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Abstract 

Changes of calcium-content and permeability of tight 
_junction following X-irradiation were investigated in mouse 
intestinal epithelial cells by electron microscopy. In the control 
animals the lower parts of tight _junctional area as well as the 
other junctional elements and the intercellular space are labeled 
by pyroantimonate precipitates, which contain calcium as 
revealed by electron spectroscopy and electron energy loss 
spectrometry. X-irradiation, parallel with morphological 
changes, lead to rapid decrease of pyroantimonate pre
cipitable calcium content and increase of the permeability of 
tight junctions indicated by the penetration of ruthenium red 
into the intercellular space. These changes were readily 
reversible following 0,5 Gy doses of irradiation however, they 
persisted up to 24 hours following 5 Gy irradiation. We 
conclude that irradiation at the applied doses can transiently 
destabilize the tight junctions in the epithelial layer of the small 
intestine, presumably through a calcium dependent mech
amsm. 

Key Words: small intestine, X-irradiation, tight junction, 
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Introduction 

The plasma membranes of neighboring epithelial cells 
exhibit a specialized junctional region that plays a role in cell
cell adhesion, control of transepithelial permeability, and 
lateral mobility of membrane domains and contribute to 
intercellular transport of small molecules ( cell commum
cation). The junctional complex of polarized epithelium 
consists of several components including tight junction, 
intermediate (adherens) junction, desmosome and gap 
junction, which are arranged in a well defined order and 
characterized by distinct molecular composition, ultrastructure 
and function (Farquhar and Pallade, 1963; Staehelin, 1974; 
Dragsten et al., 1981; Peracchia and Bernardini, I 984; 
Garrod, 1986; Cereijido et al, 1988; Parry et al, 1990; Geiger 
and Ginsberg, 1991 ). The tight junctions are found at the 
apical (luminal) part of adjacent epithelial cells (Farquhar and 
Pallade, 1963; Staehelin, I 974; Hauer-Jensen, 1990). The 
neighboring membranes fuse with one another at one or more 
points form a belt around the cells. According to freeze
fracture images the intra-membrane proteins of tight junction 
appears as fibrils which fuse with the corresponding ones on 
the adjacent cells like a zipper (Fig. I) (Staehelin and al., 
1969; Staehelin, 1974; Wade and Kamovsky, 1974; Bullivan, 
I 978; Suzuki and Nagano, 1991 ). Two proteins, ZO-1 and 
cingulin associated with tight junctions were recently 
described (Stevenson et al., 1986; Citi et al., 1989; Citi, 
1992) The tight junctions are essential in the establishment of 
a selective permeability barrier for passage of ions and small 
molecules between luminal and intercellular spaces 
(Gumbiner, 1987; Cereijido et al., 1988), and thus regulate 
the resistance (Madara and Dharmsthaporn, 1985; Madara, 
1990). They restrict lateral mobility of membrane domains in 
the adjacent plasma membranes and in this way contribute to 
the maintenance of membrane polarity (Hoi-Sang et al., 1980; 
Dragsten et al., 1981; Tournier et al., 1989; Parry et al., 
1990). Several lines of evidence indicate that the tight junc
tions are dynamic in structure and functions (Meyer et al., 
I 988; Shivers et al, 1988; Kan and Coleman, 1990; Nilsson 
et al., 1991; Citi, 1992; Jinguji and Ishikawa, 1992), i. e. they 
are modulated by physiological and pathophysiological 
effectors (reviewed by Nilsson et al., I 991 ), physical agents, 
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such as mechanical stress (Rhodes and Karnovsky, 1971, 
Pitelka and Taggart, 1983), ambient pressure on blood vessels 
(Majack and Bhalla, 1981; Mi.ihleisen et al., 1989), tempera
ture (Shivers et al., 1988; Cohen et al., 1990) and 
pharmacological treatments (Bentzel et al , 1980; Mullin and 
McGinn, 1987; Hecht et al., 1988; Kan and Coleman, 1990; 

Mullin and Snock, 1990). The mechanism(s) of regulation of 
tight junction permeability is not known exactly. However, 
there are data suggesting that multiple factors including 
cytoskeletal elements (Bentzel et al., 1980; Meza et al., 
1982; Hecht et al., 1988), the cAMP system (Jacobson, 1979; 
Duffey et al., 1981 ), the activity of protein kinase C (Mullin 
and McGinn, 1987; Citi, 1992), and the calcium content of 
the cells are involved (Sedar and Forte, 1964; Meldolesi et al., 
I 978; Palant et al., 1983; Pitelka et al., 1983; Kan and 
Coleman, 1988; Nilsson, I 991 ). Permeability changes of tight 
junction were observed after facilitated movements of calcium 
across the plasma membranes (Kan and Coleman, 1988), and 
following removal of the calcium by chelating agents (Sedar 
and Forte, 1964; Meldolesi et al., I 978; Palant et al., 1983; 
Pitelka et al., 1983; Nilsson, 1991) Several reports indicate 
that the intercellular contacts are targets of ionizing radiation 
(Durand and Sutherland, 1972; Hinz and Dertinger, 1983; 
Rofstad and Sutherland, 1988; Kwok and Sutherland, 199 I) 
Some experimental data are available about functional alter
ations. Increased vascular permeability of macromolecules and 
loss of the intestinal barrier for bacteria, bacterial toxins and 
proteolytic enzymes point to changes in tight junctions fol
lowing irradiation (Quasler, 1956; Levin et al., 1979; 
Hopewell, 1980; Evans et al., 1986; Spence et al., 1987) 
Irradiation is known to alter cell-cell contacts and cell 
substratum adhesion, probably via structural changes of 

adherens junctions and desmosomes responsible for mechan
ical stability of cell contacts (Somosy et al 1987). The ra
diation induced changes of gap junction mediated cell 
communication may result in tumorous transformation of cells 
(Trosko et al. 1990) and there is a relationship between the 
changes in intercellular transport via gap junctions and repair 
capacity of murine B 16 melanoma cells after irradiation 
(Madhoo and Blekkenhorst, 1989). The present study was 
undertaken to examine the radiation induced permeability 
changes in parallel] with the distribution and amount of 
calcium in the junctional complex of the highly polarized cells 
of mouse small intestine in which the functional consequences 
of irradiation have already been described (Quasler, 1956; 
Hauer-Jensen, 1990; Carr et al., 1991 ). 
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Figure 1. Model of tight junction based on the recent lit
erature data. 
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Materials and Methods 

Animals: 
The animals (CFLP male mice) were maintained under 
laboratory standard conditions. They were arranged in groups 
of 3 animals and irradiated as indicated below. The experi
ments were carried out in two parallels. 
Irradiation 
The mice were total body X-irradiated with 0,5 and 5 Gy 
doses and killed by cervical dislocation, 30 minutes, I, 3 and 
24 hours after irradiation. X-irradiation was performed with a 
THX-250 machine. Conditions: 200 kV, half value layer 1.0 
mm Cu, source-surface distance 90 cm, dose rate 0,317 Gy 
water.min- 1. 
Electron microscopy: 
From each animal, three pieces of small intestine from the 
duodenal region (about 0.5 cm) were taken for investigation. 
One of them were fixed for conventional electron microscopic 
investigation by 0.1 M phosphate buffered 5 vol.% 
glutaraldehyde (pH 7.3) at 4 C, and postfixed in l wt.% OsO4, 
buffered by same buffer. The other two samples were fixed for 
as described below. After fixations the tissues were de
hydrated through a graded series ethanol to propylene oxide, 
and embedded in Durcupan AC (Fluka). The sections cut with 
diamond knives on an LKB ultratome and mounted onto 400-
mesh zinc grids for electron spectroscopic imaging (ESI) and 
electron energy loss spectrometry (EELS) investigations and 
on 300-mesh copper grids for transmission electron 
microscopy The ES! and EELS investigations were carried 
out in a Zeiss CEM 902 electron microscope, and JEOL 
l 00CX electron microscope were used for routine 
examinations. 

Cytochemistry: 
I. The permeability changes of epithelium were investi-gated 

by the tracer molecule ruthenium red, (Luft, 1971; Hurtando 
de Mendoza and Moreno, I 99 I; Clough, 1991 ). The tissues 
were fixed in a mixture of 2.5 vol¾ glutaraldehyde and 0.5 
wt.% ruthenium red (Fluka) in 0 l M cacodylate buffer, pH 
7.4 for 2 to 4 hours and postfixed in l wt.% OsO4 and 0.5 
wt.% ruthenium red in the same buffer for 2 to 4 hours. 
2. The localization of calcium was demonstrated by the 

potassium pyroantimonate method according to Eisenmann et 
al ( 1979). The pieces of small intestine were immersed in ice 
cold 2% glutaraldehyde (Merck) buffered with potassium 
acetate (Reanal), and contammg 0.05M potassium 
pyroantimonate (Merck) for 1-2 hours, rinsed in potassium 
acetate buffer and postfixed in 1% OsO4 containing 0.05 M 
potassium pyroantimonate for I hour. 
Microanalysis: 
Since the specificity of the potassium pyroantimonate reaction 
is poor, and the elemental content of reaction product is 
influenced by the reaction conditions (buffer, pH, time) 
(Simson and Spicer, l 975), it was necessary to check the 
calcium content of reaction products by independent methods. 
For this purpose we used electron spectroscopic imaging and 
electron energy loss spectro-metry. 
I. Electron spectroscopic imaging: Ultrathin sections (40-50 
nm) were cut, using a diamond knife, on a LKB ultratome. 
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The sections were mounted onto 400-mesh zinc grids and 
without additional staining analyzed in a Zeiss CEM 902 
electron microscope equipped with a digital-image analysis 
system (IBAS 2.0, Kontron). The images were collected at 
instrumental magnification 20,000x and 50,000x, using 80 
kV accelerating voltage, an objective lens diaphragm 90 µm, a 
spectrometer entrance diaphragm of 650 µm and a slit
diaphragm with 9-10 eV. During image recording fixed pre
sets of TV camera setting (gain, kV, black level) were used, in 
"manual" remote control mode of the camera (SIT DAGE), to 
guarantee constancy of the parameters during recording of 
images. Electrons with energy-loss value of 250 eV were 
selected for structural imaging, while the net calcium dis
tribution was derived in each case from images recorded at 
360 eV and 330 eV energy-loss values. Shading correction for 
uneven illumination was performed in each individual image 
using a defocused image. Corrected images, recorded below 
and at the calcium edge, were then subtracted in order to 
obtain the net calcium distribution at a given field of view. 

2. Electron energy loss spectrometry: Spot analyses were per
formed on selected electron-dense precipitates in order to 
provide additional analytical proof to the two-dimensional dis
tribution data obtained by the EST method. The same sections 
which served for electron-spectroscopic imaging were utilized 
for EELS measurements. The electron microscopic param
eters were as: 80 kV accelerating voltage, 50.000x primary 
magnification, analyzed area of::; 0,59 µm2 , 90 µm objective 
diaphragm, 300 µm spectrometer entrance diaphragm and 2 
eV slit width. The transmitted electrons were detected with a 
photomultiplier tube installed into the photocamera chamber of 
the EM. All spectra were recorded in the same energy loss 
range, between 300 eV and 360 eV with a dwell time of3s per 
channel of 2 eV. The spectrum recording and evaluation 
were performed with the EELS 1.3 program of the image 
analyzer. 

Results 

Specificity of pyroantimonate reaction: 
The EST technique was applied in order to demonstrate the co
distribution of the electron dense precipitates and its calcium 
contents. Figure 2a is the zero-loss image taken around 0-1 O 
eY. Fi!,>ure 2b is the calcium net intensity distribution image, 
acquired by subtraction of the pre-edge image take at 330 eV 
from the post-edge image acquired at 360 eV. Images are 
taken directly after each other with the calcium-net intensity 
image (Fig. 2b). Comparing Fig. 2b with Fig. 2a, it turned out, 
that in can be assumed in Fig. 2b represent the calcium inside 
the pyroantimonate precipitate in Fig. 2a as some of the 
particles present in Fig. 2b are co-distribution with these with 
Fig. 2a. The spot analyses of electron dense precipitates 
performed on the same areas (as in Fig. 2a) by electon energy 
loss spectrometry strengthen this conclusion (Fig. 2c). 
Morphology and potassium pyroantimonate reaction: 
The epithelium of the small intestine consists of one single 
layer of polarized columnar epithelial cells (Fig. 3A). Among 
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which these ones single goblets cell (Fig. 3A) were dispersed. 
Rarely, apoptotic cells were also seen (Fig. 3B). The apical 
(luminal) surface of the epithelial cells is covered by numerous 
microvilli (brush border) (Fig. 3A.). The tight junctions were 
situated at the apicolateral transition of plasma membrane, and 
appeared as multiple bands of the so-called membrane fusion 
between the opposed plasma membranes (Fig. 4). Immediately 

below the tight junction the adherents junction is located. It is 
characterized by an about 20 nm wide intercellular space, and 
a dense, fibrillar material covering the cytoplasmic side of the 
plasma membrane. Beneath adherent junctions one or more 
typical desmosomes can be observed (Fig. 4). The lateral 
plasma membranes of the cells form interdigitations (Fig. 3A, 
Fig. 4 insert). The calcium containing pyroantimonate 
precipitates were found on the microvilli (Figs. 4, 6), on the 
basal lamina (not shown) and in the intercellular space between 
adherents junctions and desmosomes (Fig. 4). The 
interdigitations of the lateral plasma membrane also showed a 
strong labeling by the pyroantimonate reaction (Fig. 3A, Fig. 4 
insert). Rarely, small deposits of the reaction products were 
seen at the bottom part of the tight junctions (Fig. 4). Inside 
the cells the reaction products are usually localized at the 
cytoplasmic side of desmosomes (Fig. 4) and intermediate 
junctions (not shown). In addition, a small number of electron
dense reaction products are seen on the mitochondria and 
scattered in the cytoplasm. Apoptotic epithelial cells (Fig. 3B) 
and goblet cells (Fig. 3A) were heavily labeled by 
pyroantimonate precipitates. 1-3 hours after X-irradiation at 
0.5 and 5 Gy doses slight dissociation of tight junctions and 
dilatation of intercellular spaces between the intermediate 
junctions were seen (Fig. SA, B). Parallel to these 
morphological changes, the X-irradiation leads to a decrease 
and/or disappearance of pyroantimonate reaction products 
from intermediate junctions, desmosomes and from other 
regions of intercellular spaces (Figs. SA, B). The reduced 
staining pattern is observable during 24 hours following 5 Gy 
irradiation (Fig. 6). However, 24 hours after 0.5 Gy 
irradiation, the ultrastructure of the junctional region, and the 
distribution and amount of pyroantimonate precipitates 
became similar to the control (Fig. 7). It is obvious that, in 
parallel both radiation-induced decrease of the extracellular 
calcium level, the cytoplasmic calcium content increased. 
Particularly, dense deposits were seen on mitochondria and the 
reaction products on the internal face of plasma membrane 
were observed (Figs. 5, 6). 
Penetration of ruthenium red: 
In the control animals ruthenium red produces intense staining 
on the luminal surface of the small intestine. However, this 
cationic dye does not enter into the intercellular space (Fig. 
8A). On the other hand the electron dense deposits of 
ruthenium red appear in the tight junctional area (Fig. 8B) as 
well as in the intercellular space after 0.5 or 5 Gy X
became similar to the control (Fig. 7). It is obvious that, in 
parallel both radiation-induced decrease of the extracellular 
calcium level, the cytoplasmic calcium content increased. 
Particularly, dense deposits were seen on mitochondria and the 
reaction products on the internal face of plasma membrane 
were observed (Figs. 5, 6). 
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Figure. 2. Electron __ spectroscopic images (a,b) and electron energy loss spectrum (c) of 
pyrnant1monate prec1p1tates. The 2a zero-loss image, 2b calcium net-intensity image, in 2a a circle 
indicate analyzed area from which spectrum 2c is acquired Bars= 0.5 pm 

Penetration of ruthenium red: 
In the control animals ruthenium red produces intense staining 
on the luminal surface of the small intestine. However, this 
cationic dye does not enter into the intercellular space (Fig. 
8A). On the other hand the electron dense deposits of 
ruthenium red appear in the tight junctional area (Fig. 88) as 
well as in the intercellular space after 0.5 or 5 Gy X
irradiation. 24 hours after a 0,5 Gy dose of irradiation the 
intercellular space becomes again impermeable to the dye (Fig. 
9A). However, the tight junctions remain leaky up to 24 hours 
following irradiation with a dose of 5 Gy (Fig. 9B). Ruthenium 
red does not enter into the intracellular compartment. 
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Discussion 

The plasma membrane is one of the primary targets of 
radiation in cells (Koteles et al, 1983; Edwards et al, 1984; 
Somosy et al. 1987) and ionizing radiation can induce changes 
in the function and/or supramolecular organization of the 
membrane (Szekely et al, 1982; Koteles et al., 1983; 
Edwards et al, 1984; Somosy et al, 1987; 1988; Seed and 
Niiro, I 991; Gorodetsky et al, 1992;).The pyroantimonate 
reaction is widely used histochemical method for the 
determination of calcium in cells and tissues (Satir and Gilula, 
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Figurt' 3. 3A: Overview ofunirradiated small intestine. MV = microvilli, N = nucleus, GC 
goblet cell, CC = columnar epithel cells. 3B: The apoptotic cell (arrows) contain a large 
amount of pyroantimonate precipitable calcium in the nucleus (N), in mitochondria (M) and in 
the cytoplasm. Bar. A= I pm, B = 0.5 ~lm 

1970; Clark and Ackerman, 1971, Simon and Spicer, 1975; 
Eisenmann et al, 1979; Appleton, 1988; Kogaya and 
Furuhashi, (1988) The ES! and EELS results shown here are 
indicative for the presence of calcium in the pyroantimonate 
precipitates These results are in accordance with similar (ES! 
and EELS) observation of other objects in biology(Peute et al, 
1990; Zivkovic et al, 1990, DeBruijn et al, 1993). In spite of 
the criticism that can be attributed again the method applied 
(viz. subtraction of two images) the presence of calcium seems 
to be shown positively, as this method underestimates the net
intensity values. The variations in calcium positive granules 
might be due to this underestimation or due to absence of 
calcium in some granules. Earlier studies about the calcium 
concentration in the intestinal mucosa have used X-ray 
microanalysis, (von Zglinicki and Roomans, 1989) and 

histochemical techniques based on the pyroantimonate reaction 
(Satir and Gilula, 1970). Calcium is localized on and/or 
between the lateral plasma membranes of a wide variety of 
epithelial cells (Kogaya and Furuhashi, 1988; Mentre and 
Halpern, 1989; Satir and Gilula, 1970; Oschman and Wall, 
1972; Eisenmann et al, 1992). The presence of calcium 
binding proteins in the adherents junctions and desmosomes is 
also known (Garrod, 1986; Geiger and Ginsberg, 1991) 
Our observations, on the co-localization of Ca2+_ containing 
pyroantimonate precipitates agree with these data. There is a 
problem concerning the possible translocation of water
soluble calcium in the cells or tissues during the fixation and 
histochemical reaction. The observed high Ca2+ content of the 
goblet and apoptotic epithet cells is not likely to be caused by 
diffusion of Ca2+ during th.is procedure. As the known 
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Figure 4. Cell junctional complex, untreated control. TJ = 
tight junction, IJ = intermediate junction, D = desmosome. 
Pyroantimonate precipitates are seen at bottom part of TJ, and 
the intercellular space of IJ and D, and other regions. The 
cytoplasmic side of desmosomes is rarely labelled with 
pyroantimonate precipite (insert). Bars: = 0.15, insert 0.2 µm. 

increase in calcium content of apoptotic cells with increased 
membrane permeability could be by this histochemical 
reaction, this suggests that the calcium content and distribution 
in other cells or intercellular spaces is not changed by the 
preparatory procedure. 
Calcium as a known intracellular mediator is involved directly 
or indirectly in some essential physiological processes. Among 
others, the changes of local calcium concentration can 
modulate the functions and/or structure of the elements of 
junctional complex (Sedar and Forte, 1964; Meldolesi et al., 
1978; Palant et al., 1983; Pitelka et al., 1983; Garrod, 1986; 

Figure 5. Cell junctional complex in irradiated (A: 0.5 Gy, I 
hour), 5 Gy, 1 hour (B) small intestine. The amount of 
pyroantimonate precipitates is decreased, the intermediate 
junctions (IJ) are dilated (A, B). D = desmosome, M = 
mitochondrium, TJ = tight junction. The arrow indicate the 
pyroantimonate precipitates located on the iner face of plasma 
membrane. Bars: = 0.5 ~1m. 

Geiger and Ginsberg, 1991; Nilsson, 1991 ). However, the 
exact relationship between the decreased calcium content and 
the loss of barrier function is not clear, since in this part of the 
junctional complex calcium binding structural proteins are 
absent. We assume in agreement with Nilsson ( 1991 ), that 
leafiness of tight junctions following the extracellular Ca2+ 
depletion is secondary to the disruption caused by calcium
dependent adherents junction. In addition to Ca2+ -dependent 
mechanisms the structural and functional integrity of tight 
junctions may be regulated by protein kinase C (Mullin and 
McGin, 1987; Mullin and Snock, 1990), cyclic AMP signal 

966 
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Figure 6. Cell junctional complex in irradiated (5 Gy, 24 
hours) small intestine. The amount of pyroantimonate 
precipitates decreased, the intermediate junction (11) dilated. 
TJ = tight junction, D = desmosomes. Pyroantimone deposits 
located at the inner surface of lateral plasma membrane are 
indicated by an arrow. Bar: = 0.5 pm. 

Figure 7. Cell junctional complex of irradiated (0 5 Gy, 24 
hours) small intestine.The fine structure and calcium content of 
junctional region similar is to that of the control. TJ = tight 
junction, IJ = intermedate junction, D = desmosome, M = 
mitochondria. Bar: = 0.25 pm. 

Figure 8. Ruthenium red stammg of control (A) and X
irradiated (0,5 Gy, I hour) small intestine (B). The dye is 
excluded from the intercellular space ( ➔) of control tissue, but 
is present between the cells of X-irradiated animals (*). 
Unstained material. Bars: A= 0.5 pm, B = 0.3~1m. 
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Figure 9. Ruthenium red staining 24 hours after irradiation 
with 0.5 Gy (A) and 5 Gy (B). The dye is absent in the 
inten;ellular space of the former sample ( ➔ ), but is present in 

later one(➔). Unstained material. Bars: 0.5 pm. 

t~ansduction systems (Jacobson, 1979; Duffey et al., 1981 ), 
h1sta111111e (Willoughby, 1960), and cytokins (tumor necrosis 
factor, interleukin I, y interferon) (Cotran and Pober 1992· 
Mullin et al., 1992) The relationship between these d,ifferen; 
possible regulatory mechanisms is not clear. Recently, Citi 
supposed ( 1992), that tight junctional permeability may be 
regulated by the extracellular Ca2+ level which can act both 
. C 2+ b. di via a 111 ng molecules of the junctional complex and 

through the Ca2+ - modulated signal transduction pathway 
mvolvmg cAMP and protein kinase systems. Tn addition 
Mullin et al. ( 1992) suggested, that at least two differen~ 
mechanisms regulate the tight junction permeability; i.e. they 
resulted that mcrease oftransepithelial permeability induced by 
tumor necrosis factor diminished faster than the same effect 
was induced by protein kinase C activators (Mullin et al., 
1992). 

The lethal doses of irradiation caused the total loss of barrier 
functions of small intestine in experimental animals and made 
the passing of bacteria, bacterial toxins and proteolytic 
enzymes through the epithelial layer possible. This might be 
dire~t _cau~es of intestinal radiation death (Quasler, 1956). 
Radiation induced pathophysiological changes in the vascular 
system may lead to the death of the organism, too (Fanger and 
Lushbaugh, 1967). Non-lethal doses of irradiation induced 
increased permeability of water, ion and proteins and damage 
of the junctional complex have already been described in small 
intestine and other vascular tissues (Levin et al., 1979; 
Hopewell, 1980; Evans et al., 1986; Spence et al., 1987; 
Fajardo., 1989; Hauer-Jensen 1990; Peterson et al., 1992). 
This changes were followed by segmental separation of 
endothelium from the basement membrane, scattered 
vacuoles and blebs within the endothelium, subendothelial and 
interstitial edema and finally caused by late radiation fibrosis 
(Evans et al., 1986; Hauer-Jensen, I 990). 
The main result of our studies presented here is that even 
small dose of in vivo X-irradiation, also can alter the 
organization and function of tight junction in mouse small 
intestine, may be via the decreased calcium content. According 

to experimental data irradiation can act through other possible 
regulating factor of paracellular transport, i.e. more released 
histamine and cytokins (Evans et al., 1986; Fajardo, 1989; 
Hallahan et al,. 1989), and increased activity of protein kinase 
C (Hallahan et al., 1991; 1992 a, b; Kim et al., 1992) The 
relationship between the decreased calcium content and the 
effects of released biologically active mediators and activity 
changes of protein kinase C is not exactly clear. However, 
recently a few data were reported about it , i.e. the histamine 
induced a dose-dependent mobilization of calcium from 
internal stores and enhanced entry of extracellular calcium 
(Crawford et al., 1992), respectively, the concentration of 
intracellular calcium a important factor in regulation of protein 
kinase C activity (Sando et al., 1992) Therefore we think, that 
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the rapid increase of intestinal permeability upon irradiation 
with low doses may due to a transient loss of Ca2+ in the 
junctional area, as we resulted, and conceivable the effects of 
tumor necrosis factor. High doses of irradiation evoke a long 
lasting calcium decrease, as we also show here, which is 
caused some indirect changes via different signal transduction 
systems (i.e. protein kinase C) and/or released biological 
mediators (histamine). As we have shown in the results, in 
parallel with the radiation-induced decrease of the intercellular 
calcium content, there is a slight increase of cytoplasmic 
calcium content in surviving cells, and a high calcium content 
in the formed apoptotic cells. Presumably this calcium is 
extracellular origin. We plan to investigate the mechanisms of 
this hypothetical calcium uptake in the future. 
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Discussion with Reviewers 

Reviewer I: The pyroantimonate method as used by the 
authors appears only to localize intercellular deposits of ca++, 
but what happens to internal stores of ca++? Are they 

mobilized and transported to the cell surface? 
Authors: Pyroantimonate deposits as we shown, localized in 
the cytoplasmic region The amount of calcium in internal 
stores smaller as in intercellular region. We plan to investigate 
the activity changes of calcium transporting enzymes upon 
irradiation. 
T,M, Seed: What do the authors use as "controls" for the 
cytochemical assays? 
Authors: The specificity of cytochemical assay was 

determined by electron spectroscopic imaging and electron 
energy loss spectrometry investigations 
T.M. Seed: "The radiation induced changes of gap junction 
mediated cell communication may result in tumorous 
transformation of cells (Trosko et al. 1990)". I realize several 
workers have suggested this to be a possibility, however by no 
means is it clearly so. There are too many exceptions that one 
needs to account for, e. g. , radiation induced tumorgenesis of 
hematopoietic elements without prominent display of 
junctional apparatus. 
Authors: The exact relationship between radiation-induced 

changed cell communication and carcinogenetic process, and 

this mechanism, absolutely not clear. May it only one factor of 
tumorous transformation. 
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