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ABSTRACT 

Cetaceans play a vital ecological role in the marine environment as highly mobile top 

predators, but many species lack sufficient baseline data required for effective management and 

conservation. Cetacean population studies rely on the ability to accurately detect and identify the 

species, determine their location, estimate the number of animals or groups, and evaluate patterns 

in distribution. For endangered cetacean species, this information can be critical to their survival. 

Vessel-based visual observer surveys are the primary methods for studying cetacean populations, 

but these methods are limited by daylight, cetacean behavior, and poor weather conditions. 

Passive acoustic monitoring provides a technological approach for studying cetaceans using their 

vocalizations that is complementary to traditional visual observation methods. For this 

dissertation work, I developed and applied analytical methods that advance the use of acoustic 

data for cetacean population studies of endangered false killer whales (Pseudorca crassidens) 

and sperm whales (Physeter macrocephalus) in the Hawaiian Archipelago. My research 

addressed three components: (1) the utility of acoustic data to discriminate whistle characteristics 

of sympatric false killer whale populations, (2) the development of a localization algorithm for 

shallow towed linear arrays to improve the accuracy of 3-D positional estimates of cetaceans, 

and (3) a comparison of the environmental factors that predict the distribution of foraging versus 

non-foraging sperm whales. Each component of this research contributes important information 

for these endangered cetacean populations and guides future use of acoustic data in cetacean 

population studies. 
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

A diverse community of cetacean species resides in the waters surrounding the Hawaiian 

Archipelago. Cetaceans are marine apex predators comprised of odontocetes (toothed whales) 

and mysticetes (baleen whales), with at least 25 species occurring within the Hawaiian 

Archipelago year-round (Carretta et al., 2020). Odontocetes and mysticetes differ biologically 

and ecologically, but both influence the structure and function of the marine ecosystem (Estes et 

al., 2016). Cetaceans affect the behavior and distribution of their prey and competitors, as well as 

contribute to nutrient recycling and the modification of benthic habitats as part of their ecological 

role (Bowen, 1997; Kiszka et al., 2015; Estes et al., 2016). We are in a period of unprecedented 

ecological change. Increasing baseline knowledge about these species now provides our best 

chance of implementing effective management and conservation plans to sustain future 

populations. 

The Hawaiian Archipelago is situated near the center of the North Pacific Subtropical 

Gyre (NPSG), where the abiotic and biotic environmental conditions coalesce to create suitable 

cetacean habitat. The NPSG is an oligotrophic environment characterized by low nutrient levels 

and primary production (Mann and Lazier, 2006). However, mesoscale oceanographic processes 

(e.g., eddies and fronts) greatly enhance the productivity of the NPSG resulting in patchy areas 

of nutrient-rich waters that benefit the base of the food web and, in turn, support cetaceans and 

other higher tropic level organisms (Polovina et al., 2000; Seki et al., 2002; Woodworth et al., 

2012; Abecassis et al., 2015). Food-web dynamics are also influenced by an increase in 

phytoplankton biomass near the islands and atolls within the Hawaiian Archipelago, i.e., Island 

Mass Effect (Doty and Oguri, 1956). For example, the micronekton species within the 

mesopelagic boundary layer community feed on the increased food resources near shore, and are 

consumed by cetaceans and other pelagic predators that are attracted to these areas of enhanced 

prey (Benoit-Bird and Au, 2003; Gove et al., 2015). 

Sound propagates approximately five times faster through the ocean than through air. 

With the majority of their time spent underwater, cetaceans have adapted to utilize sound for 
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every aspect of their lives. Odontocetes produce high-frequency pulsed clicks (echolocation 

clicks) for foraging and navigation (Au and Hastings, 2008; Zapetis and Szesciorka, 2018). They 

engage in complex social interactions and behaviors using whistles, which are frequency-

modulated calls ( Riesch and Deecke, 2011; Janik and Sayigh, 2013). Mysticetes produce lower 

frequency vocalizations for long-range communication during social interactions and mating 

(Edds-Walton, 2012). The use of sound is critical for the survival of all cetacean species. 

Hawaiian cetaceans endure numerous anthropogenic impacts throughout the island chain. 

Anthropogenic noise from boating, commercial shipping, and military exercises contributes to 

increased ocean noise levels that alter cetaceans’ habitat and interferes with their ability to 

communicate, causes hearing loss, and disrupts foraging dives (Hildebrand, 2005; Weilgart, 

2007; Tyack et al., 2011; Southall et al., 2016). Disturbance from marine tourism operators and 

swimmers can alter behavioral states (Scarpaci et al., 2000; Timmel et al., 2008; Wiener et al., 

2009). Cetacean prey species are also targeted by commercial and recreational fishers, which can 

lead to interactions between cetaceans and fishing gear resulting in serious injury or death (Nitta 

and Henderson, 1993; Forney, 2000; Forney et al., 2011; Baird et al., 2014). Cetaceans are also 

at risk for bioaccumulating persistent organic pollutants that are linked to reductions in 

reproductive success and the disruption of endocrine and immune systems (Ylitalo et al., 2009; 

Bachman et al., 2014). 

Fortunately, all cetacean populations in U.S. waters are protected under the U.S. Marine 

Mammal Protection Act (MMPA) to regulate the unintentional take of cetaceans and other 

marine mammals that result from anthropogenic activities. The primary objectives of the MMPA 

are to maintain populations above their optimum sustainable population level and as functioning 

elements of their ecosystem. Stock assessment reports are required to periodically update the 

status of a population (or stock) to support management and conservation decisions. Under the 

MMPA, human-caused mortalities are regulated through the calculation of potential biological 

removals (PBR) for each population, defined as the maximum number of animals that may be 

removed from the population while still allowing for levels of abundance to meet or exceed a 

certain population size (Taylor et al., 2000). The PBR requires estimates of abundance as one 

element of the PBR calculation. Additionally, the U.S. Endangered Species Act (ESA) applies to 

cetaceans listed as endangered or threatened and mandates a recovery plan and the designation of 

critical habitat to prevent the extinction of imperiled species. 
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The National Marine Fisheries Service (NMFS) conducts shipboard line-transect surveys 

to study the distribution and estimate the abundance of cetacean populations to inform stock 

assessments. The surveys are designed according to distance sampling methods and require a 

team of scientists to collect observational data of cetacean species and oceanographic 

measurements of their habitat (Buckland et al., 2001; Yano et al., 2018). Visual data collection 

methods require accurate species identification and entail collecting photo-identification data to 

count individuals (Durban et al., 2005; Urian et al., 2015), deploying satellite tags to study 

animal movement (Baird et al., 2011; Straley et al., 2014; Abecassis et al., 2015), and obtaining 

tissue samples for genetic analyses (Hoelzel, 1992; DeSalle and Amato, 2004; Chivers et al., 

2010; Mesnick et al., 2011; Martien et al., 2014). Valuable information about cetacean ecology 

has been gained through visual observations. Parameters measured from visual observation data 

are incorporated into abundance estimation and include the distance of the animals from the 

trackline and group size estimates (estimated number of animals within a group). However, 

animal behavior may introduce bias to abundance estimation if missed due to cryptic surface 

behavior or foraging at depth for prolonged periods of time. In both cases, abundance may be 

underestimated for certain species (Barlow, 1999, 2015).  

Passive acoustic monitoring (PAM) has been around for decades to record and analyze 

animal sounds from all taxa (e.g., marine mammals, (Schevill and Lawrence, 1949; Poulter, 

1963); terrestrial mammals, (Lieberman, 1968; Huetz and Aubin, 2012); birds, (Brough, 1969; 

Catchpole and Slater, 2008); fish, (Myrberg, 1980; Gannon, 2008); amphibians, (Loftus-Hills 

and Littlejohn, 1971; Gerhardt, 1994); insects, (Alexander, 1962; Tishechkin, 2014); and bats, 

(Simmons and Stein, 1980; Smotherman et al., 2016). Underwater microphones, i.e., 

hydrophones, are capable of recording all known frequencies of cetacean vocalizations (Stafford 

et al., 1998; Merkens et al., 2018). Several types of PAM methods exist to study cetacean 

populations and the configuration of the PAM system depends on the research question 

(Mellinger et al., 2007; Van Parijs et al., 2009; Marques et al., 2013). 

A towed line array of hydrophones has become a standard PAM method for collecting 

passive acoustic data from vocalizing cetaceans to complement visual observation methods 

during line-transect surveys for abundance estimation (Rankin, Oswald, et al., 2008; Rankin et 

al., 2013). This PAM method is useful for real-time detection, tracking, and localization of 

vocalizing animals to assist visual observers in finding cetacean groups (Leaper et al., 2000; 
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Evans and Hammond, 2004; Barlow, 2006). Towed line array acoustic data can be used to 

measure distances to cetacean groups and are effective for detecting deep-diving and highly 

cryptic species that may be missed visually (Barlow and Taylor, 2005; Rankin, Barlow and 

Oswald, 2008). However, many species cannot be accurately identified using acoustic 

characteristics of their vocalizations and the inability to estimate group size preclude the data 

from being incorporated into cetacean abundance estimates for stock assessments. Acoustic data 

collection using towed line arrays is an integral operation during line-transect surveys, but there 

are limited analytical techniques for deriving important information that could be utilized for 

studying the abundance and distribution of cetaceans. 

This dissertation research produces novel analytical methods to study patterns in cetacean 

populations using passive acoustic data, specifically advancing the use of towed line array 

acoustic data for classification, localization, and distribution modeling. The Hawaiian 

populations of false killer whales (Pseudorca crassidens) and sperm whales (Physeter 

macrocephalus) were included in this research due to their endangered status and the fact that 

their vocalizations can be reliably identified to species (Backus and Schevill, 1966; Whitehead 

and Weilgart, 1990; Rendell et al., 1999; Oswald et al., 2007; Barkley et al., 2011). Methods and 

results developed here may be applied to other cetacean populations to improve baseline 

knowledge and further our understanding of their ecological importance. 

1.2 Outline 

The false killer whale population associated with the Main Hawaiian Islands (MHI) is 

listed as endangered and is one of three genetically distinct populations that occur in Hawaiian 

waters, including a population associated with the Northwestern Hawaiian Islands (NWHI) and a 

pelagic population dispersed throughout offshore waters (Baird et al., 2008, 2010; Chivers et al., 

2010; Baird et al., 2013a; Martien et al., 2014). Abundance estimates for the MHI population are 

low; less than 200 individuals are estimated to exist from mark-recapture analyses (Bradford et 

al., 2012). Visual observer surveys of the MHI population have been generally restricted to 

nearshore waters on the leeward sides of islands, but satellite tag data revealed high-use areas 

throughout the islands where animals are presumed to spend time foraging (Baird et al., 2012).  

Chapter 2 develops a method to distinguish between the three sympatric populations 

using characteristics of their whistles. Whistles were extracted and measured from towed line 
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array acoustic data collected during five line-transect cetacean surveys and incorporated into 

Random Forest classification models to examine the variation in whistle characteristics between 

and within the three Hawaiian Islands false killer whale populations. Using acoustic data of these 

populations offers an additional means for studying their distribution in conjunction with visual 

observations. 

Sperm whales in the Hawaiian Archipelago are present year-round and include all 

demographic groups (Thompson and Friedl, 1982; Mesnick et al., 2011; Baird et al., 2013). 

Sperm whales produce high-amplitude, low frequency echolocation clicks and buzzes while 

foraging and socializing (Papastavrou et al., 1989; Weilgart and Whitehead, 1993; Miller et al., 

2004; Oliveira et al., 2013). During foraging dives, sperm whales can spend over an hour 

underwater and descend to depths of nearly 2000 m searching for prey consisting primarily of 

different cephalopod species (Clarke et al., 1993; Clarke and Young, 1998; Evans and Hindell, 

2004; Watwood et al., 2006; Teloni et al., 2008; Irvine et al., 2017; Foskolos et al., 2020). This 

foraging behavior can result in groups being missed by visual observers during typical line-

transect survey operations. However, echolocation clicks can be detected and identified 

acoustically, providing opportunity to enhance visual survey data with detections from a joint 

towed array survey. 

Several studies report abundance estimates using towed line array acoustic data from 

line-transect surveys (Gillespie and Leaper, 1997; Taylor et al., 2000; Lewis et al., 2007; Yack et 

al., 2016). However, distance estimates were derived without accounting for animal depth or 

uncertainties associated with the acoustic data (i.e., hydrophone movement, sound propagation 

effects, errors in the time of arrival differences) potentially biasing abundance estimates. Chapter 

3 develops a semi-automated, model-based localization approach to analyze towed line array 

acoustic data of sperm whales to improve upon existing two-dimensional localization methods 

typically applied to deep-diving cetaceans. This approach accounts for sources of error and 

animal depth for three-dimensional localization with error estimates. The localization method is 

evaluated and demonstrated using simulated and empirical sperm whale acoustic data. By 

integrating the uncertainties associated with towed line array acoustic data of deep-divers, more 

robust location and distance estimates are achieved with this model-based localization approach. 

This research also provides a better understanding of factors influencing localization results in 
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general, which is helpful for improving acoustic data collection methods for all cetaceans using 

towed line arrays. 

 Understanding the distribution of a species is important for effective management and 

conservation but knowing where individuals are located at any given time is challenging. Species 

distribution models (SDMs) are a quantitative tool used to predict the distribution of a species by 

correlating the presence or abundance of a species with their associated geographic and 

environmental habitat features (Elith and Leathwick, 2009). Sighting data are the predominant 

observational data used for predicting cetacean distribution in SDMs. While many line-transect 

cetacean surveys use towed line arrays to collect passive acoustic data for cetaceans, relatively 

few studies incorporate the data into SDMs for several reasons. Many cetaceans cannot be 

accurately identified to species based solely on their vocal characteristics, which restricts the 

application of SDMs to only certain cetacean species. Acoustic data often require multiple stages 

of processing to extract the necessary information for models, which can be labor-intensive and 

time-consuming. Furthermore, it is not currently possible to accurately estimate the number of 

animals in a group for most species using acoustic data, precluding its use in models designed to 

predict density and abundance (Redfern et al., 2006). However, there is value in developing 

SDMs to incorporate all available data to study spatial distribution patterns of cetaceans, 

especially when acoustic data complement the sighting data (Fleming et al., 2018). 

 Chapter 4 develops methods to incorporate sighting and acoustic data from four line-

transect surveys into SDMs to better understand the spatial patterns of sperm whale groups. This 

work also evaluates the effectiveness of including disparate data types in SDMs. Information 

derived from the type of echolocation clicks present in the acoustic data allowed for sperm whale 

groups to be categorized as foraging or non-foraging to create separate SDMs based on sperm 

whale behavior. Comparing results from SDMs using sighting and acoustic data showed some 

differences in the spatial patterns and significant environmental predictors. The behavioral SDMs 

resulted in substantially different spatial patterns, highlighting areas where the foraging whales 

were more prevalent in the northwestern region of the study area. This study emphasizes the 

value of including all available data when deciphering patterns in distribution since different data 

types provide complementary information about a population.  
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CHAPTER 2  

WHISTLE CLASSIFICATION OF SYMPATRIC FALSE KILLER WHALE 

POPULATIONS IN HAWAIIAN WATERS YIELDS LOW ACCURACY RATES  

 

Barkley, Y., Oleson, E. M., Oswald, J. N. and Franklin, E. C. (2019) ‘Whistle classification of 

sympatric false killer whale populations in Hawaiian waters yields low accuracy rates’, Frontiers 

in Marine Science, 6, pp. 1–27. doi:10.3389/fmars.2019.00645. 

 

Abstract 

Cetaceans are ecologically important marine predators, and designating individuals to distinct 

populations can be challenging. Passive acoustic monitoring provides an approach to classify 

cetaceans to populations using their vocalizations. In the Hawaiian Archipelago, three 

genetically distinct, sympatric false killer whale (Pseudorca crassidens) populations coexist: a 

broadly distributed pelagic population and two island-associated populations, an endangered 

main Hawaiian Islands (MHI) population and a Northwestern Hawaiian Islands (NWHI) 

population. The mechanisms that sustain the genetic separation between these overlapping 

populations are unknown but previous studies suggest that the acoustic diversity between 

populations may correspond to genetic differences. Here, we investigated whether false killer 

whale whistles could be correctly classified to population based on their characteristics to serve 

as a method of identifying populations when genetic or photographic-identification data are 

unavailable. Acoustic data were collected during line-transect surveys using towed hydrophone 

arrays. We measured 50 time and frequency parameters from whistles in 16 false killer whale 

encounters identified to population and used those measures to train and test random forest 

classification models. Random forest models that included three populations correctly classified 

42% of individual whistles overall and resulted in a low kappa coefficient, κ = 0.15, indicating 

low agreement between models and the true population. Whistles from the MHI population 

showed the highest correct classification rate (52%) compared to pelagic and NWHI whistles 

(42% and 36%, respectively). Pairwise random forest models classifying pelagic and MHI 

whistles proved slightly more accurate (62% accuracy, κ = 0.24), though a similar pelagic-NWHI 

model did not (56% accuracy, κ = 0.12).  Results suggest that the time-frequency whistle 

characteristics are not suitable to confidently classify encounters to a specific false killer whale 
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population, although certain features of whistles produced by the endangered MHI population 

allow for overall higher classification accuracy. Inclusion of other vocalization types, such as 

echolocation clicks, and alternative whistle variables may improve correct classification success 

for these sympatric populations. 

2.1 Introduction 

Cetaceans are top predators widely distributed throughout the world’s oceans and can play 

specific roles in maintaining ecosystem function and structure due to their higher trophic level 

(Estes et al., 1998; Roman and McCarthy, 2010; Roman et al., 2014). Changes to their 

abundance and distributions have cascading effects that affect complex interactions between 

multiple trophic levels within the oceanic food web (Heithaus et al., 2008; Baum and Worm, 

2009; Estes et al., 2011; Kiszka et al., 2015). Conservation and management efforts for 

cetaceans are complicated by the inherent challenges associated with studying animals that live 

primarily underwater. Most statistical analyses for estimating cetacean density, abundance, and 

distribution only include data collected by visual observers (Buckland et al., 2001; Durban et al., 

2005; Palacios et al., 2013; Urian et al., 2015; Bradford et al., 2017). Visual observations 

contribute valuable information about cetacean distribution, abundance, and population structure, 

but poor weather conditions, lack of daylight, and high sea state can limit their effectiveness 

(Barlow et al., 2001; Barlow, 2015). Some species are also missed by visual observers due to 

long dive periods or cryptic surface behavior, which then biases the statistical results (Buckland, 

2004). 

Fortunately, various research tools have emerged to improve empirical data collection for 

cetaceans, such as unmanned aerial vehicles (UAVs; Aniceto et al., 2018; Torres et al., 2018), 

satellite and multisensory tags (Woodworth et al., 2012; Citta et al., 2017), and passive acoustic 

monitoring (PAM; Mellinger et al., 2007; Van Parijs et al., 2009; Bittle and Duncan, 2013). 

PAM methods are complementary to visual observer methods during shipboard line-transect 

surveys (Evans and Hammond, 2004; Barlow and Taylor, 2005; Rankin, et al., 2008). and do not 

depend on weather or daylight, nor do they require direct interactions with the animals. Current 

PAM technology can record all frequencies of known cetacean vocalizations, offering an 

alternative method for assessing cetacean biodiversity, distribution and occurrence patterns, and 

behavior.  
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Acoustic-based detection and classification methods continue to improve for many 

cetacean species (Charif and Clark, 2009; Delarue et al., 2009; Roch et al., 2011; Baumann-

Pickering et al., 2013; Rankin et al., 2017). Many dolphin species can be identified based on 

characteristics of their whistle and click vocalizations, and in some cases, population-level 

differences are evident (Rendell et al., 1999; Oswald et al., 2007; Soldevilla et al., 2008; Gannier 

et al., 2010; Azzolin et al., 2014; Baumann-Pickering et al., 2015). For example, dolphin 

whistles vary geographically in many species, including striped dolphins (Stenella coeruleoalba), 

short-beaked common dolphins (Delphinus delphis), Guiana dolphins (Sotalia guianensis), 

common bottlenose dolphins (Tursiops truncatus), and Indo-Pacific bottlenose dolphins 

(Tursiops aduncas) with variation found in duration, number of contour inflections points, and 

the beginning or maximum frequency of whistles (Morisaka et al., 2005; Rossi-Santos and 

Podos, 2006; May-Collado and Wartzok, 2008; Azzolin et al., 2013; Papale et al., 2013). Killer 

whales (Orcinus orca) in the temperate coastal waters of the eastern North Pacific have 

sympatric ecotypes with corresponding differences in vocal repertoires between social groups 

(Ford, 1991; Yurk et al., 2002; Saulitis et al., 2005; Deecke et al., 2010; Riesch and Deecke, 

2011). Methods to acoustically distinguish reproductively and socially isolated sympatric 

dolphin populations, such as killer whales, are useful for assessing the population status of these 

highly mobile marine predators. Differentiation in dolphin whistle characteristics between and 

within dolphin populations suggest fine-scale adaptations may be driven by different context-

specific factors, such as environmental conditions, behavioral states, group composition, or 

ambient noise levels (Norris et al., 1994; Nowacek, 2005; Oswald et al., 2008; Henderson et al., 

2012).  

False killer whales, Pseudorca crassidens, (Owen, 1846) are a large, highly social 

dolphin found throughout tropical and semi-tropical waters. In the Hawaiian Archipelago, three 

genetically differentiated populations of false killer whales are recognized and managed, 

including a pelagic population dispersed throughout offshore waters, an insular population 

associated with the Northwestern Hawaiian Islands (NWHI), and an endangered insular 

population associated with the main Hawaiian Islands (MHI) (Baird et al., 2008; Chivers et al., 

2010; Baird, Oleson, et al., 2013; Martien et al., 2014). Abundance estimates for the pelagic, 

NWHI, and MHI populations indicate population sizes of 1,540, 617, and 167 individuals, 

respectively (Bradford et al., 2015, 2018). Several years of photo-identification data coupled 
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with genetic analyses and telemetry data from satellite-tagged individuals suggest the 

populations are demographically independent and do not readily interbreed despite overlapping 

habitat use (Baird et al., 2010; Martien et al., 2014; Baird, 2016), including areas where the 

pelagic population overlaps with both island-associated populations and an offshore area near 

Kauai where all three populations overlap (Bradford et al., 2015). Additionally, individuals from 

the MHI population associate at a finer scale in five social clusters that also overlap in their 

habitat ranges with some genetic differentiation (Baird et al., 2012; Martien et al., 2014; pers. 

comm. R. Baird, October 12, 2018). The mechanisms maintaining the separation between and 

within these disparate, yet overlapping, populations are unknown.  

The three Hawaiian false killer whale populations face threats from multiple human 

activities, including fisheries interactions (Shallenberger, 1981; Nitta and Henderson, 1993; 

Baird and Gorgone, 2005; Forney et al., 2011). False killer whales primarily feed on fish and 

squid, and many of the same fish species are also targeted by Hawaii-based fisheries (Baird, 

2009, 2016). Interactions between the longline and other hook-and-line fisheries and Hawaii’s 

false killer whales have been documented for decades and led to death or serious injuries of 

individuals incidentally hooked or entangled (Baird and Gorgone, 2005; Gilman et al., 2006; 

Baird et al., 2014; Bradford and Forney, 2014; Bradford and Lyman, 2019). The currently 

estimated ranges of all three of the Hawaiian populations overlap the commercial longline 

fisheries and recreational fisheries (Bradford et al., 2015; Bayless et al., 2017). As long as the 

Hawaii-based fisheries continue to target the same fish species as false killer whales and the full 

ranges of the false killer whale populations are uncertain, these marine predators remain at risk.  

Because of human-caused threats to this species, and given the endangered status of the 

MHI population (Oleson et al., 2010), it is critical to track false killer whale abundance in 

Hawaiian waters at the population level. False killer whales are primarily monitored by 

collecting abundance and distribution data during shipboard visual and acoustic line-transect 

surveys but require genetic samples and photo-identification data to confirm the population 

identity of sighted individuals, data which are often unavailable due to the challenges inherent to 

sampling cetaceans. Hawaiian false killer whales are particularly challenging to study due to 

their low densities, dispersed subgrouping behavior, and tendency to approach research vessels 

from behind (Bradford et al., 2014). Fortunately, they are vocally active, commonly detected 

using PAM methods during line-transect surveys (Barlow and Rankin, 2007; Bradford et al., 
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2014) and their whistles can be classified correctly to species with a high level of certainty 

compared to other dolphin species (Oswald et al., 2007; Barkley et al., 2011). No studies have 

examined and compared the characteristics of each Hawaiian false killer whale population’s 

whistle repertoire. If population-level differences exist between the whistles of the different 

populations, PAM could provide a method for determining their abundance, ranges, and 

occurrence patterns. 

 In this study, we examine the variation in whistle characteristics between and within the 

three Hawaiian Islands false killer whale populations and build classification models utilizing 

random forest (RF) classification methods (Breiman, 2001; Liaw and Wiener, 2002). Advancing 

PAM methods to identify populations of marine predators enhances our ability to address more 

complex research questions to further understand the distributions and ecological roles of 

cetacean populations for more robust management and conservation (Fleming et al., 2018; von 

Benda-Beckmann et al., 2018). 

2.2 Methods 

2.2.1 Data Collection 

Acoustic recordings and visual sighting data were collected during several line-transect 

cetacean abundance surveys conducted by the Pacific Islands Fisheries Science Center (PIFSC) 

of the National Oceanic and Atmospheric Administration (NOAA) aboard the NOAA Ship 

Oscar Elton Sette in 2012, 2013, and 2016. This study also included data from surveys organized 

by PIFSC and the NOAA Southwest Fisheries Science Center (SWFSC) in 2010 and 2017. All 

efforts used consistent protocols to search for cetaceans and collect sighting data, methods 

developed by SWFSC in the 1980s (Kinzey et al., 2000; Bradford et al., 2017). In brief, three 

marine mammal observers searched for cetaceans 180º forward of the ship from the flying 

bridge. The port and starboard observers used 25 × 150 binoculars and the third observer in the 

center searched with unaided eyes or 7× binoculars and acted as the data recorder. When 

cetaceans were sighted within 5.6 km (3 nmi) of the transect line, the ship diverted from the 

transect line to estimate group size and identify the species present. A small boat was launched 

on some cetacean groups to collect photo-identification images, biopsy samples, and deploy 

satellite telemetry tags when possible.  
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Continuous acoustic recordings were collected during daylight hours using custom-built 

hydrophone arrays towed at approximately 4–10 m deep, 300 m behind the ship while traveling 

at 18.5 km/h (10 kt). Trained acousticians monitored the hydrophones aurally with headphones 

and visually using spectrographic software (ISHMAEL, Mellinger, 2002; PAMGuard, Gillespie 

et al., 2008). When cetacean vocalizations were detected, a phone-pair bearing algorithm in 

ISHMAEL or PAMGuard was used to calculate the direction of the sound source relative to the 

bow of the ship. These bearings were plotted using a mapping software with a GPS interface, 

either Whaltrak or PAMGuard, and target motion analysis was used to localize the animals based 

on the convergence of plotted bearings with left/right ambiguity. The ambiguity in the acoustic 

location estimate was often resolved either by turning the ship or matching the bearings to an 

associated sighting by the visual observers (Rankin, et al., 2008). Each survey used a different 

array of hydrophones made up of 4–7 hydrophone elements from various manufacturers, but all 

had a flat frequency response from 2kHz to at least 40 kHz and acoustic data were digitized with 

sampling rates of 192 kHz or 500 kHz, providing sufficient bandwidth for capturing dolphin 

whistles in their entirety (Table 2.1). 
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Table 2.1.  Specifications of towed hydrophone array data collected during each survey. 

 

  

HICEAS 2010 

(PIFSC/SWFSC) 

PICEAS 2012 

(PIFSC) 

PACES 2013 

(PIFSC) 

HITEC 2016  

(PIFSC) 

HICEAS 2017 

(PIFSC/SWFSC) 

NOAA ship & 

Sail Dates 

Oscar Elton Sette: 

September 2 – 

October 29, 2010 Oscar Elton 

Sette: April 23 –  

May 17, 2012 

Oscar Elton 

Sette: May 7 

–  

June 5, 2013 

Oscar Elton 

Sette: June 28 –  

July 27, 2016 

Oscar Elton Sette: 

July 6 –     

October 10, 2017 

McArthur II:                    

August 13 – 

December 1, 2010 

Reuben Lasker:            

August 17 – 

December 1, 2017 

Total 

Acoustic 

Effort (hours) 

371 
263 293 350 

857 

1074 886 

Population 

recorded Pelagic, NWHI Pelagic Pelagic MHI MHI 

Hydrophone EDO EC65 EDO EC65 APC 42-1021 HTI-96-MIN HTI-96-MIN 

Hydrophone 

flat response 

range 2–40 kHz 2–40 kHz 2–40 kHz 2–85 kHz 2–85 kHz 

A/D converter MOTU mK3 MOTU mK3 MOTU mK3 

SA 

Instrumentation 

SAIL DAQ 

SA 

Instrumentation 

SAIL DAQ 

Sampling rate 192 kHz 192 kHz 192 kHz 500 kHz 500 kHz 

Recorder bit-

depth 

/resolution 16-bit 16-bit 16-bit 16-bit 16-bit 

Pre-amplifier 

flat response 

range > 2 kHz > 2 kHz > 2 kHz > 2 kHz 2–50 kHz 

High pass 

filter 1.5 kHz 1.5 kHz 1.5 kHz 1.5 kHz 1.5 kHz 

 

A two-phase protocol specific to false killer whale sightings and acoustic detections was 

developed to reduce bias in abundance estimates introduced by their subgrouping behavior 

(Bradford et al., 2014; Yano et al., 2018). All acoustic recordings included in this analysis were 

collected during the first phase, when the ship traveled in a straight line through the entire false 

killer whale group. Visual observers estimated the number of individuals in the group (when 

possible), their initial behavior, and identified the group to the level of species and population 

(pelagic, NWHI, MHI) using photo-identification analysis, genetic analysis, and/or satellite 

telemetry data. 
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2.2.2 Whistle Selection and Measurement 

Acoustic recordings of false killer whales were organized into acoustic encounters, 

defined as the total length of recording time during the first phase of the associated false killer 

whale sighting. Recordings were decimated to 192 kHz to maintain consistency in measurements 

for all surveys. An equal subset of whistles from each acoustic encounter was randomly selected 

to avoid oversampling individuals and obtain a representative sample of whistle characteristics 

across the populations. The number of whistles selected for each subset was determined by 

considering prior whistle classification studies in which total selected whistles ranged between 

35 and 811 whistles per acoustic encounter (Bazúa-Durán and Au, 2004; Oswald et al., 2007; 

May-Collado and Wartzok, 2008) and the constraints of this data set. Initially, we selected 100 

whistles per encounter based on the acoustic encounter with the shortest duration (3540 s), which 

equaled approximately one whistle every 35 s. Selected whistles had signal-to-noise ratios 

ranging from 0.5 to 8.8 dB and all had clearly visible continuous contours and distinct start and 

end frequencies for accurate measurement of whistle variables. The recordings were partitioned 

into 100 equal time increments (in seconds) and the first clear whistle was selected from a 

spectrogram of each time increment using Raven Pro (4096 FFT, Hann window, 50% overlap, 

version 1.5; Bioacoustics Research Program, 2017). If a time increment did not include whistles, 

a whistle was chosen from a different, randomly selected, time increment. Fifty additional 

whistles were included from randomly selected time increments to increase the sample size for 

each acoustic encounter.  

After whistles were selected and annotated using Raven Pro, whistle contours were 

manually traced from spectrograms (4096 FFT, Hann window, 50% overlap) using the Real-time 

Odontocete Call Classification Algorithm (ROCCA) module (Oswald and Oswald, 2013) within 

PAMGuard (version 1.15.1; Gillespie et al., 2008). ROCCA contains several semi-automated 

whistle classifiers, including one for eight delphinid species recorded in the eastern tropical 

Pacific Ocean with particularly high accuracy for false killer whales (Barkley et al., 2011). 

ROCCA automatically measures 50 time and frequency measurements from traced whistle 

contours, which can be used in other analyses (Table 2.2; Oswald, 2013). 
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Table 2.2.  Fifty time and frequency whistle variables measured by the Real-Time Odontocete 

Call Classification Algorithm (ROCCA) were considered in the random forest models. 

 

Variable Name Description Units Type 

MaxFreq maximum frequency of whistle Hertz continuous 

MinFreq minimum frequency Hertz continuous 

Duration duration of whistle in time seconds continuous 

BegFreq 
frequency at the beginning of the 

whistle 
Hertz continuous 

EndFreq frequency at the end of the whistle Hertz continuous 

FreqRange 
frequency range for the entire 

whistle 
Hertz continuous 

MeanDC 
mean duty cycle (proportion of 

time signal 'on' vs 'off') 
seconds continuous 

StdDevDC 
standard deviation of the duty 

cycle 
seconds continuous 

MeanFreq mean frequency of whistle Hertz continuous 

StdDevFreq 
standard deviation of the 

frequency 
Hertz continuous 

MedFreq median of the frequency Hertz continuous 

CenterFreq 
frequency at the center of the 

whistle 
Hertz continuous 

FreqRelBW 
frequency of the relative 

bandwidth  
Hertz continuous 

MaxMinRatio 
ratio of the max and min 

frequencies 
NA continuous 

BegEndRatioFreq 
ratio of the beginning and end 

frequencies 
NA continuous 

QuarterFreq1 
frequency of the first quarter of 

the whistle 
Hertz continuous 

QuarterFreq2 
frequency of the second quarter of 

the whistle 
Hertz continuous 

QuarterFreq3 
frequency of the third quarter of 

the whistle 
Hertz continuous 

FreqSpread frequency spread Hertz continuous 
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Table 2.2.  (Continued) Fifty time and frequency whistle variables measured by the Real-Time 

Odontocete Call Classification Algorithm (ROCCA) were considered in the random forest 

models. 

 

CoeffFreqMod 

coefficient of frequency 

modulation: take 20 frequency 

measurements equally spaced in 

time, then subtract each frequency 

value from the one before it.  

COFM is the sum of the absolute 

values of these differences, all 

divided by 10000 (McCowan and 

Reiss, 1995) 

NA continuous 

StepsUpFreq 
number of steps that have 

increasing frequency 
NA count 

StepsDwnFreq 
number of steps that have 

decreasing frequency 
NA count 

StepsTotal total number of steps NA count 

MeanSlope 

frequency of overall mean slope 

calculated every three contour 

points 

Hertz continuous 

MeanAbsSlope 

frequency of absolute mean slope 

calculated every three contour 

points 

Hertz continuous 

MeanPosSlope 

frequency of mean positive slope 

calculated every three contour 

points 

Hertz continuous 

MeanNegSlope 

frequency of mean negative slope 

calculated every three contour 

points 

Hertz continuous 

PosNegSlopeRatio 
ratio of positive and negative 

mean slope 
Hertz continuous 

BegSwpFreq 
frequency of the beginning of the 

sweep 
Hertz continuous 

BegUpFreq frequency as slope begins to go up 

1 = beginning slope is 

positive, 0 = 

beginning slope is 

negative 

Binary 

MeanNegSlope 

frequency of mean negative slope 

calculated every three contour 

points 

Hertz continuous 

PosNegSlopeRatio 
ratio of positive and negative 

mean slope 
Hertz continuous 
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Table 2.2.  (Continued) Fifty time and frequency whistle variables measured by the Real-Time 

Odontocete Call Classification Algorithm (ROCCA) were considered in the random forest 

models. 

 

BegSwpFreq 
frequency of the beginning of the 

sweep 
Hertz continuous 

BegUpFreq frequency as slope begins to go up 

1 = beginning slope is 

positive, 0 = 

beginning slope is 

negative 

Binary 

BegDwnFreq 
frequency as slope begins to go 

down 

1 = beginning slope is 

positive, 0 = 

beginning slope is 

negative 

binary 

EndSwpFreq frequency of the end of the sweep 

1 = ending slope is 

positive, –1 = ending 

slope is negative, 0 = 

ending slope is 0 

categorical 

UpEndFreq frequency of the up end 

1 = beginning slope is 

positive, 0 = 

beginning slope is 

negative 

binary 

DownEndFreq frequency of the down end 

1 = beginning slope is 

positive, 0 = 

beginning slope is 

negative 

binary 

NumInflPosToNeg 

number of inflection points that go 

from positive slope to negative 

slope 

NA count 

NumInflNegToPos 

number of inflection points that go 

from negative slope to positive 

slope 

NA count 
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2.2.3 Model Configuration 

The ROCCA whistle measurements were used as the predictor variables in RF 

classification models  (Breiman, 2001; Liaw and Wiener, 2002) to test whether the three false 

killer whale populations could be distinguished based on their whistles. The RF algorithm is a 

non-parametric statistical method capable of modeling complex interactions among ordinal and 

nominal predictor variables (Cutler et al., 2007). The RF models are an ensemble of decision 

trees designed to recursively partition data based on the values of the predictor variables (e.g., 

whistle measurements). Decision trees are grown from a bootstrap sample of the model data with 

approximately 1/3 of the data omitted as the Out-of-Bag (OOB) sample for cross-validating the 

classification accuracy of the model (Efron and Tibshirani, 1997). At each node, predictor 

variables are selected from a random subset of the predictor variables to split the data into the 

most homogeneous daughter nodes until the trees are grown to their maximum depth. Data are 

classified to a target variable (e.g., population) based on the majority vote of the predictions of 

all trees. The output of RF models includes variable importance measures, a ranking of the 

predictor variables based on their importance in predicting the outcome. We calculated variable 

importance as the mean decrease in accuracy by permuting each variable and comparing the 

OOB error rates of the model before and after permutation. Here, RF classification models were 

developed in the R programming environment (version 3.5.2;  R Core Team, 2018) using the 

randomForest package (version 4.6-14; Liaw and Wiener, 2002). 

We developed two RF model configurations to classify the whistle measurement data: 

one configuration incorporated all false killer whale populations (RF_PNM) and the second 

configuration was composed of pairwise models incorporating only two populations. The 

pairwise configurations only applied to regions of the archipelago assumed to be inhabited by 

two of the three populations, resulting in two pairwise RF models: one for the pelagic and insular 

northwest Hawaiian populations (RF_PN) and the other for the pelagic and insular main 

Hawaiian populations (RF_PM). We assumed that no region existed in the archipelago inhabited 

by only the insular MHI and insular NWHI populations.  

Figure 2.1 provides a schematic diagram detailing the sampling and processing 

procedures of the whistle measurement data to configure each RF model. For each RF model, an 

equal number of acoustic encounters (including all 150 whistles) were randomly selected from 
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each population. Next, we performed a correlation analysis on the data to measure the linear 

dependence between pairs of whistle variables, removing variables if the Pearson’s correlation 

coefficient exceeded ±0.8. Typically, model overfitting due to correlation does not occur with 

RFs (Cutler et al., 2012). However, studies have shown that correlated variables strongly bias the 

ranking of important variables, making it difficult to interpret the results (Strobl et al., 2008; 

Gregorutti et al., 2017). The subset of whistle data with uncorrelated variables was then 

partitioned by acoustic encounter into independent training and test data sets for each population, 

with 75% of the acoustic encounters included in the training data and 25% included in the test 

data. The RF model configurations include two parameters that can be adjusted to achieve the 

highest accuracy rate from the model training data: the number of variables randomly selected at 

each node (mtry) and the number of trees in the forest (ntree). The number of variables was set to 

the default (the square root of the total number of whistle measurements) and the number of trees 

was optimized. Optimized RF models sampled 100 different combinations of acoustic encounters 

(with replacement) to train and test the model configurations and obtain average classification 

rates. 

 
 

Figure 2.1.  Schematic diagram outlining the modelling approach for sub-sampling the whistle 

measurement data for each random forest model configuration. This workflow was performed 

100 times for each model configuration. 
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The RF models used the whistle measurement data to classify individual whistles to a 

population to obtain overall classification rates. Then, since the MHI population associates in 

social clusters and any form of stable social groups are unconfirmed for the pelagic and NWHI 

populations, we also examined the variability of whistle measurements within populations in two 

ways. First, whistles were classified to a given acoustic encounter instead of a population by 

creating separate RFs per population using the same steps described for classifying individual 

whistles to a population. Second, acoustic encounters were classified to a population based on 

the majority of individual whistle classifications within encounters. 

2.2.4 Model Evaluation 

Classification results for all RF models were summarized in confusion matrices, which 

included the proportion of correctly and incorrectly classified whistles by population. Cohen’s 

Kappa statistic, κ, was calculated to evaluate model performance by comparing the classification 

results of the test data (observed accuracy) to random chance (expected accuracy) (Cohen, 1960). 

The strength of agreement for κ coefficients is outlined by Landis and Koch (1977) as the 

following: 0.01–0.20 slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–

100 nearly perfect. This is a statistic originally used to measure interrater reliability, but is also 

commonly used for evaluating results of machine learning classification methods as a more 

informative metric as it accounts for random chance versus only reporting the observed accuracy 

(Titus et al., 1984; Garzón et al., 2006; Cutler et al., 2007; García et al., 2009). 

Variable importance was measured using the mean decrease in accuracy (MDA) 

calculated by permuting each variable in the RF model and comparing OOB accuracies for 

models with and without permutation. We summarized variable importance using the minimum, 

maximum, and median MDAs for the 10 most important variables from all iterations of each 

model configuration to better understand which variables contributed the most to the 

classification results. Pairwise Kolmogorov-Smirnov tests compared cumulative frequency 

distributions of the most important whistle variables to examine which whistle characteristics 

significantly differed between populations. 
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2.3 Results 

A total of 40.7 hours of recordings were analyzed from 16 acoustic encounters of false 

killer whales identified to a population using visual observer data, including 8 encounters for the 

pelagic population and 4 encounters for each of the NWHI and MHI populations (Figure 2.2). 

Initial behaviors of individuals within encounters varied primarily between foraging, traveling, 

porpoising, and bow-riding, with no obvious dominant behavior. Photo-identification analyses 

found a total of 17 individuals resighted between the acoustic encounters, resulting in 1 pelagic 

animal resighted between P1 and P7, 10 NWHI animals resighted primarily between N1 and N4, 

and 6 MHI animals from M1 resighted in M2 and/or M4.  

 

 

 

Figure 2.2.  Map of false killer whale acoustic encounters identified to population based on 

photo-identification data, genetic samples, or satellite telemetry data. Gray dashed line indicates 

boundary of study area (Hawaiian Exclusive Economic Zone) and gray solid lines indicate 

transect lines from all line-transect surveys. ‘P’ denotes the pelagic population, ‘N’ denotes the 

Northwestern Hawaiian Island population, ‘M’ denotes the main Hawaiian Island population. 
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A total of 2400 whistles were manually extracted using ROCCA, including 1200 whistles 

for the pelagic population, 600 whistles for the NWHI population, and 600 whistles for the MHI 

population. Table 2.3 summarizes the metadata for each acoustic encounter. Four acoustic 

encounters were sampled from each population for each model iteration as that was the number 

of acoustic encounters available for the NWHI and MHI populations. Three acoustic encounters 

from each population (150 whistles each) were allocated to a training data set with one acoustic 

encounter allocated to the test data set. For the 100 models of RF_PNM, the total training data 

set included 135,000 whistles (150 whistles × 3 acoustic encounters × 3 populations × 100 model 

runs) and the total test data set included 45,000 whistles (150 whistles × 1 acoustic encounter × 3 

populations × 100 model runs). The training data for each pairwise model totaled 90,000 whistles 

(150 whistles × 3 acoustic encounters × 2 populations × 100 model runs) with the test data 

totaling 30,000 whistles (150 whistles × 1 acoustic encounter × 2 populations × 100 model runs). 
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Table 2.3.  Summary table listing information for each acoustic encounter, including population, acoustic encounter ID (‘P’ denotes 

the pelagic population, ‘N’ denotes the Northwestern Hawaiian Island population, ‘M’ denotes the main Hawaiian Island population), 

social cluster (when applicable; pers. comm. R. Baird), date, time (GMT), survey, group size (the geometric mean of observer best 

estimates), the acoustic and visual sighting survey IDs, and total duration of the recordings analyzed (s). The total number of whistles 

measured using ROCCA was equal for all acoustic encounters (n = 150). 

 

Population ID 

Social 

Cluster Date GMT Survey 

Group 

Size 

Acoustic 

ID 

Sighting 

ID 

Total 

Duration 

(s) 

Initial Behavior 

 

Pelagic P1 NA 9/2/2010 2:39 HICEAS 2010 36 71 35 11795 travel 

Pelagic P2 NA 9/5/2010 17:23 HICEAS 2010 10.3 83 47 7278 porpoise, breach 

Pelagic P3 NA 9/7/2010 19:47 HICEAS 2010 32 98 61 9683 porpoise 

Pelagic P4 NA 9/10/2010 21:25 HICEAS 2010 18.3 116 74 15068 porpoise 

Pelagic P5 NA 11/10/2010 21:38 HICEAS  2010 51 325 241 7635 travel, forage 

Pelagic P6 NA 5/16/2012 22:59 PICEAS 2012 18 186 76 9925 travel 

Pelagic P7 NA 5/15/2013 0:55 PACES 2013 42 39 20 15484 travel 

Pelagic P8 NA 5/27/2013 1:35 PACES 2013 27 88 59 13184 mill, forage 

NWHI N1 NA 9/26/2010 1:12 HICEAS2010 52 33 86 9420 forage, breach 

NWHI N2 NA 10/8/2010 3:16 HICEAS 2010 13.8 224 140 13601 porpoise 

NWHI N3 NA 10/20/2010 2:29 HICEAS 2010 8.8 291 200 4448 travel 

NWHI N4 NA 10/22/2010 21:25 HICEAS 2010 20.4 299 206 5312 travel 

MHI M1 1, 3, 5 7/5/2016 1:45 HITEC 2016 48 10 18 7200 travel, breach 

MHI M2 2, 3, 5 10/8/2017 20:12 HICEAS 2017 NA 338 178 5200 rest 

MHI M3 4 10/9/2017 23:15 HICEAS 2017 15 214 86 7680 travel, forage  

MHI M4 3, 5 11/17/2017 18:31 HICEAS 2017 43 331 136 3540 travel, forage 
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The final combination of optimized parameter values for each model included the square 

root of total uncorrelated variables (~ 5) for mtry and 501–5001 decision trees for ntree for all 

configurations. The resulting accuracy rates for each optimized model are presented in Table 2.4. 

The highest accuracy rates across 100 models of RF_PNM ranged between 0.51 to 0.63, with a 

mean of 0.56. Both pairwise models resulted in higher accuracy rates. RF_PN ranged between 

0.68 and 0.69, with a mean of 0.68 and RF_PM showed the highest accuracy rates of 0.68–0.75, 

with a mean of 0.72.  

 

Table 2.4.  Mean accuracy rates (with variances) of the training data for each model 

configuration. Accuracy rates are presented for individual populations across all models. 

 

 
Mean Accuracy Rates 

  RF_PNM RF_PN RF_PM 

Pelagic 0.53 (0.002) 0.68 (0.001) 0.68 (0.001) 

NWHI 0.51 (0.002) 0.69 (0.001) --- 

MHI 0.63 (0.001) --- 0.75 (0.001) 

Overall 0.56 (0.001) 0.68 (0.001) 0.72 (0.001) 

 

Classification results of test data for all model configurations were organized into 

separate confusion matrices. RF_PNM resulted in a mean observed accuracy of 0.42 and κ = 

0.15 when compared to the expected accuracy of 0.33. According to the suggested kappa 

coefficient scale, the classification results of the test data for RF_PNM are in ‘slight’ agreement 

with the true population of the test data. The confusion matrix (Table 2.5) also provides 

information about how the populations were misclassified - the pelagic whistles where mostly 

misclassified to the NWHI population, and the NWHI whistles were misclassified evenly 

between the pelagic and MHI population. The MHI whistles had the highest correct classification 

rate with misclassifications spread evenly between the pelagic and NWHI populations. 

Table 2.6 shows separate confusion matrices for both pairwise models. RF_PN resulted 

in a mean observed accuracy of 0.56 and κ = 0.12 calculated using an expected accuracy of 0.5. 

The mean observed accuracy for RF_PM equaled 0.62 and κ = 0.24. The low kappa coefficient 

for RF_PN indicates low agreement between classification results of the test data with the true 
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population while the higher kappa coefficient for RF_PM suggests fair agreement. Correct 

classification rates of the pelagic population were similar between pairwise models but improved 

compared to RF_PNM results (by ~15%), which we expected since fewer populations were 

included in the pairwise models. The MHI population consistently showed the highest correct 

classification results for all model configurations while classification results for pelagic and 

NWHI whistles performed similarly throughout all models relative to the MHI population. 

 

Table 2.5.  Confusion matrix displaying classification results for test data (with variances) using 

the RF_PNM model. The proportion of whistles correctly classified are in bold. A total of 150 

whistles were tested from three populations for 100 models (n = 45,000).  
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Pelagic 0.42 (0.008) 0.26 (0.009) 0.32 (0.01) 

NWHI 0.31 (0.007) 0.36 (0.007) 0.33 (0.008) 

MHI 0.25 (0.004) 0.23 (0.011) 0.52 (0.017) 

 

 

Table 2.6.  Confusion matrices displaying classification results for populations using the pairwise 

models, RF_PN and RF_PM. The proportion of whistles correctly classified are in bold. A total of 

150 whistles were tested from two populations for the 100 models (n = 30,000). 
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  PREDICTED POPULATION 

    Pelagic NWHI 

R
F

_
P

N
 

Pelagic 0.57 (0.009) 0.43 

NWHI 0.44 0.56 (0.005) 

    Pelagic MHI 
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Pelagic 0.58 (0.014) 0.42 

MHI 0.34 0.66 (0.009) 
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This study also aimed to better understand the variability in whistle measurements within 

populations by classifying whistles to acoustic encounters instead of populations (Table 2.7). 

Since our data set included an unequal number of acoustic encounters per population (Table 2.3), 

we built separate RFs for each population. We selected the training and test whistle data using 

the same 75%/25% split and included equal proportions of whistles from each acoustic 

encounter. Pelagic whistles were classified to pelagic encounters with a mean observed accuracy 

of 0.31 (κ = 0.21) while whistles from the NWHI and MHI populations received higher mean 

accuracies of 0.49 (κ = 0.32) and 0.45 (κ = 0.26), respectively. These results suggest that the 

whistles from the MHI and NWHI acoustic encounters maintain certain time-frequency 

characteristics that allow them to be classified to the correct acoustic encounter more often than 

pelagic whistles.  

 

Table 2.7.  Mean observed accuracies and Kappa coefficients for acoustic encounter 

classification models. The total number of whistles included in the test data from all model 

iterations for each population are listed under n. 

 

 Acoustic Encounter Classification 

 Population 

Mean 

Observed 

Accuracy Kappa 

Total 

Acoustic 

Encounters n 

Pelagic 0.31 0.21 8 29600 

NWHI 0.46 0.32 4 14800 

MHI 0.45 0.26 4 14800 

 

Acoustic encounters were also classified to a population based on the majority 

classification of individual whistles for each model iteration to examine the variability of 

classification results among acoustic encounters within populations. Table 2.8 provides the 

percentages of correctly classified acoustic encounters for all models. Acoustic encounters of the 

MHI population were classified correctly more frequently than the pelagic and NWHI 

encounters. On average, 87% of MHI encounters were correctly classified across models, with 

the highest average score resulting from the RF_PM model (93%). The averages for the pelagic 

and NWHI acoustic encounters were lower (72% and 63%, respectively). Specific acoustic 

encounters, M1, N1, N2, and P7, showed the lowest scores in the RF-PNM model. Upon 
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inspection of how these encounters were misclassified, we found that M1 classified as NWHI 

67% of the time (7% as MHI), 100% of the N1 encounters classified as MHI, while 70% of the 

N2 encounters classified as pelagic. P7 encounters were always classified as MHI. 

Classifications improved for most acoustic encounters using the pairwise models. 

 

Table 2.8.  Percentage of models in which acoustic encounters were correctly classified based on 

a majority of whistle classifications. The total number of times the model included a given acoustic 

encounter is listed under n. ‘P’ denotes the pelagic population, ‘N’ denotes the Northwestern 

Hawaiian Island population, ‘M’ denotes the main Hawaiian Island population. 

 

 Model RF_PNM RF_PN RF_PM 

Acoustic 

Encounter 

ID n 

Percent 

Correctly 

Classified n 

Percent 

Correctly 

Classified n 

Percent 

Correctly 

Classified 

P1 11 90.9 9 66.7 9 100 

P2 12 75 4 75 4 100 

P3 17 64.7 16 81.3 16 43.8 

P4 12 66.7 14 42.9 14 100 

P5 6 50 17 76.5 17 100 

P6 12 83.3 13 69.2 13 100 

P7 11 0 14 92.9 14 0 

P8 19 73.7 13 100 13 76.9 

N1 17 0 23 82.6 -- -- 

N2 27 29.6 28 64.3 -- -- 

N3 28 71.4 26 100 -- -- 

N4 28 71.4 23 87 -- -- 

M1 27 25.9 -- -- 23 73.9 

M2 20 100 -- -- 28 100 

M3 23 100 -- -- 26 100 

M4 30 100 -- -- 23 100 

 

The important variables from RF classification models of populations were ranked by 

MDA. Whistle variables with a negligible decline in accuracy when permuted received a lower 
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MDA while permuted variables causing a larger decline in accuracy were deemed more 

informative and received a higher measure of MDA. Whistle variables that ranked within the top 

10 important variables (from approximately 26 uncorrelated variables depending on the model) 

were consolidated to assess which whistle variables consistently contributed to the most accurate 

RF models (Figure 2.3). Not all model configurations resulted in the same top 10 important 

variables with 14 variables occurring in the top 10 for all model configurations. Since RF models 

included different numbers of trees and different whistles, variable importance is not directly 

comparable. However, two variables (mean negative slope and third quarter frequency) 

consistently produced the highest median values of MDA for all model configurations. Other 

slope variables (mean slope, percentage of negative slope, and percentage of zero slope) also 

ranked within the top 10 important variables for 75–100% of all models for each configuration.  

 

 
Figure 2.3.  Range of mean decrease accuracies for whistle variables ranked as the 10 most 

important across all model iterations. Higher values of mean decrease in accuracy indicate 

whistle variables that are more important to classification. Whistle variables selected in the top 

10 for only one model iteration are represented as a single dot. 
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Pairwise Kolmogorov-Smirnov tests examined whether the 14 whistle variables deemed 

most important for all model configurations were also significantly different between the 

populations. Results showed that six out of 14 important whistle variables differed significantly 

between all populations, including some slope variables, frequency spread, and the third quarter 

frequency (Figure 2.4). 

 

 
Figure 2.4.  Results of Kolmogorov-Smirnov tests comparing uncorrelated important whistle 

variables between populations. Red dashed line represents α = 0.05. Points to the left of the red 

dashed line indicate whistle variables that are significantly different for a given pairwise 

comparison of populations. 

2.4 Discussion 

The marine environment contains few barriers to the genetic dispersal of cetaceans, yet 

fine-scale genetic differentiation exists for these highly mobile species. For many cetacean 

species, measurable differences in their vocal repertoires are consistent with the genetic 

differentiation between geographically isolated populations and the intricate social structure 

within a population (Rendell et al., 2012; Papale et al., 2014; Van Cise et al., 2018). This study 



 

 

 

 
38 

aimed to develop a whistle classifier to identify whistles from acoustic encounters of Hawaiian 

false killer whales to the population level. Identifying Hawaiian false killer whale populations 

using characteristics of their whistle repertoire could complement other population-specific data 

or provide population identity when other data are unavailable. 

We applied the RF machine learning classification method to analyze whistle 

characteristics of the three false killer whale populations because of its high performance with 

diverse variables, including prior work differentiating dolphin species based on their whistle 

characteristics (Pal, 2005; Cutler et al., 2007; Oswald, 2013; Keen et al., 2014; Li et al., 2016; 

Rankin et al., 2017). Overall, RF classification models poorly differentiated the three populations 

as is evident from the low correct classification rates and low kappa coefficients for each model. 

The pelagic and NWHI whistles were correctly classified at similar rates in both RF_PNM and 

RF_PN models but whistles and acoustic encounters from the MHI population were consistently 

correctly classified at higher rates for all models.  

Previous studies that examined geographic variation in whistle characteristics of allopatric 

populations found significant differences between several variables and achieved classification 

scores significantly higher than expected by chance (May-Collado and Wartzok, 2008; Azzolin 

et al., 2013; Papale et al., 2013). For this study, the populations are sympatric and overlap in part 

of their range. Our results indicated that most whistle variables are similar between these 

populations given that only 6 out of 50 whistle variables significantly differed between all 

populations (Figure 2.3). An additional RF was configured using only these six significantly 

different variables and resulted in even lower classification scores (0.40 overall accuracy, κ = 

0.1) suggesting simplified models do not perform better and that a variety of variables should be 

included in this type of classification model for this species.  

Despite the poor classification performance, our results provide insight into potential 

patterns of whistle characteristics between populations. While each RF model was built using 

balanced training and testing data, the total whistle data set included twice as many pelagic 

whistles and acoustic encounters than the NWHI and MHI populations. The pelagic whistle data 

presumably captured more variability due to behavioral states, group composition, and 

environment. This additional variability may be responsible for the lower classification scores of 

the pelagic whistles. Interestingly, while pairwise RF models improved classification scores for 
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all populations, classification results of pelagic whistles still performed similarly to the NWHI 

whistles despite the disproportionate number of whistles and acoustic encounters.  

False killer whale whistles tend to be lower in frequency and less frequency-modulated 

than most delphinid whistles and have among the highest correct classification rates when other 

delphinid species are included in the classifier (Oswald et al., 2007). However, these whistle 

characteristics may make it difficult to discern the subtle differences between populations using 

the time-frequency measurements commonly implemented in whistle classification analyses. 

Frequency-modulated calls, e.g. whistles, have been categorized into call types to identify 

geographically isolated populations of some odontocetes based on contour shape and time-

frequency characteristics (Saulitis et al., 2005; Van Cise et al., 2017). No attempt was made to 

categorize whistle types for false killer whales since this study was interested in the overall 

classification of all whistles. A cursory look at the whistle data set shows there is potential to 

identify whistle categories, but it is unknown whether this would improve our ability to classify 

the three populations since whistle categories types may share the same magnitude of similarities 

as individual whistles.  

Dolphin whistles are thought to act as a mechanism for group cohesion (Janik and Slater, 

1998). and may differ depending on differences in the physical and social environments (May-

Collado and Wartzok, 2008). Sympatric killer whale populations in the eastern North Pacific 

maintain social cohesion using dialects of stereotyped calls that are highly modulated in 

frequency and amplitude and vary between and within ecotypes (Ford, 1991; Thomsen et al., 

2002; Saulitis et al., 2005; Riesch et al., 2006; Riesch and Deecke, 2011). In contrast, the 

sympatric false killer whale populations in Hawaii produce less frequency-modulated whistles 

overall but can maintain social cohesion between subgroups that can span tens of kilometers 

(Bradford et al., 2014; Baird, 2016). The overlapping ranges of the populations imply that they 

experience similar environments and perhaps optimize their whistle characteristics according to 

the same types of habitat features (such as bathymetry, bottom type, proximity to land or 

seamounts, and upwelling zones), which may explain the similar time-frequency measurements 

found in our data set. 

Characteristics of vocal repertoires have been used as a proxy for defining geographically 

separate and/or ecologically distinct populations, as well as different social groupings within 

populations (Rendell and Whitehead, 2003; Saulitis et al., 2005; Riesch and Deecke, 2011; 
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Rendell et al., 2012; Gero and Whitehead, 2016). Social clusters have been recognized for the 

MHI population from social network analysis of photo-identification data where three main 

clusters and two additional smaller social clusters were identified (Baird et al., 2012). Results 

from classifying whistles to an acoustic encounter instead of a population may reflect the finer-

scale social structuring of the MHI population and suggest that social clusters may also be 

present in the NWHI population given the higher kappa coefficients for both populations (Table 

2.7). Although photo-identification data are limited for the NWHI population, acoustic encounter 

classification results reveal that it may be of value to test whether social structuring exists for this 

island-associated population using the available association data (Baird, et al., 2013).  

Classification results of MHI whistles appeared to be influenced by the social clusters 

present during an acoustic encounter. When acoustic encounters were classified based on the 

majority of whistles for RF_PNM, M1 classified most frequently as ‘NWHI’ while M2, M3, and 

M4 always classified as ‘MHI’ (Table 2.8). Classification of M1 improved dramatically for 

RF_PM since the NWHI population was not included as a possible target variable. M1 was the 

only acoustic encounter containing individuals from Cluster 1. Differences in whistle 

characteristics between false killer whale social clusters have not been examined, nor can we 

with this data set. Some social clusters may have more highly variable whistles, and groups 

containing aggregations of several social clusters may use a different collection of whistles than 

those in single cluster groups (Van Cise et al., 2018). Identifying variability in whistle 

characteristics among social clusters would require encounters with single cluster groups or 

accurate localization of vocalizing individuals matched with photographic data to confirm their 

identity within multi-cluster groups, data not currently available for Hawaiian false killer whale 

populations.  

Several factors affect the vocal repertoire of any species, including behavior, social 

context, environmental factors, and even data collection methods. The challenge is capturing 

enough variability to build a successful classification model that can be applied under a variety 

of circumstances. Whistle quality may influence classification results if they are not 

representative of the species or population. This study included whistles of various quality to 

create a more flexible classifier for real-time and post-process classification since, often, there 

are not enough ‘high quality’ whistles available to confidently classify an encounter. Using 

various levels of whistle quality presumably captures a variety of individuals engaged in 
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different behaviors that may be located at various distances relative to the hydrophones and 

result in a more representative, and perhaps, successful classifier. Future studies may test this 

theory by building separate whistle classifiers based on discrete levels of whistle quality or 

behavioral states. 

Investigating the acoustic classification of whistles for the Hawaiian false killer whale 

populations is an important step in furthering our understanding of this species for better 

management and conservation efforts. While overall whistle classification results from this study 

did not perform well, patterns emerged suggesting characteristics of the endangered MHI 

population’s whistles are more distinguishable and that there may be fine-scale social structure in 

the NWHI population, similar to that seen in the MHI population. Additional whistle data for all 

populations may increase classification performance to differentiate the populations with more 

confidence and allow further investigation into social and population structure as well as how the 

populations remain demographically independent. Future analyses may also incorporate 

characteristics of echolocation clicks to improve classification, hybrid versions of important 

variables (Rankin et al., 2017) or incorporate additional population or behavior variables (social 

cluster, group size, etc.) to better capture variability in whistle context and therefore whistle 

characteristics. Results from this study will inform future acoustic classification analyses for 

sympatric species that share similar traits in their acoustic repertoire and ecology.  
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CHAPTER 3  

MODEL-BASED LOCALIZATION OF DEEP-DIVING CETACEANS USING TOWED 

LINE ARRAY ACOUSTIC DATA 

Abstract 

Passive acoustic monitoring is a standard method for studying cetacean populations to 

inform management and conservation decisions. Line-transect cetacean abundance surveys use 

towed line arrays of hydrophones to collect acoustic data for tracking and localizing vocalizing 

cetaceans. Localization provides perpendicular distance measurements from the array to the 

whales, which are essential for abundance estimation. Uncertainties in the acoustic data occur due 

to hydrophone movement, sound propagation effects, errors in the time of arrival differences, and 

whale depth, but are not accounted for by most two-dimensional localization methods. 

Consequently, location and distance estimates may be biased and create uncertainty in abundance 

estimates, especially for deep-diving cetaceans. Here, we apply a model-based localization 

approach to towed line array data that incorporates sounds propagation effects, accounts for 

sources of error, and localizes in three dimensions. We use simulations to examine the effects of 

various parameters on localization, and find that the true distance of the whale, the trajectory of 

the ship, and whale movement affect location estimates. We demonstrate the localization method 

using real acoustic data of two separate sperm whales. Results of the model-based method include 

three-dimensional estimates of distance and depth with position bounds for each whale. By 

incorporating sources of error and understanding the influences on data collection, this model-

based approach provides a method to address and integrate the inherent uncertainties in the towed 

array data for more robust localization results. 

3.1 Introduction 

Passive acoustic monitoring (PAM) is commonly used to study the ecology and behavior 

of cetacean species using their vocalizations. The role of cetaceans as top predators and 

ecosystem sentinels (Moore, 2008; Bossart, 2011; Hazen et al., 2019) makes it critical to obtain 

baseline data for these species to be able to detect changes in their distributions and abundance 

(Davis et al., 2017; Gibb et al., 2019). Over the past decade, advances in methods to detect and 
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classify cetacean sounds (Bittle and Duncan, 2013) have allowed for PAM data to be 

incorporated into an increasing number of studies that model species distributions and estimate 

abundance of cetacean populations (Marques et al., 2009, 2013; Fleming et al., 2018; Harris et 

al., 2018). Passive acoustic data have also provided important information about cryptic and 

deep-diving cetacean species in the absence of other data types (e.g. visual observations, 

telemetry data) to inform conservation and management decisions (Carlén et al., 2018; Hodge et 

al., 2018; Hildebrand et al., 2019). 

 Localization methods for PAM data vary depending on the application and design of the 

PAM system. Towed line arrays of hydrophones are an example of a mobile PAM system 

commonly used to track and localize vocalizing cetaceans during visual and acoustic line-

transect surveys. The surveys are designed to estimate abundance of cetaceans based on distance 

sampling methods, which normally utilize distances from sighting data to derive the detection 

function (Buckland et al., 2001). The detection function requires accurate measurements of 

distances for reliable abundance estimates.  

The localization of PAM data collected with towed line arrays can also contribute 

distance estimates for cetaceans, including animals at depth missed by visual observers. A 

conventional localization method for towed line arrays includes target motion analysis (TMA). 

The perpendicular distances are measured from the array to the intersection of consecutive 

hyperbolic bearing lines calculated using the time difference of arrival (TDOA) of the signal 

between a pair of hydrophones (Lewis et al., 2007; Rankin, Barlow and Oswald, 2008). In 

theory, this two-dimensional (2D) technique provides an opportunity for acoustic-based 

abundance estimation. However, it operates under assumptions that are frequently violated in 

practice, including the hydrophone positions are perfectly known, sound speed is constant, and 

the vocalizing whales are mostly stationary at the same depth as the array. The perpendicular 

distances estimated with 2D TMA do not account for the three-dimensional environment of the 

whales and the effects of depth when calculating distances. Additionally, errors associated with 

sources of uncertainty, such as inaccuracies in TDOA measurements, hydrophone movement, 

variation in sound speed profiles, or whale movement, are often not considered. 

Deep-diving cetaceans, such as sperm whales and beaked whales, do not conform to the 

assumptions of 2D TMA since they primarily vocalize (echolocate) at depths hundreds of meters 

below the towed line array (Teloni et al., 2008; Schorr et al., 2014). This can result in 
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overestimated perpendicular distances, particularly for whales that are located deeper in the 

water column and closer to the ship. Accounting for the depth in location estimates of these 

deep-diving species may reduce bias in the detection functions and provide more reliable 

abundance estimates. While Barlow and Taylor (2005) found that the depths of sperm whales did 

not significantly affect abundance estimates when using a line array towed at 100 m depth, no 

error estimates were provided and it is unclear whether the same conclusions apply in all 

conditions (e.g.  line arrays towed at shallower depths or in different ocean environments).  

Other studies that localized deep divers using towed line array data incorporated surface 

reflections to overcome the uncertainty introduced by depth. Thode (2004) used surface 

reflections to simultaneously track dive profiles of sperm whales within close range. The method 

required slowly towing a wide-aperture tandem array consisting of two staggered line arrays 

(170-m maximum hydrophone spacing). The slow speeds (~3.7 km/h) allowed the array to sink 

deep enough to accurately identify the reflections of the long-duration, multipulsed echolocation 

clicks (≥ 10 ms; Møhl et al., 2003).  DeAngelis et al. (2017)  estimated the depths of beaked 

whales using surface reflections from PAM data collected with a single short-aperture line array 

(~30 m maximum hydrophone spacing) that was more maneuverable for towing at typical line-

transect survey speeds (~18.5 km/h). Faster towing speeds resulted in an average array depth of 

13 m, which was appropriate for identifying surface reflections of short-duration echolocation 

clicks (≤ 0.8 ms; Baumann-Pickering et al., 2013). Reflections are undeniably useful for 

estimating depths of diving whales (Zimmer et al., 2008) but their presence relies heavily on the 

configuration of the PAM system and the vocal characteristics of the species making it difficult 

to accurately distinguish them in some data sets.  

Model-based localization provides an approach to incorporate sound propagation effects, 

account for the depth of diving cetaceans and incorporate sources of uncertainty to provide error 

estimates. This technique was originally applied to track and localize diving whales using 

widely-spaced bottom-mounted hydrophone arrays (Tiemann et al., 2004; Nosal and Frazer, 

2006). Thode (2005) implemented a model-based approach using a towed tandem array to 

account for sound propagation effects while tracking and localizing sperm whales at close range. 

To our knowledge however, model-based methods have not previously been broadly applied to 

localize PAM data acquired from short-aperture towed line arrays. Instead, 2D TMA continues 

to be the common localization method for this type of PAM data, which is suitable for certain 
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species that are relatively stationary and detected at the same depth as the line array. However, 

assumptions are violated when localizing deep-diving species, and continuing to use 2D TMA 

perpetuates the use of potentially biased distance and location estimates without providing a 

method to quantify error. 

Here we develop a semi-automated localization method that adapts a model-based 

approach to localize sperm whales using PAM data collected with a single short-aperture towed 

line array during line-transect surveys. Our method localizes in three dimensions, incorporates 

sources of uncertainties, accounts for sound propagation effects, and provides position bounds 

for stationary and moving whales. We demonstrate the method in a simulation study to examine 

several parameters that affect localization results. We then implement the method to localize two 

real acoustic encounters of sperm whales and discuss the benefits and limitations of adapting the 

model-based approach to towed line array data.  

 

 

Figure 3.1.  Diagram of the line array towed 300 m behind the NOAA research vessels, NOAA 

Ship Reuben Lasker, at approximately 10 m deep during a cetacean abundance line-transect 

survey in 2017. The line array consisted of two depth sensor (denoted with ‘D’) and two array 

nodes spaced 20 m apart, each housing three hydrophones (black dots) spaced approximately 1 

m apart. 
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3.2 Theory 

3.2.1 Ambiguity Volumes 

Our method modifies the model-based localization methods that have been successfully 

used for fixed hydrophones (Tiemann et al., 2004; Nosal and Frazer, 2007; Gebbie et al., 2015) 

and applies them to acoustic data collected using mobile line arrays (Figure 3.1). Probabilistic 

indicators of source location, known as ambiguity volumes, are constructed by comparing 

measured and modeled TDOAs to estimate the location of the source (i.e. the location at which 

modeled TDOAs best match measured TDOAs is the estimated source location). Modeled 

TDOAs are generated using a sound propagation model to account for depth-dependent sound 

speed (Nosal, 2013). 

For a hydrophone pair, modeled TDOAs are compared to the measured TDOAs to 

compute the ambiguity volumes, 𝑉, where 𝑉 is given by:  

 

𝑉(𝒙) = ∏ 𝑉𝑗(𝒙)𝑗 = ∏ 𝑒
−

1

2𝜎𝑡
2(𝛥𝑡𝑗̅̅ ̅̅ ̅(𝒙)−𝛥𝑡𝑗)2

𝑗   , 
Eq. 3.1 

 

where 𝒙 = (𝑥, 𝑦, 𝑧) is the three-dimensional Cartesian coordinate of the candidate source 

locations,  ∆𝑡𝑗
̅̅ ̅̅ (𝒙) is the modeled TDOA at candidate source location 𝒙, and ∆𝑡𝑗 is the measured 

TDOA. The product in Eq. (1) is over detection number, where the index j corresponds to 

detections from different positions along the ship trackline that are associated with a single whale 

(or closely-spaced group of whales) (Figure 3.2) and 𝑉𝑗 is the individual ambiguity volume 

corresponding to click j. This is a form of TMA whereby a wide baseline system is artificially 

created by moving a short baseline array though the environment. As 𝑉𝑗 are multiplied, areas of 

high value are multiplied, areas of high value that overlap are reinforced resulting in a higher 

value of 𝑉(𝒙) while areas that do not overlap result in lower 𝑉(𝒙) values. The whale position is 

estimated at the position x which maximizes values of 𝑉(𝒙) across the entire space.  
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Figure 3.2.  Cumulative ambiguity volumes (a-f) for detections of simulated echolocation clicks 

from a stationary whale located 1.2 km directly below the transect line (denoted by white 

asterisk). The product of all volumes results in a volume representing all possible location 

estimates for the whale (f). The color scale represents the ambiguity volume values ranging from 

0 (white) as low probability to 1 (black) as high probability. The dotted lines (white or black) 

indicate the trackline traveling in the direction of the arrow. 

 

The overall error is incorporated through sigma, 𝜎𝑡, which includes errors in TDOA, 

model and sound speed profile, hydrophone position, and violated assumptions (such as whale 

movement). We computed conservative error estimates for each source of uncertainty and 

combined them via root sum of squares to calculate 𝜎𝑡 as: 

 

𝜎𝑡 =  √𝜎𝑎
2 + 𝜎𝑏

2 + 𝜎𝑐
2    , Eq. 3.2 

 

where 𝜎𝑎 is the standard deviation in the measured TDOAs, 𝜎𝑏 is the standard deviation due to 

uncertainty in hydrophone position (introduced by hydrophone movement), and 𝜎𝑐 is standard 

deviation due to sound speed uncertainty. For the simulations and data presented below we used 

𝜎𝑎 = 0.001s, 𝜎𝑏 = 0.002s, and 𝜎𝑐 = 0.001s.  𝜎𝑎 was based on the peak width (at the noise floor) of 

the envelopes (computed via Hilbert transform) of the cross-correlation functions of sample of 

noisy echolocation clicks. 𝜎𝑏 was based on an estimated maximum 3 m hydrophone motion and 

an average sound speed of 1500 m/s. 𝜎𝑐 was estimated by executing the BELLHOP model 
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multiple times over a collection of typical sound speed profiles and then taking the maximum 

difference between the resulting TDOAs.  

 

 

Figure 3.3.  Sound speed profile (a) and ray traces (b) for the Hawaiian waters study area 

incorporated into the simulation study. The white space represents the shadow zone. Inset shows 

upper 100 m with a receiver at 10 m denoted with a black arrow. Note that in reality, the receiver 

(array) is at 10 m while the animal is at depth, but we apply the principle of reciprocity (i.e. the 

ray path is the same from source to receiver and vice versa) to simplify our modeling and 

illustration. 

 

Position bounds are estimated by profiling the ambiguity volumes. The profiled 

ambiguity volume along the x-dimension is defined as: 

 
𝑉𝑃(𝑥) = 𝑚𝑎𝑥

𝑦,𝑧
𝑉(𝒙) Eq. 3.3 

 

Position bounds in x are defined by the x-positions that bracket the estimated whale position at 

which 𝑉𝑃(𝑥) falls below a fixed threshold. Position bounds in y and z are estimated analogously. 

To estimate bounds on the whale’s distance from the trackline, profiling of the ambiguity volume 

is applied relative to the perpendicular line that extends from the trackline and passes through the 

estimated whale location. A threshold of 0.8 resulted in conservative position bounds for this study. 
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3.2.2 Simulation Experiment 

We demonstrate the application of the model-based localization approach in a simulation 

to estimate the location and distance of a foraging sperm whale detected at depth using a short-

aperture towed line array. The position of a simulated whale was fixed at a known distance and 

depth relative to the array. A 15-minute encounter was simulated by generating 500 click times 

drawn from a standard uniform distribution on the interval (0s ,900s). The simulated line array 

was located at an average depth of 10 m while towed 300 m behind a ship traveling at 18.5 km/h. 

Hydrophone spacings within the array were equivalent to the towed line arrays used for line-

transect cetacean surveys illustrated in Figure 3.1. All simulations used the Gaussian beam 

acoustic propagation model BELLHOP (Porter and Liu, 1994) passed through a representative 

sound speed profile of Hawaiian waters to create a look-up table of predicted arrival times for 

computing the acoustic ray paths (Figure 3.1). The representative sound speed profile combined 

averaged in situ data for depths up to 1 km collected during research surveys on September 2, 

2017 and November 18, 2017 with historic data from the 2013 World Ocean Atlas (Boyer et al., 

2013) for depths below 1 km (Figure 3.1a). The click generation times, hydrophone positions, 

whale positions, and sound speed profile were used to simulate the TDOAs. Gaussian distributed 

white noise (µ= 0, σ = 0.012) was added to the simulated TDOAs to mimic the noise in real 

towed array data.  

We used a reduced set of simulated TDOAs by smoothing over 1-min increments. This 

resulted in one 𝑉𝑗 per minute of encounter (15 total) and reduced the computing time while 

maintaining the overall pattern in the TDOAs. The spatial grid had horizontal and vertical 

spacing of 50 m, with depth dimension constrained to 3 km to represent an average bathymetry 

within the Hawaiian archipelago and account for the deepest measured dive depths of sperm 

whales (Teloni et al., 2008).  

Ambiguity volumes represent all possible locations of the detected whale, but the shape 

of this volume depends on the distance and depth of the whale, the ship trajectory, sound 

propagation effects and the overall uncertainty (𝜎𝑡). To evaluate the effects of these parameters 

on localization results, we included them in different combinations to simulate realistic scenarios 

based on line-transect survey design and sperm whale behavior (Table 3.1). Ship trajectory is an 

important parameter since location estimates for whales detected along a straight ship trajectory 
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are subject to left/right ambiguity, which can only be resolved by turning the ship. We included 

two types of ship trajectories, ‘straight’ or ‘turn’, to examine the effects on the ambiguity 

surfaces. For scenarios with a turn, we tested three turn angles (20°, 60°, 80°) representing a low, 

medium, and high degree of change in the direction of the ship during a survey. In addition, 

simulations included the whale to be stationary for the duration of the encounter or moving in 

one direction relative to the ship. In both cases, the whale’s initial position was placed at a 

perpendicular distance and depth representative of the detection range of sperm whales using a 

towed line array (Barlow and Taylor, 2005; Teloni et al., 2008).  

 

Table 3.1.  List of parameters included in combinations for the simulation study. 

 

Ship 

Trajectory 

Turn 

Angles 

Whale 

Perpendicular 

Distance (m) 

Whale Depth 

(m) Whale Behavior 

straight NA 0 - 7000 400 – 2000 stationary, moving 

turn 20, 60, 80 0 - 7000 400 – 2000 stationary, moving 

 

It is particularly challenging to localize a stationary whale when it is detected directly 

below a ship traveling straight along the trackline (Figure 3.2, Figure 3.4). Two-dimensional 

TMA does not consider the depth of the whale and, therefore, automatically estimates it to be 

some distance from the trackline that is approximately equivalent to the whale’s depth. A 

simulation of a whale located 1.1 km below the ship resulted in a U-shaped ambiguity volume 

where the whale could theoretically be located at any point within the volume (Figure 3.4.1a). 

The ambiguity volume was maximized (𝑉(𝒙) = 0.99) at a distance of 0.25 km from the trackline 

(left/right ambiguous), and distance was bounded by [0, 1.1] km (Figure 3.4.1b). The maximum 

𝑉(𝒙) occurred at a depth of 1.1 km with depth bounded by [0, 1.3] km (Figure 3.4.1c). Although 

the simulation provided an apparent “best” position (distance = 0.25 km and depth = 1.1 km), 

this is an artefact created by the limitations of the ship trajectory (straight trackline), the noise 

introduced to the system and the grid spacing used in the search. In reality for this scenario, there 

are infinitely many points along the U-shaped volume with 𝑉(𝒙)’s near the maximum value. 

Consequently, the position cannot be further refined (beyond the U-shaped volume) given a 

straight trackline without the use of surface reflections or other information. 



 

 

 

 
51 

 

Figure 3.4.  Simulations of a whale detected 1.1 km below a ship traveling straight along the 

trackline produced a U-shaped ambiguity volume(1a) resulting in a left/right ambiguous distance 

estimate of 0.25 km with distance bounds of [0, 1.1] km (1b) and a depth estimate of 1.1 km with 

a depth bound of [0, 1.3] km (1c). Implementing a 60° turn reduced the ambiguity volume (2a) 

resulting in a distance estimate of 0 km (2b) and depth estimate of 1.1 km (2c) with decreased 

position bounds of [0, 0.55] km and [0.87, 1.3] km, respectively. The gray scale represents the 

ambiguity volume values ranging from a fixed threshold of 0.8 (light gray) as low probability to 

1 (black) as high probability of the whale’s location (most “black” points are obscured “inside” 

the volume hence not visible here). The position bounds vary according to the fixed threshold 

value applied to profiled volume (b, c), denoted with symbols (downward triangle = 0.6, 

diamond = 0.7, square = 0.8, circle = 0.9). The black dotted lines indicate the ship’s trackline 

traveling in the direction of the arrow (a).  
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The ambiguity and overall bounds on distance and depth estimates can be reduced if a 

turn is implemented during the encounter once the TDOAs reach 0 s, indicating the whale has 

passed 90° of the line array (Figure 3.4.2). For example, a 60° turn in the ship’s trackline resulted 

in a more constrained ambiguity volume encompassing all possible whale locations with a best 

distance estimate below the trackline (0 km) at 1.1 km depth with distance bounded by [0, 0.56] 

km and depth bounded by [0.87, 1.3] km (Figure 3.4.2b & c). The resulting ambiguity volume 

provided a more precise location estimate for the whale by turning the ship, reducing both the 

possible distances and depths of the location estimate for a whale located directly below the 

trackline. 

Turning the ship also improved the precision of localizations for stationary whales 

located farther from the trackline. For example, localizing a whale positioned 4 km away at 1.1 

km depth under a straight trackline simulation created two cylindrical ambiguity volumes with 

an estimated distance of 3.5 [2.1, 4.7] km (left/right ambiguous) and depth of 2.4 [0, 3.0] km 

error (max 𝑉(𝒙) = 0.99; Fig 3.5.1). The 60° turn reduced the ambiguity volume entirely to one 

side and estimated that the whale was at a distance of 4 [3.8, 4.3] km and a depth of 0.7 km [0, 

2.9] km (max 𝑉(𝒙) = 0.99; Fig 3.5.2). Overall, turning the ship reduced the volume of the 

ambiguity volume for whales closer and farther away from the track line in different ways. 

Changing the ship trajectory greatly decreased the three-dimensional ambiguity in distance 

estimates for whales detected below the trackline and resolved it completely for whales detected 

farther away. However, the bounds on depth remained large, especially for the farther whale. If 

they are available, surface reflections can be incorporated using the same framework and would 

further constrain depth estimates.  

Simulations thus far have treated the whale as a stationary sound source. As with any 

TMA method, an important limiting assumption of this approach is that the whales are stationary 

relative to the array during the encounter. In reality, a whale is likely moving as it vocalizes 

while traveling, foraging, or socializing, causing a violation of assumptions behind the 

calculation of 𝑉(𝒙). 𝑉𝑗(𝒙) no longer overlap in space and so no longer reinforce each other at the 

animal position(s). We developed a strategy to incorporate the effects of whale movement by 

spatially dilating  𝑉𝑗(𝒙) before combining them in  𝑉(𝒙). This is a conservative approach 

resulting in larger position bounds that are more appropriate when the assumptions are violated. 
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Figure 3.5.  Simulations of a stationary whale located 4 km from the straight trackline produced 

separate cylindrical ambiguity volumes (1a) resulting in a left/right ambiguous distance estimate 

of 3.5 km with a distance bound of [2.1, 4.7] km (1b) and a depth estimate of 2.4 km depth 

bound of [0, 3.0] km (1c). Implementing a 60° turn reduced the ambiguity volume (2a) resulting 

in a distance estimate of 4 km (2b) and depth estimate of 0.7 km (2c) with decreased position 

bounds of [3.8, 4.3] km and [0, 2.9] km, respectively.  
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A local maximum dilation operator (Gonzalez et al., 2009) was applied to each 𝑉𝑗(𝒙) to 

encompass the maximum possible distance the whale may have traveled in any direction during 

the encounter. The dilation of an ambiguity volume 𝑉𝑗(x, y, z) was defined as: 

 

(𝑉 𝑗⨁ 𝐵)(𝑥, 𝑦, 𝑧) = 𝑚𝑎 𝑥{𝑉𝑗(𝑥 − 𝑥′, 𝑦 − 𝑦′, 𝑧 − 𝑧′)|(𝑥′, 𝑦′, 𝑧′) ∈ 𝐷𝐵}   , Eq. 3.4 

 

where 𝐷𝐵 is the domain of the “filter” volume 𝐵.  𝑉𝑗 ⊕ 𝐵(𝒙) is the maximum amplitude over all 

points in the neighborhood of 𝒙; regions with higher amplitudes in 𝑉𝑗 are enlarged in 𝑉𝑗 ⊕ 𝐵 

proportionally to the size of 𝐵. The filter size and shape was an ellipsoid defined in proportion to 

averaged horizontal and vertical whale swim speeds of 0.5 m/s and 1.13 m/s, respectively 

(Wahlberg, 2002) multiplied by the maximum time between the each detection and the start or 

end of the encounter. Hence it dilated 𝑉𝑗 according to the maximum possible swim distance for 

detection j within the encounter. 

We simulated two 15-min encounters of separate diving whales with the same initial 

distances and depths as the whales in the previous examples but changed the whales’ position at 

each time step to evaluate the performance of the localization algorithm for a moving whale. 

Thus, each click time was associated with a different three-dimensional whale position. The 

whale positions changed based on an average swim speed of 1.2 m/s (Wahlberg, 2002; Aoki et 

al., 2007) in a constant direction of travel with a slowly varying vertical component to simulate a 

dive pattern. The directions of travel included towards or away from the array as well as in the 

same or opposite direction relative to the array. As in the stationary whale simulations, the 

moving whale simulations used a straight trackline and a trackline with a 60° turn. Successful 

localization was defined when the ambiguity surface encompassed the whale’s position at TDOA 

= 0 s, i.e., the time when the whale was perpendicular to the array, to ensure a more precise 

distance estimate.   

Table 3.2 summarizes the results of these moving whale simulations that incorporated the 

dilation filter. For whales initially located at 0 km, the true distance of the whale at TDOA = 0 s 

(90° to the array) was captured within the distance bounds of the ambiguity volumes for each 

direction of movement in both the straight and turn scenarios. The distance estimates that 

maximized the ambiguity volume varied based on the direction of movement, ranging between 0 

and 1 km. The ‘towards’ and ‘away’ scenarios produced consistent results as it involved the 

whale moving either left or right of the trackline in a similar fashion. The minimum distance 
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bounds resulted from the turn scenario of a whale moving in the opposite direction as the array 

([0, 0.9] km) and the maximum distance bounds occurred when the whale moved in the same 

direction along a straight trackline ([0, 2] km). Overall, the distance bounds of all turn scenarios 

were less than the straight scenarios given the reduction of the ambiguity volume. Resulting 

distance estimates and bounds for the moving whale with an initial distance of 4 km achieved 

similar success. Each ambiguity volume encompassed the true and estimated distances of the 

whale in every scenario with high maximum ambiguity values. Distance bounds were also much 

smaller for the turn scenarios with minimum distance bounds restricted to [2, 3.6] km for a 

diving whale moving towards the array. The largest distance bounds occurred during a straight 

scenario for a whale moving, again, in the same direction as the array, [1.9, 7.9] km. Depth 

estimates for all simulations included the true depth of the whale, however, they were deemed 

unreliable given the large depth bounds due to the limitations previously discussed. 
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Table 3.2.  Localization results from different scenarios of a moving whale after incorporating the dilation filter to address the effects 

of whale movement on model-based estimates. Each simulation used δ = 0.0024. 
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3.3 Application to Real Acoustic Data 

3.3.2 Data Description 

Passive acoustic data were collected using a towed line array during a visual and acoustic 

line-transect cetacean survey conducted from July 6 to December 1, 2017 by the Pacific Islands 

Fisheries Science Center (PIFSC) and the Southwest Fisheries Science Center of the National 

Oceanic and Atmospheric Administration (NOAA) aboard the NOAA Ships Oscar Elton Sette 

and Reuben Lasker (Yano et al., 2018). We tested the localization algorithm using two sperm 

whale encounters from the 2017 survey; one collected on October 2 at 03:12 GMT and the 

second on November 21 at 02:00 GMT (Table 3.3). The line arrays on both ships consisted two 

sub-arrays (inline and end array) separated by 20 m (Figure 3.1; Rankin et al., 2013). Each sub-

array contained six hydrophones (HTI-96-MIN; 14-85 kHz ± 5 dB at -158 dB re 1 V/µPa) 

spaced approximately 1 m apart, custom-built pre-amps providing 37 dB (20-50 kHz ± 2dB) of 

gain and a 1500 Hz high-pass filter, and either a Keller (PA7FLE) or Honeywell 

(PX2EN1XX200PSCHX) depth sensor placed within the first meter of each array.   

Continuous acoustic data were sampled at 500 kHz for each hydrophone channel using an 

analog-to-digital converter (DAQ; SA Instrumentation, Ltd.) and PAMGuard software (v. 

2.00.10fa; Gillespie et al., 2008) while simultaneously collecting vessel GPS data. The acoustic 

data were monitored in real-time for vocalizing cetaceans during daylight hours. Sperm whale 

acoustic encounters were logged by trained acousticians who identified sperm whales aurally 

using headphones and visually with a spectrogram by their unique high-amplitude, low 

frequency broadband signals (Wahlberg, 2002; Møhl et al., 2003).  
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Table 3.3.  Two sperm whale acoustic encounters localized during a cetacean abundance line-

transect survey in 2017 using the model-based approach for short-aperture towed line array data. 

Ship location is at the time of first detection. 

 

NOAA 

Research 

Vessel 

Acoustic 

Encounter 

ID 

Ship 

Latitude 

Ship 

Longitude 

Start Time 

GMT 

Duration 

(minutes) 

Number 

of 

Detections 

Reuben 

Lasker A221 23.8276 -160.8906 

10/18/2017 

17:51 37 1082 

Reuben 

Lasker A352 23.7101 -160.4455 

11/21/2017 

2:00 61 167 

3.3.3 Signal Analysis 

Recordings of two of the sperm whale encounters from 2017 were reviewed to confirm the 

presence of echolocation clicks and the type of click. The whale detected on October 2, 2017 

produced regular clicks, which have an interclick interval of 0.5 to 1 s and are associated with 

foraging (Whitehead, 2003).  The whale detected on November 21, 2017 emitted slow clicks 

with an average interclick interval of 6 s, indicating a single male (Jaquet et al., 2001). The click 

types offered information about the behavioral state of the sperm whale and provided context for 

the  click detection results. 

Acoustic data were downsampled from 500 kHz to 50 kHz prior to data analysis. We 

implemented a simple threshold detector to prioritize speed and robustness over optimal 

performance in the click detection phase. For each 1-min recording, the signal was filtered with a 

fourth-order, Butterworth bandpass filter using 2 kHz and 15 kHz as the lower and upper cutoff 

frequencies to reduce noise. The envelope of the entire filtered time series was computed for 

each channel using a Hilbert transform. Taking the maximum envelope across all channels  

increased the probability of detecting the directional sperm whale clicks (Møhl et al., 2003). The 

detector threshold was empirically determined based on the acoustic data. 

We used standard cross-correlation (Knapp and Carter, 1976) to measure TDOAS from 

the acoustic data. The TDOAs for all detections across all hydrophone pairs were estimated from 

cross-correlation peaks. The resulting TDOA sets were noisy, but scatterplots of TDOAs over 

detection time clearly showed the persistent TDOA tracks corresponding to sperm whale 
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echolocation clicks among detections of other sources. The persistent tracks were manually 

selected from scatterplots using a graphical data selection tool (selectdata, D'Errico 2007) 

(Figure 3.6). For localization, we selected the TDOAs from the two hydrophones with the largest 

separation that occurred along straight segments of the trackline since any TDOAs calculated 

during a turn would introduce more error than could be accounted for using this method. 

Selected TDOAs were smoothed and subsampled using 1-minute intervals over the duration of 

the acoustic encounter to reduce the noise in TDOA measurements and reduce the computational 

requirement by decreasing the number of volumes included in the product, 𝑉(𝒙) (Eq (1)). 

 

Figure 3.6.  The TDOAs from click detections and noise (black dots) were manually subsetted to 

only include clicks within a shorter time window around TDOA = 0 s (red circles) to improve the 

accuracy of the localized position estimates.  

 

 

Ambiguity volumes were generated using a grid that varied in extent according to the 

geographical range of the acoustic encounter. We used the same grid resolution as in the 

simulation; 50 m horizontal and vertical spacing, and a vertical limit of 3 km. Sound speed 

profiles were concatenated for the day of each encounter using the same methods as described in 

Section III. The same 𝜎, and threshold values as the simulation study were incorporated along 

with the dilation filter to account for potential whale movement in the localization of each real 

acoustic sperm encounter.  
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3.3.4 Localization Results 

Both encounters occurred entirely along straight segments of trackline and, therefore, 

resulted in location estimates with left/right ambiguity. We continued to use a fixed threshold of 

0.8 to evaluate the position bounds from the ambiguity volumes for the real sperm whale data. 

Location estimates for the sperm whale encountered on October 18, 2017 resulted in a wide U-

shaped ambiguity volume with an estimated distance of 2 [0, 3.3] km (max 𝑉(𝒙) = 0.99) and 

depth of 2.6 km [0, 3.0] km. This example showed a noticeable offset in the trackline that likely 

occurred due to normal variation in set and drift of the ship (Figure 3.7a). This offset did not 

appear to significantly affect the measurements from the ambiguity volume as this type of 

variation is accounted for within the position bounds. Figure 7b also demonstrates the effects of 

trackline variation on the 2D bearings, where a series of disjointed bearings is produced making 

it difficult to pinpoint a location and distance of the whale, and likely overestimating the results 

as well. During real-time operations, the point of convergence of 2D bearing lines estimated the 

whale to be located at a distance of 3.1 km. While the point estimate for distance is 

coincidentally included within the model-based position bounds, 2D TMA does not quantify the 

associated uncertainty related to depth and other error sources.  

The TDOAs from the slow clicks of a whale detected on November 21, 2017 produced 

slightly asymmetrical columnar ambiguity volumes due to a slight offset in the trackline. The 

left/right ambiguous distances estimated the whale to be 7.3 [4.4, 10.5] km off the right side and 

7.0 [3.8, 9.6] km off the left side at a depth of 2.4 km [0, 3.0] km (max 𝑉(𝒙) = 0.99; Figure 8). 

Distances estimates measured in real-time with 2D TMA placed the whale at 7.7 km, which is 

farther than the best estimated distance from the model-based approach but falls within the range 

of the position bounds. As in the previous example, the 2D TMA estimate does not provide error 

estimates.  
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Figure 3.7.  A sperm whale acoustically localized on October 18, 2017 produced a wide U-

shaped ambiguity volume (a), representing all possible locations of the vocalizing animal and 

estimated the whale to be 2 km from the trackline and 2.6 km deep, with position bounds of [0, 

3.3] km and [0, 3.0] km, respectively (max 𝑉(𝒙) = 0.99). The profiled ambiguity volume (b) is 

shown with gray lines to denote the 2D bearing lines generated using 2D TMA. The top-down 

view of the volume profiled over depth shows the difference between the 2D bearings and the 3D 

surface (b). 
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Figure 3.8.  Ambiguity volumes for a sperm whale detected on November 21, 2017 estimated the 

whale to be 7.3 km off the right side ([4.4, 10.5] km position bounds) and 7.0 km off the left side 

([3.8, 9.6] km position bounds) at a depth of 2.4 km ([0, 3.0] km position bounds; max 𝑉(𝒙) = 

0.99). The profiled ambiguity volume (b) is shown with gray lines to denote the 2D bearing lines 

generated using 2D TMA. The top-down view of the volume shows the overlap between the 2D 

bearings and the 3D volumes (b). 
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3.4 Discussion 

Estimating the location and distances of diving cetaceans is challenging using towed line 

array data due to various sources of error that introduce uncertainty and bias. We demonstrated a 

model-based approach for localizing deep-diving sperm whales using simulated and real acoustic 

data collected from a short-aperture towed line array. The method incorporated multiple error 

sources to calculate ambiguity volumes representing all possible locations of the whale based on 

TDOAs between the direct arrivals of echolocation clicks. The ambiguity volumes accounted for 

whale depth and provided position bounds on perpendicular distance and depth estimates.  

The simulation experiment examined several parameters known to affect the localization 

of a diving sperm whale and found that the ambiguity volume’s shape greatly depended on the 

distance, depth, ship trajectory and movement of the whale relative to the trackline. If detected 

along a straight ship trajectory, a stationary whale closer to the trackline generally resulted in a 

U-shaped ambiguity volume (Figure 4.1a). A stationary whale located farther away tended to 

produce two column-like volumes on either side of the trackline (Figure 5.1a). Turning the ship 

reduced the error in the distance estimates but did not always improve the error in depth. The 

uncertainty in depth for simulated and real data encounters was primarily attributed to the two-

dimensional design of the towed line array. Despite the large depth bounds, the model-based 

localization method addressed this limitation by incorporating the uncertainty in depth into the 

position bounds of the location estimates.  

Sound propagation is an important consideration in any localization method as it will 

affect the range at which sound can be detected depending on the depth of the hydrophones 

(Chapman, 2004; Tiemann et al., 2004; Thode, 2005; Zimmer, 2013; von Benda-Beckmann et 

al., 2018). The shadow zone, or the region where sound rays are refracted and fail to propagate 

in a direct path to the receiver, limits the detection range of a sound source and its extent depends 

on the oceanographic conditions of a study area (Figure 3.3). For example, in Hawaiian waters, it 

is unlikely that whales vocalizing at depths less than 0.4 km will be detected beyond 

approximately 2.5 km distance. While we do not explicitly test the effects of sound propagation 

in the simulation experiments, we account for them within the model-based localization 

framework. 
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Moving whale simulations resulted in larger position bounds from the dilated ambiguity 

volumes, which we found to be appropriate when the assumptions of a stationary source are 

violated. The advantage of the model-based approach is evident in its ability to incorporate and 

quantify the increase in uncertainty due to animal movement. The horizontal and vertical speeds 

used to parameterize the dilation filter conservatively represented all possible movement of a 

diving whale. The four directions of travel at a constant swim speed also depicted more dramatic 

examples of whale movement, which can be more static and variable depending on the whale’s 

behavioral state (Whitehead, 2003). Nonetheless, despite the extreme simulated movement 

patterns, the true locations of the whales were successfully estimated within the more 

conservative position bounds.  

The resolution and extent of the spatial grid used to generate the ambiguity volumes can 

also affect the localization results and depend greatly on the study area. The spatial resolution of 

the grid will affect the precision of the estimates and should be selected based on the specific 

needs of the application. Finer resolutions will provide more precise position bounds for 

estimates than coarser resolutions but are more computationally intensive. We chose a spatial 

grid with a horizontal and vertical spacing of 50 m because position bounds for distance 

estimates were smaller than coarser grid resolutions and similar to finer grid resolutions at a 

lower computational cost. Several factors should be considered when selecting the extent of the 

spatial grid (e.g., the detection range, the environment, animal behavior) to ensure estimates are 

relevant to the application as well. The extent of the grid assumes that it is physically impossible 

for the animals to be located beyond a certain range. For deep-diving cetaceans, the extent of the 

𝑧 dimension is an important consideration. While the depth limit was a realistic measure of 

bathymetry for our study area (3 km), it is also important to consider the available biological 

information about the species. For example, some of the predicted depths exceeded the deepest 

measured dive depth of any known sperm whale (1.9 km; Watwood et al., 2006). If the spatial 

grid were truncated to 2 km, the position bounds for distance and depth would be reduced for 

closer whales as the U-shaped volumes would be converted to columnar volumes. However, 

most depth position bounds would still span the vertical extent of the spatial grid without 

additional information. Likewise, depth position bounds for whales located farther away would 

be reduced to the full vertical extent of the truncated grid, but distance estimates would not be 

substantially different. In this application, we selected a conservative vertical extent of 3 km to 
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account for the possibility that sperm whales may exceed the deepest recorded dive and avoid 

over-constraining the grid, which would result in less precise estimates. 

Our model-based localization method provides more informed distance estimates for 

deep-diving sperm whales compared to estimates from conventional 2D TMA methods. The 

semi-automated process we developed for calculating the ambiguity volumes contributes a 

method for incorporating errors and objectively localizing whales in three dimensions. The real 

acoustic encounter of the closer whale (Figure 3.7) highlighted the difference between 

subjectively choosing a location based on disjointed 2D bearings and automatically estimating 

them from the ambiguity volume. The 2D bearings are more likely to overestimate the distance 

of closer whales compared to whales located farther away (Figure 3.8), but in both instances, the 

estimates do not account for uncertainties when localizing whales at depth. The distance 

estimates (at max 𝑉(𝒙)) may be utilized to compute a detection function for abundance 

estimation, but additional theoretical development is necessary to incorporate the distance 

bounds.  

A major limitation in the current simulated and real acoustic data sets is the lack of 

surface reflections necessary to constrain the depth bounds. We chose to test the localization 

method using these acoustic data sets since similar data sets for sperm whales are common in the 

literature (Leaper et al., 1992; Gillespie and Leaper, 1997; Barlow and Taylor, 2005; Lewis et 

al., 2007; Yack et al., 2016; Wild et al., 2017). We now have a better understanding of the 

overall effects of the uncertainties on distance and depth estimates of sperm whales that may be 

useful for future surveys collecting towed line array data. The model-based framework can also 

be generalized to incorporate surface reflections when available from other deep-diving species 

detected on short-aperture line arrays. For example, the surface reflections from beaked whale 

species (Zimmer et al., 2008; DeAngelis et al., 2017) may be incorporated to achieve more 

precise distance and depth bounds for these species. 

The simulation experiments and real-data examples only included localization results for 

single foraging whales. In tropical and subtropical oceans, sperm whales frequently congregate 

in social groups with multiple animals diving asynchronously to forage (Whitehead, 1996). The 

model-based localization approach is capable of iteratively localizing multiple animals within a 

group, but the overall distance estimate for the group may depend on the group’s geographical 

spread. When visual observers estimate distances to large groups of dolphins spread over 



 

 

 

 
66 

hundreds of meters, the distance to the center of the groups are utilized in distance sampling 

methods. A similar approach could be applied in the case of localizing multiple deep-diving 

whales. Further simulation experiments are needed to test this theory and include appropriate 

parameters and errors to fully evaluate the capabilities of the model-based approach in this 

context. 

Towed line array data will always be subject to uncertainties due to the array design and 

animal behavior. Developing this localization approach to quantify and incorporate these 

uncertainties can help identify data limitations and guide future PAM system design and data 

collection methods for more robust localization of deep-diving cetaceans. 

  



 

 

 

 
67 

CHAPTER 4  

DISTRIBUTION PATTERNS DIFFER BETWEEN FORAGING AND NON-FORAGING 

SPERM WHALES IN HAWAIIAN WATERS 

Abstract 

Sperm whales (Physeter macrocephalus) are a globally distributed, endangered marine 

species typically observed in productive, deep oceanic waters away from emergent land masses. 

For a population occurring year-round throughout the Hawaiian Archipelago, we used 

observations from visual sighting and passive acoustic surveys to construct and compare species 

distribution models of foraging and non-foraging sperm whales. A total of 209 sperm whale 

encounters were collected during four annual NOAA marine mammal surveys (2010, 2013, 

2016, and 2017) within the Hawaiian Exclusive Economic Zone. Using whale encounters as a 

predictive variable, we constructed five sperm whale distribution models using spatially-

smoothed GAMs to compare the responses of different observational data (e.g., sighting, 

acoustic, and both combined) and behavioral group data (e.g., foraging and non-foraging using 

combined observations) fit to a suite of static and dynamic ocean environmental variables 

including depth, distance to land or seamounts, sea water temperatures, chlorophyll a, sea 

surface height, and eddy kinetic energy. Sperm whale click types were used to differentiate 

foraging and non-foraging sperm whale groups. Overall, higher densities of sperm whale groups 

were observed in the northwest region of the Archipelago and north of the Main Hawaiian 

Islands. The temperature at 584 m depth, surface chlorophyll a, and the standard deviation of sea 

surface height were explanatory variables for the distribution of foraging sperm whales but none 

of these variables were significant for non-foraging sperm whales. The behavioral information 

derived from the acoustic data helped to identify areas that are likely important sperm whale 

foraging habitat. Models with combined sighting and acoustic data used for behavioral group 

observations performed well suggesting these data types are complementary and the approach 

provides a novel ecological aspect to cetacean surveys and distribution analyses. This study 

contributes methods to incorporate sighting and acoustic data into species distribution models 

and provides new information about the Hawaiian sperm whale population to inform future 

research and conservation efforts for this endangered species. 
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4.1 Introduction 

Species distribution models (SDMs) are commonly used to predict the spatial patterns of 

a species across their habitat by relating field observations of a species to environmental 

variables within a statistical framework. Such correlative models are used to gain a better 

understanding of the abiotic environmental conditions that influence the species’ geographic 

range (Elith and Leathwick, 2009; Robinson et al., 2017; Melo-Merino et al., 2020). Insights 

gained from SDMs support efforts to design appropriate spatial management and conservation 

strategies. 

Despite the challenges of collecting species occurrence data in the marine environment, 

many marine-based SDMs have been developed for a variety of marine taxa including plankton 

(e.g., Brun et al., 2016), corals (Franklin et al., 2013), fish (e.g., Olden et al., 2002; Oyafuso et 

al., 2017), seabirds (e.g., Huettmann and Diamond, 2001; Fox et al., 2017), sharks (e.g., Brodie 

et al., 2018; Feitosa et al., 2020), and cetaceans (e.g., Fiedler et al., 2018; Virgili et al., 2019). 

Different types of observational data are incorporated into marine SDMs depending on the 

species and spatiotemporal scale of the sampling effort. For cetaceans, visual observations are 

primarily used but are limited to moments when animals emerge above the ocean surface. 

Technological advances have expanded observational data for many marine species to include 

satellite telemetry data (Abecassis et al., 2012; Abrahms et al., 2019), active acoustic data 

(Zhang et al., 2009), and passive acoustic data (Carlén et al., 2018; Fleming et al., 2018) to 

increase the sample size and include more ecological information in the analysis. 

Cetaceans are highly mobile marine predators that play important ecological roles across 

a wide range of marine habitats (Katona and Whitehead, 1988; Roman and McCarthy, 2010; 

Kaschner et al., 2011; Roman et al., 2014). Unfortunately, cetaceans face a number of threats 

throughout the world’s oceans, which has resulted in the decline of numerous populations with 

many listed as threatened or endangered (Magera et al., 2013; Avila et al., 2018). Sperm whales 

(Physeter macrocephalus) are a cosmopolitan cetacean species and are listed globally as 

vulnerable by the IUCN (2019) with many sperm whale populations also listed as endangered. 

Developing a quantitative understanding of environmental factors influencing sperm whale 

distribution through the use of SDMs can help understand cetacean ecology and their role in the 

marine ecosystem as well as identify important habitats and areas which may overlap with 
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potentially harmful anthropogenic activities (Azzellino et al., 2012; Redfern et al., 2013; Roberts 

et al., 2016).  

Multiple studies have been conducted to understand sperm whale distribution patterns 

with respect to their environment (Jaquet and Whitehead, 1999; Jaquet and Gendron, 2002; Fiori 

et al., 2014; Fiedler et al., 2018). Sperm whales can forage at depths to nearly 2000 m and spend 

up to an hour submerged searching for cephalopod prey species (Clarke and Young, 1998; 

Watwood et al., 2006; Teloni et al., 2008). This foraging behavior increases the probability that 

the whales will be missed by visual observers during surveys. The unique characteristics of their 

echolocation clicks produced during foraging dives or socializing allows for passive acoustic 

monitoring methods to detect the whales tens of kilometers away from the acoustic receiver 

(Barlow and Taylor, 2005). Sperm whales produce clicks at different rates (interclick intervals), 

which are associated with different behaviors and demographics (Whitehead and Weilgart, 1990; 

Jaquet et al., 2001; Marcoux et al., 2006; Watwood et al., 2006). Codas are repeated stereotyped 

sequences of clicks lasting approximately 3 s with highly variable group-specific interclick 

intervals (Rendell and Whitehead, 2004; Gero et al., 2016; Oliveira et al., 2016). Regular clicks 

and creaks are associated with foraging (Jaquet et al., 2001; Miller et al., 2004; Watwood et al., 

2006) while slow clicks are produced primarily by male sperm whales (Madsen et al., 2002; 

Oliveira et al., 2013). The acoustic data can be used as observations for sperm whale SDMs and 

account for groups that would otherwise be excluded from the analysis if not visually sighted 

(Backus and Schevill, 1966; Gannier and Praca, 2006; Pirotta et al., 2011; Yack et al., 2016; 

Diogou et al., 2019).  

Sperm whale populations in United States waters are listed as endangered under the U.S. 

Endangered Species Act. In the Hawaii Exclusive Economic Zone (EEZ), sperm whales are one 

of the most frequently encountered species during visual and acoustic line-transect cetacean 

surveys for abundance estimation (Bradford et al., 2017; Yano et al., 2018). To date, few studies 

have developed SDMs of sperm whales (and other cetacean species) in the Hawaii EEZ using 

line-transect sighting data (Becker et al., 2012, In press.; Forney et al., 2015). Sampling units 

were derived following methods in Becker (2010), which divided the survey effort into 5-km 

segments and assigned sighting data and environmental predictor values to each segment 

midpoint. Model results for sperm whales included distance to land and latitude as the important 
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predictor variables, predicting a broad pattern of increasing sperm whale density towards the 

northwestern region of the Hawaii EEZ.  

An exploratory study conducted by Oleson et al. (2015) attempted to improve the sperm 

whale SDMs for the Hawaii EEZ by building models using the same methods as Forney et al. 

(2015) but incorporating passive acoustic data collected with towed line arrays of hydrophones. 

The study included data from a single 2010 survey to compare the predictive power and 

important variables resulting from SDMs that included only sighting data to SDMs built with 

only acoustic data. The acoustic-based models selected more dynamic environmental variables 

compared to the sighting-based models. However, the accuracy of the acoustic-based models was 

unclear due to the variability in predictions when modeling different subsets of the acoustic data. 

It was hypothesized that assigning all data to the segment midpoint for the sampling units may 

have incorrectly associated the local environmental data to sperm whales acoustically detected 

up to tens of kilometers from the trackline (Barlow and Taylor, 2005). Therefore, the authors 

suggested localizing the acoustic data to improve future modelling efforts for sperm whales 

using acoustic data. 

Based on known aspects of sperm whale biology and ecology, we hypothesize that 

whales occur primarily in deep, productive offshore waters away from emergent land masses 

where they would encounter prey. To address this hypothesis, we evaluate the distribution 

patterns of sperm whales in Hawaiian waters using both passive acoustic and visual sighting data 

relative to static and dynamic environmental variables. We incorporate a novel localization 

method (from Chapter 3) to improve the accuracy of positional estimates and environmental 

information associated with acoustic data. Using the echolocation click characteristics from the 

passive acoustic data, we characterize whale groups as foraging and non-foraging to compare 

habitat characteristics and spatial distributions between the groups. This research contributes new 

information about the relationship between sperm whale distribution and environmental features 

of the Hawaiian EEZ, develops new techniques to incorporate sighting and acoustic data into 

SDMs, compares results between SDMs using different types of observational data, and 

leverages information from the acoustic data to examine the habitat preferences between 

foraging and non-foraging groups of sperm whales. 
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4.2 Methods 

4.2.1 Data Collection 

Observational data were collected within the Hawaii EEZ by the National Oceanic and 

Atmospheric Administration’s (NOAA) Pacific Islands Fisheries Science Center (PIFSC) during 

cetacean and ecosystem assessment line-transect surveys conducted in 2010, 2013, 2016, and 

2017. All surveys followed systematic line-transect sampling protocols described in detail in 

Yano et al. (2018). Briefly, three observers rotated through three positions searching for 

cetaceans during daylight hours. Observers along the port and starboard sides used 25×150 

mounted binoculars while a center observer searched with 7×50 binoculars and unaided eyes. If 

animals were seen within 5.6 km of the trackline, observers would direct the ship to turn towards 

the group for species identification and group size estimates.   

 Continuous acoustic recordings were simultaneously collected using a towed line array of 

hydrophones. Array configuration varied between surveys, but all arrays contained 4 – 7 

hydrophones capable of recording frequencies between at least 2 – 40 kHz. Detailed 

specifications of passive acoustic arrays and equipment are included in Table 4.1. Two 

acousticians aurally and visually monitored the real-time recordings during daylight hours. A 

suite of software enabled acousticians to detect and localize vocalizing cetacean groups using 2D 

target motion analysis (TMA) for all species (ISHMAEL, Mellinger, 2002; PAMGuard, 

Gillespie et al., 2008). Resulting location estimates were left/right ambiguous due to the linear 

array design and limitations of 2D TMA. The left/right ambiguity was resolved by turning the 

ship after localizing a group when possible. For each acoustic encounter, or acoustically detected 

cetacean group, acousticians documented the timestamp of the ship’s trackline location upon first 

and last detection, the types of vocalizations recorded, the estimated perpendicular distances, and 

species classification when possible. Sperm whales were detected and classified based on their 

recognizable broadband, low frequency (2 – 15 kHz) echolocation clicks (Backus and Schevill, 

1966).  
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Table 4.1.  Details and specifications of the towed line arrays and equipment used for collecting 

passive acoustic monitoring data during four line-transect surveys. 

 

 

PIFSC/SWFSC 

2010 (HICEAS) 

PIFSC 2013 

(PACES) 

PIFSC 2016 

(HITEC) 

PIFSC/SWFSC 

2017 (HICEAS) 

NOAA ship & 

Dates 

McArthur II:                    

August 13 - 

December 1, 2010 
Oscar Elton 

Sette: May 7 - 

June 5, 2013 

Oscar Elton 

Sette:  June 28 - 

July 27, 2016 

Reuben Lasker:            

August 20 - 

December 1, 

2017 

Oscar Elton Sette: 

September 2 - 

October 29, 2010 

Oscar Elton 

Sette:             

July 6 - October 

10, 2017 

Hydrophone EDO EC65 APC 42-1021 HTI-96-MIN HTI-96-MIN 

Hydrophone 

flat response 

range 2-40 kHz 2-40 kHz 2-85 kHz 2-85 kHz 

A/D converter MOTU mK3 MOTU mK3 

SA 

Instrumentation 

SAIL DAQ 

SA 

Instrumentation 

SAIL DAQ 

Sampling rate 192 kHz 192 kHz 500 kHz 500 kHz 

Recorder bit 

depth/resolution 16-bit 16-bit 16-bit 16-bit 

Pre-amplifier 

flat response 

range >2 kHz >2 kHz >2 kHz 2-50 kHz 

High pass filter 1.5 kHz 1.5 kHz 1.5 kHz 1.5 kHz 
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When sperm whales were visually sighted or acoustically detected, each team initiated a 

specific data collection protocol to reduce bias in visual abundance estimates and collect the 

necessary information for post-analyses of the acoustic data. Details about the visual and 

acoustic sperm whale protocols are found in Yano et al. (2018). Briefly, if whales were visually 

observed first within 5.6 km, at least 70 minutes were spent counting the number of animals 

within a group to account for asynchronous dive behavior. This step may have included slowing 

the ship and maneuvering towards the group to for better estimates. If sperm whales were first 

detected acoustically and were never visually observed, the whales were tracked and localized 

until they passed 90° of the towed array. If the whales were estimated at a perpendicular distance 

within 5.6 km from the trackline, the ship was directed towards the whales for group size 

estimates. Whale groups were not pursued beyond 5.6 km because such encounters are well-

beyond the truncation distance for visual survey data (typically 5.5 km for sperm whales in 

Hawaii; Bradford et al., 2017) and due to the time necessary to respond to groups at that distance 

(Buckland et al., 2001; Thomas et al., 2006).  

4.2.2 Acoustic Data Processing 

4.2.2.1 Sperm Whale Encounter Types 

Model data sets included four types of sperm whale encounters: a visual sighting, a 

sighted acoustic encounter, a localized acoustic encounter, or a trackline acoustic encounter 

(Table 4.2). The encounter type determined the location of the sperm whale group used in the 

model data set and dictated how the data were processed. All acoustic encounters were validated 

for the presence of echolocation clicks by visually and aurally examining spectrograms of the 

acoustic data at the time of each encounter using Raven Pro (2048 FFT, Hann window, 50% 

overlap, version 1.5; Bioacoustics Research Program, 2017). The types of echolocation clicks 

detected during the encounter were determined aurally and by manually measuring the interclick 

interval from the spectrogram. We designated any acoustic encounters (i.e., sighted acoustic, 

localized acoustic, and trackline acoustic encounters) with regular clicks and creaks as 

“foraging” observations and all others as “non-foraging” observations. 
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Table 4.2.  Description of sperm whale encounters included in the model data sets. 

 

Encounter Type Encounter Description Encounter Location 

Sighting Detected visually only At location of sighting 

Sighted Acoustic Detected visually and acoustically At location of sighting 

Localized Acoustic 
Detected acoustically and localized 

At location estimated from 

localization algorithm 

Trackline Acoustic 
Detected acoustically but not localized 

At the ship’s trackline 

location at time of detection 

4.2.2.2 Localization Analysis 

We reanalyzed acoustic encounters by applying the model-based localization algorithm 

presented in Chapter 3 and incorporated the re-estimated locations and distances of the localized 

sperm whale groups into the modeling data sets. When sperm whale groups could not be 

localized using the model-based approach presented in Chapter 3, we used the location of the 

ship at the time of first detection. Sightings and sighted acoustic encounters utilized the location 

from the visual observation data set and did not require additional data processing. 

Many of the localized acoustic encounters included two location estimates, one for each 

side of the ship due to the left/right ambiguity caused by the linear array design and the 

collection of acoustic data along a straight trackline. Only one location estimate per localized 

acoustic encounter can be included in the model data sets. To select one location estimate, we 

compared the associated environmental variables measured on the left and right sides of the ship 

for each localized acoustic encounter to determine if they were significantly different. First, a 

correlation analysis revealed most environmental variables between the left and right sides were 

highly correlated for all encounters (r ≥ 0.7), with the exception of slope and aspect (Figure 4.1). 

Next, we examined whether the differences in the environmental variables between the left and 

right sides were related to the mean estimated distance for each localized acoustic encounter. 

Whales detected at greater distances were expected to have larger differences in environmental 

variables compared to whales detected closer to the trackline. Simple linear regressions revealed 

low p-values for most relationships with low R2 values and non-normally distributed, 

heteroscedastic residuals suggesting weak linear relationships between the environmental 
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variable differences and mean distances from the trackline (Figure 4.2). Hence, choosing the left 

or right side of the location estimates for localized acoustic encounters was appropriate. 

 

 

Figure 4.1.  Correlation plots of environmental variables between the left and right location 

estimates from localized acoustic encounters. 
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Figure 4.2.  Linear regressions tested the relationship between the difference in environmental 

variables between the left and right side of the acoustic location estimates and the mean 

estimated distance of the encounter. 
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4.2.2.3 Trackline Acoustic Encounters 

A portion of the overall acoustic encounters in this study could not be localized and were 

designated as trackline acoustic encounters, i.e., sperm whale groups that were validated but not 

localized. Localization was not possible if the whales stopped vocalizing or the ship turned 

towards another sighting before they passed 90° of the array. However, all acoustic encounters 

(including localized encounters) were associated with the ship’s position on the trackline at the 

time of first detection, creating the potential for non-localized groups to be included in SDMs by 

linking their trackline location to environmental data. This also meant that each localized 

acoustic encounter had both an estimated location from the relocalization analysis as well as a 

trackline location at the time the group was detected. We compared environmental data between 

the trackline location and the localized location for the localized acoustic encounters using a 

Wilcoxon signed rank test to determine whether including trackline acoustic encounters was 

appropriate. If the test resulted in significant differences between the environmental data from 

each location, then the trackline acoustic encounters would not be included in the data set. Test 

results of the Wilcoxon signed rank test showed large p-values (α > 0.05) indicating that the 

environmental variables between the estimated location and the trackline location of each 

localized acoustic encounter were not significantly different. Therefore, we included the 

trackline acoustic encounters within the data sets for the SDMs. 

4.2.3 Model Configuration 

SDMs were constructed to evaluate the overall spatial distribution patterns of sperm 

whale groups within the Hawaii EEZ as they relate to environmental variables. We developed 

and compared SDMs built using only sighting data (sighting-based), only acoustic data 

(acoustic-based model) with localized and trackline encounters, and using both sighting and 

acoustic data (combined model). Finally, behavioral information derived from the echolocations 

clicks were used to subset the acoustic dataset into foraging and non-foraging encounters to 

address our working hypothesis by comparing influential environmental variables and spatial 

patterns of foraging and non-foraging groups of whales. Foraging groups required the presence 

of regular clicks or creaks but could include all other click types during the encounter. Non-

foraging groups included encounters with codas and slow clicks without regular clicks or creaks. 
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4.2.3.1 Survey Effort 

All SDMs included data collected during times when observers were actively searching 

and listening for whales using visual and acoustic methods, respectively. Effort for the sighting-

based model included data from times when the visual observer team was on effort regardless of 

the acoustics team’s effort status. Effort for the acoustic-based model included data from times 

when the acoustics team was on effort regardless of the visual team’s effort status. The data set 

for the combined model required both the visual and acoustics teams to be simultaneously on 

effort. Data sets for the foraging and non-foraging models were based on the combined model 

data set, but subsetted the sperm whale encounters according to the click type requirements. 

Additionally, we considered the trajectory of the ship when building each data set since 

calculations for acoustic localization assumed the towed array to be straight in line with the ship. 

The ship turned during each survey for various reasons (e.g. approaching animals, avoiding rain, 

transiting to a new trackline). While turning, an unknown offset occurred between the towed 

array and ship that persisted for several minutes after the completion of the turn. The magnitude 

of the offset was unable to be measured causing any localization calculations computed during 

this time to be unreliable and, consequently, not incorporated into location or distance estimates 

of the group. Since the visual and acoustics teams often remained on effort when the ship turned 

for various reasons, all data sets only included data collected along straight segments of trackline 

to ensure the integrity of the location and distance estimates and allow for model comparisons. 

We used the straightPath function in the ‘PAMmisc’ R package (version 1.6.0; Sakai, 2020) to 

calculate all straight sections of trackline using the GPS and heading data of the ship. The 

method accounted for the normal variation in the ship’s heading while identifying points along 

the trackline during turns. We configured the function to compare the ship’s average heading 

from a 2-minute period with the average heading from the previous 8 minutes. A turn was 

indicated if the difference between the averaged headings exceeded a threshold of 20 degrees. 

All data points collected when the ship was turning were excluded from the data set. 

4.2.3.2 Analytical Unit 

We used the effort data along straight sections of trackline to compute the unit of the 

response variable, the number of sperm whale encounters per grid cell, for each model. The 
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number of individual whales was not able to be estimated from the localized and trackline 

acoustic encounters thus whale groups were used as the response variable for all models. A 

gridding method was developed using customized code written in the R programming language 

(version 4.0.2; R Core Team, 2020) to create grids with a 25 km by 25 km spatial resolution (i.e., 

625 km2 grid cells). The spatial resolution was selected according to previous sperm whale 

habitat studies (Jaquet, 1996; Jaquet and Whitehead, 1996), which found stronger correlations 

between sperm whale density and environmental variables at spatial scales greater than 593 km.  

Effort and straight trackline data were utilized in the gridding process. The amount of 

effort for each grid cell was calculated in units of area (m2) using an acoustic detection function, 

which described the relationship between the distance and detection probability of sperm whales 

(Figure 4.3). Since sperm whales were detected at farther distances using acoustic methods 

compared to visual observations, the detection function consisted of perpendicular distance 

estimates from the localized acoustic encounters to account for the maximum possible sperm 

whale detection range. We modeled the detection function using the ‘Distance’ R package 

(Miller et al., 2019) to fit a half-normal model to a histogram of the acoustic distance estimates.  

The largest 3% of distances were removed to improve the fit of the half-normal model. 

Incorporating the detection function into effort calculations accounted for the proportion of area 

surveyed for each grid cell, which varied depending on the distance of the grid cell from the 

trackline. The centroids of each grid cell containing effort were extracted using the ‘sf’ R 

package (Pebesma, 2018). Sperm whale encounters within each grid cell were associated with 

the effort and environmental data computed at the grid cell centroid. Grids were computed 

separately for each model type (i.e., acoustic-based, combined) to include the appropriate sperm 

whale encounters and effort data. Separate grids were not computed for the foraging and non-

foraging models since they were subsets of the combined model data set. 
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Figure 4.3.  Half-normal distribution detection function modeling the detection probability of 

sperm whales as a function of the distances estimated from the localized acoustic encounters 

(black dots). 

4.2.3.3 Environmental Variables 

The environmental predictor variables associated with each grid centroid consisted of 

static bathymetric features and dynamic remotely sensed variables. The latter were included as 

indicators of mesoscale oceanographic processes to represent sperm whale habitat and proxies 

for prey distribution (Table 4.2). Static variables included seafloor depth, seafloor slope, seafloor 

aspect, distance to islands, and distance to seamounts. Seafloor bathymetric variables were 

obtained from the global bathymetry and topography 15 arcsecond data set, SRTM15+ (Tozer et 

al., 2019). Since slope and aspect were highly uncorrelated between the left and right sides of 

localized acoustic encounters (Figure 4.1; r = 0.27, r = 0, respectively), they were excluded from 

the models. 
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Table 4.3.  Candidate environmental variables included as predictors for species distribution 

models. 

 

Environmental 

Variable 

Unit Resoluti

on 

Relevance Data Source 

Static     

Depth m 15 arc-sec 
Prey aggregations found in 

deeper water 

SRTM15+ 

(https://topex.ucsd.edu/WW

W_html/srtm15_plus.html) 

Distance to shoreline m 15 arc-sec 

Proximity to land relates to 

areas of upwelling, enhanced 

primary production 

GSHHG            

(https://www.soest.hawaii.ed

u/pwessel/gshhg/) 

Distance to seamount km   

Interactions with currents 

influence prey aggregations 

and primary production 

Global Seafloor Geomorphic 

Dataset 

(http://www.bluehabitats.org/

?page_id=58) 

Dynamic 
    

Chlorophyll-a mg/m3 
0.04°, 

monthly 
Proxy for prey availability 

Aqua MODIS    

(https://oceancolor.gsfc.nasa.

gov/data/aqua/) 

Sea surface 

temperature (SST) 
ºC 

0.04°, 

monthly 
Potentially associated with 

prey aggregations or 

enhanced productivity Standard Deviation of 

SST 
ºC 

0.04°, 

monthly 

Temperature at 584 m ºC 

0.33° Lat x 

1° Lon, 

monthly 

Depth of prey species 

GODAS   

(https://psl.noaa.gov/data/gri

dded/data.godas.html) 

Sea surface height 

(SSH) 
m 

0.08°, 

monthly 

Variability over time and 

horizontal gradients of SSH 

indicate mesoscale 

oceanographic features 

associated with enhanced 

prey aggregations or primary 

production 

GLORYS12V1 

(https://resources.marine.cop

ernicus.eu/?option=com_csw

&task=results?option=com_c

sw&view=details&product_i

d=GLOBAL_REANALYSIS

_PHY_001_030) 

Standard Deviation of 

SSH 
m 

0.08°, 

monthly 

Eddy kinetic energy m2/s2 
0.08°, 

monthly 

High EKE indicates stronger 

current velocities, influence 

prey aggregations and 

primary production 

Wave power kW/m 0.45°, daily 

Wave power accounts for 

wave height and period, 

indicator of energy 

movement through water, 

potentially associated with 

changes in primary 

production 

WaveWatch III  

Global Wave Model                          

(https://pae-

paha.pacioos.hawaii.edu/erdd

ap/griddap/ww3_global.html) 
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The distance to land was obtained from the Global Self-consistent, Hierarchical, High-

resolution Geography Database (GSHHG; Wessel and Smith, 1996). This variable addressed the 

theory that sperm whales are typically found farther offshore, which is also related to depth and 

suitable prey habitat.  

Seamounts are isolated topographic seafloor features taller than 100 m (Staudigel et al., 

2010) that aggregate lower trophic level communities, including cephalopods, a main prey item 

for sperm whales (Clarke et al., 1993; Clarke, 1996; Clarke and Paliza, 2001; Pitcher et al., 

2007). Since many cetacean species are associated with seamounts (Kaschner, 2007; Wong and 

Whitehead, 2014) and roughly 600 seamounts exist within the Hawaiian archipelago, we 

included the distance to seamounts as a predictor variable. Locations of seamounts were 

extracted from the Seafloor Geomorphic Features Map (Harris et al., 2014). Distances to 

seamounts were computed with the ‘sp’ and ‘sf’ R packages (Bivand et al., 2013; Pebesma, 

2018).  

A two-dimensional spatial term (longitude x latitude) was included to explicitly account 

for geographic effects as well as spatial autocorrelation and integrates over the entire time period 

of all surveys (Miller et al., 2013; Becker et al., 2018). The inclusion of a spatial term may result 

in explaining the variation in the data not explained by the other environmental predictors, but it 

limits the transferability of the models to other study areas. A temporal term for year was also 

included as a predictor variable to account for any variation introduced by including data from 

surveys conducted in different years. 

Remotely sensed dynamic variables included monthly sea surface temperature (SST) and 

chlorophyll-a from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data 

set. Chlorophyll-a was log-transformed to normalize the variance across the right-skewed 

observations (log(Chla)). Sea surface height (SSH), the standard deviation of SSH (SSHsd) and 

eddy kinetic energy (EKE) were obtained from the global ocean eddy-resolving physical 

reanalysis data set (GLORYS12V1) generated by the Copernicus Marine Environment 

Monitoring Service. The EKE is given by:  

 

𝐸𝐾𝐸 =  1/2(𝑈2 + 𝑉2)   , Eq. 4.5 
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where U and V are the zonal and meridional components of geostrophic currents, respectively. 

The SSH, SSHsd, and EKE act as mesoscale indicators of the ocean vertical structure and reflect 

gradients in ocean circulation and density structure that may influence the biological responses 

of lower trophic level organisms (Polovina and Howell, 2005). Wave power (WP) is given by: 

 

𝑊𝑃 =  
𝜌𝑔2

64𝜋
𝐻2𝑡𝑝   , Eq. 4.6 

 

where 𝜌 is the density of seawater (1024 kg/m3) and g is the acceleration of gravity (9.8 m/s2). 

Significant wave height, H, and peak wave period, 𝑡𝑝, were combined to represent a metric for 

the size and strength of waves. Monthly temperatures at 584 m were obtained from the Global 

Ocean Data Assimilation System (GODAS) provided by the NOAA Climate Prediction Center. 

We selected a depth of 584 m as the best approximate depth of prey habitat available from the 

resolution of the GODAS data set to be related to the presence of sperm whales. This depth 

corresponded with non-migrant squid species (e.g., Histioteuthis hoylei) that typically inhabit 

waters deeper than 400 m and are commonly found in stomach content analyses of sperm whales 

(Young, 1978; Clarke and Young, 1998; Watanabe et al., 2006). 

4.2.3.4 Model Parameterization 

Generalized additive models are a statistical method commonly used in species 

distribution modeling for their flexibility in fitting complex, nonlinear species-habitat 

relationships. The data drive the relationships between the response and predictor variables 

without assuming a specific formula (Guisan et al., 2002). To relate the number of sperm whale 

encounters per grid cell to environmental variables, we fitted GAMs using the ‘mgcv’ R package 

(v. 1.8-31; Wood, 2011) using a negative binomial distribution with a log-link function given the 

sparse encounter rate data and large numbers of zeros. Model data sets were partitioned into a 

training and test set with 70% and 30% of the data, respectively. Correlations among the 

predictor variables were found to be < |0.60|. The natural logarithm of effort was included as an 

offset variable to account for the variation in effort per grid cell. 

Thin-plate regression splines were restricted to three degrees of freedom to avoid 

overfitting the non-linear trends and preserve the ecological interpretability of the relationships 
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(Forney, 2000; Ferguson et al., 2006; Roberts et al., 2016). Parameter estimates were optimized 

using restricted maximum likelihood (Wood, 2011). Model selection was conducted with 

automatic term selection, determined by the p-values of each predictor (Marra and Wood, 2011). 

Initial models were built with all potential environmental predictors. Non-significant (α = 0.05) 

predictors were removed, and models were refit until only significant predictors remained.  

4.2.3.5 Model Evaluation 

 SDMs were evaluated using a set of common evaluation metrics calculated on the trained 

models and the models fitted to the test datasets, including the percentage of explained deviance 

and the mean squared error (MSE). Partial effects plots were used to visualize the fitted 

smoothers and interpret the relationship of the selected environmental variables with the 

response variable. Selected predictor variables were compared between models to assess whether 

different types of data resulted in different model predictions.  

4.3 Results 

The post-processed acoustic data from the four surveys resulted in 209 total sperm whale 

encounters (11 sighted only, 67 sighted acoustic encounters, 58 localized acoustic encounters, 

and 73 trackline acoustic encounters) (Table 4.4). A total of 119 acoustic encounters were 

designated as a foraging group (44 sighted acoustic encounters, 40 localized acoustic encounters, 

and 35 trackline acoustic encounters) and 79 were designated as a non-foraging group (18 

sighted acoustic encounters, 38 localized acoustic encounters, and 23 trackline acoustic 

encounters). Acoustic encounters that were not also sighted accounted for 63% of the total 

encounters. With four years of survey data included in the SDMs, year was not selected as a 

significant variable. 
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Table 4.4.  Total encounters by type and survey year.   

 

 Encounter Type  

Survey Year Sighted Only Sighted-

Acoustic 

Localized-

Acoustic 

Trackline-

Acoustic 

Total 

Encounters 

2010 6 24 10 25 65 

2013 2 17 4 4 27 

2016 0 4 4 8 16 

2017 3 22 40 36 101 

Total      

4.3.1 Sighting-Based Models 

The best-fit sighting-based models selected SST, SSHsd, and the spatial smoother as 

significant predictors (Figure 4.4). Sightings declined in warmer surface waters with the lowest 

number of sightings predicted when temperatures reached 30°C. The majority of sightings also 

occurred at the extremes of SSHsd. The 2D smoother of the spatial term using longitude and 

latitude depicted sperm whale sightings to gradually increase with latitude, with the majority 

occurring north of 25°N. The percentage of deviance explained for the sighting-based model was 

16.2%, the highest of all models (Table 4.5). The sighting-based model also resulted in similar 

mean squared errors (MSE) for the training and test data sets, indicating minimal overfitting of 

the model. 
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Figure 4.4.  Environmental predictors selected for the sighting-based model included sea surface 

temperature (SST), standard deviation of sea surface height (SSHsd), and the 2D spatial term 

(Longitude, Latitude). Purple dots on the heat map of the spatial term represent all sighted sperm 

whales and the black dots indicate all data points included in the model. The blue contour lines 

represent predicted whale groups on the link scale and correspond with the color scale, 

increasing from red to yellow. 
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Table 4.5.  Percentage of explained deviance, mean squared errors, total encounters, and selected 

environmental predictors for all models. 

 

Model 

% of 

Deviance 

Explained  

MSE 

Train 

MSE 

Test 

Total 

Encounters Environmental Predictors 

Sighting-based 16.2 0.017 0.02 78 SST, SSHsd, LON:LAT 

Acoustic-based 8.56 0.025 0.026 131 Depth, SSH, LON:LAT 

Combined 12.62 0.041 0.05 209 Depth, SSHsd, LON:LAT 

Foraging 16.04 0.03 0.029 119 

Temp at 584m, SSHsd, 

log(Chla), LON:LAT 

Non-Foraging 11.69 0.017 0.018 79 Depth, LON:LAT 

4.3.2 Acoustic-Based Models 

The best-fit acoustic-based models selected depth, SSH, and the spatial smoother as 

significant predictors (Figure 4.5). More acoustic encounters occurred in depths closer to 6000 m 

and shallower depths less than 1000 m with less occurring at depths between 3000-3500 m. 

Acoustic encounters also gradually declined with increasing SSH. The 2D smoother for the 

spatial term of the acoustic encounters showed sperm whales to be spatially distributed north of 

the Main Hawaiian Islands and north of the Northwestern Hawaiian Islands with fewer 

encounters south of all islands. The percentage of deviance explained was 8.56%, the lowest 

compared to other models. The acoustic-based model resulted in similar mean squared errors 

(MSE) for the training and test data sets, indicating minimal overfitting of the model.  
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Figure 4.5.  Environmental predictors selected for the acoustic-based model included depth, sea 

surface height (SSH) and the 2D spatial term (Longitude, Latitude). Purple dots on the heat map 

of the spatial term represent all sighted sperm whales and the black dots indicate all data points 

included in the model. The blue contour lines represent predicted whale groups on the link scale 

and correspond with the color scale, increasing from red to yellow. 

4.3.3 Combined Models 

The best-fit combined model selected depth, SSHsd, and the spatial term as significant 

environmental predictors. The simple smoother for depth resulted in a similar relationship as the 

acoustic-based model, with more sperm whales encountered in deeper and shallower depths 

compared to depths between 3000-3500 m. Sperm whale encounters gradually declined with 

increasing SSHsd until 0.01 m, where the encounter rate remained mostly stable. The spatial 

term for the combined data set showed an increase in sperm whale encounters within the 

Northwestern Hawaiian Islands region and north of the Main Hawaiian Islands. The fewest 

sperm whale encounters occurred south and east of French Frigate Shoals until the eastern edge 
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of the study area. The combined model resulted in a higher percentage of explained deviance 

(12.62%) compared to the acoustic-based model, but lower than the sighting-based model. The 

MSE of the models built with the training data was lower than the MSE of the predictions for the 

test data. 

 

 

Figure 4.6.  Environmental predictors selected for the combined model included depth, the 

standard deviation of sea surface height (SSHsd), and the 2D spatial term (Longitude, Latitude). 

Purple dots on the heat map of the spatial term represent all sighted sperm whales and the black 

dots indicate all data points included in the model. The blue contour lines represent predicted 

whale groups on the link scale and correspond with the color scale, increasing from red to 

yellow. 

4.3.4 Foraging Models 

The best-fit foraging model resulted in similar selected variables and relationships as the 

combined model except for selecting the natural log of chlorophyll concentration instead of 

depth (Figure 4.7). The relationship with temperature at 584 m depth showed more sperm whale 
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encounters occurring at the warmest and coolest temperatures with the less found in the 

intermediate temperatures between 6.5-7.0°C. Sperm whale encounters declined with increasing 

chlorophyll concentration. The 2D smoother for the spatial term showed a majority of foraging 

sperm whale groups to be spatially distributed between Laysan Island and Pearl and Hermes 

Atoll with another cluster of foraging groups associated with the area north of the Main 

Hawaiian Islands. The foraging model resulted in an explained deviance of 16% and similar 

MSE between the training and test data sets. 

 

 
Figure 4.7.  Environmental predictors selected for the foraging model included temperature at 

584 m, the standard deviation of sea surface height (SSHsd), log of chlorophyll-a concentration 

(log(Chl-a)), and the 2D spatial term (Longitude, Latitude). Purple dots on the heat map of the 

spatial term represent all sighted sperm whales and the black dots indicate all data points 

included in the model. The blue contour lines represent predicted whale groups on the link scale 

and correspond with the color scale, increasing from red to yellow. 



 

 

 

 
91 

4.3.5 Non-Foraging Models 

The best-fit model for non-foraging sperm whales included the spatial term and depth as 

significant predictors (Figure 4.8). The non-foraging groups were predicted to be at the extreme 

depth values, a similar relationship as the acoustic-based and combined models. The spatial term, 

while considered significant, depicted a relatively uniform spatial distribution of the non-

foraging groups across the study area. Models yielded 11.69% for the percentage of deviance 

explained with similar MSE between training and test data sets. 

 

 
Figure 4.8.  Environmental predictors selected for the non-foraging model included depth and the  

2D spatial term (Longitude, Latitude). Purple dots on the heat map of the spatial term represent 

all sighted sperm whales and the black dots indicate all data points included in the model. The 

blue contour lines represent predicted whale groups on the link scale and correspond with the 

color scale, increasing from red to yellow. 
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4.4 Discussion 

Our results demonstrate that distribution patterns differed between foraging and non-

foraging sperm whales in Hawaiian waters. The foraging whales were associated with the 

temperature at 584 m, standard deviation of SSH, and chlorophyll concentration. The 

temperature at 584 m depth was included in the SDMs as an environmental variable to account 

for subsurface conditions at an average depth representing sperm whale prey habitat (Clarke and 

Young, 1998; Watanabe et al., 2006). Warmer temperatures occurred to the west of French 

Frigate Shoals and continued further towards the Northwestern Hawaiian Islands (NWHI). 

Cooler temperatures at depth occurred towards the east near the Main Hawaiian Islands. This 

temperature gradient at depth is a persistent characteristic of the North Pacific Subtropical Gyre 

between depths of ~250-600 m predicted by GODAS (Wang et al., 2000; Saha et al., 2006) that 

is reflected in the correlations between densities of foraging sperm whales and the upper and 

lower ranges of temperature at 584 m. While this is an important predictor in the SDM for 

foraging sperm whales, further data collection and analysis is required to determine if a 

biological explanation exists for this relationship.  

The Hawaii EEZ study area is influenced by the surrounding oceanographic features of 

the North Pacific Subtropical Gyre. The northern end of the Northwestern Hawaiian Islands 

(NWHI) is adjacent to broad frontal zones that promote primary production, which attracts 

higher trophic level organisms (Seki et al., 2002). The northwesterly flow of the North Hawaiian 

Ridge Current along the north side of the main Hawaiian Islands (MHI) (Qiu et al., 1997) may 

contribute to localized areas of upwelling with enhanced primary production creating patchy 

aggregations of squids and other sperm whale prey. Since the model data sets span four years, it 

is not possible to attribute a specific physical process to the overall distribution of sperm whales. 

However, examples of foraging sperm whale groups that are spatially and temporally associated 

with extreme values of temperature at 584 m and the standard deviation of SSH indicate that it is 

likely that mesoscale physical features are concurrent with the presence of sperm whale groups 

(Woodworth et al., 2012). Eddies and fronts are examples of mesoscale physical processes that 

enhance nutrient concentrations in the euphotic zone, which in turn enhance primary production, 

and presumably benefit sperm whale prey communities. These oceanographic features are typical 

in the study region and occur throughout the year (Qiu, 1999; Firing and Merrifield, 2004).  
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Two separate groups of foraging sperm whales observed in the NWHI at the end of July 

2017 were associated with lower Temp584 along with a relatively high standard deviation of 

Temp584 compared to the surrounding area (Figure 4.9). The latter variable was not included in 

the model, but used in this example to demonstrate how the gradient in subsurface temperatures 

promote areas of enhanced productivity that may result in larger aggregations of mesopelagic 

organisms and provide areas of higher concentrations of sperm whale prey (Mann and Lazier, 

2006; Robinson et al., 2012; Scales et al., 2014). Further data collection and analyses are 

required to quantify potential subsurface frontal regions and their relationship with foraging 

sperm whales.  

 

 
Figure 4.9.  Two groups of foraging sperm whales (red dots) observed west of French Frigate 

Shoals occurred in areas with lower temperatures at 584 m depth that corresponded with 

relatively high standard deviations. 

 

 

 Foraging sperm whale groups north of Maui and Oahu were observed between September 

18-20, 2010 in a region with high SSHsd, which is an indicator of the presence of eddies (Figure 

4.10; Polovina and Howell, 2005). The SSH associated with the sperm whale encounters offers 

evidence that the sperm whales coincided with the edges of anticyclonic (areas of higher SSH) 

and cyclonic eddies (areas of lower SSH). These mesoscale features uplift isopycnals which 

results in cold, nutrient-rich waters being transported into the euphotic zone creating patchy areas 

of increased primary production that may accumulate higher amounts of prey biomass for sperm 

whales. 
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Figure 4.10.  Two groups of foraging sperm whales (red dots) observed in September 2010 were 

associated with a higher standard deviation of SSH north of the Main Hawaiian Islands.  

 

Obtaining an accurate representation of a pelagic, highly mobile, deep-diving species is a 

challenging objective. For sperm whales, we incorporated different types of observational data to 

accommodate their surface and diving behavior along with ecologically relevant environmental 

predictors to best represent their habitat. The distribution of sperm whales for the sighting-based 

SDM predicted a latitudinal increase in groups, which is a similar pattern to a sperm whale SDM 

developed by Forney et al. (2015) using only sighting data. More complex spatial patterns 

resulting from the acoustic-based and combined SDMs predicted sperm whales to occur in 

higher densities in specific areas of the NWHI and MHI, which were similar to more recent 

cetacean SDMs for the Hawaii EEZ from Becker et al. (In press) that also only included sighting 

data. Overall, the addition of acoustic encounters did not result in substantial differences in 

SDMs. However, the acoustic behavioral information did allow for the distribution of foraging 

and non-foraging sperm whales to be examined to get closer to explaining sperm whale 

distribution patterns in a more direct ecological and biological context that cannot be confirmed 

using only sighting data. 

All models that selected depth as a significant variable resulted in a similar relationship 

predicting fewer whales at intermediate depths (3000-3500 m). This depth range possibly 

represents less suitable conditions for prey habitat. Shallower depths may be associated with 

areas closer to the islands or seamounts with enhanced communities of micronekton that provide 
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more foraging opportunities for larger cephalopod species that are preyed upon by sperm whales 

(Clarke and Young, 1998; Benoit-Bird et al., 2008; Choy et al., 2016). Deeper depths may 

represent areas suitable for larger mesopelagic or bathypelagic squid prey species associated with 

the deep scattering layer (Hazen and Johnston, 2010).   

In general, the spatial term accounted for spatial autocorrelation in the SDMs and 

explained the variation not accounted for by the environmental predictors. It proved useful for 

visualizing and comparing the geographic patterns of sperm whale distribution between the 

different types of encounters. The combined model included all encounters, which contributed 

more information to the models and increased the complexity of the contours in the spatial term 

compared to the sighting-based and acoustic-based models. The spatial contours of the acoustic-

based model showed a similar pattern in distribution in that fewer whales were predicted south of 

the island chain. The sighting-based model showed an increasing latitudinal gradient of sperm 

whale encounters towards the northwest region with less variation in the spatial contours. For 

comparison, SDMs built with only the spatial term resulted in approximately 0.7-5% less 

deviance explained than the SDMs presented here. This indicates that the spatial term alone is 

finding a similar pattern, but the environmental predictors still explain additional variation within 

the data.  

Sighting-based and acoustic-based SDMs differed in the selected environmental variables 

and in the spatial patterns predicted by the spatial term. Differences in the number of sperm 

whale encounters included in the SDMs may contribute to differences in the spatial patterns. 

More acoustic encounters (n = 131) likely provided more geographic information resulting in 

more complex spatial patterns compared to the sighting-based SDM (n = 78). Both SDMs 

selected an SSH variable, but the acoustic-based SDM was also best explained by depth while 

the SDM based on sightings was explained by SST. The reason for this difference between 

SDMs is unclear but could be attributed to differences in sample size and behavioral states 

associated with each encounter type. Combining all encounter types into one SDM also selected 

an SSH variable as a significant environmental predictor. While SSH variables are indicators of 

eddies and have been associated with higher concentrations of several high trophic level pelagic 

species (Seki et al., 2002; Polovina et al., 2006; Woodworth et al., 2012), only the results of the 

acoustic-based SDM were consistent with previous studies predicting more sperm whale groups 

to occur in more productive areas. We assume that more productive areas are related to higher 
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prey density, which attracts foraging animals. However, the sighting-based and combined SDMs 

that associated higher density of sperm whale groups in areas of  lower SSHsd and may be 

capturing a portion of the population exhibiting behaviors unrelated to foraging, such as travel or 

reproduction.  

This analysis is a step towards developing a better understanding of sperm whale 

distribution in the Hawaiian Archipelago and provides an approach for incorporating behavioral 

information into SDMs for sperm whales. A better ecological understanding of this population 

may be gained through dedicated surveys in areas of higher sperm whale density focused on prey 

sampling and in situ oceanographic measurements that include subsurface measurements more 

related to their foraging habitat at depth. Deploying archival tags to track dive patterns and 

record acoustic behavior or satellite telemetry tags to track movement patterns would also 

provide valuable biological insight and help assess the geographic range of this population. 

Future line-transect cetacean surveys should continue to collect visual and acoustic data of sperm 

whales to incorporate all available information in SDMs to improve our understanding of their 

distribution patterns.  
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CHAPTER 5 CONCLUSION 

In this dissertation, I developed innovative methods for analyzing acoustic data to derive 

this critical information for two endangered cetacean populations in the Hawaiian Archipelago. 

Most research conducted on these populations relies on visual observation data to study their 

distribution and estimate abundance (Baird et al., 2013; Forney et al., 2015; Bradford et al., 

2017). Here, I expanded upon this work to further our understanding of these species and pose 

questions about each population that could only be addressed using passive acoustic data. 

In Chapter 2, I investigated the use of whistle characteristics as a method for classifying 

three sympatric populations of false killer whales to the population level. Classification results 

from Random Forest models indicated that whistles characteristics were too similar to 

confidently distinguish between the populations. Overall, it is not surprising that the whistle 

characteristics were similar given the fact that the populations occupy similar habitat, likely 

forage for the same prey species, and overlap in their broader distributions (Riesch and Deecke, 

2011). However, the mechanisms maintaining the separation between the false killer whale 

populations remain unexplained. Results from the whistle classification models suggested that 

unique patterns may exist within in the whistle characteristics of the endangered MHI and NWHI 

populations. It is possible that the animals use distinct features of their vocalizations as one way 

to discriminate between individuals of a population, but these features were not captured within 

the whistle measurements included in the Random Forest classification models. Further analyses 

are required to examine alternative classification models that include different vocalization 

metrics and consider the effects of behavioral context on vocalization characteristics for future 

acoustic classification models of the sympatric false killer whale populations (Henderson et al., 

2012; Rankin et al., 2017).  

In Chapter 3, I developed a model-based localization method for towed line array 

acoustic data to estimate the location of deep-diving sperm whales in their three-dimensional 

habitat. The method improved upon conventional target motion analysis by incorporating sources 

of error, environmental conditions, and animal depth into localization results (Hastie et al., 2003; 

Barlow and Taylor, 2005; Wild et al., 2017). Using examples from simulated and real data of 

diving sperm whales, we tested different localization scenarios to better understand the effects of 

depth, distance, whale movement, and ship trajectory on location and distance estimates. The 
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three-dimensional locations of diving sperm whales also included position bounds to provide a 

range of possible locations and distances of the whale relative to the towed array. While 

incorporating the distances with error estimates into abundance estimation requires further 

analytical development, this study provided important information about the factors influencing 

the localization of deep-diving cetaceans. Acquiring more robust location estimates from 

acoustic data offers additional information about the species and their habitat and increases the 

reliability of the data for subsequent analyses. Future work may apply this localization method to 

other deep-diving species, such as beaked whales and Kogia spp., and incorporate surface 

reflections to refine the depth estimates from the model-based localization approach. 

In Chapter 4, I developed SDMs to study the relationship between sperm whales and their 

physical environment to gain insight about their ecology and distribution. SDMs related the 

number of sperm whale groups to environmental data using observations collected with visual 

and PAM methods during four surveys. Since most SDMs only include sighting data, a 

proportion of the population occurring below the surface are typically excluded from the 

analysis. We compared SDMs that incorporated the locations of visually and acoustically 

detected sperm whale groups to evaluate differences in the resulting spatial patterns and 

environmental variables that best predicted their distributions. Overall, we found that the 

acoustic data contributed more information to the SDMs resulting in more complex spatial 

distribution patterns that corresponded with gradients in environmental variables, including 

temperature at depth and sea surface height.  

Since sperm whale echolocation clicks differ depending on behavior, we used the type of 

echolocation clicks associated with foraging behavior to develop SDMs for foraging and non-

foraging groups. The spatial patterns resulting from the behavioral models may indicate more 

suitable foraging areas, but it is difficult to definitively designate foraging habitat since it is 

likely influenced by physical oceanographic features that change over time (Hazen and Johnston, 

2010; Woodworth et al., 2012). While limitations in the acoustic data did not allow for 

predicting animal density using SDMs, we gained more ecological insight about the spatial 

distributions using the behavioral information from the acoustic data. As new developments in 

PAM data collection and analytical methods become available, future work should continue to 

include acoustic data in SDMs for cetaceans when possible for a more complete representation of 

their populations. 
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Cetacean populations worldwide are adjusting to a rapidly changing environment and 

increased anthropogenic impacts that come with our growing human population. Passive acoustic 

monitoring is one tool that has undergone vast technological improvements over the past decade 

that allow for all known cetacean vocalizations to be recorded. However, the steps required 

between collecting acoustic data and incorporating acoustic data into population assessments are 

not trivial. Several features of an acoustic data set often limit its direct applicability to more 

complex analyses including the inability to estimate the number of animals, the lack of 

information for location estimates, or the inconsistent vocalization behavior of individual 

animals (Marques et al., 2013). The work performed in this dissertation contributed analytical 

methods to advance the use of acoustic data for assessing the endangered populations of false 

killer whales and sperm whales, which can also be applied to other cetacean species. Using 

acoustic data in combination with sighting data, satellite telemetry data, genetics, and tag data 

provides valuable information for more complete population assessments (Sveegaard et al., 

2015; Mikkelsen et al., 2016; Silva et al., 2016). It is important to have multiple tools to gather 

baseline information about cetacean species for management and conservation efforts that 

appropriately account for their ecological requirements. Since acoustic data provides unique 

information about cetaceans not necessarily available from other data types, the continued 

advancement of acoustic data analyses is essential for a comprehensive understanding of these 

species. 
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