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Abstract   

 

Background As the maker movement is increasingly adopted into K-12 schools, students are 

developing new competences in exploration and fabrication technologies (EFT). This study 

assesses learning with these technologies in K-12 makerspaces and FabLabs.  

 

Purpose Our study describes the iterative process of developing an assessment instrument for 

this new technological literacy, the Exploration and Fabrication Technologies Instrument, and 

presents findings from implementations at five schools in three countries. Our index is 

generalizable, psychometrically sound, and permits comparison between student confidence and 

performance.  

 

Design/Method Our evaluation of distinct technology skills separates general computing, 

information and communication technology (ICT), and exploration and fabrication technologies 

(EFT) into non-overlapping areas of technological expertise required to perform their respective 

sets of tasks. The instrument also tracks student confidence in EFT skills and assesses how that 

confidence relates to actual task performance. 

 

Results EFT constitutes a new and distinct set of technology literacies arising from fabrication 

settings. The EFT instrument weighs students’ self-reported confidence against their 

performance on complex design tasks and demonstrates that, for students, exposure to general 

computing and information and communication technology (ICT) tools differs from exposure to 

exploration and fabrication technologies (EFT) tools. 

 

Conclusion The EFT instrument captures a new and distinct set of technology literacies that 

arise within fabrication settings and are independent of both general computing and digital 

content production skills. 

 

Keywords:  makerspaces; fablabs; design practice; assessment tools; project-based learning; 

constructivism, constructionism. 
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Introduction 

 

Makerspaces and FabLabs bring together people, tools, skills, and resources in a single physical 

location for the purposes of designing, prototyping, and do-it-yourself manufacturing. These 

spaces can serve individuals, for-profit companies, nonprofit organizations, or educational 

institutions. They are collective organizations that share knowledge and provide open access to 

equipment, community, and education, in what is often referred to as “the democratization of 

invention” (Blikstein, 2013; Gershenfeld, 2008; Mikhak et al., 2002). In recent years, K-12 

students have been invited to participate in these spaces in their schools, in afterschool programs, 

and at nearby universities or libraries. Participation in makerspaces and FabLabs promises to turn 

students into makers, creators, and innovators, and to increase interest in science, technology, 

engineering, arts, and mathematics (STEAM) fields. Martinez and Stager (2013) characterize 

these spaces as making possible a “technological and creative revolution” (p. 1), which has 

introduced difficult technological subjects such as engineering and design to students who 

traditionally might not have enrolled in courses in electronics, programming, or other technical 

fields. These spaces also pave multiple pathways to learning twenty-first-century skills by 

facilitating collaborative and iterative projects, and constitute a space where constructionist 

learning (Papert, 1980) can take place with unprecedented sophistication 

Here we call these diverse spaces “digital fabrication facilities.” They deploy a range of 

toolkits and machines for the pursuit of learning through making and construction, and are 

designed to encourage a broad range of social practices and pedagogical approaches that utilize 

contemporary fabrication technologies for design and prototyping (Blikstein, 2013; Kafai & 

Peppler, 2011; Remold, Verdugo & Michalchik, 2013; Worsley & Blikstein, 2014; Smith, 

Cheruvelil & Auvenshine, 2013). In this article, we describe our iterative development of and 

early findings on an assessment instrument intended to capture the learning that occurs in these 

settings.  

 

Historical perspective 

Fabrication settings inherit a rich theoretical tradition that reaches back to Dewey’s practice-

driven ideals (1916) and Piaget’s constructivism (1929; 1974). Inspired by constructivist ideas, 

educators have advocated the creation of learning spaces and toolkits with the premise that 

learning is optimized when guided by student interests and abilities that correspond to their 

respective stages of development. Learners’ ways of doing and thinking evolve over time, and 

fabrication activities and toolkits can be scaffolded to match these evolving stages. Papert’s 

constructionism (1991) builds on Piaget and emphasizes the significance of externalizing one’s 

ideas into objects that can be refined, debugged, shared within a community of practice. In this 

framework, self-directed learning occurs with the assistance of others and the availability of 

expressive tools, and mediated learning occurs when learners engage in rich conversations with 

others and with artifacts. Fabrication settings reflect the values of constructionism (Papert, 1991; 

Kafai, 2006) through their emphasis of the importance of creating and sharing personally 

meaningful artifacts in the context of a supportive community. By blurring the boundaries 

between disciplinary subjects, digital fabrication facilities introduce students to the expression, 

exploration, and design processes central to domains such as engineering, science, art, and crafts 

(Blikstein, 2013; Martinez & Stager, 2013).  
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 The rising popularity of digital fabrication facilities as sites of learning, exploration, and 

expression constitutes an acknowledgement within the curriculum of a new area of emergent 

technology skills that students must master. The acquisition of these skills is accompanied by the 

kinds of cognitive apprenticeship (Collins, Brown, & Holum, 1991) afforded by fabrication 

settings—such as evaluation, revision and creative planning.  Lewis, Petrina and Hill (1998) state 

that such skills add an increment of creativity to technological problem solving. Through laser 

cutting, 3D printing, molding plastics, soldering and sewing circuits, students can learn to solve 

problems and troubleshoot, and they are asked to consider specific technical tasks, identify 

relevant scientific and design principles to be applied to the tasks, and devise solutions that can 

be implemented and modified in multiple iterations.  

 The ethos of personal creativity and learner-centeredness in digital fabrication facilities 

creates a dilemma for assessment. How are we to objectively assess work that is open-ended and 

creative? Traditional assessments of science and technology neither capture the particular types 

of learning in which students engage in fabrication settings nor reflect that learning of such 

settings is grounded in developing competence with digital fabrication tools. As Velayutham, 

Aldridge, and Frasier (2011) pointed out in the areas of science education, motivation is 

contextual (see also Bandura, 2006; Zimmerman, 1998; Barron, 2006). Educators who support 

the integration of fabrication settings into school do so because they find that such settings are 

providing transformative experiences for students (Blikstein & Worsley, 2016). They cannot, 

however, rely on existing determinations of learning outcomes to establish how well fabrication 

settings function pedagogically. Specific instruments are needed to quantify student confidence 

in their mastery of fabrication technologies, so these instruments must go beyond measures in 

science currently employed in general computing and in information and communication 

technologies (ICT). Designed to meet these complex requirements, our proposed instrument 

captures the relationship between students’ confidence with technology and their performance on 

technology tasks specific to fabrication settings.  

 

New Frameworks 

While digital fabrication facilities are spreading to schools, several of the national frameworks 

for technological literacy do not offer appropriate models for tracking or accounting for the 

learning that goes on in these settings. Existing technology assessment instruments pose a threat 

to the future of teaching and learning in fabrication settings by compelling teachers and 

principals to align their activities with inadequate standards. Fabrication settings are opportunely 

situated at the intersection of national initiatives in support of engineering and technology 

education and local manifestations of constructionist learning, for which reason it is necessary, 

as other researchers have shown, to expand what constitutes evidence of learning in these 

settings (Petrich, Wilkinson, & Bevan, 2013).  

 We developed an assessment specifically designed for exploration and fabrication 

technologies (EFT): technologies centered on fabrication (activities oriented towards invention, 

construction and design) and those centered on exploration (activities oriented towards 

expression, tinkering, learning and discovery). Building on our ongoing research on the 

implementation of fabrication settings in schools (Blikstein, 2013), we designed two measures in 

a single survey to capture how fabrication settings shape students’ understandings of and 

competencies with EFT. Having tested the survey in five different schools, we report on its 

development, its statistical validation, and our initial findings. The resulting instrument is 

intended for use by educators, researchers, and policymakers whose work must negotiate 
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between the requirements of national frameworks for technology literacy and a sensitivity to the 

novelty and uniqueness of the kinds learning that emerge within digital fabrication facilities.  
 

 

Literature Review  

Technology Literacy 

In this first section, we provide a selective historical review of how learning and digital 

technology have been framed. Our intention is to focus on the evolution of how technology has 

been understood  in the United States and the implications of these understandings have for our 

definitions of technology-relevant practices and competences. 

 Over the last two decades, the general consensus on technology literacy has evolved from 

quantifying student exposure to different digital software and hardware implementations to more 

comprehensive measures of fluency in technology. In our analysis, the development of 

technological literacy must begin with (1) exposure to technologies as a necessary starting point; 

(2) once students have gained sufficient exposure to a technology, they develop confidence, or 

self-efficacy, in their abilities to manipulate and work with that technology in the pursuit of other 

learning; finally, (3) students who have attained confidence must be able to demonstrate it 

through objective performance tasks. Even though the discourse on technology in the US 

academy has come to regard exposure, confidence, and performance as three important 

milestones in the achievement of technological literacy, they have often been conflated into a 

single measure. Also, as we will show in the following sections, the prevailing view of 

technology literacy and assessments treats all digital technologies as though all were equivalent. 

One of our broader goals with the EFT instrument is to investigate alternative frameworks for 

understanding the relationship between exposure, confidence, and performance, and how they 

could be different for diverse types of technologies. Our instrument makes separate assessments 

of confidence and performance to better articulate how the two are related to each other.  

 

National Frameworks 

As early as 1996, the national agenda on educational progress and student preparation for the 

twenty-first century placed technology at the center of its discourse. The International 

Technology and Engineering Educators Association (ITEEA) first prioritized the need to expose 

students to engineering and design practices for engagement in critical thinking through the 

design and development of “products, systems, and environments to solve practical problems” 

(ITEEA, 1996, p. 1). The Next Generation Science Standards (NGSS) identified a competency 

requirement for engineering design and systematic problem solving (NGSS Lead States, 2013). 

Most recently, the National Assessment of Educational Progress report (NAEP, 2014) has 

changed its goals from technology literacy to technology and engineering literacy, and made a 

case for integrating engineering practices and competencies into the assessment of technology 

fluencies. The report recommends a new national framework that adds emphasis on design and 

systems in technology.  
FIGURE 1 HERE 

The NAEP Technology and Engineering Literacy framework (NAEP TEL for short) emphasizes 

three distinct areas of technology and engineering practices: technology and society; information 

and communication technology (ICT); and design and systems (NAEP, 2014). The third 

category, design and systems, is the most relevant to fabrication settings because of its focus on 

engineering design, engineered systems, the physical characteristics and constraints of 
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technologies, and technology troubleshooting. This framework points to a need for assessments 

that identify students’ ability to think about technology at the level of engineering systems. 

According to the NAEP TEL framework, students who have mastery of design and systems 

knowledge and practices should be able to critique, rationalize, and communicate design choices; 

plan, construct, and test prototypes; as well as troubleshoot malfunctions in technological 

products. Such competences are central to the activities in fabrication settings, yet assessments 

for them are still largely undeveloped.  

 

Existing Technology Assessments 

The NAEP TEL report proposes first to account for three different dimensions: technology use, 

effects, and design, in order to mitigate the discrepancies in the terminology used in various 

national and state policies. However, technology literacy assessments that have been built around 

the new NAEP TEL framework do not adequately account for the diverse range of practices and 

competencies that apply to different technology settings and bypass an entire category of tools 

capable of fostering engineering and design competence (i.e., exploration and fabrication 

technologies). 

A major concern for national programs on technology literacy has been to account for the 

rapid proliferation of and continuously shifting contexts for technology use (for a comprehensive 

review of general technology assessment tools, see National Academy of Engineering and 

National Research Council, 2006). Our selective review of existing assessments will provide a 

more fine-grained discussion of what an EFT-specific literacy assessment should capture. In the 

end, we argue that ICT and digital media literacies involve different skills than those drawn from 

fabrication technologies and related practices and require their own sophisticated assessments. 

Early ICT assessments were focused on self-reported knowledge of computer hardware 

use and a few programs such as email clients and web browsers. The technological scope of 

these assessments has been expanded to include web searches for information retrieval, 

spreadsheets for computation, and algorithmic skills (Chu, Tse, & Chow, 2011a; Conde et al., 

2011), and three general skills areas have emerged: general computing tasks (saving files, 

adjusting privacy settings), communication and information retrieval (web search, 

videoconferencing), and digital content production (video and photography, spreadsheets).  

Expanding the set of technologies considered for literacy has improved the ways that ICT 

assessments can evaluate students’ literacy and have led to a more holistic approach to ICT 

focused on digital literacies (Green, Yu, & Copeland, 2014; Litt, 2013; Gençtürk, Gökçek, & 

Güneş, 2010; Werner, Denner, & Campe, 2006; Hargittai, 2005). This expansion has also 

provided the further benefit of redefining student learning goals as becoming “media literate” 

(Zylka, Muller & Martins, 2011). The discourse on technology literacy has focused mainly on 

capturing overlaps in the skill sets used in ICT with other fluencies, such as creativity, 

innovation, communication, collaboration, critical thinking, problem solving, and decision 

making (ISTE, 2007; NAEP, 2014). In their review of disciplinary and methodological issues in 

media and ICT, Livingstone, Van Couvering, & Thumin (2008) point to a convergence of media 

and ICT competencies that results from a rapidly expanding variety of digital tools for 

communication and information dissemination.  

While some of the new assessments for ICT digital literacies may include technical skills 

such as critical thinking and understanding the social implications of technology, they do not 

focus on the tasks required for the actual design and construction of technological systems. The 

practices in fabrication settings involve developing a dynamic understanding of how computer 
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programming, design, materials, tools, and processes of fabrication merge in ways that generate 

rich opportunities for decision making, critical evaluation, and problem solving. Learning 

expresses itself in the creativity and diversity of student prototyping, troubleshooting, and 

iteration practices, and these are exactly the kind of competencies a technology literacy 

assessment should measure. 

Technology literacy has been described as evolving along three axes: knowledge, critical 

thinking/decision making, and capabilities (Pearson, 2007). The development of technology 

assessments has occurred within two broad categories: (1) self-reported instruments on task 

values such as curiosity, perceived relevance, and confidence; and (2) the evaluation of 

performance in technology-driven tasks. We are chiefly interested in the future directions 

assessments could take to evaluate all dimensions of technology literacy, including confidence 

and performance. 

 One example of a more comprehensive confidence assessment was the iterative 

development of a survey of computer programming by Werner, Denner, & Campe (2006). In 

their survey of middle school girls in an afterschool computing program, the teachers reported 

that their students attained the highest fluency in communication and visualization technologies 

and the lowest in computer programming. A second example of a confidence assessment, a 

survey by Denner and Werner (2011) of computing interest among middle school Latina girls, 

examined frequency of use, parent and school support, computer confidence, perceived relevance 

of computing, and technological curiosity. Results showed that girls valued computing but 

expressed low confidence in future success and low technological curiosity. Instruments such as 

these can reveal disparities in youth’s confidence with different types of technologies (e.g., 

communication technologies versus computer programming), as well as gender and 

socioeconomic status gaps that will result in unequal access to opportunities that require high 

levels of technological self-efficacy. 

 Several performance assessments on ICT and programming skills provide some 

promising models for developing EFT performance assessments. The most prominent example 

of a performance assessment is the Educational Testing Services (ETS) iSkills test (Lei, Shen, & 

Johnson, 2014). This test assesses objective task performance on critical thinking skills applied 

to digital information management. One of its main contributions is to remove the bias common 

to self-reporting on ability. Performance assessments have traditionally prompted students with 

computer science tasks such as programming, understanding of abstraction or modeling, and 

algorithmic thinking (Denner & Werner, 2011; Denner, Werner, & Ortiz, 2012; Huggins, 

Ritzhaupt, & Dawson, 2014). However, we could hardly find assessments of this level of 

sophistication created to measure students’ performance in designing engineering systems 

(Miller, Webster, Dauer, & Anderson, 2013).  

 Our review showed one attempt to assess students’ understanding of the interaction 

between digital software and hardware systems. Lebeaume and Perez (2012) asked a sample of 

Parisian students to describe the operation of two commonly encountered systems: a transit card 

that uses radio frequency identification and an interactive whiteboard. In their performance 

assessment, most students lacked the scientific and engineering vocabulary to describe the 

interaction of sensors, software programs, and actuators. The open-ended student responses 

revealed that, regardless of age, most students could identify, overall, only the most readily 

visible components of these technological systems. This instrument indicates a fruitful direction 

that EFT skills assessments could take. 
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 While EFT confidence assessments are more common, some assessments, such as the one 

described above, have started to include EFT performance, but still none address both 

dimensions. Consequently, existing assessments do not provide common ground for determining 

the relationship between confidence and performance. As a corrective, our EFT instrument 

measures confidence and performance in parallel. The combination of our EFT performance 

assessments with EFT, ICT, and general computing confidence assessments represent a 

promising direction forward: our EFT instrument elaborates on design and engineering systems 

as a component of technological literacy, while also providing a platform for the comparison of 

the differences between general computing, ICT and the less understood EFT. 

 We acknowledge that our instrument and approach err, at times, on the side of 

technocentrism, in the sense put forward by Papert (1991). That is, some of our questions ask 

students directly about their familiarity with specific machines and technologies (e.g., laser 

cutters and 3D printers). We are aware that we could have asked questions that dealt more with 

projects that include laser cutting or more holistic activities that integrate more machines and 

technologies. Still, our rationale was that our first instantiation of the research should aim for 

simpler, technology-specific measures to support more complex measures in future versions of 

our instrument. Further, other assessments of maker-type knowledge have found it prudent to be 

context-specific. For instance, in creating an assessment for student understanding of basic 

circuitry (simple, parallel, and series circuits) in electronic textiles, Peppler and Glosson (2013) 

found it sensible to utilize images of the exact parts with which students had contextual 

experience. Using stickers with images of the sewable lights and battery holders, students drew 

working circuits. Our instrument is sensitive to the specificity of students’ expertise with 

particular tools while also probing for more generalizable problem-solving skills.  

 

Methods 

 

The EFT instrument was developed iteratively and administered in four versions between fall 

2012 and spring 2014 (see Table 1). In Versions 2, 3, and 4, the instrument was formulated as 

two separate measures: the confidence measure and the performance measure. 

 To permit generalizability, we have administered our instrument to a diverse set of 

students drawn from children in five schools. For the selection of the venues, we contacted 

various schools that had implemented some type of a digital fabrication environment. These 

venues are in three school districts within the United States, and the remaining two are in Mexico 

and Australia, both purposefully recruited as cross-cultural checks. The school-based digital 

fabrication programs included a wide age range of students, at the elementary and secondary 

levels, with varying socio-economic statuses. Some of these schools had been working with our 

research team in these implementations, and others had not. Schools implemented fabrication 

settings in different ways: from the integration of the spaces into traditional curricula to the 

provision of digital fabrication as an elective class. One reason for the diversity of schools was to 

ensure that the EFT instrument would work consistently across these differing conditions and 

would be more likely to function well in future applications at other school systems, both in the 

United States and abroad.  
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TABLE 1 HERE 

At School A we tested three versions (1, 2, and 3), each during a different school year 

(2012, 2013, and 2014). Given the differences between the versions of the instruments utilized 

across this time span, we did not choose to match across administrations (although it would be 

possible for many students). At School B we tested Version 2 twice, administering the survey to 

the same seventh and eighth grade classes.  This resulted in a matching for 71 students over both 

administrations of the instrument. 

 The EFT instrument was administered using both paper and electronic formats (the 

electronic version used the Qualtrics software platform). Student participation was not 

mandatory: students could opt-out, although we do not know how many chose this option for the 

paper survey administrations at Schools C and D. Survey completion ranged from 94% in School 

B and A (in 2013) to 77% in School E and 74% in School A in 2014. Our discussions with the 

classroom teachers administering the instrument with higher drop-out rates suggested that many 

students returned to complete the instrument at a later date, starting at the beginning each time. 

For example, at School A, grades 8 to 10 had 164 completions in 2013 and 162 in 2014, even 

though drop-out rates were much greater in 2014.  

 Completion of the instrument took between 20 and 45 minutes, depending on student 

grade level and variations in the number of questions in the different versions of the instrument. 

After approval from the administrators of participating schools, classroom teachers responsible 

for the fabrication settings at each school administered the instrument from written instructions 

included in the instrument package and with limited assistance from the research team. Question 

ordering was fixed for each version of the of the instrument. However, in the electronic versions 

of the instrument we did employ random orderings of items for questions that asked students to 

identify long lists of items (for examples, see below in Figure 2 and Appendix B). 

 

Instrument Design 

Our EFT instrument combines two measures: the EFT confidence and EFT performance 

measures. The first, EFT confidence measure, asks students to report on their familiarity and skills 

in key exploration and fabrication technologies (EFT) as well as common information and 

communication technologies (ICT). We deliberately included technologies from both EFT and 

ICT in our instrument because the relationship between the two remains largely unexplored and 

may be more clearly characterized with an instrument measuring confidence in both areas. The 

second measure, which assesses EFT performance, asks students first to identify major parts of 

commonly encountered electronic devices, redesign them, and finally to troubleshoot them. We 

developed an objective score from these in order to assess what students know about the design 

and systems interaction of components of everyday devices. The instrument was designed to be 

generalizable and to have sound psychometric properties. Table 2 summarizes the category of 

questions in the survey.  

 
TABLE 2 HERE  

 

The EFT instrument also includes a number of additional questions about student 

background to assist in validation and to facilitate comparison across the participating schools. 
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Background information on family socio-economic status and parents’ educational attainment 

were incorporated into the instrument, as discussed earlier (Table 1). Student-level background 

questions included queries on grade level, gender, STEM classes taken, participation in after-

school STEM programs, career aspirations and post-school plans, as well as estimates of time 

spent on different student activities, such as studying, sports, and reading. Below, we outline 

how the iterative design of the two measures was guided by validity testing throughout the 

different versions of the assessment.  

 

EFT Confidence Measure 

 

Iterative Instrument Design  

The EFT confidence measure captured students’ confidence and familiarity with a variety of 

digital technologies. Respondents were asked to rate their competence with items on a 6-point 

Likert-type scale, where 1 indicated “I know nothing about it” and 6 indicated “I could be a 

professional or teach other people about it” (see Figure 2). In the online version of the 

instrument, the order of questions was randomized where possible to reduce ordering effects.  

 

FIGURE 2 HERE  

 

After administering Version 2 of the survey at School A (spring 2013), we ran an 

exploratory factor analysis of student responses in the EFT confidence measure. Figure 3 

provides the results of the factor analysis. The magnitude of eigenvalues (y-axis) from the 

instrument compared with randomly reshuffled data suggests that the instrument consists of three 

related factors. To check whether these factors were closely related or could be treated as 

independent, we next ran a factor analysis with a nonorthogonal rotation (Oblimin) and a 

principal component analysis (PCA) employing an orthogonal (Varimax) rotation. With the 

nonorthogonal rotation of the data, we found nonnegligible correlations between the factors, 

which indicates the factors are strongly correlated. Distribution into three correlated factors was 

consistent across subsequent versions of the EFT confidence measure. The three factors could be 

clearly mapped with distinct types of technologies, thus we named them general computing 

tools, ICT production tools, and EFT production tools.  

 

FIGURE 3 HERE  

 

To refine the EFT confidence measure in subsequent versions, we added and deleted 

items in two steps. The first step was prioritized because of our moderate sample sizes for the 

different versions of the measure (ranging from 80 to 300 students in the five schools). 

Following the convention of loading factors greater than 0.4 (Yoon Yoon et al., 2014; Ro et al., 

2015), we flagged items for deletion if they weighed less than 0.4. If any item loaded >0.35 on 

more than one of the three factors, it was removed from the instrument to ensure that the 

remaining items were unique to each category. (The table of loading values for the second and 

third versions of the instrument can be found in Appendix A.) We found that computer 

programming tended to load strongly on both the ICT production tools and EFT production tools 

– a result we attribute to the intrinsic complexity of the programming process. Like reading or 

writing, programming underlies a number of complex skills and tasks that have a wide-range of 

applications in production activities, such as programming scripts for robots and webpages, 
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which would be relevant as both EFT and ICT production skills, respectively. The latest version 

of the measure specifies programming for EFT production with the item “programmable 

microcontrollers” that has consistently loaded on only EFT production tools.  

The second refinement step involved adding more items, specifically production tools, to 

the three subscales. Earlier versions of the confidence measure had fewer items than subsequent 

revisions because we did not initially anticipate three subscales. As an improvement, we added 

new features that included confirmatory factor analysis (CFA) and classical test theory measures 

for reliability. We used weights from the primary principal component or core of each subscale 

to screen the new items and employed Cronbach’s alpha (Table 3) to assess the reliability of the 

three factors. Given that our instrument is not intended for ability testing, reliability values of α < 

0.7 were deemed poor, 0.7 or 0.8, acceptable, and those greater than 0.8 (DeVellis, 2016), or in 

the range 0.85 to 0.90, excellent (DeVellis, 2016). The revision of the instrument brought up 

consistency in ICT production tools from 0.59 and 0.53 to 0.83 and 0.73. EFT production tools 

remained consistently high at 0.87 and 0.85.  

 
TABLE 3 HERE 

 

Instrument validation is a never-ending process; however, several findings make us confident 

that the EFT confidence measure is assessing what we intended. We adopted an approach to 

validity that recognizes that many potential threats to validity arise during test application and 

development (Crooks, Kane, & Cohen, 1996). The use of Likert-type scales, the online format, 

and scoring, along with our efforts to make administration easy and consistent, all deal with 

methodological threats that come from the survey administration and scoring protocol in our 

methods. Our use of diverse trial populations along with systematic psychometric methods also 

gives us confidence that threats to validity arising from aggregation and reliability have also been 

adequately addressed. 

 

Validity Testing  

We evaluated the validity of the EFT confidence measure by correlating it to other tests and also 

confirmed that scores change with variations related to grade level and curriculum exposure 

(Borsboom, Mellenbergh, & van Heerden, 2004; Lissitz & Samuelsen, 2004). For example, 

School A has a substantial engineering curriculum already in place that utilizes a digital 

fabrication facility. We predicted that the 34 students (out of 308) who were enrolled or had 

completed the engineering course, the robotics club, or computer science courses would score 

higher on confidence with EFT and ICT tools because these students rely heavily on the school’s 

digital fabrication facility to support their club and class projects. Throughout this article, we 

employ a robust version of two-way ANOVA with an alpha of 0.05 because these estimates 

tolerate moderate departures from normality and homoscedasticity while retaining good power 

(Koller & Stahel, 2011). After controlling for grade level, the ANOVA confirms that students 

with engineering course experience at School A reported higher EFT and ICT confidence than 

their grade counterparts at School A (effect of 1.21 points with p < 0.0001 and effect of 0.38 

points with p = 0.056, respectively).  

 
TABLE 4 HERE 
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Version 2 of the confidence measure was administered as a pretest to the seventh and 

eighth grades at School B at the beginning of the school year. Version 3, which contained some 

additional items, was administered as a posttest shortly after the students’ completion of a digital 

fabrication curriculum intervention that academic year (see Table 4). A paired Wilcoxon test 

(with the Holm multiple comparison correction applied and alpha of 0.05) suggests that the 

student’s increasing confidence with EFT production tools of one point in our 6-point scale for 

both grades is statistically significant. Again, we chose this test over the more common paired t-

test because it is nonparametric and robust to departures from normality and homoscedasticity. 

Students in both grades made significant gains on the EFT confidence instrument and the 

curriculum in either case involved design or engineering related to digital fabrication.  However, 

we were surprised at the significant gains made by the eighth grade as measured by the General 

Computing and ICT confidence items. Our investigation suggests that these results may be due 

to curricular interventions at School B, namely the distribution of iPads to both grades and, in the 

case of the eighth grade, a media literacy curriculum. Perhaps more importantly, the different 

gains by students demonstrate that the confidence measure as a whole captures differences 

between student confidence in three areas of technology literacy that previously were not well 

differentiated. Although we did not find universal improvement in all three dimensions 

simultaneously, we did observe that it is possible for students to improve only in the EFT 

dimension while demonstrating no improvement in the two other dimensions.  

 

EFT Performance Measure 

 

Design  

As with the confidence measure, the questions in the EFT performance measure underwent 

several revisions in order to improve its test properties. A number of challenges presented 

themselves, in part because there were still only limited examples to model from. We needed to 

develop entirely new questions to assess learning that may have been facilitated by a variety of 

technologies in different curricular environments. These questions could not take more than a 

few minutes to complete, and because of the diversity of technical infrastructure in the schools, 

the instrument had to work both on paper and electronically. As a result, developing questions 

that went beyond probing simple factual knowledge turned out to be quite complex. Iterative 

changes to the instrument included not only alterations in wording but required wholesale 

question additions or deletions as well to produce a set of questions that met basic validity 

thresholds. We tried many different kinds of questions. Some did not appear to measure EFT 

skills and knowledge consistently, some were not correctly understood by students, and some 

were difficult to score consistently. One example of an unsuccessful question involved an open-

ended question about fixing a broken coffee maker that prompted students for their solution of 

how to fix it. It was a difficult question to score reliably, and the scoring was very time 

consuming and thus unfeasible for large-scale assessments. Answers to this broken coffee maker 

question never correlated with other performance measures, nor did they pass measures of 

external validity. After testing that question through two revisions at three schools, we finally 

removed it. 

We developed three overarching questions, each with many component parts. In order to 

simplify and improve the reliability of scoring, we developed a combination of short-answer and 

binary-choice questions in contrast with the open-ended approach used by Lebeaume and Perez 

(2012). The questions we developed used two different strategies: some questions required 
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students to analyze an item and identify key component parts; other questions prompted students 

to explain which parts and tools were needed to create a specified electrical appliance or 

electronic device. Both question types invited students to demonstrate their knowledge of 

common electronic devices as simple engineering systems.  

 

Validity Testing 

Self-selecting groups such as the engineering course students from School A are valuable for 

estimating the validity of the EFT performance measure. As predicted, School A’s engineering 

students outperformed their non-engineering course peers on total scores for each question. 

Student engineering background was a statistically significant predictor after controlling for 

grade-level of performance on both the key-fob and the blender questions, per an ANOVA 

procedure similar to that used in validating the EFT confidence instruments (effect size of 1.35 

points for the key-fob and 0.39 points for the blender with p=0.0168 and p=0.0176 respectively).  

These results suggest that the questions are sensitive enough to determine differences in student 

understandings of basic electronics. 

 

 

Results 

 

EFT Confidence 

Measure Scores 

Students were generally quite confident in their self-reported ability to use general computing 

tools, but reported lower confidence in the ICT and EFT production tools, as indicated in the 

mean confidence scores for the eighth grade in schools A, B, and E (Table 5). The results 

validate our purposeful differentiation between confidence in general computing, ICT, and EFT.  

 
TABLE 5 HERE 

Test scores revealed that students lacked confidence in EFT production tools compared with 

their confidence in general computing and ICT. We attribute the high general computing and 

ICT scores to a pervasive social emphasis on information consumption and ICT content, 

especially because all three schools (A, B, and E) have well-funded technology programs and 

serve students from high SES backgrounds. Despite the maker movement’s increasing popularity 

and intentional efforts by the schools to develop curricula for digital fabrication labs and 

engineering courses, student confidence with EFT production tools are overshadowed by their 

confidence with more ubiquitous digital tools (general computing and ICT). It is unclear why 

School B has a higher EFT score than the others. Whatever the reasons for the differences, the 

confidence measure captured differences between schools, which indicates that it should allow 

for a more systematic evaluation of student confidence, and capable of supporting deeper 

research comparisons of different technology-based programs.  

 

EFT Performance 

Measure Scores  

In analyzing the EFT Performance measure scores, we consider responses to two key questions. 

First, the key-fob question was first introduced in the second version of the instrument and was 

revised heavily in the third and tested on the large sample of 324 students from School A. In 

order to map out the correlation between confidence and performance, we juxtapose the results 
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of the key-fob question with the results from the EFT confidence measure and with a second 

EFT Performance question (the blender question, also introduced in the third version of the 

performance measure and also tested on School A). The blender and key-fob questions were the 

most “dialed-in” performance-based questions that we developed through our iterative design-

validate-and-refine process. 

 

Key-Fob Question The key-fob question begins by presenting students with a photo of a car 

key-fob with four buttons such as lock and unlock (see screenshot of question in Appendix C). A 

key-fob comprises a battery-powered circuit board, an antenna printed directly on the circuit 

board, a radio transmitter, and a microcontroller, along with some mechanical switches that are 

activate when buttons are pressed. The question then lists a number of mechanical and electronic 

parts and asks students (1) whether or not each part is present in the key fob, (2) how sure they 

are of their answer on a scale of 1 to 10, and (3) if they know what that part is. The “sureness” 

rating allowed us to diagnose item difficulty and to track changes in student confidence over 

time, and across different groups (not be confused with the EFT confidence instrument). Asking 

whether students know a part helps to distinguish between knowledgeable responses and 

guesses. Each item listed was worth a single point, but the point was only awarded if the student 

both recognized the component and correctly indicated whether or not it was actually present on 

the device. The sum of these scores was the overall question score. The combination of 

predicting the contents of the key fob and recognizing electronic components increased the 

difficulty of the question and led to a wider variation in total scores. 

 
TABLE 6 HERE 

The results of the key-fob question suggest that most students have only a rudimentary 

knowledge of how the device functions. They understood the need for power from batteries, and 

they knew lasers and microphones were not necessary components. While two-thirds of the 

students recognized the need for a radio transmitter, few realized the importance of an antenna or 

microcontroller (see Table 6). The most difficult items show a much higher percentage of 

students correctly answering whether it was present or absent in the key fob (57% for the 

microcontroller) versus indicating that they recognize the part and its function (19%). The 

discrepancy in item scores allows us discriminate which students answered that a key fob has a 

microcontroller by guessing. 

 

FIGURE 4 HERE 

 

Analyzing both students’ knowledge of the component, and the correctness of the answer 

illuminates some meaningful issues. From Figure 4, it is noticeable that the components which 

are closer to everyday experience, such as microphones, batteries, motors, switches, screws, 

lasers, have the lowest discrepancy between students’ knowledge about them and correct 

identification—sometimes very close to zero. At the same time, components that are more 

hidden from everyday experience, such as microcontrollers and transistors, exhibit a very high 

discrepancy (38% and 25% respectively). If our measure had only asked about the presence of 

the component in the key-fob we would be led to believe that 50% of students actually knew 

what a microcontroller is. However, since we also asked if students knew the function of the 

component and whether or not it was present in the device, we could determine that a large 

percentage of students guessed correctly. To a lesser degree, the same happens with transistors: 
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we would be led to believe that 72% of students know what transistors are, but one third of those, 

in fact, merely may have been guessing.  

 The discrepancies in answers to these questions, however, do not always deliver such 

clear differentiations between mere guesswork and a basic understanding of engineering 

principles. For example, 88% of students properly understood the nature of an antenna, but only 

19% correctly answered the question. We suspect that students are conceptualizing antennas in 

terms that are familiar to them: as cylindrical metallic objects that protrude from electronic 

devices. Since the key-fob is small and does not have any such protrusion, most students got that 

part wrong. One implication is that students might conceptualize electronic devices by their 

appearance rather than their functionality. For example, they may not have associated the fact 

that the key-fob has to transmit a wireless signal to the necessity of an antenna’s presence in the 

device. After an electronics or digital fabrication workshop, the key-fob question can measure to 

what degree students have relevant knowledge of key components of typical engineering systems 

and how these components work together in the system—regardless of students visually 

identifying the classical versions of these components in the device (such as an antenna.) 

 

Blender Question The second question was about a blender, which prompted for semi-

structured responses focused on electrical engineering systems (see Appendix D). The question 

required students to describe the parts and fabrication steps involved in the construction of a 

simple kitchen blender. The first section asked students to list the major parts: motor, blades, 

pitcher, lid, and power cord. Each named part was worth 0.2 points. The next part of the question 

asked students to describe the fabrication steps needed for the construction of the plastic base of 

the blender ‒ 3D printing, vacuum forming, or casting a mold were methods students could 

describe to score a point. An extra point was awarded for procedural knowledge of specific 

techniques; for instance, if a student specified that 3D printing first required designing a model, 

or that a mold must be pre-shaped to specification. The final section asked students to correctly 

identify soldering as the ideal method for connecting the circuitry. The results of the scoring of 

the blender question are discussed in the next section (Patterns across Measures). 

 

Patterns across Measures  

Taken together, the confidence measure and the two main questions on the performance measure 

suggest three main trends. First, we notice low levels of EFT literacy, especially regarding 

student understanding of the use of tools in the construction of elementary mechanical devices 

controlled by programmable electronics. Second, students consistently rated their own 

confidence with EFT tools considerably lower than general computing tools or ICT tools. 

Finally, students could identify surface features of devices and name the parts required for the 

common devices to functions, but they demonstrated limited awareness of how such devices 

actually work. 
 

TABLE 7 HERE 

Table 7 is the pairwise correlation matrix between the key-fob and blender questions and 

three factors from the EFT confidence measure. Student performance was not strongly correlated 

to students’ self-assessed skills (confidence). Previous research has already found that across 

many different domains, survey respondents are poor judges of their own ability in tasks that are 
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moderately or very difficult (Lichtenstein & Fischloff, 1977; Koriat, Lichtenstein, & Fischloff, 

1980; Griffin & Tversky, 1992), and assessments have moved away from self-reporting. In the 

Discussion section, we propose interpretations of the relationship between student confidence 

and performance.  

 

Discussion 

 

Accessibility to Technologies 

One finding from the analyses of our EFT Instrument is that differences in the accessibility and 

nature of various technologies are reflected in our data. First, our statistical analysis 

demonstrates that exposure to general computing and to ICT tools is fundamentally different 

from exposure to EFT tools. Additionally, self-reported confidence in ICT was not a good 

predictor of student EFT task performance. These data contradict both the notion that “digital 

natives” are without qualification well versed in all types of technology and the notion that a 

sequential or spontaneous relationship exists between exposure, confidence, and performance for 

all types of technology. 

One implication of this is a need to reexamine how confidence and performance might 

vary for different types of technologies. The way youth get exposed to general computing, ICT, 

and EFT technologies differ greatly. For many, general computing and, more recently, ICT have 

become a part of everyday activities. There are many opportunities for daily exposure to general 

computing and ICT tools in activities such as those involving mobile phone, tablet, and computer 

use, and the school’s role in exposing students to these tools is less crucial. Students encounter 

these devices in a variety of settings, when they are not carrying one with them at all times. 

Furthermore, these tools have benefitted from decades of improvements in usability, human-

computer interaction, the scaffolding of user-generated content, and peer-to-peer support, so their 

mastery requires little formal instruction. Students can discover and learn on their own and move 

from exposure to confidence and to performance more easily. On the other hand, familiarity with 

fabrication technology (EFT) is deeply contextualized and constrained to digital fabrication 

facilities. While EFT tools have moved into libraries and are increasingly accessible for some 

students at commercial 3D print shops and maker supply stores, for most, there are few 

opportunities for exploration with EFT. Thus for many, school remains the only place that could 

offer sustained access to EFT technologies. Likewise, since the software and hardware resources 

are relatively new products and their usability and support are still rudimentary, scaffolding and 

instruction remain crucial for developing competence. Since it is much more challenging for 

novices to master such technologies on their own, facilitation and help from more able peers or 

teachers is still crucial. 

 

General or Specific Technologies? 

Another common concern with technology assessments is insuring their relevance in the face of 

rapid technology obsolescence. This means that effective assessments should be neither too 

general nor too specific to the technologies currently popular. The challenge with many existing 

technology literacy assessments has been finding the middle ground between generality, which 

does not capture the range of technology literacies (such as the difference between EFT and ICT) 

and specificity, which tends to increase the chances an assessment will quickly become obsolete 

as the popularity or relevance of certain technology tools phases out over time. The struggle to 
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find the right level of generality for items in our assessment was one of the major reasons for its 

multiple revisions.  

For example, a very early version of the assessment contained an item that asked students 

to rate their familiarity with “electronics.” When we administered the question to students (and 

to teachers, as part of preliminary prototyping of the instruments) we found that for students, 

electronics correlated closely to robotics and shop tools, while for teachers, electronics correlated 

with smartphones and tablets. It was clear that the electronics category, much like the term 

technology, was too broad. We removed the item and instead focused on specific skills and tools, 

such as soldering and using multimeters, which are needed to build and diagnose electronic 

circuits. The risk of our approach is too much specificity. Recall the key-fob question where 57% 

of students correctly stated that a microcontroller was present but only 19% of students actually 

felt confident that they knew what a microcontroller was. We suspect that using more 

recognizable phrasing such as “computer chips” might allow students to be more confident in 

their answers and to correctly determine a microcontroller’s presence without resorting to 

guessing. 

Given the risk of obsolescence, the challenge of finding the balance between generality 

and specificity pointed us to a larger issue concerning the ability of technology literacy 

frameworks to keep up with the emergence of new technologies. Since EFT tools are evolving 

rapidly, there is a constant need to update EFT assessments, including our own instrument. For 

example, recently, popular media have proclaimed that 3D printing’s projected societal 

importance make it a key technology that should be taught in schools. Therefore, developing an 

instrument to measure 3D design and printing skills would follow as a natural part of a 

technology assessment questionnaire. However, since its commercialization and entry into the 

mass market in 2013, 3D printing has proved to be less reliable and more complex than expected. 

Software environments for novice users are still not well developed, and the introduction of 3D 

printing capabilities in schools is still experimental with no universal standards for 

implementation or evaluation. It remains unknown how important 3D printing will be for a K-12 

technology assessment instrument.  

Generating categories that are specific enough to have consistent meaning while not 

being so specific that they make the instrument irrelevant in the future is a challenge. Using a 

midlevel approach by sticking to classes of devices while focusing specific processes of 

technology skills was successful for our EFT instrument. Our multiple design cycles allowed us 

to detect and address the problem for the electronics item, and we expect to be able to do the 

same for microcontrollers and computer chips in future iterations.  

 

Confidence versus Performance 

Our analysis showed a marked difference between students’ confidence in EFT and their 

performance in EFT. One plausible reason that students’ EFT confidence may be high while 

performance is relatively low is that there are a number of different EFT technologies currently 

available. Because of the wide range of design projects students take on and their differing 

approaches to prototyping, different levels of familiarity and specialization with specific 

technological tools becomes a factor. Consider, for example, a design challenge for students to 

build a functional floating vessel. Students may start with blueprints and cardboard prototypes 

before building and testing their designs. While one student might plan to build the vessel 

structure by laser cutting acrylic sheets; another might consider polymer casting; while yet 

another might 3D print a model. Each approach will lead to more experience with the specific 
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planning, tools, and materials related to the respective EFT production tools. Each particular 

specialization emphasizes mastery of one particular subset, frequently to the neglect of others 

that are less useful for a project. Thus, students’ actual expertise may be limited to specific areas, 

leading to students performing solidly on some performance tasks, but not on all. 

At the same time, because they are part of a community in a digital fabrication facility, 

students’ physical presence in fabrication labs means that they are exposed to a variety of 

production tools, at least passively. They may become aware of the expertise that others are 

developing, and are also exposed to the variety of machines and general techniques second-hand, 

by debugging and corroborating with peers. This general knowledge of the range of machines, 

techniques, and skills used in exploration and fabrication technologies may be one factor that 

leads to student confidence being high while their performance is comparatively low. It may 

reflect the difference between knowing about technology and being able to use it effectively. 

 

Distributed Expertise 

While the variations in learning among students presents a challenging scenario for an 

assessment instrument, such differences constitute an exciting development for educators 

because they provide opportunities for peer pedagogy and models of leadership where everyone 

has knowledge to share (Fields, 2009; Gee, 2004). In these settings, the nature of learning is not 

located in a single individual but across individuals as they share knowledge and solve problems. 

Thus, distributed expertise, rather than being an inconvenience for assessment, should be seen as 

possibly a new standard by which we could evaluate learning when students acquire overlapping 

but different knowledge. These peer learning interactions challenge researchers to look not only 

at what students can accomplish on their own but what they can achieve among themselves 

(Vygotsky, 1978) when they become resources for each other in accomplishing their creative 

work. As much as the distributed nature of expertise disrupts the conventional schooling notion 

of each student learning the same thing at the same time, it is a crucial and urgent issue for 

researchers to deal with. 

 The distributed nature of expertise suggests that the way students become conscious of 

their familiarity and expertise in EFT tools is more complex than a linear path. Expertise is 

acquired through a dynamic and emergent process that relies on both tools and peers that are 

engaged in multiple iterative cycles of debugging, exploration, and the development of mastery. 

Thus, future versions of our instrument should also find ways to assess students’ perceived 

difficulty in acquiring expertise in EFT tools, and not just the current level of their expertise. We 

believe there is still much work to be done to improve our EFT instrument, and we hope to report 

further results in our future research. 

 

Conclusion 

 

Technology and Engineering Literacy 

This article opened with a discussion of the shortcomings of the perception and framing 

of technology in the national discourse on STEM education. While there is a new emphasis in 

the national goals of education to consider “technology and engineering literacy” (NAEP, 2014), 

the implementation of technology in the curriculum is largely restricted to teaching general 

computing and ICT, with little attention to EFT. Yet fabrication settings have become an integral 

part of many (though far from most) schools around the United States and the world. The attitude 

towards experimentation and exploration engendered in them has the potential to transform how 
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schools approach STEM learning. However, given the limited view of the technology and its 

complex possibilities in the current assessments available, which largely focus on general 

computing and ICT, the kinds of learning opportunities that arise in digital fabrication facilities 

cannot be properly measured and characterized in terms of their essential contributions to overall 

technology and engineering literacy. 

Assessments play a key role in helping educators to align fabrication activities and 

opportunities with explicit learning goals. The development of the EFT instrument that we 

presented in this paper marks one effort toward distinguishing the specialized knowledge and 

practices necessary in learning with EFT tools from that of general computing tools and ICT 

production tools. In reflecting the kind of learning that actually takes place in fabrication 

settings, our instrument provides schools with strategies to measure learning and incorporate the 

results into improved curricula and guidelines for learning. Ideally our instrument will become 

one of a set of assessments that can provide feedback in setting national policy and curricula 

regarding the role of fabrication settings in technology and engineering literacy. 

 

Broader Implications  

The EFT instrument we developed captures a new and distinct set of technology literacies that 

arise within digital fabrication facilities and are independent of both general computing and 

digital content production skills. Our instrument also weighs students’ self-reported confidence 

against their performance on complex design and systems tasks and provides insight into the 

relationship between confidence and performance. The instrument has also set us on the path to a 

more detailed understanding of the different ways that expertise develops across different types 

of technology: an agenda that must be carried forward in future research. For technologies 

involving basic computer use, which in many respects are already integrated into everyday life, 

the school’s role may not be as crucial as it once was. However, new and emerging EFT tools are 

far from being common objects in children’s lives. EFT tools are still in their “exposure” phase 

when children are being made aware of the range of tools and what they can be used for. 

Children build confidence only when they are deeply involved in environments in which these 

technologies are made accessible to them; and settings such as digital fabrication facilities 

provide opportunities for broad exposure and the acquiring of specific expertise, as students use 

tools to collaboratively create projects.  

Alongside the need for greater exposure to EFT tools is the necessity of providing means 

to develop competent performance with these tools. Our instrument raises questions about 

whether performance naturally develops as a natural consequence from simply gaining exposure 

and progressing in confidence, a commonly held belief in regard to the progression of 

technology literacy. A common belief is that children learn to interact with ICT technology as 

autodidacts. We hypothesize that autodidactism is only possible today because of a combination 

of the ubiquity of ICT tools in everyday life, and decades of advances in human-computer 

interaction and interface design. It would be a mistake to assume that children’s autodidactism 

would automatically extend to EFT technologies. Therefore, until the machines, kits, and 

software used in digital fabrication facilities reach the same level of usability as modern apps and 

software, educators should budget extended periods of time for students to become proficient 

with EFT tools with the help of experienced facilitators. 

 A new technology assessment instrument requires several cycles of development, and 

longitudinal data. We believe that this article contributes to the creation of assessment tools that 

better characterize and assess the learning that takes place in digital fabrication facilities. Our 
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EFT instrument allows an examination of the outcomes of the many different kinds of activities 

occurring in such spaces with a careful attention to unique aspects of this emerging technology 

that would be missed entirely by assessments designed for other practices, technologies, and 

types of learning. 

 

 
Appendix A 

Loadings For Factors Second Version of the Instrument at School A. 

2013 factor loadings from all items included in second version. Individual items were also evaluated on a 

single factor with their neighbors as a further check on validity.  Example, blogging and video editing lie 

on a factor explaining 73% of their common variance.  

 

 

 

 

  

Item Factor 1 Factor 2 

Computers 0.26 0.76 

Smartphones 0.07 0.89 

Tablets 0.34 0.77 

Blogging 0.19 0.3 

Editing digital videos 0.23 0.3 

Programming robots 0.9 0.07 

Building robots 0.93 0.11 

Computer programming 0.67 0.11 

Soldering 0.84 0 

Fixing stuff 0.71 0.05 

Shop tools 0.79 0.06 

Laser cutters 0.78 0.12 
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Appendix B 

2014 Factor Loadings from Third Version of Instrument at School A 

 

Not all items in list used to score instrument or to score sub-scales such as carpentry or the item 

about upgrading a hard drive or RAM 

 
 

 

 

 

Appendix C 

 

Screenshot of Part of the Key-Fob Question Formatted 

for Online Administration 

 

 

FIGURE APP C HERE 

 
Appendix D 

Screenshot of the Blender Question Formatted for Online Administration of the Performance 

Instrument 

 

FIGURE APP D  HERE 

Acknowledgments 

Item Factor 1 Factor 2 Factor 3 

PC or Mac computers 0.88 –0.01 –0.2 

Smartphones 0.83 0.03 –0.22 

Tablets 0.66 0.09 –0.09 

Blogging 0.52 –0.23 0.28 

Programming robots –0.05 0.81 0 

Building robots 0.05 0.89 –0.11 

Shop tools –0.11 0.27 0.69 

Laster cutters 0.04 0.61 0.07 

Carpentry –0.01 0.22 0.57 

3D printers 0.11 0.64 –0.01 

Soldering –0.11 0.4 0.44 

Creating webpages 0.42 0.16 0.08 

Word processing 0.65 –0.07 0.01 

Using spreadsheets 0.52 0.17 0.06 

Creating presentations 0.65 –0.08 0.14 

Cordless drill –0.19 0.18 0.79 

Editing digital videos 0.58 –0.11 0.03 

Multimeter –0.02 0.54 0.2 

Upgrading a hard drive or RAM 0.39 0.17 0.13 
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