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J Multichannel active noise control (ANC) systems

 Better performance when we need to create large-size quiet zone.
 Applications:

Interior of Vehicles Range Hood Infant Incubator Air Conditioner
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Introduction

J Motivation of using frequency domain design

* Easier to specify frequency dependent constraints.

* Constraints in one frequency band will not affect performance of other bands.

e Usually, better ANC performance.

J Motivation of using improved cone programing form

 The computational complexity is usually significant for frequency-domain design method.

* |t was demonstrated in previous study that by cone programming reformulation, the ANC

design problem can be solved much more efficiently using the primal-dual interior-point
algorithms.

 However, some numerical issues may occur when using the direct reformulated standard

cone programming form. Thus, the effect on the numerical stability of different formulation
approaches should be further investigated.
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Acoustic Feedback Path

(Non-adaptive control is considered in the current work)

:Ge

Error
Secondary Path Signal

J Cost function:

 Minimizing the energy of
error signal e

[ Constraints:

* Disturbance enhancement
* Stability

* Robustness

* Filter response

Ut
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Review of Previous Work - Original Problem

Cost function:
Ny

z tr [f(fk)f(fk)H] m) Total energy of e cross all frequencies

k=1
Constraints:

Enhancement: Normalized energy of e:
tr [EGROE (! | < Actr(Sa,a, (f))
Stability: Use Nyquist criterion:
min (Re (4 (Wa(fi)Goo () ) ) > ~1
Robustness: M- A structure and small gain theory:

max (o (Wa(fidGao(fi)) ) BUIO) < 1
Filter response: The magnitude of frequency response:

W, (fO] < C(f)

(o))
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Review of Previous Work - Original Problem

Cost function: Total energy of e:
Ny

Z tr [E)(fk)ﬁ(fk)H] ,

k=1

Constraints:

Enhancement:
tr [E(fk)ﬁ(fk)H] < Aptr(Sa,a,(fi)) m) Normalized energy of e at each frequency

Stability: Use Nyquist criterion:
min (Re ( A (Wx(fk)@so(fk)) ) ) > —1
Robustness: M- A structure and small gain theory:
max (o ( W(f)Goo(fe)) ) BUAO) < 1

Filter response: The magnitude of frequency response:

Wy, (fO] < C(f)
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Review of Previous Work - Original Problem

Cost function: Total energy of e:
Ny

Z tr [E)(fk)ﬁ(fk)H] ,

k=1

Constraints:
Enhancement: Normalized energy of e:

tr [EGOE(f)] < Actr(Sa,a, ()

Stability:
min (Re ( A (Wx(fk)ﬁso (fk)) ) ) > —1 =) Nyquist criterion, on the right of -1 point

Robustness: M- A structure and small gain theory:

max (o ( W (f)Geo(fe)) ) BUfO) < 1

Filter response: The magnitude of frequency response:

Wy, (f] = C(f)
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Review of Previous Work - Original Problem

Cost function: Total energy of e:
Ny

Z tr [E)(fk)ﬁ(fk)H] ,

k=1

Constraints:

Enhancement: Normalized energy of e:

tr [EGOE(f)] < Actr(Sa,a, ()

Stability:
min (Re ( A (Wx(fk)ﬁso (fk)) ) ) > —1 m) Itis convexified as:

—(1—-€)<0

Robustness: M- A structure and small gain theory: (
max
2

(e (Wmtat) —wx(fk)ﬁs()(fk)+(—wx<fk)6so(fk))H>>
max | o ( Wy(fi)Gso(fk)) ) B(fi) =1

Filter response: The magnitude of frequency response:

Wy, (f] = C(f)
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Review of Previous Work - Original Problem

Cost function: Total energy of e:
Ny
Z tr [E)(fk)ﬁ(fk)H] ,

k=1

Constraints:

Enhancement: Normalized energy of e:

tr |EGFOE(f)| < Actr(Sa,a, ()
Stability: Use Nyquist criterion:

min (Re (2 (Wx(fo)Gso(fi)) ) ) > —1
Robustness:

max (0’ ( W.(fi.)Gs (fk))) B(fy) <1 m» M- A structure and small gain theory

Filter response: The magnitude of frequency response:

Wy, (f] < Cf)




Review of Previous Work - Original Problem

Cost function: Total energy of e:
Ny

Z tr [ﬁ(fk)ﬁ(fk)H] ,

k=1
Constraints:
Enhancement: Normalized energy of e:

tr [EGROE(fi)" | < Actr(Saya, (f)
Stability: Use Nyquist criterion:

min (Re (2 (Wx(fo)Gso(fi))) ) ) > —1

Robustness: M- A structure and small gain theory:

max (o (We(fidGao(fi)) ) BUI) < 1

Filter response:

w,, (ol <cro =

The magnitude of frequency response
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Original Problem Standard Cone programming
Cost function: Total energy of e: min . (é)l)Tfl + ((_I)q)T X7 + (QS)T _)S,
Ny
L I 44 Y — h
z tr lE(fk)E(fk)H]» s.t. AX + AXT+ A’X’ = b,
k=1 X eRY R eKI,XeK’
Constraints:
_ Where,
Enhancement: Normalized energy of e:
. _ K4 = K? X ... X KE # Second order cones
tr [EOEf| < Actr(Sa,a, () | ‘ 1
— —
Stability: Use Nyquist criterion: Klq = {(y, )Z)) c R xR y 2 ||X||2}

W ()G () + (~WeF) o))
max \ 1 > —(1-€)<0

Robustness: M- A structure and small gain theory:
max (o ( Wo(fso(fe)) ) BC) < 1
Filter response: The magnitude of frequency response:

W, (F0)| < cro)

K® = Kf X ... X K; # Positive semidefinite cones
K’ = {vec(X) e R . X € R ig positive semideﬁnite}
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Original Problem Conic Formulation
. . Ny .
Cost fun;;clon. Total energy of e: Cost function: o + z b]T(fk) =
z tr lE(fk)E(fk)H] : k=t
k=1

i Constraints: w 7 r—
Constraints: - IMowll, < VtoEo tp =1

Enhancement: Normalized energy of e: tie + B]T(fk)w +tr(Sa,a,(fi)) (L — Ae(fi)) = 0

tr [EOEf| < Actr(Sa,a, () i . ~
Stability: Use Nyquist criterion: {1 SUNTY | PR w/tl,k bk tie =1

- R H
—W(£)Ceo (i) + (W ()G _,
max(l( (fi) Gso(fx) g (fx) o(fk)) >>_ (1—e) <0 ”Fz(fk) WFi,j ”2 < tZ,i,j,k , t2,i,j,k — C(fk)

Robustness: M- A structure and small gain theory:

H
& W (fi)Gs,(fi) + (Wx(fi)Gs,(fi) ) +2(1 — €Iy, > 0
max (o (W(f)Gso(fe)) ) B < 1 I (W 0%, (1) o)l

Filter response: The magnitude of frequency response:

W, (F0)| < cro)

1 R -
B(fk) INS Wx(k)GSO(fk)

(W58, F0) s v
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Review of Previous Work - Summary

Conic Formulation

i
gl

* Previous work showed that this conic

Ny
formulation can be solved much more  Cost function: £y + z b; (fi) W
k=1
efficiently.
Constraints: ||M,w|, < t, o , i, =1

 Numerical issues may occur sometimes,

. . . tie + B} (FOW + tr(Sa,a, () (A = Ae(fie)) = 0
i.e., the solver may fail to obtain a

searching direction when the current IMuwllz < [tk Bk b = 1
solution is close to optimal solution. IF-(fid Wryj ll2 < taijie > tzije = C(fio)
 Itis found that different treatments of W (fidGs, (fi) + (Wx(fk)aso(fk))H +2(1 — €Iy, 7 0

free variables in conic formulation have _ B(;k) Iy, Wx(k)E‘SO(fk)_ ¥

_ H 1
different numerical behaviors. (Wx(fk)Gso(fk)) BCF) Iy,
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Conic Formulation

For simplification, denote the
. N
conic form as: :

W k=1
- 2 \T (2T B
min. [@)" @) l’?] :
B Constraints: ||M,w|, < t, o , i, =1
Mo AW BI=D BR(ROW + tr(Sa,a, ()1~ Ae(fi) = 0
t ) + k)W + tr dede. Uk — k)) =
= Q{NFNSNI, _ New variables are bk / ¢
required to represent M. ol < ,t 7 Po—1
f € Ka these conic constraints I LK l2 < Lk "Lk Lk
Where, IF,(fi) We llz < tajje » taije = CUfi)
X isintroduced to represent R R H
each constraints W (f)Gs, (f) + (Wi (fi)s, (o)) +2(1 = €Iy, = 0
INS Wx(k)aso(fk)
B(fx) <0

K Represents the Cartesian
product of cones for constraints _

A H 1
(Wefd8s(f) gyt




Conic Formulation - The Direct Reformulation

X € K,

Where,

X isintroduced to represent
each constraints

K Represents the Cartesian

product of cones for constraints

Convertinto a
second order cone

st. AW+BX =D, /

Split as two sets of
nonnegative variables

min .

S.t.

min .

S.L.

44
HT inter=-noise
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w
0 @) @) lwo ]
%

AW +BX = b, Form 1

X €K,

=TT}
o *—‘]

(@)T —@)" @)

el

—>

A\X’l — A\i)/z + BX = b,
N, NN
R NN

Form 2
—
W, €

b

N,.NN,
WZ c ?{4_’ sVt

X € K.

b

=)
o
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Conic Formulation - The Dual Reformulation
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2%0 . . r-
in [O @) (GX)T] Wl Both forms ha.ve the same simplified
2 dual formulation:
s.t. AW +BxX=Db, min. -b'y,
[Wf c k! Dual formulation St AT)—; _ aw
W — -
| > B'y+5,=¢,
}? € K, - N
y E % b,
Form 2 -
W S, € K,
min . [(E’W)T —(¢é)"! (E)X)T] W |, Where,
L X y isthe dual variable associated
s.t. AW, —Aw, + BX = b, with equality constraints
w; e RN | . .
I S, is the dual variable associated
Wa€ R with conic constraints
X € K.

17
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. _RT Yo
The dual formulation S [O b ][V]
s.t. Ay =¢,,
: DT Convertinto a To
MR . Tb Y. second order cone By+s.=¢, Form 3
s.t. A y é)wa
A Yo > Il
B'y+5S, =¢,

S, € K.

S, € K,
min . [—BT bT] [3’1]

Split as two sets of y2

nonnegative variables s.t. A'y, —A'y, =¢,,

B'y, -B'Y, +8, =¢. Form4
yi € %fb

¥, € R

S, € K. 13



The Direct Reformulation - Summary

. 5 T =T Wf Form 3
Form1l  min. [0 @,) (cx)] w |,

el

st. AW+BxX=D,

X € K,
o
Form2  min. [(3W)T —-(@,)" @)T] wa |, Form 4
X

9
S.t. Aﬁ)’l — Aﬁ)fz + BX = b,
N-NgN
\X)fl c %4_ ’
N:-NsN
\3)72 S %4_ !

X eK.

min . [O —ET] [y()],
s.t. Ay =¢,,

BTy) + gx — é)x,

Yo =¥l
S, € K.

min. =57 5] (%,

S.t. AT)_;l — ATy)z = (_:)W,
BTy)l _ BT)_’)Z + gx — é)xa
)_7)1 € 9%]4\-][)’
)_7)2 = %fb’
S, € K.

H1 inter=noise
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Results

Off-line Simulation based on experimental data
Experiment description:

* 2 reference microphones, 2 control loudspeakers, 2 error microphones

* sampling frequency is 3000 Hz

* Filter length for each channel is 128

 SeDuMii is used to implement primal-dual interior-point algorithm for cone
programming

e Duality gap is used to represent numerical stability characteristics

(Smaller duality gap means more numerically stable)
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Comparison of duality gap for different forms in different cases
—+—Form 1 —*—Form 2 Form 3 ——Form 4 —+—Form 1 —*—Form 2 Form 3 —<—Form 4

—
o
o

e 4 —

Duality Gap
. 5 5 o 3
N (@] (0)] w (]

107
o
-6 Ay
>
-9 o
10 =
: A
-12 S -
10 +___/
1071° 1071°
10-18 | A N S N 10-18 | S A N
7 14 27 66 131 261 7 14 27 66 131 261
Number of Constraints Number of Constraints
Use only enhancement constraint Use only stability constraint

21



Results

Comparison of duality gap for different forms in different cases

Duality Gap

100 —+t—Form1——Form 2 Form 3 —<—Form 4

107

107

107

107

1018 s
/ 14 27 66 131 261

Number of Constraints

Use only robustness constraint

1] inter=noise
2020 : 2u6ust

|+ Form1—*—Form 2 Form 3 —*—Form 4

—
O
o

Duality Gap

—h

Y Y .
. o o o
[\ [(®] (0)] w

—

o
N
a

—

o
o
(00]

32 64 96 128 160 192
FIR Filter Lengths

Use all constraints
22



Results

Comparison of ANC performance for different forms

B)

Normalized SPL (d

20

—k
o

o

—
o

-20

ANC OFF

Form 1

1000
Frequency (Hz)

1500

a [

4 Geon/

HT inter=-noise
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Form Duality Gap

1 1.76 x 10™*%
2 6.61x 1073
3 2.63 x 10712
4 3.78 x 10717

The performance of using
form 1 and 2 are worse than
using form 3 and 4.

This demonstrates that a
small duality gap is required.

23
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Conclusions

* Numerical issues may occur when positive semidefinite cones are involved,
i.e., when stability and robustness constraints are applied.

* Form 4, using the dual formulation and then splitting free variables into two
sets of non-negative variables, has a better numerical stability behavior.

* In the future, other reformulation approaches may be used to further
improve the numerical stability by exploiting the problem structure of the
ANC filter design problem.
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