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Statement of research problem

1 Sound field reproduction uses loudspeakers to produce desired sound at locations.

d When designing filter for sound that spans a wide frequency range:

Low frequency band mmmm) |onger time span Large number of

High frequency band =) higher sampling frequency filter coefficients
Impulse response | \
AVAVAVﬁ \\//\\//—\ . 7
| \

l long time span
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Statement of research problem

An approach is proposed to design filter in a sub-band form:

 Design all sub-band filters directly in one optimization problem:

The transition region between two sub-band filters can be designed conveniently

J The computational load can be reduced even if sub-band filters structure is not
required
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Designing filter directly

" kA
desired
added delay signal
d(n)
(n) (n) . = en)
X(n y(n) . e(n
r(n) > Wx > H :@ >
. filtered output error
original ) , :
: filter signal system signal signal
signal
response
J Example: 1 Cost function: 1 Constraints:
Use loudspeaker to produce Minimizing the power of Filter response W, (f)
desired sound at certain locations error signal e
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Designing filter when sub-band technique is used

" kA
— | desired
: sub-band filter 1 | added delay signal
|
| d(n
| » W, : ( ) .
I v
o 1 X)) yin) - o\ en)
r(n) — - " H @ >
- ' | filtered output error
original I R Lo onal onal
signal | " Wy | signal system signa signa
: | response
: sub-band filter N
Wy
J Example: 1 Cost function: 1 Constraints:
Use loudspeaker to produce Minimizing the power of Filter response W (f)
desired sound at certain locations error signal e i
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Expressing sub-band filters as one equivalent filter

 Conventional method (one single filter)

frequency response of designed filter at frequency f :

W 2 f 2 f1, (Ne—1
Wy (fi) = F(fi, fo Ne) Wy F(fx, fs, N¢) = [1 e_] ]735 <o 5 kfgs t )]

f5 is the sampling frequency,
N; is the number of filter coefficients,
w, is the filter coefficients

(J Sub-band structure

frequency response of designed filter at frequency f:

N N

j2rfi j2nfr(Ne—=1)] —,
Ywo=) [, P
i=1 1

i=
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Expressing sub-band filters as one equivalent filter

So designing sub-band filters can be treated as:
designing one filter ﬁx with modified Fourier matrix F(f,)

N N
Y ja2nf J2nfr(Ne—=1)1 — ~ =
W = ) Wilfo =) [, T ] W= FUo e,
=1 =1

F(fi) = [F(fi fso Ney) = F(fior fsn New)]

W
- 1
W, =1

q

Wy

So all the sub-band filters can be designed in one optimization problem if designed in the frequency domain.

The transition region can be designed more conveniently.
RAY W. HERRICK=>
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Overview of proposed design process

Design
Problem

rCost function:
Power of e

< Constraints:
Filter response

\
PURDUE
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Conventional
method

Proposed
method

General Nonlinear algorithm

(e.g., sequential quadratic programming)

Convex Cone
. . . ﬁ . ﬁ
Optimization Programming
Global minimum Possible to apply

usually guaranteed

efficient algorithms

Primal-dual
Interior-point

Efficient
Upper-bound for
iteration times

RAY W. HERRICK=|PP"
LABORATORTIES




Problem formulation

Design Problem Expressed in Convex Problem

Cost function:
Total power of e:

kkzk E(f)2, wmmp T, (Z

— ko . ko
A](fk)) Wy + 2Re <Zk=k1 b/ (fi) ) Wy + zkzklcj(fk)
\ Convex«/

e (Quadratic
Constraints: « A;(fx) p.s.d

1

Filter response:
The magnitude of frequency response:

Wi(fi)l < Ci(f,) ™ |IF(fi fs,, Ne,) Will, — Ci(fi) <O 8 Vector norm  Convex«/

PURDUE RAY W. H ERRICK%

UNIVERSITTY. LABORATORIES




Cone Programming Reformulation

Convex Problem

Cost function:

- ko _ k,
By (Zk A,(fk)) Wy + 2Re <Zk A

=k1 =k1

Constraints:

”F(fkrﬁsertl) V_V)illz - Cl(fk) <0

PURDUE
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— k>
) Wy + zk=k1C] (fx)

?

—

Standard Cone Programming

Cost function: c'x

Constraints: x € K;, i=1,2,3 ..

Ax =0Db
C to be a constant vector

K;  to be aconvex cone

A, b to be a constant matrix and vector
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Cone Programming Reformulation

Convex Problem ®  Cone Programming

 Reformulate quadratic cost function

Cost function: xTAx+bTx +¢

:

Cost function:  t, + b x - Linear cost function
Constraints: IVA x|l, < Vto £ ) Rotated second-order cone
to =1 # Linear constraint

 The vector norm constraint

Constraints: x|, —c <0
Constraints: x|, <t # Second-order cone
t=rc - Linear constraint
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Cone Programming Reformulation

Convex Problem ‘ Cone Programming
Cost function: Cost function:
= T k, - k, T - k, k2 _
Wy (2]{:](114](]‘}()) Wx+ 2Re <zk=k1 b] (fk) ) Wx+ zk=klcj(fk) to + 2Re Z b]T(fk) Wx
k=ky

Constraints: Constraints:

IF(fie, s, Ne, ) Will, — Ci(fi) <0 IF (fier fsyo Ney) Willz < g

t3x = C(fx)
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A reduced order technique

Sometimes, the designed filter has high frequency response concentrated in small time span:

wim) ¢ Number of
coefficients:
x( ) 2
w,(n \ / /\v/\\//\\//\\//\\//‘\\//\ > N T % ()_1fs
\/ | \ v \ wa(n) 4 0.2T X £,
Number of coefficients: T X f; *T \/ \ " N 01T X f;
Mo

In this case, w; (with higher sampling frequency) can be chosen to start with t = MA, where M > 0, then
we have:

270 f 1 M 270 f ) (M +1 21 f e (Ne—1
E(fi, fu Ny) = [e_J ﬂfsk e_] m ;}g ) _jem k( t )]
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Experimental setup

 An experimental setup for psychoacoustic listening test
e Speaker should produce desired sound at listening location

N
]

(.
=

Listening

locati

\’% lon Speaker [Ir
Jum(
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Experimental setup

J Required sampling frequency: 48 kHz (A =20.83 us)
(] Desired delay: 19200 A

] Two sub-band filters:

Sampling frequency Filter coefficients Starting time
Filter 1 2.4 kHz 1920 0
Filter 2 48 kHz 3000 17700 A

(J SeDuMii is used to solve the reformulated cone programming problem
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Result

The frequency response of both filter around 1200 Hz
20 [

T

amplitude (dB)
S

-40
0 500 1000 1500 2000
frequency (HZ) i
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Result

The frequency response of H(H)W,.(f)
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H(HW, (f) around 1200 Hz
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Result

Combining two sub-band filters together in time domain I

1500 |

The combination is done by:
1000 |

e Upsampling the sub-band filter 1 500

with lower sampling frequency ©
E
* Adds the upsampled filter 1 with =
filter 2 500 |
-1000
-1500 . .
0 0.2 0.4 0.6
time (s)
The designed filter coefficients are 1920+3000 = 4920, which is much smaller than 48000 X % = 38400
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Conclusions

1 The proposed method can design sub-band filters for sound field reconstruction in
one optimization problem, so designing transition region is more convenient.

d The optimization problem can be reformulated to a convex problem, then further
reformulated to a cone programming problem. These guarantees the global optimal
solution can be found in an efficient way.

1 A reduced-order technique can be used to reduce the variables in filter design
problem if different frequency bands of required filter have impulse response
concentrated in different time intervals.
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