
Scanning Microscopy Scanning Microscopy 

Volume 8 Number 4 Article 14 

12-13-1994 

ZnSe Heteroepitaxial Growth on Si (100) and GaAs (100) ZnSe Heteroepitaxial Growth on Si (100) and GaAs (100) 

D. K. Biegelsen 
Xerox Palo Alto Research Center, biegelsen@parc.xerox.com 

R. D. Bringans 
Xerox Palo Alto Research Center 

J. E. Northrup 
Xerox Palo Alto Research Center 

L. -E. Swartz 
Xerox Palo Alto Research Center 

Follow this and additional works at: https://digitalcommons.usu.edu/microscopy 

 Part of the Biology Commons 

Recommended Citation Recommended Citation 
Biegelsen, D. K.; Bringans, R. D.; Northrup, J. E.; and Swartz, L. -E. (1994) "ZnSe Heteroepitaxial Growth on 
Si (100) and GaAs (100)," Scanning Microscopy: Vol. 8 : No. 4 , Article 14. 
Available at: https://digitalcommons.usu.edu/microscopy/vol8/iss4/14 

This Article is brought to you for free and open access by 
the Western Dairy Center at DigitalCommons@USU. It 
has been accepted for inclusion in Scanning Microscopy 
by an authorized administrator of DigitalCommons@USU. 
For more information, please contact 
digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/microscopy
https://digitalcommons.usu.edu/microscopy/vol8
https://digitalcommons.usu.edu/microscopy/vol8/iss4
https://digitalcommons.usu.edu/microscopy/vol8/iss4/14
https://digitalcommons.usu.edu/microscopy?utm_source=digitalcommons.usu.edu%2Fmicroscopy%2Fvol8%2Fiss4%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.usu.edu%2Fmicroscopy%2Fvol8%2Fiss4%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/microscopy/vol8/iss4/14?utm_source=digitalcommons.usu.edu%2Fmicroscopy%2Fvol8%2Fiss4%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Scanning Microscopy, Vol. 8, No. 4, 1994 (Pages 883-888) 0891-7035/94$5.00+ .25 
Scanning Microscopy International, Chicago (AMF O'Hare), IL 60666 USA 

ZnSe HETEROEPITAXIAL GROWTH ON Si (100) AND GaAs (100) 

D.K. Biegelsen .. R.D. Bringans, J.E. Northrup and L.-E. Swartz 

Xerox Palo Alto Research Center, Palo Alto, CA 94304 

(Received for publication June 23, 1994 and in revised form December 13, 1994) 

Abstract 

The early stages of ZnSe heteroepitaxy on Si(lOO), 
Si(lOO):As and GaAs(lOO) are compared and contrasted, 
based on results of scanning tunneling microscopy and 
photoemission spectroscopy. High Se reactivity with the 
substrate constituents leads to bulk phase formation 
which is detrimental to heteroepitaxy. As-termination of 
Si(lOO) not only passivates the surface, but also provides 
an ideal buffer for ZnSe overgrowth. Lacking a similar 
buffer layer, stoichiometric control of the GaAs(l00) 
surface is investigated to find a means for controlled 
heteroepitaxy. 
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Introduction 

Controlled heteroepitaxial film growth requires that 
the overlayer proceed through a progression of effective
ly two dimensional structures, The structures are 
generally metastable. Competing configurations having 
lower energy must be, if possible, kinetically con
strained. The growth of ZnSe on Si and GaAs presents 
interesting examples where the chemical configurations 
can, in principle, be energetically stable at each stage. 
The crystal grower might then be aligned with nature in 
achieving the desired goal. In this paper, we contrast 
the early stages of film evolution for ZnSe on Si(l00) 
and GaAs(lOO). 

Results and Discussion 

The ideally terminated Si(lO0) surface has two sin
gly occupied dangling bonds per surface atom. Dimeri
zation lowers the total energy but leaves the surface 
highly reactive. One monolayer (ML) of two-fold coor
dinated Se bridging between Si atoms results in a 
relatively low energy structure (Bringans and Olmstead, 
1989) and might be expected to form a passivating layer. 

In previous work (Bringans et al., 1992), it has 
been shown that ZnSe deposition directly on Si at ele
vated temperatures results in polycrystalline overgrowth. 
The reason is that the heat of formation of SiSez is 
strongly negative. This driving force coupled with the 
low average coordination of SiSez leads to a diffusion
limited growth of bulk, glassy SiSez at moderate temper
atures. Thus, even in the presence of Zn, the Se ambi
ent converts the Si from an epitaxial template to a non
crystalline substrate. The kinetic barrier separating the 
metastable Se-monolayer termination from the much 
lower-energy bulk SiSez is too low to be useful. Depos
iting Zn first (Park and Mar, 1986) or using very low 
substrate temperatures (Bringans et al., 1992) reduces 
the reaction but also produces poor epitaxial growth. 

Arsenic termination of Si(lO0) has also been shown 
to be energetically very favorable (Uhrberg et al., 
1986). Furthermore, there is a high kinetic barrier to 
SixAsy formation. Most importantly, though, for its use 
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Figure 1. Ball and stick models of (top) As on Si(lOO) 
and (bottom) ZnSe on GaAs(lO0). The structures are 
projected along the [0ll] direction. 

as a template for ZnSe heteroepitaxy, the Si(lOO):As 2xl 
dimerized surface, shown schematically in Figure 1 
(top), is isoelectronic and structurally equivalent to the 
Se terminated ZnSe(lOO) 2xl surface [Fig. 1 (bottom)]. 
In both cases, the surface atoms have three electrons per 
atom available for epitaxial overgrowth. From an inci
dent Zn atom perspective, the Si(lOO):As surface looks 
like a Se-terminated bulk ZnSe(lOO) surface. Although 
the dimerized As atoms on Si(lOO) are fully coordinated, 
the dimer bond can be broken, leaving fewer than two 
electrons per orbital to contribute to subsequent covalent 
bonds. It was, therefore, expected (D.J. Chadi, person
al communication) and shown experimentally (Bringans 
et al., 1992) that ZnSe heteroepitaxy on Si(lOO):As is 
analogous to growth of chemically similar but lattice 
mismatched epitaxy, such as ZnSe on ZnS. (Note that 
one significant difference is that, unlike for polar 
semiconductor (100) surfaces, single atom height steps 
can be prevalent on group IV surfaces and can lead to 
antiphase domains in the II-VI overlayer.) Figure 2 
shows the uniform epitaxial growth of a thin overlayer 
of ZnSe on Si(lOO):As (Bringans et al., 1992). Using 
energy dispersive X-ray spectroscopy in the transmission 
electron microscope (TEM), the As monolayer has been 
shown (Romano et al., 1994) to be pinned to the inter
face even after annealing to 900°C. Thus, the initial 
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and final stages of growth of Si(lOO):As/ZnSe are ener
getically stable. The As monolayer is both a surface and 
interface passivant. [It is instructive to note that this is 
not the case for the ( 111) interface. Here also all Si 
dangling bonds are replaced by doubly occupied, low en
ergy, As lone pairs. All atoms are again fully coordi
nated. However, with no dimer bonds to open, all sur
face orbitals are doubly occupied and only dative bond
ing can occur with any adsorbed species. In the alterna
tive but equivalent view, there is no analogous, isoelec
tronic surface of ZnSe(lll) which can satisfy the elec
tron counting criteria. Therefore, the As ML does not 
support heteroepitaxy on the (111) surface and the As is 
a surface passivant only.) 

We now turn to the evolution of ZnSe growth on 
GaAs(lO0). Here again, there is a strong thermodynam
ic driving force (high negative enthalpy) for compound 
formation (e.g., GaSe, Ga2S~ and A82Se3; Li and 
Pashley, 1994). Another similarity to the growth on Si 
is the existence of a stable termination of the substrate 
which should also be energetically favorable as an inter
face. Harrison et al. (1978) first pointed out that elec
tron counting arguments leading to covalent bond satura
tion and interface neutrality usually represent the domi
nant energetic tem1. They further showed that a simple, 
low energy interface arrangement between binary com
pound semiconductors arises from a 50:50 mixture of re
spective cations or anions. Charge transfer between 
nearby compensating, over- and under-coordinated pairs 
leads to interface neutrality and dipole minimization. 
For the case of ZnSe coverage of GaAs (100), Farrell et 
al. (1988) have proposed, and Figure 3a shows, a possi
ble configuration where a half monolayer of As-Zn 
bonds (electron deficient) is compensated by a half 
monolayer of Se-Ga (electron-rich) bonds. A related 
possibility, having cation mixing, is shown in Figure 3b. 

It is now becoming accepted that the dominant GaAs 
(100) surface reconstruction existing under the usual As
rich growth conditions in molecular beam epitaxy (MBE) 
is a 2x4 structure consisting of two As-As dimers 
(Biegelsen et al., 1990; Bressler-Hill et al., 1992; 
Hashizume et al., 1994) atop a complete Ga layer ["a 
(2x4) phase"] or over a 3/4 ML Ga layer ["/32(2x4) 
phase"] as shown in Figures 4a and 4b, respectively. 
The former would be ideal for the anion-mixed inter
face. Similarly, a /32( 4x2) phase consisting of two Ga
Ga dimers atop a complete As monolayer (Fig.· 4c) 
would, in principle, be ideal for the inverted ZnSe over
growth as shown in Figure 3b. 

Unfortunately, for control of crystal growth, the 
energetics deflect the pathway of film evolution away 
from the ideal. Although, scanning tunneling micros
copy (STM) shows highly ordered dimerization of the 
Se-reacted GaAs (100) surface (see Figs. 5a and Sb), 
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Figure 2. TEM cross-section of ZnSe grown on Si(IOO):As showing the abrupt interface and uniform overgrowth 
(capping layer of a-Si is added during TEM sample preparation). (Reprinted from Bringans et al., 1992) 

(a) (b} 

Se Zn 
Zn Se 
Se Zn 
Zn Se 

As/Se Ga/Zn 
Ga As 
As Ga 
Ga As 
As Ga 

Figure 3. Ball and stick models of ZnSe/GaAs(lOO) interfaces with intermixed (a) anion or (b) cation layers. The 
minus (plus) signs indicate excess (deficient) electron concentration. 
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Figure 4. Ball and stick models of GaAs(lO0) 2x4 and 4x2 reconstructions; (a) a(2x4), (b) ,62(2x4), and (c) ,62(4x2), 
respectively. The [011) direction is parallel to the vertical axis in (a) and (b) and parallel to the horizontal axis in (c). 
(Reprinted from Northrup and Froyen, 1994) 

concurrent X-ray photoemission spectroscopy measure
ments show that the surface is not simply terminated by 
a 50:50 mixture of Se and As (Biegelsen et al., 1994). 
An initial uptake of approximately one Se ML occurs, 
exchanging with 1 ML of As, followed by a slowly in
creasing exchange of Se for As and a concomitant loss 
of Ga (Biegelsen et al., 1994; Chambers and Sundaram, 
1991; Takatani et al., 1992). The STM images in Fig
ure 5 were taken on samples prepared using a Se fluence 
equivalent to 4 nm thickness of bulk Se. The near-sur
face stoichiometry has been shown to be changing very 
slowly with fluence in this regime and STM images are 
independent of the particular fluence. This surface 
should therefore be representative of the ion -exchanged 
surface generally found under similar conditions. It has 
not been possible to determine if the dimers are Se -Se, 
Se-As or other. In any case, a bulk reaction occurs in 
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the Se -rich regime which undermines the creation of an 
ideal anion -mixed interface overlying ideal bulk GaAs. 
Li and Pashley (1994) have inferred from their STM re
sults that the Se surface reaction directly leads to the 3d 
overgrowth of ZnSe. Note that Tamargo et al. (1988) 
have inferred from reflection electron diffraction 
measurements that 2d growth can be achieved on the 
GaAs( 100) 2x4 surface. This is an important step which 
must be pursued and clarified. 

It has been shown empirically that much more uni
form MBE growth of ZnSe on GaAs (100) occurs by 
initiating deposition in a Zn -rich regime (DePuydt et 
al., 1987; Gaines et al., 1993; Guha et al., 1993). This 
would seem to be in keeping with an a(4x2) surface 
reconstruction suggested by Farrell et al. (1988) and 
consistent with early STM images of the 4x2 surface 
(Biegelsen et al., 1990). However, total energy calcu-



ZnSe growth on Si and GaAs 

calculations (Northrup and Froyen, 1994) again predict 
that the most stable surface structure should be the 
~2(4x2) phase, with only 3/4 ML As below the Ga-Ga 
dimers, and more recent STM experiments (Skala et al., 
1993) are interpreted to imply non-a( 4x2) arrangements. 
Further work is clearly necessary to study the Zn-rich 
initiation of ZnSe on Ga-rich GaAs (100) surfaces. 

Conclusions 

In summary, Se reactivity with Si and GaAs sub
strates leads to disruption of ideal heteroepitaxy. In the 
case of Si(lOO), an adsorbed As ML both passivates the 
Si surface and acts as well as an ideal interfacial buffer 
for II-VI overgrowth. Currently, a similarly strong 
mechanism has not been observed for stage to stage 
control of ZnSe growth on GaAs(lO0). However, STM 
measurements coupled with photoemission spectroscopy 
should elucidate the tendency toward uniform growth 
when Zn is dominant during the growth initiation. 
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