spans, only two 

intermediate diaphragms are needed within interior spans; therefore, for the interior span: 

1. Two intermediate diaphragms shall be used. 

2. Each diaphragm shall be placed as close as practical to the third points of the span. 

B.3.3 Local Bottom Flange  Buckling in the  Negative Moment Region (Article 3.4) 

The maximum demand/capacity ratio in the negative moment region shall not be greater than 0.7 

under the Strength I load combination in the region between 0.2L and 0.3L away from a pier in 

the unfaulted state. This requirement applies to both girders in each span. 

The demand/capacity ratios for the Strength I limit state were obtained from the design calculations 

and are summarized for the interior and exterior girders in each span in Tables B.2 through B.7. 

As seen in the tables, the demand/capacity ratios were less than 0.7 in span 1 as shown in Table 

B.2 and Table B.4 (i.e., between 0.2L and 0.3L from the piers and shown in bold text). Hence, 

bottom flange buckling is not a concern in Span 1 and Span 3. 

However, as shown in Table B.3, the negative moment demand/capacity ratio in span 2 near pier 

2 of 0.77 exceeds the allowable limit of 0.7. Hence, it is required to shift the bottom flange splice 

further from the pier such that the demand/capacity ratio falls below 0.7. Though not shown, for 

this bridge, it was found that shifting the splice from 0.21L to 0.25L from pier two into span 2 will 

satisfy this requirement. 
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Table B.2 Demand/capacity ratios for the interior girder in the first span 

Distance 
from Pier 1 Location (ft.) 

Strength I 
Demand (ksi) Capacity (ksi) D/C Less Than 0.7 

0.3L 71.8 — -16.6 — Y 

76.9 — -16.6 — Y 

Bot. Flg. Spl. -4.5 -16.6 0.27 Y 

Bot. Flg. Spl. -3.7 -29.6 0.13 Y 

0.2L 82.1 -4.6 -30.2 0.15 Y 

87.2 -8.6 -30.2 0.28 — 

Bot. Flg. Spl. -13.5 -30.2 0.45 — 

Bot. Flg. Spl. -13.5 -30.2 0.45 — 

0.1L 92.3 -13.8 -30.2 0.46 — 

97.4 -19.9 -30.2 0.66 — 

Pier 1 102.6 -27.0 -30.2 0.89 — 

Table B.3 Demand/capacity ratios for the interior girder in the second span 

Distance 
from Pier Location (ft.) 

Strength I 
Demand (ksi) Capacity (ksi) D/C Less Than 0.7 
FROM PIER 1 INTO SPAN 2 

Pier 1 102.6 -27.0 -30.2 0.89 — 

107.7 -20.9 -30.2 0.69 — 

0.1L 112.8 -15.9 -30.2 0.53 — 

117.9 -12.1 -30.2 0.40 — 

0.2L 123.0 -9.1 -30.2 0.30 Y 

Bot. Flg. Spl. -8.8 -30.2 0.29 Y 

Bot. Flg. Spl. -10.7 -17.0 0.63 Y 

128.1 -8.3 -17.0 0.49 Y 

0.3L 133.2 — -17.0 — Y 

FROM PIER 2 INTO SPAN 2 

0.3L 174.1 -7.6 -17.0 0.45 Y 

179.2 -10.4 -17.0 0.61 Y 

Bot. Flg. Spl. -13.1 -17.0 0.77 N 

Bot. Flg. Spl. -9.9 -36.4 0.27 Y 

0.2L 184.3 -10.2 -36.4 0.28 Y 

189.4 -13.2 -36.4 0.36 — 

0.1L 194.5 -16.9 -36.4 0.46 — 

199.6 -21.7 -36.4 0.60 — 

Pier 2 204.7 -27.6 -36.3 0.76 — 
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Table B.4 Demand/capacity ratios for the interior girder in the third span 

Distance 
from Pier 2 Location (ft.) 

Strength I 
Demand (ksi) Capacity (ksi) D/C Less Than 0.7 

Pier 2 204.7 -27.6 -36.3 0.76 — 

210.2 -20.3 -36.3 0.56 — 

0.1L 215.6 -14.0 -36.3 0.39 — 

Bot. Flg. Spl. -11.5 -36.3 0.32 — 

Bot. Flg. Spl. -11.5 -36.3 0.32 — 

221.1 -8.6 -36.3 0.24 — 

0.2L 226.6 -4.9 -36.3 0.13 Y 

Bot. Flg. Spl. -4.3 -36.3 0.12 Y 

Bot. Flg. Spl. -4.8 -16.5 0.29 Y 

232.1 — -16.5 — Y 

0.3L 237.5 — -16.5 — Y 
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Table B.5 Demand/capacity ratios for the exterior girder in the first span 

Distance 
from Pier 1 Location (ft.) 

Strength I 
Demand (ksi) Capacity (ksi) D/C Less Than 0.7 

0.3L 77.2 — -16.5 — Y 

82.7 — -16.5 — Y 

Bot. Flg. Spl. -6.9 -16.5 0.27 Y 

Bot. Flg. Spl. -5.2 -36.3 0.13 Y 

0.2L 88.2 -5.7 -36.3 0.15 Y 

93.8 -10.6 -36.3 0.28 — 

Bot. Flg. Spl. -16.1 -36.3 0.45 — 

Bot. Flg. Spl. -16.1 -36.3 0.45 — 

0.1L 99.3 -16.4 -36.3 0.46 — 

104.8 -23.1 -36.3 0.66 — 

Pier 1 110.3 -30.7 -36.3 0.85 — 

Table B.6 Demand/capacity ratios for the exterior girder in the second span 

Distance 
from Pier Location (ft.) 

Strength I 
Demand (ksi) Capacity (ksi) D/C Less Than 0.7 
FROM PIER 1 INTO SPAN 2 

Pier 1 110.3 -30.7 -36.3 0.85 — 

115.8 -23.9 -36.3 0.66 — 

0.1L 121.3 -18.3 -36.3 0.50 — 

126.8 -14.1 -36.3 0.39 — 

0.2L 132.3 -10.7 -36.3 0.29 Y 

Bot. Flg. Spl. -10.3 -36.3 0.28 Y 

Bot. Flg. Spl. -12.5 -23.2 0.54 Y 

137.7 -10.0 -23.2 0.43 Y 

0.3L 143.2 — -23.2 — Y 

FROM PIER 2 INTO SPAN 2 

0.3L 187.2 -10.0 -23.2 0.43 Y 

192.6 -13.1 -23.2 0.56 Y 

Bot. Flg. Spl. -16.1 -23.2 0.69 Y 

Bot. Flg. Spl. -12.1 -39.2 0.31 Y 

0.2L 198.1 -12.4 -39.2 0.32 Y 

203.6 -15.8 -39.2 0.40 — 

0.1L 209.1 -19.9 -39.2 0.51 — 

214.6 -25.3 -39.2 0.65 — 

Pier 2 220.1 -31.9 -39.2 0.81 — 

B-10



 

 
       

     

   

    

   

   

   

      

     

     

   

     
 

 
          

      

  

 

          

    

        

    

       

 

  

Table B.7 Demand/capacity ratios for the exterior girder in the third span 

Distance 
from Pier 2 Location (ft.) 

Strength I 
Demand (ksi) Capacity (ksi) D/C Less Than 0.7 

Pier 2 220.1 -31.9 -39.2 0.81 — 

226.0 -24.1 -39.2 0.61 — 

0.1L 231.9 -17.2 -39.2 0.44 — 

Bot. Flg. Spl. -14.5 -39.2 0.37 — 

Bot. Flg. Spl. -14.5 -39.2 0.37 — 

237.8 -11.3 -39.2 0.29 — 

0.2L 243.6 -6.2 -39.2 0.16 Y 

Bot. Flg. Spl. -5.5 -39.2 0.14 Y 

Bot. Flg. Spl. -8.2 -17.0 0.48 Y 

249.5 — -17.0 — Y 

0.3L 255.4 — -17.0 — Y 

B.3.4 Flexural  Yielding in Positives  Moment  Region of Flanges in Intact  Girder Design Details 

The maximum demand/capacity ratio in the positive moment region of each span shall not be 

greater than 0.8 under the Strength I load combination in the unfaulted state. This requirement 

applies to both girders in each span. 

The demand/capacity ratios for the Strength I limit state were obtained from the design calculations 

and are summarized for the interior and exterior girders in each span in Tables B.8 and B.9. As 

seen in the tables, the demand/capacity ratios were always less than 0.8. Hence, excessive positive 

moment inelastic behavior in the faulted state is not a concern. (It is noted that data for span 2 are 

not presented as the demand/capacity ratios were all less than 0.3 for Strength I positive moment. 

Hence, span 2 also satisfies this requirement.) 
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Table B.8 Demand/capacity ratios for the interior girder 

Tenth 
Point 

Strength I Capacity 
Location (ft.) Demand (kips-ft) (kips-ft) D/C Less Than 0.8 

0 0.0 25 17154 0.00 Y 

1 10.3 3959 17179 0.23 Y 

2 20.5 6511 17075 0.38 Y 

3 30.8 8073 17032 0.47 Y 

4 41.0 8716 17061 0.51 Y 

5 51.3 8589 17172 0.50 Y 

6 61.5 7322 17288 0.42 Y 

7 71.8 4985 17534 0.28 Y 

ALL POSITIVE MOMENT D/C RATIOS < 0.3 FOR SPAN 2 

23 237.5 5472 17596 0.31 Y 

24 248.5 7824 17235 0.45 Y 

25 259.4 9213 17098 0.54 Y 

26 270.4 9535 17015 0.56 Y 

27 281.3 9061 17034 0.53 Y 

28 292.3 7226 17048 0.42 Y 

29 303.2 4181 17043 0.25 Y 

30 314.2 28 17010 0.00 Y 

Table B.9 Demand/capacity ratios for the exterior girder 

Tenth 
Point 

Strength I Capacity 
Location (ft.) Demand (kips-ft) (kips-ft) D/C Less Than 0.8 

0 0.0 38 17318 0.00 Y 

1 11.0 4633 17335 0.27 Y 

2 22.1 7561 17250 0.44 Y 

3 33.1 9295 17230 0.54 Y 

4 44.1 9985 17241 0.58 Y 

5 55.2 9810 17330 0.57 Y 

6 66.2 8264 17436 0.47 Y 

7 77.2 5524 17697 0.31 Y 

ALL POSITIVE MOMENT D/C RATIOS < 0.3 FOR SPAN 2 

23 255.4 5841 17756 0.33 Y 

24 267.2 8760 17383 0.50 Y 

25 278.9 10405 17245 0.60 Y 

26 290.7 10926 17204 0.64 Y 

27 302.5 10392 17228 0.60 Y 

28 314.3 8362 17220 0.49 Y 

29 326.0 4866 17198 0.28 Y 

30 337.8 45 17173 0.00 Y 
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Summary 

The proposed specifications have been used to evaluate the twin tub girder bridge in this example. 

Since all of the requirements have been met, the bridge need not be classified has having FCMs 

but instead, SRMs. The bridge shall still be fabricated to Clause 12 of the AASHTO/AWS D1.5 

Bridge Welding Code Using Grades Meeting the Fracture Critical Tension Component Impact 

Test Requirements of ASTM A709. 
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