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Abstract 

In addition to several new predictions, the general 
theory of thermodynamic stability of heterogeneous sys­
tems with rearrangement has allowed us to understand 
the roots of several experimental and theoretical results 
of the past. One of them is an outstanding paper of 
Asaro and Tiller on stress corrosion cracking by surface 
diffusion published two decades ago. We compare re­
sults of Asaro and Tiller with conclusions of thermo­
dynamic theory of solids with rearrangement and devel­
op some Asaro-Tiller results in the directions dictated by 
the needs of thin films technology and experiment. A 
surface diffusion model in a prestressed elastic solid is 
studied on the basis of the Onsager approach of irrever­
sible thermodynamics. The master system governing a 
quasi-static evolution of the surface corrugations is 
derived in the framework of nonlinear elasticity and for 
the model of a surface energy incorporating both the 
Laplace excess pressure under curved interface and the 
Herring curvature term in the local chemical potential. 
Then, we derive a dispersion relation of the growth rate 
of two-dimensional infinitesimal corrugations atop an 
isotropic uniformly stressed elastic layer clamped to a 
substrate. The relation predicts different patterns of 
surface morphology produced by the fastest unstable cor­
rugations. The patterning which develops depends on 
the applied stresses, thickness and material parameters 
of the layer and substrate. 

Key Words: Epitaxy, rearrangement, elasticity, mor­
phological instability, corrosion, fracture, crystal 
growth, thin films. 
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Introduction 

Problems of stress corrosion cracking are of impor­
tance in theoretical materials science and fracture theory 
and for various industrial applications. The interaction 
of stresses and interface diffusion have been studied in 
hundreds of publications and experiments [see the re­
views by Martin and Doherty (1976); Chuang et al. 
(1979); Needleman and Rice (1980)]. In order to reach 
a deeper understanding of the nature of stress corrosion 
cracking, Asaro and Tiller (1972) have raised and ex­
plored a fundamental question of initiation of cracking· in 
a specimen under tensile or compressive stresses. More 
precisely, they investigated the dependence of growth 
rate on the wave-length of infinitesimal surface corruga­
tions. The Asaro-Tiller problem and approach has to be 
clearly distinguished from the traditional methodology of 
fracture theory. The growth of a "small" pre-existing 
crack with sharp notches was and still remains the cen­
tral event under study of the traditional fracture theory, 
and the unstable growth is traditionally associated with 
destruction of a specimen or of a structure. However, 
Asaro and Tiller have dealt with an absolutely different 
problem: i.e., how the notch can appear via surface dif­
fusion in the stressed crack-free specimen having a 
smooth (just slightly corrugated) traction-free surface. 
The analysis has led them to consider the nature of the 
"startling" surface instability. 

These ideas lay unrecognized until the Asaro-Tiller 
results came up again in connection with the recent in­
tensive studies of the stress driven rearrangement insta­
bilities of interfaces in solids and, in particular, of the 
morphological instabilities of different phase boundaries 
in solids. These instabilities are purely energetic and 
reversible in nature: they have been established in the 
framework of equilibrium thermodynamics by means of 
a generalized Gibbsian approach of the second energy 
variation (Gibbs, 1876, I 878). This generalization was 
proposed in Grinfeld ( 1982) and summarized in Grinfeld 
(1990, 1991). The criteria of morphological instability 
of phase boundaries in solids depend essentially on the 
kinematic constraints imposed on the displacements: the 
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coherent, semi-coherent, incoherent phase boundaries 
obey different conditions of destabilization. One of 
these instabilities: the instability "prestressed solid-melt" 
discussed by Grinfeld (1986a), obeys the criterion very 
close to that of Asaro and Tiller (1972). More thorough 
study shows that the diffusional stress driven instability 
established by Asaro and Tiller (1972) has purely equi­
librium roots as well. Actually, it was demonstrated by 
several authors [Grinfeld (1987, 1993a); Nozieres 
(1991); and also in his unpublished lectures of 1988, 
Srolovitz (1989); Freund and Jonsdottir (1993)) that re­
gardless of specific symmetry and elastic moduli the ac­
cumulated elastic energy of crystalline solid can always 
be diminished by means of appropriate mass rearrange­
ment in the vicinity of the free surface. Thus, in the ab­
sence of surface energy each stressed solid, having any 
small piece of a smooth traction-free boundary, is unsta­
ble against mass rearrangement of its particles. Specific 
features of this stress driven rearrangement instability 
depend on different circumstances: the geometry, the 
presence of other bodies and forces, the mechanisms of 
mass transport, etc. 

The above remarks show clearly that there are deep 
common roots of fracture theory and stress corrosion 
cracking, on the one hand, and of the theory of phase 
transformations, on the other hand. We believe that 
their interaction will be fruitful to both fields. There are 
many promising applications of such a theory in the 
problems of low temperature physics and thin epitaxial 
films [see, for instance, experimental papers of 
Eaglesham and Cerullo (1990); LeGoues et al. (1990); 
Berrehar et al. (1992); Thiel et al. (1992); Torii and 
Balibar (1992); and references therein]. 

In this paper, we transfer the approaches and results 
established earlier in the studies of melting-crystalliza­
tion and equilibrium shape of deformable crystals into 
theory of stress corrosion cracking via diffusion. Differ­
ent instability aspects of surface diffusion in prestressed 
solids have been recently studied by Srolovitz (1989); 
Spencer et al. (1991, 1993); Gao (199la,b); Chiu and 
Gao (1993); Freund and Jonsdottir (1993); Grinfeld 
(1993c); the irreversible mechanisms of mass transport 
in two-phase systems destabilized by stress have been 
studied by Caroli et al. (1989); Leo and Sekerka 
(1989a,b); Heidug and Leroy (1994a,b). 

First of all, we derive the simplest master system of 
quasi-static evolution in the framework of nonlinear elas­
ticity. It is evidently imperative to use precise nonlinear 
theory as far as one is going to investigate the nonlinear 
post-critical regime of the stress driven rearrangement 
instability. This is especially significant since there is a 
tendency of developing specific cusps (cracks!) at the in­
terface established experimentally by Torii and Balibar 
(1992); Berrehar et al. (1992); Jesson et al. (1993); 
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theoretically by Nozieres (1993) and Spencer et al. 
(1993), and numerically by Kassner (1993, private com­
munication) and Yang and Srolovitz (1993); the devel­
opment of cusps implies the appearance of high stresses 
and deformations, hence, dictates the use of nonlinear 
elasticity. We use the Lagrangian description of a 
continuous medium and account for the appropriate 
simplest models of the surface energy density: this 
choice demands the least effort for the precise nonlinear 
formulation of the master system. When using precise 
nonlinear theory, the computational tractability of the 
system depends not only on the specific physical as­
sumptions relating to the models of bulk and surface en­
ergies, but also on the choice of a Lagrangian, Eulerian 
or mixed description. In the Lagrangian description, we 
get the simplest master system when dealing with the 
surface energy density which is proportional to elemen­
tary area of the interface in the reference configuration. 
Using a variational approach of equilibrium thermody­
namics (or some heuristic reasoning), one can easily ver­
ify that: (a) this model leads to the Herring-like extra­
term in the surface chemical potential of the substance 
(Herring, 1951, 1953) proportional to the mean curva­
ture, and (b) this model does not give the Laplace excess 
pressure under a curved interface. We call it the 
Herring model of surface energy. It was implicitly used 
in Asaro and Tiller (1972) and explicitly in Grinfeld 
(1987, 1993a, 1994). To get the Laplace excess pres­
sure, one can use another model with the surface energy 
density proportional to the actual area of the interface 
(the area of deformed substance). We call the Laplace 
model, the traditional model of the surface energy [it 
was used in the study of the instability "prestressed 
crystal-melt" (Grinfeld, 1986a, 1992)). The Laplace 
model is much more convenient for the study when us­
ing the Eulerian description, but it is much more awk­
ward in the Lagrangian description, while the Herring 
model demands some skills and rather tough computa­
tion when using the Eulerian description. Within a 
certain range of the wave-lengths of the surface corruga­
tions, both models lead to compatible results provided 
that the interface is flat in the ground configuration; ofh­
erwise, the results can differ significantly (this should be 
clear from the results of Section 5). Contemporary ther­
modynamics says little about the a priori limitations im­
posed on the appropriate choice of the surface energy 
density [we refer the readers to interesting monographs 
of Zangwill (1988) and of Podstrigatch and Povstenko 
(1985) discussing and reviewing this topic]. It does not 
allow one to make an ultimate choice of a self-consistent 
and universal model of the surface energy density. 
Therefore, it seems reasonable to choose the simplest 
ones which incorporate both the Laplace excess pressure 
and the Herring term (this allows, at least, one to 
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understand some discrepancies of the results relating to 
phase transformation boundaries, on one hand, and to 
stress corrosion cracking, on the other hand). One of 
these models is described by the sum of the two above­
mentioned surface energy densities. We shall refer to it 
as the Laplace-Herring (L-H) model and use two 
coefficients of surface tension o-L and o-8 , respectively. 
This combined model seems to be quite convenient for 
the needs of physics and mechanics but it causes similar 
technical difficulties when using either the Lagrangian or 
the Eulerian description. Thinking of the future non­
linear studies, however, we believe that the Lagrangian 
description still has serious traditional advantages when 
dealing with nonlinear bulk models of the solids. We 
use this description in our paper. However, in order to 
avoid too cumbersome formulas and to simplify the 
comparison with the· results of Asaro and Tiller (1972), 
we expose, in detail, the computations relating to the 
Herring model only and, then, in Section 5, we point 
out the changes needed for the L-H model. 

Having in mind problems of mechanics and physics 
of elastic nano-films, we also take into account different 
possibilities in the choice of the in-plane stresses and 
establish several formulae to investigate the influence of 
the substrate. 

1. Some Preliminaries 

Let us consider an elastic substance. The material 
particles are referred to the Lagrangian (material) coor­
dinates xi (the Latin indices i,j,k,I, ... run 1,2,3; we as­
sume a standard summation convention for repeated in­
dices). We choose as a reference a stress-free configu­
ration with the Cartesian material coordinate system em­
bedded in it. It is often convenient in the general treat­
ment to ignore the simplifications provided by the Carte­
sian coordinates in order to elucidate the internal struc­
ture of the formulae (this is why we use the covariant 
differentiation in the reference geometry Dli rather than 
partial differentiation although they coincide in the Car­
tesian coordinate system). When dealing with thermody­
namic or mechanical systems undergoing some rear­
rangement of the material particles, the domain occupied 
by the body under study changes; to determine the shape 
of the domain is the essential part of the problem. 
Thus, in the topic at hand, we are dealing with the un­
known domain of the unstressed infinite crystal space 
rather than with a traditional reference configuration of 
the given body [for the details see, for instance, Grinfeld 
(1986b, 1991, 1993a) and references therein]. This cir­
cumstance results in the appearance of a specific deep 
nonlinearity of the elastic problem with rearrangement 
even when considering physically and geometrically 
linear problems. 
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We begin with the Asaro-Tiller problem of the sur­
face diffusion at the boundary of an infinite elastic body 
limited by a curved boundary surface r. The boundary 
surface is able to change its shape for different reasons: 
(a) due to mass rearrangement via surface diffusion, and 
(b) due to purely elastic deformation at fixed mass distri­
bution. Let w(Djui) be the specific elastic energy per 
unit volume in the reference configuration; ui(x,t) are 
the components of displacement with respect to the re­
ference configuration at the moment t. We assume also 
that the surface energy is the sum of two ingredients: 
one of them is o-8 which is proportional to the elementa­
ry area of the boundary in the geometry of the reference 
state, and the other, CTL, which is proportional to the ele­
mentary area of the boundary in the deformed (actual) 
configuration. The former can be attributed to creation 
of new surface while the latter can be attributed to dis­
tortion of the existing surface. Thus, the total 
accumulated energy of the solid is the following: 

F 

(1.1) 

where V is the domain occupied by the body in the ref­
erence configuration; r and E are the outer boundaries 
of the body in the reference and actual geometries ( dr 
and dE are the elements of these surfaces). In the 
course of evolution, the actual surface E changes due to 
mass rearrangement and elastic deformations of the 
body, whereas r changes due to mass rearrangement 
only (elastic deformation itself does not influence geom­
etry of r). We denote by c and C, the velocities of the 
surfaces rand E, respectively. We use the notation ~IJ 
for the surface coordinates; the surface indices (the 
Greek ones or the initial Latin a, b, c, d assume the 
values 1,2,). 

Following Mullins (1957), Asaro and Tiller (1972), 
and others, we assume that the velocity c(~IJ ,t) of r is 
equal to the surface divergence of the vector of surface 
mass flux JCX(~IJ,t): 

(1.2.) 

where D a is the surface covariant differentiation in the 
geometry of the reference configuration (which differs 
from partial differentiation even when dealing with the 
Cartesian spatial coordinates xi). 

To begin with, we limit ourselves to the Asaro­
Tiller case o-L = 0 and assume that, in the course of a 
slow evolution, the body is situated in mechanical equi­
librium both in the bulk and at the outer surfacer- Ex­
act nonlinear formulation of these equilibrium equations 



Michael Grinfeld 

gives: 

D- ~i = 0 
J 

~in-= 0 
J 

(1.3) 

(1.4) 

where ~j is the (Piola-Kirkhoft) stress tensor giving by 
the following identity: 

aw 
ao.u. 

J I 

( 1.5) 

The vector nj is the outwards pointing unit ~orII1al 
to the surface -y in the reference configuration; w•J, w1Jkl 
are defined as a w I a Djui, and a2 w I a Djui a D1uk, 
respectively. 

Linear irreversible thermodynamics and energy con­
siderations [similar to those of Rice and Chuang (1981)] 
lead to the following constitutive equation of the vector 
J/3 of surface mass flux [see, for instance, Herring 
(1951, 1953); Mullins (1957); Asaro and Tiller (1972); 
Nozieres (1991)] 

(1.6) 

where K°'/3 is a symmetric and positively definite tensor 
of the coefficients of surface diffusion; K0 is the doubled 
mean curvature of the boundary in the reference config­
uration. 

Inserting (1.6) in (1.2) we can exclude the mass flux 

Equations (1.2)-(1.6)[ or (1.3), (1 .4), ( 1. 7)] provide 
for the precise nonlinear self-consistent master system 
to determine a quasi-static evolution of the body due to 
surface diffusion. Considering any evolutionary fields 
of the displacements '-1t and the boundary location -y1, 

obeying the master system (1.2)-(1.6), one can verify y 
that the total energy F1 decreases all the time: 

-f d-yK°'13 D°'(w-aHK 0
) D13(w-aHK 0

) <0 

-Yt 
(1.8) 

In order to apply the master system (1.2)-(1.6) to a 
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linear elastic material it is sufficient to choose the 
specific elastic energy e and the tensor K°'/3 in the 
following form: 

w = {(>-J2) (ej ~ + µ eij ei)} 

where E·· = {1/2 (D-u- + D-u-)}· and K°'/3 
IJ J I I J ' 

where L > 0. 

(1.9) 

L r,a/3 

This simplicity in the transition from exact nonlinear 
elastic models to the linear ones is the unique advantage 
of the Lagrangian description. 

2. The Governing System of Small Corrugations 
Evolution in Vicinity of a Flat Boundary 

Our basic goal now is to establish a closed linear 
system of equations and boundary conditions allowing 
one to investigate the evolution of small surface pertur­
bations in the vicinity of the uniformly stressed equilib­
rium configuration with a flat boundary. 

To carry out linear bulk equations of small distur­
bances, we differentiate the bulk equations (1.3) with re­
spect to time t and keep only the first order terms in the 
disturbances. The procedure leads to the following lin­
ear system: 

. . au (x t) 
D-D (w'Jklo J ' ) = 0 

J I at 
(2.1) 

where wijklo are the "instant elasticities" in the vicinity 
of the stressed configuration in question [according to 
( I. 9), these elasticities do not depend on the prestresses 
and are indistinguishable from the standard elastic mod­
uli cijkl when dealing with linear elastic solids]; the mark 
"

0
" relates to the values of the functions in the ground 

configuration. 
The technique of linearization of the boundary con­

ditions (1.4), (1.6) is conceptually the same: we differ­
entiate them with respect to t remembering the constancy 
of the ground state. The only difference is that we have 
to use Mot-differentiation of Thomas (1961) (associated 
with the surface -y in the reference configuration) instead 
of partial differentiation since we are dealing now with 
the equations posed at the boundary (not in the space!). 
In what follows we use two following well-known for­
mulae of Mot-differentiation (the latter is valid in the 
vicinity of a flat surface only): 



a 

< 
< 
< 

T1 < 
< 
< 
< 
< 

b 

2 
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x3 

Tk 
/~ t ..... 
q 
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T2 

Figure 1. The geometry of a corrugated film. (a) Top view; (b) side view. 

1 
;x 
> 

> 
> T1 
> 
> 
> 
> 

where x~~ = axj(~t3,t)lat:; is the so called, "shift"-tensor 
of the surface (permutation of the indices is fulfilled in 
the geometry of the reference configuration). 

ijklo aDluk o _ cijklox,-c,D uoD c = O 
C -- n- J. I k c, at J 

(2.3) Applying o/ot-differentiation to the equilibrium 
boundary conditions (1.3) and using (2.2) we arrive at 
the following linear boundary conditions: Differentiating the constitutive equation (1.6) and 

using (2.3) we arrive at the following linear equation (at 
the undisturbed boundary -y0

): 
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where ~s = n/3 D/3 is the symbol of the surface 
Laplacian. 

Applying the operator D/3 to both sides of (2.4) (the 
operations o/ot and D/3 commute at the flat surface al­
though it is not so, in general) and using (1.6) (which is 
the linear equation from the very beginning), we exclude 
the flux J/3 from the master system: 

oc ,, ''kl 0D1uk - =Kµ'YD D (clJ o __ o. _o - ~ ) ot (J 'Y ot Jul O'H Sc 
(2.5) 

Substituting in the equations (2.1), (2.4), (2.5) the 
velocities of the mate~~l parti_~les vi(xk,t) = aui(xk,t)/ot 
and the pre-stresses q1J0 = c1Jklo D1u~, we can rewrite 
the master system as: 

cijklo D, D1 V· = 0 
J I 

(2.6) 

(2.7) 

(2.8) 

Now, let us specify the system (2.6) - (2.8) for the 
case of an isotropic linear half-space using the equations 
(1.9). In what follows, the indices a,b,c, ... are used for 
the in-plane axes of the Cartesian coordinates and they 
take values 1,2, .. ; we also use the notation z for the 
remaining independent variable x3• 

First of all, the components ~jo with the indexes i 
or j equal to 3 vanish because the equilibrium boundary 
is flat and traction-free. In what follows, we use the 
notation T 1, T 2 for the eigenvalues of the stresses a3bo 
(i.e., of the principal in-plane stresses) and choose the 
eigen-vectors of this tensor as the directions of the x1 

and x2- axes (see Fig. 1). We call the "shear-like" such 
misfit stresses for which T 1 is close to -T2, and as the 
"dilatation-like" those for which T 1 is close to T2. 

Using this notation, three equations of equilibrium 
(2.6) and the boundary conditions (2. 7) of the isotropic 
linear elastic film can be expressed as follows: 
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av 3 ava 
(l-J1)- +JI- = 0 oz axa 

(2.9a) 

(2.9b) 

(2.10a) 

(2.10b) 

where JI = ),.._/2("A + µ,) is the Poisson's ratio of the sub­
stance, and r'b = ~bo / µ, are the dimensionless pre­
stresses. 

In the case of isotropic film, equation (2. 8) reads 

(2.11) 

3. Evolution of the Corrugations at the Surface 
of a Stressed Isotropic Half-Space 

Further study is pretty straightforward. Inserting 
the general solution of the bulk equations (2.6) [or (2. 9) 
for the isotropic case], in the boundary equations (2. 7), 
(2.8) [or (2.10), (2.11) for the isotropic case], we arrive 
at the closed linear system of algebraic equations to de­
termine the growth rate 1/ · When dealing with the iso­
tropic half-space, we choose a general solution in the 
form (A.1) given in the Appendix. For an elastic solids 
occupying the half-space z < 0, we put Q_ = R_ = T_ 
= 0 in order to satisfy the conditions of decay at infrni­
ty. Then, the boundary equations (2.10), (2.11) give us 
4 linear uniform algebraic equations with respect to 4 
unknowns Q+, R+, T +• R. This system has a non­
trivial solution only when its determinant is equal to 
zero. The last condition allows us to find the growth 
rate 1/· Skipping somewhat routine computation, we 
arrive at the following formula: 

(3.1) 
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where e and q are the in-plane unit vectors parallel and 
orthogonal to k, respectively (Fig. 1). 

Introducing the angle O between the vector e and the 
direction of the principal in-plane stress T1, we can re­
write (3 .1) as follows 

411µ 

(3.2) 

where 

(3.3a) 

(3.3b) 

The coefficients A 00 , B00 , C 00 are obviously posi­
tive. The formulae (3.2) and (3.3) show again that the 
surface energy plays a stabilizing role whereas the 
stresses destabilize the boundary. According to (3.3a), 
the surface energy dominates for corrugations having 
sufficiently short wavelengths whereas elasticity domi­
nates for long wavelengths. 

Equation (3.2) leads to the following dependence 
I kn/0) I of the absolute value of the neutral wave-vector 
on its orientation with respect to the principal in-plane 
stresses: 

(3.4) 

For the corrugations with the wave-vectors k, which 
are parallel to the in-plane principal stresses T 1, T2, 
equation (3.4) gives, respectively (Grinfeld, 1986a,b; 
Nozieres, 1991; Srolovitz, 1989): 

In terms of the Young's modulus E 
(3.5) can be rewritten as 

2µ(1 + v), 

2 2 
2T1 2 2T2 2 l~el =-(1-v ), lknel =-(1-v) 
<THE <THE 

(3.6) 

The formulae (3.5) were originally established in the 
framework of plane strain elasticity. For the plane 
stress elasticity case, Gao (1991b) derived other formu­
lae which can be rewritten as (we present formulae for 
the T1 case only): 

(3.5*) 

Introducing E* = 2E, we can rewrite the latter in 
the Asaro-Tiller (1972) form: 

(3.7) 

A morphology produced by the evolving corruga­
tions is determined by the fastest of them. Let us con­
sider now the extrema of the right hand side (RHS) of 
(3.2) which we denote as ip(O). Equating the first deri­
vative of ip(O) to zero, we find that there are two differ­
ent extrema satisfying the following equations: 

sin20 =0 
(3.8a) 

coo 1 -v 
cos 20 = =------ s = -- s 

B
00

-C
00 

V 

(3.8b) 

The "a" -solutions exist always and correspond to the 
k-vectors which appear to be parallel to the directions of 
the lateral principal stresses. The "b" -solutions may or 
may not exist depending of whether the inequality 

or 

1-v 
-1 ~--S ~1 

V 
(3.9) 

(3.5) is valid or not. 
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The second derivatives of cp(8) assume the following 
values: 

(a) for the "a" -solutions: 

1 -v 
=8v(l ±-s) 

V 

(3.10) 

where the plus sign corresponds to the k
8 
-vector parallel 

to the x1-axis, whereas the minus sign corresponds to 
the k8 -vector parallel to the x2-axis; 

(b) for the "b"-solutions: 

(3.11) 

The values of the function 1/extr• corresponding to 
the solutions "a" and "b", are the following: 

(a) for the "a" -solutions: 

(3.12) 

(b) for the "b"-solutions: 

(3.13) 

According to (3 .9), (3.10), one of the "a" -solutions 
corresponds to the maximum whereas the other corre-
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sponds to the minimum values assumed by the cp(8)­
function if the "b" -solutions do not exist [because of the 
violati.on of the inequalities (3.10)). If the "b"-solutions 
do exist, then, according to (3.11), the "b"-solutions 
correspond to the maximum whereas the "a"-solutions 
correspond to the minimum values of cp [please note: 
there is a startling similarity between the existence and 
the fastest growth of the above mentioned solutions "a" 
and "b", on the one hand, and the existence and stability 
of different orientations of elliptical inclusion within 
stressed isotropic elastic plane (Grinfeld, 1988, 1990, 
1991); I do not know whether it is a casual coincidence 
or there are some deeper causes of the similarity). It is 
obvious that at fixed I k I , the solutions maximizing cp 
are the most unstable modes of the corrugation. The 
"b"-solutions do exist at the "shear-like" prestresses and 
they do not exist at the "dilatation-like" prestresses. 

Now, in order to establish the wavelength of the 
fastest corrugations, we have to find maxima of 11!xtr 

with respect to the absolute value I k 1- The equations 
(3.12), (3.13) lead us to the following formulae for the 
fastest growing corrugations: 

(a) 

where T max is the greater of j T 1 j, I T2 j; 

(b) 

(3.14a) 

(3.14b) 

Using (3.14), we arrive at the following rate of the 
fastest corrugations: 

(a) 

Ts 
a = L ( 3 )4 

( l _ )4 max 1/f - - V --
3 4 a3 µ.4 

(3. 15a) 

(b) 

L 4 (T -T )8 
b _ ( 3 ) I 2 ( l 1 - V 2)4 1/r-- - ---- + __ s 

3 16 a3µ.4 V 

(3.15b) 
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4. Surface Diffusion in a Stressed Layer 
Attached to the Solid Substrate 

Let us consider a thin crystalline film of thickness 
H attached to a solid crystalline substrate with distinct 
lattice parameters (Fig. 1). We assume that the film is 
attached coherently, i.e., that there is no slippage at the 
matching surface and the affine "misfit" deformation 
ideally compensates the mismatch of lattice parameters 
of the two crystalline substances. This assumption is of­
ten obeyed in various applications (like epitaxial crystal 
growth, "coating" with thin films, engineering of inter­
faces and composites, etc.), and the films appear to be 
highly stressed because of the lattice mismatch. The 
stresses can be produced not only by the misfit in the 
lattice parameters of the epitaxial film and the substrate, 
but also by the thermal stresses due to a discrepancy in 
the expansion coefficients of the film and the substrate. 

We still use the notation T 1, T 2 for the principal in­
plane misfit stresses generated in the unbounded film of 
uniform thickness and notation T n = cr'b0 e8ei, and Tt = 
cr'b0 e

8
% for the normal and tangential components of the 

traction acting at the cross-section orthogonal to the 
wave-vector k. These parameters (together with the di­
rections of the principal stresses) completely characterize 
the stress state of the film with flat boundary since the 
upper boundary of the film is traction-free. 

The remarkable peculiarity of systems possessing 
very thin films (and other "nano-objects") is their ability 
to redistribute the mass during their production (deposi­
tion) and exploitation. This ability plays a significant 
role in their behavior and, in particular, it can dramati­
cally affect an ultimate equilibrium shape of the ad-lay­
ers and their stability. The mass rearrangement is the 
additional "degree of freedom" as compared with the 
traditional systems studied in the framework of elasticity 
theory, and it provides an additional opportunity to 
diminish accumulated energy. 

Consideration of the system "ad-layer-substrate" 
causes no conceptual difficulties as compared with half­
space. To study the evolution of the corrugations at the 
surface of the ad-layer, we simply make use of elasticity 
equations within the substrate as well, and add appropri­
ate boundary conditions at the matching i.J;iterface. For 
the slipless contact, the matching conditions are the con­
tinuity of the particles velocities and the surface traction. 
The computation can be fulfilled explicitly if both the 
film and substrate consist of isotropic substances. We 
use the notation µ,f, Ve, µ,

8
, 118 for the shear moduli and 

the Poisson's ratios of the film and substrate, respective­
ly (x = µ,fl µ,

8
, is the ratio of shear modules of the film 

and the substrate). By following the method used earli­
er, we arrive at the following dispersion relation valid 
for an infinitely thick isotropic substrate and an adlayer 
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of thickness H: 

where 

-1 4 -1 3 l - "r 
r,L =-crttlkl +µ,f lkl {-[h­

G 

4x(l-vr)(l -v 8) 2 
cosh 2h -,-----,-=--.,..,.---,----,-) T + 

(x-l)[x(3 -411
8

) + l] n 

sinhh +xcoshh T2} 
coshh + xsinhh t 

G =h2 - l [xsinhh + 
(x - l)[x(3 -411

8
) + l] 

coshh +(l -2vr)(sinhh +coshh)] · 

[xsinhh +coshh +(1 -2vr)(-sinhh +coshh) + 

(4.1) 

(4.2) 

The dimensionless number h = I k I H can be inter­
preted both as a dimensionless wave-vector or a thick­
ness of the layer. 

In several asymptotic cases, the formulae (4.1), 
(4.2) reduce to the results established earlier for the 
films of finite thickness by Grinfeld (1991, 1993a,b); 
Spencer et al. (1991); Freund and Jonsdottir (1993). 

In the case of the rigid and incompressible substrate 
(v

8 
= 1/2, X = 0), equations (4.1), (4.2) give us 

(1 - vr)[h + (3 -4 vr) sinhhcoshh] 2 
{----=---=--------,-T + 

4(1-vr}2+h 2 +(3-4vr)sinh 2h n 

sinhh T2} 
coshh t 

(4.3) 

In the case of the adlayer and substrate with the 
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same elastic moduli (115 = "r = 11, µ5 = µf = µ, X = 
1), equations (4.1), (4.2) result in the following 
dispersion equation: 

The dispersion relation (4.4) is identical to (3.1) as 
it should be. 

The asymptotic formulae for the relatively long cor­
rugations, I k I H < < 1, differ for the rigid and deform­
able substrates: 

I. X ~ 0: 

71L-1 = - cru lkl 4 + µr1 x[(l - 115)T~ + Tf]lkl 3 

(4.5) 

II. X = 0: 

71L-1 = - cr8 lkl 4 + µr1 h (T~ + Tf)lkl 3 (4.6) 

5. Stress Corrosion Cracking for the 
Laplace-Herring (L-H) Surface Energy 

When dealing with the L-H surface energy, we ar­
rive at the total energy given by formula (1. 1). All the 
following assumptions are motivated by analogy with the 
known results relating to the Herrihg and Laplace 
models of the surface energy. They can be derived in 
a self-consistent procedure of minimization of the func­
tional (1. 1) (full exposition of this procedure in the 
Lagrangian variables will be discussed elsewhere). 
When dealing with the L-H model, we still conserve the 
above notion of the vector of surface mass flux J°' and 
the formula (1.2) for the velocity of interface "c" in the 
geometry of the reference configuration since they both 
have purely kinematic roots and do not depend on any 
specific choice of the substance model. The bulk equi­
librium equation (1.3) remains unchanged as well. At 
the same time, not all components of the interfacial trac­
tion vanish now because of the Laplace excess pressure 
which is proportional to a mean curvature of the de­
formed surface K. Thus, instead of the equilibrium 
equation (1.4) we arrive at the following equations: 

(5. I) 

(5.2) 

where Ii is the Cauchy stresses tensor (in the Lagran­
gian presentation), Nj are the components of the unit 
normal to the deformed interface (in the accompanying 
material basis). 

Here we use as the heuristic assumption (it can be 
rigorously proved making use of the traditional energy 
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principles) the following constitutive equation of the 
surface mass flux: 

where p
0
and p are the densities of the stress-free and 

deformed solid, respectively. Thus, the expression in 
the brackets of the equation (5.3) is treated as a driving 
force for surface diffusion. Probably, it is easier to ac­
cept this statement by noting that the combination 
(w - crL K p

0
/ p) = p

0
(w + p/ p) is the surface enthalpy 

of the substance. 
Differentiating (5.3) and using (1.2), we arrive at 

the following analogy of the equation ( 1. 7) giving the 
velocity of the interface: 

The equations (1.3), (5.2), (5.3), (5.4) form the 
nonlinear master system in the case of the Laplace­
Herring surface energy. Using this master system, one 
can verify the validity of the following identity along 
each trajectory of the system: 

(5.5) 

The changes in the precise nonlinear master system 
imply some changes in the linear master· system for 
small disturbances. Actually, for the L-H system, one 
has to add the term Q = - (TL ils(c + nf a that) in the 
brackets of the RHS of equation (2. 8) and the term Q n°' 
to the right-hand-side of equation (2. 7). 

Using these amendments, we can establish the re­
quired analogies of the formulae of Sections 4 and 5. 
In particular, one can establish the following useful dis­
persion relation for the surface diffusion in prestressed 
isotropic half-space: 

(5.6) 
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Thus, the Laplace and Herring surface energy 
terms, although both stabilizing, show different charac­
teristics, especially at short wavelengths. 

Summary 

The analysis present in this paper may be summa­
rized as follows. 

(a) We have established a master equation govern­
ing the quasi-static evolution of pre-stressed solids with 
surface diffusion. The system incorporates both the La­
place and Herring surface energies and relies on the 
ideas of irreversible thermodynamics assuming a linear 
dependence of fluxes upon driving forces. On the other 
hand, it is also a precise nonlinear system allowing for 
a correct exploration of any nonlinear bulk model. Pre­
sumably, the bulk nonlinearity plays a significant role at 
the post-critical stage of cusp formation at the interface. 
We note that the equation is deeply nonlinear even for 
linear bulk models because of the presence of unknown 
boundary in the boundary value problem. 

(b) We derived a linear set of equations governing 
the evolution of small disturbances in the vicinity of an 
equilibrium uniformly stressed configuration. Using this 
system, we found a dispersion relation for the rate of 
growth of small disturbances at the surface of a pre­
stressed isotropic elastic layer coherently attached to in­
finitely isotropic substrate. The dispersion relation for 
the infinitely thick layer agrees qualitatively with the 
relation of Asaro and Tiller (1972). 

(c) It was demonstrated that two-dimensional mor­
phological patterns produced by the fastest unstable cor­
rugations depend crucially on the in-plane stresses. 

(d) Both the Laplace and Herring surface energies 
stabilize the free boundary of prestressed solid. How­
ever, they lead to differing dispersion relations, and this 
circumstance reflects the difference in the mechanisms 
of stabilization. 

APPENDIX: One Class of the Solutions 
of the System for Small Disturbances 

Let us consider the solutions of the system (2.9) -
(2.11) of the following form: 

j( k ) -Sj( ) l)t+ikbxb vx,t- ze , 

(A. l) 

where ~(z) is the function of the single independent va-
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riable z = x3, R and 1/ are certain constants (real or 
complex), lcii is the in-plane real wave-vector. 

Inserting (A. l) in the system of partial differential 
equations (2.9), we arrive at the following system: 

(A.2a) 

(A.2b) 

where I k I 2 = ka ka. 
The general solution of (A.2) can be expressed as 

follows: 

S (z) = Q elklz + R z elklz + Q e-lklz + R ze-lklz 
3 + + - - ' 

(A.3a) 

{[Q+ I kl + R+(A - 4v)]elklz + R+ I kl z elklz + 

[-Q+ lkl + R_(A - 4v))e-lklz - RJklz e-lklz} + 

(A.3b) 

where Q±, R±, T ± are the arbitrary constants, whereas 
q8 is the in-plane unit vector which is orthogonal to k

8
• 

Introducing another set of arbitrary constants m 
accordance with the formulae: 

we can rewrite the solution (A.3) in the following 
equivalent form: 

Kt z cosh( I k I z) + K~ z sinh( I k I z), (A.Sa) 

sa(z) = i(ka/lkl 2) 

{K+ lklsinh(lklz) + K_ lklcosh(lklz) + 

K! [(3 - 4v)cosh(lklz) + zlklsinh(lklz)] + 

K~[(3 - 4v)sinh( I k I z) + z I k I cosh( I k I z)]} + 

iqa[L+cosh( I k I z) + L_sinh( I k I z)] (A.Sb) 
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In order to establish (A.3) we use two following 
solutions of the system (A.2): 

(a) the "longitudinal" solutions, i.e., such that 

(A.6) 

(b) the "transverse" solutions, i.e., such that 

(A.7) 

Inserting (A.7) in the equations (A.2a,b), we arrive 
at the two following ODE's with two unknown functions 

(A.8a) 

(A.8b) 

Differentiating equation (A. 8a) with respect to z and 
excluding P with the help of (A.8b), we find out even­
tually: 

(A.9) 

Equation (A.9) has the following general solution 

S3(z) = Q+elklz + R+z elklz + 

Qe-lklz + R_ ze-lklz (A.lOa) 

whereas the associate solution for the function S8 (z) 
reads: 

S8 (z) = i(k 8/lkl 2) {[Q+ lkl + R+(A - 4v)]elklz + 

R+ lklzelklz_ 

[- Q+ lkl + R_(A - 4v)]e-lklz - R_lkl z e-lklz} 
(A.lOb) 

Inserting (A.7) in the system (A.2a,b), we arrive at 
the following equation of the unknown function T(z): 
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(A.11) 
the general solution of which is the following: 

T(z) = T + elklz + T_ e-lklz (A.12) 

Combining (A.l0a,b), (A.12) one can easily 
establish the general solution given above. 
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Discussion with Reviewers 

G.C. Weatherly: You have assumed that the surface 
energy is the sum of two terms, one depending on <TH 

and the other on <TL (equation 1.1). In a related field of 
coherent precipitates, Larche and Cahn have distinguish­
ed between the surface energy and the surface stress in 
discussing the work done when a surface expands under 
different driving forces. How does your approach com­
pare to theirs? 
Author: The problem of distinguishing between the sur­
face energy and stress is an old one, and goes back to 
the Young-Laplace controversy. In fact, this problem is 
irrelevant to other aspects of interface physics and mod­
eling, and its thermodynamic aspects are the same for 
coherent, semi-coherent, incoherent, etc., interfaces 
(however, quantitatively these effects can differ signifi­
cantly from one substance to another, and from one mi­
crostructure to another). I think, that resulting equations 
of this paper do not contradict those of Larche and 
Cahn. On the other hand, I share the opinion of a very 
small (but never disappearing!) group of researchers 
who treat the notions of "chemical potential", "driving 
force" and even "mechanical force" as much more vague 
and less fundamental than "energy". Therefore, I al­
ways try to avoid dealing with stresses and forces by 
means of postulating a reasonable stored (elastic) energy 
function or functional, and, then, try to establish equa­
tions of mechanical (and "chemical") equilibrium making 
use of variational technique (that is exactly the Laplace­
Gibbs-Ostwald way of thinking). To make a long story 
short, the Laplace-Herring surface energy is the simplest 
and mostly compact model allowing one to give a uni­
fied energetic treatment of all earlier established results 
for isotropic solids distinguishing the surface energy and 
the surface stress. As one of the other Reviewers 
noticed for some of earlier established results, the 
Laplace coefficient should be negative. 

G.C. Weatherly: Some studies in this field have sug­
gested that the correct inclusion of surface energy breaks 
the stress "symmetry" of instabilities, so that thin films 
grown under tension would behave differently from 
those under compression. Could you comment on this 
suggestion and what your analysis predict in this regard? 
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Author: It is pretty clear (from both intuitive and theo­
retical viewpoints) that there are many physical causes 
breaking the "symmetry" of stress driven rearrangement 
instabilities with respect to in-plane tension and compres­
sion. The "symmetry" mentioned by the Reviewer has 
been established for physically symmetric solids and in 
the framework of a linear analysis. I think that nonline­
ar stage of the stress driven instability is "stress-asym­
metric" even in the case of a physical symmetry of the 
substance. 
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