
A COMPARISON OF TWO SCALING TECHNIQUES TO REDUCE UNCERTAINTY IN 

PREDICTIVE MODELS 

 

 

 

 
A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

By 

 

Austin Luke Todd 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

 

 

 

Major Department: 

Statistics 

 

 

 

 

 

 

April 2020 

 

 

 

 
Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
  A COMPARISON OF TWO SCALING TECHNIQUES TO 

REDUCE UNCERTAINTY IN PREDICTIVE MODELS. 
 

  

  

  By   

  
Austin Luke Todd 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
 Rhonda Magel 

 

  Chair  

  
Curt Doetkott 

 

  
Gursimran Walia 

 

    

    

  Approved:  

   

 04/23/2020  Rhonda Magel   

 Date  Department Chair  

    
 



 

iii 
 

ABSTRACT 

This research examines the use of two scaling techniques to accurately transfer 

information from small-scale data to large-scale predictions in a handful of nonlinear functions. 

The two techniques are (1) using random draws from distributions that represent smaller time 

scales and (2) using a single draw from a distribution representing the mean over all time 

represented by the model. This research used simulation to create the underlying distributions for 

the variable and parameters of the chosen functions which were then scaled accordingly. Once 

scaled, the variable and parameters were plugged into our chosen functions to give an output 

value. Using simulation, output distributions were created for each combination of scaling 

technique, underlying distribution, variable bounds, and parameter bounds. These distributions 

were then compared using a variety of statistical tests, measures, and graphical plots. 
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CHAPTER 1. INTRODUCTION/BACKGROUND 

Sample size has always been something that statisticians wrestle with. Larger samples 

allow researchers to make more precise estimates, but they come at an increased cost. In 

predictive modeling, researchers use sampled data to build input distributions in which they can 

make draws from and apply those values to a model that covers larger temporal and/or spatial 

scales. Any time we want to predict future values we are required to use past data and one of the 

issues of predictive modeling is that uncertainty can be overestimated if we do not correct for it. 

This uncertainty occurs because we are using small samples of data to represent much larger 

spatial or temporal domains. We can use our data to model hundreds and thousands of years into 

the future, or we can use samples from localized areas to make predictions about the entire 

region but if we don’t scale our data the uncertainty associated with our samples will be applied 

throughout the model and will result in a greatly overestimated variance in our input 

distributions.  

Scaling is a technique that predictive models use in which measurements are collected 

and either downscaled or upscaled before they are applied to a model or function. Downscaling 

occurs in almost all climate models where the data collected by researchers is on a large scale, 

usually in grids of 200 km to 300 km on the Earth’s surface, and they must use downscaling 

techniques to make predictions and inference at smaller, local scales. Upscaling is essentially the 

opposite of downscaling. In upscaling the researcher is collecting data on a small scale (temporal 

or spatial) and uses upscaling to make prediction or inference at a larger scale. Consider a 

researcher who want to model how much rainfall a certain state receives in a chosen time period. 

The researcher could collect samples from multiple locations in the state over that time period, 

calculate averages for each sample and build a new distribution of those averages. This 
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distribution of averages would be a better representation of the entire state than sampling a single 

value from any of the original samples.  

For the purposes of this paper only two specific types of upscaling will be investigated. 

The two types of upscaling investigated in this paper are essentially implemented as a form of 

averaging. This scaling question is predominantly motivated from predictive models used for 

probabilistic risk assessment, which are used to address complex human health risk assessment 

from exposure to contaminant chemicals. An example of this type of modeling would be fate and 

transport modeling. These models simulate the movement and chemical alteration of 

radionuclides as they move through the subsurface to help determine potential risk to humans. 

These models are usually set up so that random numbers are drawn to represent the beginning of 

time and are projected throughout time (and/or space) for the duration/extent of the model. Each 

realization corresponds to a unique, randomly selected, value from each of the input 

distributions. Each input distribution is created using available data.  

The two upscaling techniques that will be compared in this paper are (1) using random 

draws from distributions that represent smaller time scales and (2) using a single draw from a 

distribution representing the mean over all time represented by the model. The main difference 

between these two techniques is that for technique 1, we apply the chosen function to our data 

before averaging occurs but in technique 2, we average our data first and then apply the function. 

For this research, technique 1 will be treated as the gold standard that we wish to replicate with 

technique 2. Although the capability exists to draw new random numbers at each time step it 

adds more computational complexity to problems that are already computationally intensive, 

therefore we want to see if technique 2 accurately mimics technique 1. If we can show that 

technique 2 is a reasonable alternative to technique 1 it will greatly reduce the computational 
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complexity of the model. For very simple functional forms we can show mathematically whether 

these two methods will yield similar results. The purpose of this paper is to examine how well 

technique 2 mimics technique 1 for more complex functional forms that we cannot 

mathematically compare, but first we will show how these two techniques compare for the 

simplest of functional forms. 
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CHAPTER 2. MOTIVATING EXAMPLE 

 

2.1. Linear Function 

 

For this example, we will consider the simplest type of function, a linear response 

function. Suppose I wish to model how many scores will occur in NFL football games over the 

next 100 games. For this example, it is assumed that the number of scores that occurs is a simple 

linear function that consists of a variable X and a constant c. Let X be the random variable 

representing the distribution of possessions in a single game, and let c be some constant that 

represents what proportion of those possessions that result in a score. For simplicity, we will also 

assume that each game is independent and has no impact on other games. Y has the functional 

form: 

𝑦 = 𝑓(𝑥) = 𝑐𝑥 

Thus, Y is the random variable representing the number of scoring events, not points, that 

occur in a game. We are ultimately interested in the distribution of the total number of scoring 

events for the next 100 games. 

2.1.1. Technique 1 (drawing a new value at each time step) 

Technique 1 involves drawing a distinct realization from an underlying input distribution 

at each time step(game), so there are 100 realizations drawn across the 100-game period. We can 

obtain the mean and variance of the distribution of interest mathematically by considering the 

random variable 𝑂1 that represents the sum of the number of scores over the 100-game time 

period. 

𝑂1 =  ∑ 𝑌𝑖

100

𝑖=1
=  ∑ 𝑐𝑋𝑖

100

𝑖=1
=  𝑐 ∑ 𝑋𝑖

100

𝑖=1
 

The expectation of 𝑂1 is: 
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𝐸[𝑂1 ] = 𝐸 [𝑐 ∑ 𝑋𝑖

100

𝑖=1
] = 100𝑐𝐸[𝑋] 

And since the 𝑋𝑖’s are assumed independent and identically distributed, the variance of 𝑂1 is: 

𝑉𝑎𝑟(∑ 𝑐𝑋𝑖
100
𝑖=1 ) = 𝑐2[∑ 𝑉𝑎𝑟(𝑋𝑖)

100
𝑖=1 ] = 100𝑐2𝑉𝑎𝑟(𝑋𝑖)  

Suppose that the average number of possessions per game is 25 but there is some uncertainty in 

this amount based on the data that has been collected, so the input distribution for the number of 

possessions per game is represented by a normal distribution: 

𝑋~𝑁(𝜇1 = 25, 𝜎1 = 4) 

Assume that c = 0.35, or that roughly thirty five percent of possessions result in a score. So, the 

E[X] = 25 possessions per game, n = 100 games, and c = 0.35. Therefore, the expectation of 𝑂1 is 

E[𝑂1 ] = 100*0.35*25 = 875. So, I can expect to see around eight hundred and seventy-five 

scores over the next 100 games. The variability of 𝑂1 is: 

𝑉𝑎𝑟 (∑ 𝑐𝑋𝑖

100

𝑖=1

) = 𝑐2 [∑ 𝑉𝑎𝑟(𝑋𝑖)

100

𝑖=1

] = 100𝑐2𝑉𝑎𝑟(𝑋𝑖) = 100(0.35)2(4)2 = 196 

2.1.2. Technique 2 (drawing one value and applying to all time steps) 

Technique 2 considers the input distribution as a random variable representing the 

average value of the input across the entire 100-game time period. This mimics the process of 

selecting one single value at the beginning of the 100-game time period and using this same 

value for each game of the entire time period.  

The input distribution must be scaled appropriately to represent the effect of summing the 

number of scores across the 100-game time span. X must be temporally scaled so that it 



 

6 
 

represents the total number of scores in 100 games, not just a single game. If we denote the 

scaled distribution as 𝑋100 , then the number of scores that occur in 100 games can be denoted as: 

𝑂100 = 𝑓𝑙𝑖𝑛(𝑋100) = 100 ∗ 𝑐 ∗ 𝑋100 

That is, a random value from the scaled distribution is chosen and multiplied by 100 to represent 

using that value at each of the 100-time steps, where 𝑋100 is the distribution of the average of X. 

While this model appears to imply that there are the same number of possessions each game, the 

purpose is to create a distribution that represents the sum of the number of possessions across the 

100 games. This sum can be represented as: 

𝑂100 = 100 ∗ 𝑐 ∗ 𝑂100 = 100 ∗ 𝑐 ∗
∑ 𝑋𝑖

100
𝑖=1

100
= 𝑐 ∗ ∑ 𝑋𝑖

100

𝑖=1
 

This will result in an expected value of: 

𝐸[𝑂100 ] = 𝐸 [𝑐 ∑ 𝑋100

100

𝑖=1
] = 100 ∗ 𝑐 ∗ 𝐸[𝑋100] = 100 ∗ 𝑐 ∗ 𝐸[𝑋] 

The distribution of X is the same as in technique 1, however, the distribution of interest is of 

𝑂100, which is: 

𝑋100~𝑁(𝜇100 = 𝜇1 = 25, 𝜎100 =
𝜎1

√100
= 0.4) 

Based on the underlying distribution, the expected value is: 

𝐸[𝑂100] = 100 ∗ 𝑐 ∗ 𝐸[𝑋100] = 100 ∗ 0.35 ∗ 25 = 875 

 

 



 

7 
 

And the variance is: 

𝑉𝑎𝑟(𝑂100) = 100 ∗ 𝑐2 ∗ 𝑉𝑎𝑟(𝑋100) = 100 ∗ 0.352 ∗ 42 = 196 

If scaling is not performed for models of this nature, then the uncertainty will be overstated, and 

the resulting distributional variance will be too large. For this linear case, the distribution of the 

total number of scores that occur over the 100-game time period is the same for both technique 1 

and 2. This example demonstrates that if our function is linear and the simulation involves 

drawing a number at the beginning of time and applying that same value at each time step, then 

the distribution of the average can be used, which corresponds to technique 2. Under these 

specific conditions, technique 2 mimics technique 1 and would be preferable due to the 

simplicity of this technique. 

2.2. Nonlinear Function 

2.2.1. Technique 1: Annual Sampling 

Now we will consider a more complex case. For case two we will consider a nonlinear 

function. For the sake of the example we will assume that the number of scores in each game 

follows a quadratic function. The motivation for this function could be that as more possessions 

occur, the offense gets better at adjusting to the defensive schemes and can therefore score more 

easily. Whether or not this is realistic is not important for this demonstration. We are only 

interested in determining the effect of scaling in these situations. In this case the functional form 

of the response, y, is: 

𝑦 = 𝑓(𝑥) = 𝑐𝑋2 
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Under technique 1, we draw a distinct realization from our underlying annual input for each time 

step. In this Case, 

𝑂1 =  ∑ 𝑌𝑖

100

𝑖=1
=  ∑ 𝑐𝑋2

𝑖

100

𝑖=1
=  𝑐 ∑ 𝑋𝑖

2
100

𝑖=1
 

In this example, an analytical solution can be obtained when applying the function prior to 

addressing expectation and variance. The distribution of a squared normal is a chi-square with 

expectation, 

𝐸(𝑋2) = 𝜎2 + 𝜇2 

Applying the nonlinear function to that expectation provides, 

 𝐸(𝑂1) = 100 ∗ 𝑐 ∗ (𝜎2 + 𝜇2)  

Similar calculations can be performed for the variance, 

𝑉𝑎𝑟(𝑂1) = 2 ∗ 100 ∗ 𝑐2 ∗ 𝜎2 ∗ (𝜎2 + 2𝜇2) 

Using the same example as before with 𝑋~𝑁(𝜇1 = 25, 𝜎1 = 4), and c = 0.35 we get, 

𝐸[𝑂1 ] = 100 ∗ 0.35 ∗ (42 + 252) = 22435 

𝑉𝑎𝑟(𝑂1) = 2 ∗ 100 ∗ 0.352 ∗ 42 ∗ (42 + (2 ∗ 252)) = 496272 

2.2.2. Technique 2 (drawing one value and applying to all time steps)  

Now we consider the input distribution as a random variable representing the average 

across the 100 game time period, which is the same equation that we used in Case 1,  

𝑋100~𝑁(𝜇100 = 𝜇1 = 25, 𝜎100 =
𝜎1

√100
= 0.4) 
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For Technique 2 we are interested in the distribution of the sum of all the scores over our 100-

game time period. We obtain the distribution of interest by applying the nonlinear function to our 

random variable. 

𝑂 = 𝑓𝑛𝑙(𝑋100) = 𝑐𝑋100
2 

From this we can find the expectation of Y as, 

𝐸[𝑂100] = 𝐸 [𝑐 (∑ 𝑋100
2

100

𝑖=1

)] = 𝑐𝐸 [(∑ 𝑋100
2

100

𝑖=1

)] = 100 ∗ 𝑐 ∗ (𝜇100
2 + 𝜎100

2 ) 

 

We can also find the variance of Y as, 

𝑉𝑎𝑟(𝑂100) = 𝑉𝑎𝑟 (𝑐 (∑ 𝑋100

100

𝑖=1

)

2

) = 𝑐2 ∗ 1002 ∗ 𝑉𝑎𝑟(𝑋100
2 ) = 

𝑐2 ∗ 1002 ∗ [𝐸((𝑋100
2 )2) − [𝐸(𝑋100

2 )]2] = 𝑐2 ∗ 1002 ∗ [𝐸(𝑋100
4 ) − [𝐸(𝑋100

2 )]2] = 

𝑐2 ∗ 1002 ∗ [(𝜇100
4 + 6𝜇2𝜎2 + 3𝜎4) − (𝜇2 + 𝜎2)2] 

Now we use our input distribution for 𝑂100 and apply those parameters to the previous two 

equations to give us: 

𝐸[𝑂100] = 100 ∗ 0.35 ∗ (252 +. 42) = 21880.6  

𝑉𝑎𝑟(𝑂100) = 0.352 ∗ 1002 ∗ [(254 + 6 ∗ 252 ∗ 0.42 + 3 ∗ 0.44) − (252 + 0.42)2] = 

490062.72 

For the nonlinear function, Technique 1 and 2 give us different results for both the mean and 

variance. Technique 1 had a mean of 22435 and a variance of 496272, Technique 2 had a mean 
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of 21880.6 and a variance of 490062.72. For this nonlinear equation it appears that taking f(E(x)) 

or applying the function to the distribution of the average of the data, does not give us the same 

result as E(f(x)), or taking the average after applying the function to the data. Technique 1 is our 

gold standard and Technique 2 does not give us the same result as was the result of the linear 

case. Although they are not the same, our values for the mean and variance are still quite similar 

in this example. This might be an acceptable difference depending on the situation. 

Now that we’ve set up our problem of interest, our next step is to choose a myriad of 

nonlinear functions, with a varying number of parameters that are too complex to compare 

mathematically and use simulation to see how well Technique 2 mimics Technique 1. 
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CHAPTER 3. METHODOLOGY 

3.1. Function Selection 

There were 14 functions chosen to be used in testing the two scaling techniques against 

each other. These 14 functions were selected from David A. Ratkowsky’s book “Handbook of 

Nonlinear Regression Models.”. The functions were chosen based on the shape of the function, 

the number of parameters in the function, and whether they are well known, named, functions. In 

his book, Ratkowsky describes functions with one to six parameters with most of them 

containing one to four parameters. Each set of functions is also separated into semi-linear and 

nonlinear functions. The semi-linear functions tend to have shapes that are closer to a linear 

shape while the nonlinear functions tend to deviate strongly from a linear shape. Two to four 

functions were chosen from each class of parameters: 1, 2, 3, and 4 with roughly half from each 

class categorized as semi-linear and the other half categorized as nonlinear. This separation 

allowed us to analyze how the functions compared with respect to the category as well as the 

scaling technique used. Here is the list of functions used in this analysis, those denoted with * 

means they are classified as semi-linear: 

1. 𝑦 = 1 − (
1

𝑥𝑎)* 

2. 𝑦 = 1/(𝑥 + 𝑎) 

3. 𝑦 = 𝑎 ∗ 𝑥𝑏 (Freundlich Model)* 

4. 𝑦 = log (𝑎 + 𝑏 ∗ 𝑥) 

5. 𝑦 = (𝑎 ∗ 𝑏 ∗ 𝑥)/(1 + 𝑏 ∗ 𝑥) (Langmuir Model) 

6. 𝑦 = 1/(𝑎 + 𝑏 ∗ 𝑥 + 𝛾 ∗ 𝑥2) (Holliday Model)* 

7. 𝑦 = 𝑎 ∗ (1 − exp(−𝑏 ∗ 𝑥))𝛾 (Chapman-Richards Model) 

8. 𝑦 = 𝑎 ∗ exp (− exp(𝑏 − 𝛾 ∗ 𝑥)) (Gompertz Model)* 
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9. 𝑦 = 𝑎 ∗ exp(−𝑏 ∗ 𝑥) + 𝛾 ∗ exp (−𝛿 ∗ 𝑥) (Classical Sum of Exponentials) 

10. 𝑦 = 𝑎/(1 + exp (𝑏 − 𝛾 ∗ 𝑥))1/𝛿  (Richards Model) 

11. 𝑦 = 𝑎 + 𝑏 ∗ exp (−𝛾 ∗ (𝑥 − 𝛿)2) (Bragg Equation)* 

3.2. Parameter/ Distribution Selection 

Within each of the chosen functions there are between 1 and 4 parameters, with one 

variable. Each of these parameters and the variable has an underlying distribution that we use to 

draw the parameter value from. The distributions of interest are the normal distribution and the 

lognormal. These distributions were chosen because they are some of the most common 

distributions and they represent two distinct types of distributions (symmetric and skewed). For 

each distribution we also chose the distributional parameters such as the mean and standard 

deviation for the normal distributions and the meanlog and sdlog for the lognormal distributions. 

These decide the spread and the shape of the underlying distributions. There are two distinct 

classes of distributional parameters chosen: bounded between 0 and 1 and bounded between 1 

and 10. These two classes were chosen because, generally, functions behave more linearly when 

their parameters are bounded between 0 and 1, and less linearly when their parameters are larger 

than 1. We also chose to bound our variable between 0 -1 and 1-10 because in practice many 

functions do not have the same bounds for the variable and the parameters. When considering all 

possible combinations (2 types of functions, 2 types of distributions, and 2 types of parameter 

bounds, 2 types of variable bounds), there were 16 total outputs to analyze with each output 

containing 5 (semi-linear) or 6 (nonlinear) functions. Figure 1 is a flowchart that represents all 

possible combinations under the semi-linear functions. This represents half of all combinations. 
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Figure 1. Flowchart of half of all combinations 

3.3. Simulation Procedure 

Each simulation program was created in R and an example of the code used is listed in 

appendix D.1. There were four programs in total, one was made for each number of parameters. 

Each program allows for the input of an underlying distribution and the corresponding 

distributional information for each parameter as well as the functional form to be tested. The 

simulation procedure used in this work followed three general steps: The first step was to 

simulate data using the parameter estimates and the chosen underlying distributions. The second 

step was to apply the sampled data to the chosen function, creating a new distribution of outputs 

for each sampling technique. The third step involved creating plots, summary statistics and 

running tests to compare the two output distributions. The following paragraphs will explain 

these steps in greater detail. 

 The data simulation for the first scaling technique was done using the rnorm, and rlnorm 

statements in R depending on the chosen distribution. In order to simulate data for the second 

scaling technique, the central limit theorem was used in conjunction with rnorm to simulate a 

scaled distribution of the average of those distributions originally chosen. In order to reduce the 
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number of combinations, each simulated data set had a sample size of 100. Once the two unique 

data sets were generated, they were then run through our chosen R program. After this we were 

left with two distributions of data, one distribution created using scaling Technique 1 and the 

other distribution created using scaling Technique 2.  For this simulation, each run generated one 

single data point so in running 10,000 simulations we created a resulting distribution of 10,000 

data points for each technique. This was repeated for each combination of function, distribution, 

parameter bounding, and variable bounding. The next step was to compare these two techniques 

based on those resulting distributions. 

 The goal of this work was to determine how well Technique 2 mimics Technique 1, or to 

determine how similar the two resulting distribution were. Determining similarity is somewhat 

ambiguous in this case, so in order to make that comparison a variety of measures were chosen. 

These measures included descriptive statistics and graphical summaries. The descriptive 

statistics used were mean, median, variance, and quantiles. We also calculated the reduction in 

means, medians, and variances from one technique to the other. The graphics used to compare 

the two distributions were overlaying histograms and quantile-quantile (QQ) plots. Both types of 

plots were created in R using the ggplot2 and the EnvStats packages. To complement the 

graphical comparisons, we planned on using the Anderson Darling K sample and Kolmorgorov-

Smirnov two sample tests. The Anderson Darling K sample test is a nonparametric statistical 

procedure that tests the hypothesis that the populations from which two or more groups of data 

were drawn are identical. The Kolmogorov-Smirnov two sample test is used to test that two data 

samples come from the same distribution. In the end, we decided against using these 

distributional tests as well as any tests to compare the means and variances because our sample 

sizes of 10,000 gave us too much power and we were detecting even the most miniscule 
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differences between the two techniques. Using the statistical and graphical summaries together, 

we were able to compare the distributions resulting from the two techniques on a variety of 

levels. 
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CHAPTER 4. RESULTS 

4.1. Example Output 

Here is an example of what the output looked like for one combination of function type, 

distribution, parameter bounding, and variable bounding. For this case we chose the two-

parameter function 𝑦 =  𝑎 ∗ 𝑥𝑏 which is considered a semi-linear function. This example output 

also had underlying distributions that were normal for all the parameters, and those distributions 

were bounded between 0-1 with the variable bounded 1-10. 

 

Figure 2. Distributions of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 0-1, and variable bounded 1-10. 

This is one of the two plots generated by each R program, this plot overlays the 

distributions for the two techniques to give us an idea of how well Technique 2 mimics our gold 

standard, Technique 1. We can see that for this combination of function, distribution, and 

parameters, Technique 2 mimics Technique 1 closely with a slight shift to the left. 
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Figure 3. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 0-1, and variable bounded 1-10. 

 

 The second plot given by each R program is a quantile-quantile (Q-Q) plot. This plot 

allows us to compare the distributions by plotting their quantiles against each other. The more 

similar the two distributions are, the more points will fall along the diagonal. For this plot we can 

see that most points fall close to the diagonal, but many are slightly under. This indicates that we 

have two similar distributions with one shifted slightly, which supports what we saw in the first 

plot.  
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   Mean     Median  Variance 5% Quantile 95% Quantile  

Y1 112.6571 112.575 13.0875  106.8217    118.7592                     

Y2 111.86   111.811 12.0873  106.2865    117.7529      

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1     0.9929                0.9932         0.9236 

Figure 4. Descriptive statistics for Technique 1 vs Technique 2 using normal distributions, 

parameters bounded 0-1, and variable bounded 1-10. 

 

This figure is an example of what kind of descriptive statistics we got for each function 

within each combination of type of function, underlying distribution, parameter bounding, and 

variable bounding. From this figure we can see the basic descriptive statistics for each of the two 

scaling techniques as well as the ratios of the estimates of the variance, mean, and median of 

Technique 2 compared to Technique 1. From the descriptive statistics we can see that the two 

techniques give us similar means, medians, and variances, with Technique 2 giving a slightly 

smaller range of values. Using the ratios row, we can confirm that the mean and median are 

almost identical, but the variance of Technique 2 is approximately 7.6% less than Technique 1. 

Considering these results, we can say that for this semi-linear function with an underlying 

normal distribution, parameters bounded between 0-1, and variable bounded between 1-10, the 

two scaling techniques give us similar, but not the same result. 

Due to the high number of output statistics created we focused on the ratios of the 

estimates for much of our analysis. The ratio values given in the figures were used to make data 

sets for each comparison of interest. We had 40-48 total functions for each comparison which 

gave us 40-48 ratios of means and variances to use in our comparisons. Using the ratio of the 

means and variances we were able to calculate averages, medians, and standard deviations as 

well as the 5% and 95% quantiles for each comparison. Next, we looked at how the techniques 
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compared across all combinations of function type, distribution, parameter bounding, and 

variable bounding to see if there were any patterns or commonalities. 

4.2. Parameters Bounded Between 0-1 vs Bounded Between 1-10 

The first comparison of techniques we consider is parameter bounding between 0-1 vs 

parameter bounding between 1-10. For this comparison we would expect that, in general, when 

parameters are bounded between 0-1 our resulting functions would be more linear than when the 

parameters are bounded between 1-10. This would give us more similar distributions for 

Technique 1 and Technique 2. Our results appear to support our assumptions. For the parameter 

bounding of 0-1, the quantiles of the ratios of variances were (0.5764, 1.0460) with an average of 

0.9040 and a median of 0.9699. The quantiles of the ratios of means were (0.7742, 1.0606) with 

an average of 0.9698 and a median of 1.0003. This is compared to quantiles of the ratios of 

variances of (0, 1.175) with an average of 1.0424 and a median of 0.9126. With quantiles of the 

ratios of means of (0, 1.1130), an average of 0.8077, and a median of 0.9998 for the 1-10 

bounding. We found that only one or two functions performed considerably worse for the 0-1 

bounded functions but there were more than 10 that performed considerably worse for the 1-10 

bounded functions, this is more apparent in the standard deviations of the ratios of variances. The 

standard deviation for the 0-1 bounds group was 0.1731 with but the standard deviation of the 1-

10 bounds group was 2.18. This is partly due to the fact that for certain equations, when certain 

parameters become larger than 1, functions such as 𝑦 =  𝑎 ∗ 𝑥𝑏 end up giving us some 

extremely large values for Technique 1 but Technique 2 averages out those outliers and gives a 

much lower mean and variance. When our parameters remain below 1, we do not run into that 

same problem. Figure 5 shows us how different the results can be for the same function when we 
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choose different bounds and figure 6 gives us the summary statistics of the bounded 1-10 

function.  

 

Figure 5. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1 (left). Distributions for Technique 1 vs Technique 2 

using normal distributions, parameters bounded 0-1, and variable bounded 0-1 (right). 

 

   Mean    Median  Variance 5% Quantile 95% Quantile 

Y1 30.4065 30.2332 15.6355  24.1451     37.1968                      

Y2 15.74   15.6048 5.0911   12.2422     19.6691       

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1     0.5177                0.5161         0.3256 

Figure 6. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 =  𝑎 ∗ 𝑥𝑏 using normal 

distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

4.3. Semi-Linear vs Nonlinear Functions 

 The second comparison was the semi-linear functions vs the nonlinear functions for our 

two techniques. This is one of the two comparisons where different functions are used in each of 

the groups we are comparing. The reasoning behind this comparison is that we expect that 

equations who are closer to a linear form should result in more similar distributions than those 

who are more nonlinear, as we saw in the motivating example. Surprisingly, the nonlinear 

functions seem to perform just as well, if not better than their semi-linear counterparts. The 
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quantiles of the ratios of variances for the nonlinear equations are (0.5, 1.0895) with an average 

of .8710, a median of 0.9610, and a standard deviation of 0.2256. The quantiles of the ratios of 

means are (0.6972, 1.0524) with an average of 0.9225, a median of 1.004, and a standard 

deviation of 0.2246. This is compared to quantiles of the ratios of variances of (0, 1.1606) with 

an average of 1.0585, a median of 0.9285, and a standard deviation of 2.0769. The quantiles of 

the ratios of means were (0.0024, 1.0914) with an average of 0.8607, a median of 0.9994, and a 

standard deviation of 0.2650 for the semi-linear equations. The main difference between these 

two categories was that the nonlinear functions had a lower standard deviation of both variance 

and mean ratios which suggests that Technique 2 mimics Technique 1 better more consistently 

for the nonlinear functions.  

 

Figure 7. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 0-1, and variable bounded 0-1 for semi-linear function (left) and a nonlinear function 

(right). 
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4.4. Normal Distribution 

Due to our normal and lognormal distributions have different parameters we did not 

compare across distributions but rather saw how the two techniques compared within each 

distributional category. Using an underlying normal distribution for our generated data we found 

that Technique 1 and 2 yielded similar results in most of our combinations. We had quantiles of 

the ratios of variances of (0, 1.0328) with an average of 1.0733, a median of 0.9245, and a 

standard deviation 2.1443. Having an average that close to 1 even when considering the outlier 

ratios means that in most cases these two techniques are giving us very similar spreads of 

distributions. The same goes for the ratios of means. We had quantiles of (0.0065, 1.0503) with 

an average of 0.8904, a median of 0.9998, and a standard deviation of 0.3133. Of the 44 

combinations of functions, over half had ratios of variances in the range (.8, 1.2) and around 80% 

had ratios of the means in the same range. Figure 8 and 9 show an example function where the 

two techniques perform almost identically using underlying normal distributions. 
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Figure 8. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure 9. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 

4.5. Lognormal Distribution 

Using an underlying lognormal distribution for our generated data we also found that 

Technique 1 and Technique 2 yielded similar results in most of our equations. We found that the 

quantiles of the ratios of variances were (0.0012, 1.1661) with an average of 0.8731, a median of 

0.9685, and a standard deviation of 0.4160. We found that the ratios of the means fared even 

better than our variances with quantiles of (0.0488, 1.0955) an average of 0.8871, a median of 

1.0002, and a standard deviation of 0.3085. Of the 44 functions almost 75% had ratios of 

variances between (.8, 1.2) and around 80% had ratios of means in the same range. Figure 10 and 

11 give an example of how well even complex functions performed with underlying lognormal 

distributions. 
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Figure 10. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 1-10, and variable bounded 0-1. 
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Figure 11. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 

4.6. Variable Bounded 0-1 vs Bounded 1-10 

 The fourth comparison was bounding the variable between 0-1 vs bounding the variable 

between 1-10. We chose to do this comparison because in practice variables can take on many 

values, just like the parameters, and we wanted to see if there was a significant difference in our 

two scaling techniques depending on the scale of our variable. We found that for the variable 

bounded from 0-1 group there were quantiles of the ratios of variances of (0.0001, 1.0229) with a 

mean of 0.8136, a median of 0.9753, and a standard deviation of 0.3291.  Quantiles of the ratios 

of means were (0.0012, 1.0241) with a mean of 0.8610, a median of 0.9970, and a standard 

deviation of 0.3037. These are compared to quantiles of the ratios of variances of (0, 1.1630) 
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with a mean of 1.1328, a median of 0.9380, and a standard deviation of 2.1520. Quantiles of the 

ratios of means were (0.0488, 1.0955) with a mean of 0.9165, a median of 1.0007, and a standard 

deviation of 0.3154. These numbers suggest a similar conclusion as our parameter bounds 

section, the median variance ratio is closer to 1 and the standard deviation of our variance ratios 

is considerably smaller when we bound our variable below 1. This suggest that, for our 

functions, Technique 2 mimics Technique 1 more consistently when we bound our variable 

below 1. 

4.7. Number of Parameters 

 One other comparison worth noting is the comparison across number of parameters in our 

functions. When looking at figure 12 we can see that the variance ratio for all number of 

parameters is similar. The four parameter functions appear to have the closest results for 

Technique 1 and 2 with the two and three parameter functions performing slightly worse. The 

one parameter functions have the worse average variance ratio. One thing to note is that we 

removed a severe outlier in the four-parameter category to get values that were more 

representative of the whole dataset. 

Parameters   Avg Var Ratio   Med Var Ratio   Var 5%ile   Var 95%ile   SD Var 

      1           0.609      0.609           0              1.02     0.363 

      2           0.867      1.00            0.0305         1.13     0.348 

      3           0.799      0.919           0.0452         1.04     0.324 

      4           0.937      1.01            0.0613         1.10     0.464 

Figure 12. Variance ratios across number of parameters. 

 

When we look at figure 13, we can see that Technique 2 does a better job of mimicking 

the means than it does the variances. There is less variation between the averages, medians, and 

standard deviations of the number of parameters.  The two, three, and four parameter functions 
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averages are nearly 90% with the one parameter functions doing slightly worse at nearly 85% but 

their medians are all great with each class having better than 90%. 

Parameters  Avg Mean Ratio  Med Mean Ratio  Mean 5%ile  Mean 95%ile  SD Mean 

      1          0.844        0.940          0              1.07     0.334 

      2          0.874        1.01           0.117          1.06     0.304 

      3          0.887        1.00           0.121          1.09     0.288 

      4          0.892        0.997          0.114          1.06     0.310 

Figure 13. Mean ratios across number of parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

29 
 

CHAPTER 5. CONCLUSION 

 The purpose of this research was to determine how well Technique 2 could mimic 

Technique 1 under a variety of different circumstances. When considering the results outlined in 

the last chapter some conclusions can be made. When we consider all the results together, we 

found that over 65% of all ratios of variances were between (0.8, 1.2) with a mean of 0.9706, a 

median of 0.9668 and a standard deviation of 1.539. The means fared even better across all 

results, we had over 75% of all ratios of means between (0.8, 1.2) with an average of 0.8853, a 

median of 0.9999, and a standard deviation of 0.309. This is a good indicator that in most cases 

these two techniques give us similar, although not exact, distributions. This also tells us that 

Technique 2 does a better job of mimicking the center of the distribution than it does the spread. 

Conclusions can also be made about the comparisons detailed in the results chapter. 

 In 5 out of the 6 comparisons made in chapter 4 we found that the distributions and 

proportional means and variances of Technique 1 and Technique 2 were relatively similar. The 

one case in which we found considerable differences between our two techniques was for the 

comparison of bounded below one parameter values vs the bounded above 1 parameter values. 

When we allowed our parameter values to go above 1 this caused many of the functions to 

become highly nonlinear and Technique 2 did worse at mimicking Technique 1. For example, 

the equation 𝑦 = 𝑎 ∗ exp(−𝑏 ∗ 𝑥) + 𝛾 ∗ exp (−𝛿 ∗ 𝑥) had ratios of variances of 1.0036 when 

the parameters were bounded below one, but that number dropped to approximately 0 when the 

parameters could go above 1. This is just one example but there were many cases where this 

occurred. 

 The acceptable degree of difference between our two techniques would obviously depend 

on the specific scenario but in many of our analyses we found that the ratios of means and 
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variances of the two distributions were close to 1 but rarely exactly 1. This suggests that it would 

be acceptable to use Technique 2 as an alternative to Technique 1 if the researcher is comfortable 

with trading some accuracy for reducing the computational complexity of their model. Although, 

if you have nonlinear equations where the all parameters can go above 1, we cannot recommend 

using Technique 2 to replace Technique 1. Another interesting finding is that complexity of 

function also does not seem to have an adverse effect on how well Technique 2 can mimic 

Technique 1 for these one variable functions. The 2, 3, and 4 parameter functions performed 

similarly well with the one parameter functions performing slightly worse. This is likely because 

there were less 1 parameter functions which resulted in smaller samples of ratios for analysis.  

 This thesis shows that there are many things one must consider when deciding which of 

these two scaling techniques is most appropriate. It is important that the researcher understand 

how different functions, distributions, parameter and variable bounding can affect the 

distribution of interest and that each scenario may have completely different outcomes. It may be 

advisable for a researcher to conduct their own simulations, when possible, using their own 

functions, distributions, and parameters to determine if these two techniques give them results 

that are acceptably close. They can then make an informed decision on how to adequately scale 

their data. This exploratory analysis only scratches the surface of how to compare these two 

scaling techniques and is meant to be used as a starting point. 
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APPENDIX A. EXAMPLE DISTRIBUTION PLOTS 

 

Figure A1. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure A2. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure A3. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure A4. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure A5. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure A6. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure A7. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure A8. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 

  



 

40 
 

 

Figure A9. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure A10. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure A11. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 1-10, and variable bounded 0-1. 
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Figure A12. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 1-10, and variable bounded 0-1. 
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Figure A13. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 1-10, and variable bounded 0-1. 
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Figure A14. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 1-10, and variable bounded 0-1. 
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Figure A15. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 1-10, and variable bounded 0-1. 
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Figure A16. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure A17. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure A18. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1.  
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Figure A19. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1.  
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Figure A20. Distributions for Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1.  
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Figure A21. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 0-1, and variable bounded 1-10.  
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Figure A22. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 0-1, and variable bounded 1-10. 
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Figure A23. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 0-1, and variable bounded 1-10.   
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Figure A24. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 0-1, and variable bounded 1-10.   
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Figure A25. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 0-1, and variable bounded 1-10.   
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Figure A26. Distributions for Technique 1 vs Technique 2 using lognormal distributions, 

parameters bounded 0-1, and variable bounded 1-10.   
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APPENDIX B. EXAMPLE Q-Q PLOTS 

Figure B1. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B2. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B3. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B4. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B5. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B6. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B7. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure B8. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure B9. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure B10. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure B11. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 1-10. 
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Figure B12. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B13. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B14. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B15. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B16. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B17. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B18. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B19. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B20. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 

  



 

78 
 

Figure B21. Q-Q plot of Technique 1 vs Technique 2 using normal distributions, parameters 

bounded 1-10, and variable bounded 0-1. 
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Figure B22. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 0-1, and variable bounded 1-10.   
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Figure B23. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 0-1, and variable bounded 1-10.   
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Figure B24. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 0-1, and variable bounded 1-10.    
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Figure B25. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 0-1, and variable bounded 1-10.   
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Figure B26. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 0-1, and variable bounded 1-10.   
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Figure B27. Q-Q plot of Technique 1 vs Technique 2 using lognormal distributions, parameters 

bounded 0-1, and variable bounded 1-10.    
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APPENDIX C. EXAMPLE FIGURES OF DESCRIPTIVE STATISTICS 

            Mean        Median      Variance   5% Quantile  95% Quantile 

Y1 -1.745642e+07 -1.774988e+04  2.536801e+18 -1.579893e+05 -8.165115e+03 

Y2 -3.140590e+03 -3.093812e+03  2.156114e+05 -3.965653e+03 -2.456363e+03 

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0.0002                0.1743         0.0000 

Figure C1. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 1 − (
1

𝑥𝑎) using normal 

distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean   Median  Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 30.373 30.166  15.7501  24.1856     37.2086                      

Y2 15.78  15.6475 5.0458   12.3338     19.675       0.3204          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0.5196                0.5187         0.3204 

Figure C2. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ 𝑥𝑏 using normal 

distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 348.2015 348.1346 91.767   332.5437    364.0274                     

Y2 357.08   357.1385 91.5099  341.3246    373.0147     0.9972          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      1.0255                1.0259         0.9972 

Figure C3. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = (𝑎 ∗ 𝑏 ∗ 𝑥)/(1 + 𝑏 ∗ 𝑥) 

using normal distributions, parameters bounded 1-10, and variable bounded 0-1. 
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   Mean    Median  Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 11.8829 11.8753 0.0746   11.4355     12.3443                      

Y2 11.43   11.4241 0.0563   11.0428     11.8262      0.7542          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0.9619                0.9620         0.7542 

Figure C4. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 1/(𝑎 + 𝑏 ∗ 𝑥 + 𝑐 ∗ 𝑥2) 

using normal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean    Median  Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 26.0175 25.5416 52.4167  15.1347     38.8448                      

Y2 0.01    0.0025  5e-04    1e-04       0.0367       0               

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      3e-04                 1e-04          0e+00 

Figure C5. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ exp (− exp(𝑏 − 𝑐 ∗
𝑥)) using normal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 500.2624 500.2915 158.6085 479.6506    520.9925                     

Y2 499.85   499.8812 155.6149 479.1397    520.4322     0.9811          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0.9992                0.9992         0.9811 

Figure C6. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 + 𝑏 ∗ exp (−𝑐 ∗
(𝑥 − 𝑑)2) using normal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

      Mean  Median Variance 5% Quantile 95% Quantile 

Y1 10.3469 10.3437   0.0421     10.0160      10.6890 

Y2 10.0000 10.0020   0.0319      9.7063      10.3028 

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0.9667                0.9670         0.7581 

Figure C7. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 1/(𝑥 + 𝑎) using 

normal distributions, parameters bounded 1-10, and variable bounded 1-10. 
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   Mean     Median  Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 335.3584 335.391 10.1276  330.0848    340.555                      

Y2 340.1    340.119 8.8948   335.1052    344.964      0.8783          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      1.0141                1.0141         0.8783 

Figure C8. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = log (𝑎 + 𝑏 ∗ 𝑥) using 

normal distributions, parameters bounded 1-10, and variable bounded 1-10. 

 

   Mean    Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 499.958 499.8705 154.181  479.9865    520.6856                     

Y2 500.01  500.089  156.3849 479.3314    520.6649     1.0143          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      1.0001                1.0004         1.0143 

Figure C9. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ (1 −
exp(−𝑏 ∗ 𝑥))𝛾 using normal distributions, parameters bounded 1-10, and variable bounded 1-10. 

 

   Mean   Median Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 0.1814 0.0251 0.4285   0.0021      0.7474                       

Y2 0      0      0        0           0            0               

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0                     0              0 

Figure C10. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ exp(−𝑏 ∗ 𝑥) + 𝛾 ∗
exp (−𝛿 ∗ 𝑥) using normal distributions, parameters bounded 1-10, and variable bounded 1-10. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 499.1568 499.1033 155.7355 478.6181    519.6421                     

Y2 500.03   500.1523 154.5366 479.4341    520.4074     0.9923          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      1.0017                1.0021         0.9923 

Figure C11. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎/(1 + exp (𝑏 − 𝛾 ∗
𝑥))1/𝛿 using normal distributions, parameters bounded 1-10, and variable bounded 1-10. 
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    Mean    Median Variance 5% Quantile 95% Quantile 

Y1 35.5710 35.5622   1.2030     33.7649      37.3986 

Y2 32.4100 32.3721   1.0630     30.7780      34.1620 

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0.9112                0.9103         0.8836 

Figure C12. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 1/(𝑥 + 𝑎) using 

lognormal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 121.0855 121.0932 8.394    116.3221    125.8704                     

Y2 125.23   125.2678 8.6075   120.3621    129.9307     1.0254          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      1.0342                1.0345         1.0254 

Figure C13. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = log (𝑎 + 𝑏 ∗ 𝑥) using 

lognormal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 214.6447 214.4729 82.5049  200.0796    230.248                      

Y2 239.42   239.3373 95.8198  223.2429    255.5542     1.1614          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      1.1154                1.1159         1.1614 

Figure C14. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ (1 −
exp(−𝑏 ∗ 𝑥))𝛾 using lognormal distributions, parameters bounded 1-10, and variable bounded 0-

1. 
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   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 322.2771 322.1907 127.1983 303.8133    341.0166                     

Y2 306.56   306.3007 140.12   287.7495    326.4237     1.1016          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      0.9512                0.9507         1.1016 

Figure C15. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ exp(−𝑏 ∗ 𝑥) + 𝛾 ∗
exp (−𝛿 ∗ 𝑥) using lognormal distributions, parameters bounded 1-10, and variable bounded 0-

1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 125.2771 125.0991 43.3852  114.8561    136.5598                     

Y2 126.83   126.766  47.8745  115.5532    138.435      1.1035          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1 

Ratios of T2 to T1      1.0124                1.0133         1.1035 

Figure C16. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎/(1 + exp (𝑏 − 𝛾 ∗
𝑥))1/𝛿 using lognormal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

      Mean  Median Variance 5% Quantile 95% Quantile 

Y1 19.3441 19.3145   0.3227     18.4619      20.3040 

Y2 18.2000 18.1821   0.1734     17.5281      18.8944 

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1      0.9406                0.9414         0.5374 

Figure C17. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 1/(𝑥 + 𝑎) using 

normal distributions, parameters bounded 1-10, and variable bounded 0-1. 
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   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 199.3674 199.3781 4.5153   195.8441    202.8716                     

Y2 201.5    201.5445 3.9981   198.2011    204.7183     0.8855          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       1.0107                1.0109         0.8855 

Figure C18. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = log (𝑎 + 𝑏 ∗ 𝑥) using 

normal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 498.9555 498.869  154.2526 478.9887    519.6279                     

Y2 500.01   500.0877 156.3835 479.3303    520.6624     1.0138          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       1.0021                1.0024         1.0138 

Figure C19. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ (1 −
exp(−𝑏 ∗ 𝑥))𝛾 using normal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile Var(y2)/Var(y1) 

Y1 112.4006 112.1369 63.0587  99.7495     125.8901                     

Y2 82.33    82.0907  36.3981  72.9084     92.6358      0.5772          

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       0.7325                0.7321         0.5772 

Figure C20. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ exp(−𝑏 ∗ 𝑥) + 𝛾 ∗
exp (−𝛿 ∗ 𝑥) using normal distributions, parameters bounded 1-10, and variable bounded 0-1. 

 

   Mean     Median   Variance 5% Quantile 95% Quantile  

Y1 295.6816 295.5475 134.6267 277.2963    315.2081                     

Y2 298.46   298.4673 140.0524 279.1176    317.9752      

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       1.0094                1.0099         1.0403 

Figure C21. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎/(1 + exp (𝑏 − 𝛾 ∗
𝑥))1/𝛿 using normal distributions, parameters bounded 1-10, and variable bounded 0-1. 
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   Mean     Median  Variance  5% Quantile  95% Quantile 

Y1 19.0914 19.0680   0.8091     17.6365      20.5861 

Y2 20.5800 20.5671   0.9468     18.9963      22.2101 

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       1.0782                1.0786         1.1702 

Figure C22. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 1 − (
1

𝑥𝑎) using 

lognormal distributions, parameters bounded 0-1, and variable bounded 1-10.   

 

   Mean    Median  Variance 5% Quantile 95% Quantile  

Y1 27.4325 27.4231 1.4604   25.4803     29.4685                      

Y2 27.56   27.5607 1.4132   25.6162     29.5007       

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       1.0047                1.0050         0.9677 

Figure C23. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ 𝑥𝑏 using 

lognormal distributions, parameters bounded 0-1, and variable bounded 1-10.   

 

   Mean   Median Variance 5% Quantile 95% Quantile  

Y1 7.9219 7.9092 0.1836   7.2455      8.6471                       

Y2 8.43   8.4261 0.202    7.7004      9.1742        

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       1.0643                1.0653         1.1001 

Figure C24. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = (𝑎 ∗ 𝑏 ∗ 𝑥)/(1 + 𝑏 ∗
𝑥) using lognormal distributions, parameters bounded 0-1, and variable bounded 1-10.   

 

   Mean    Median  Variance 5% Quantile 95% Quantile  

Y1 49.2829 49.2036 8.0714   44.6979     54.0869                      

Y2 37.84   37.7617 5.5318   34.169      41.7886       

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       0.7679                0.7675         0.6854 

Figure C25. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 1/(𝑎 + 𝑏 ∗ 𝑥 + 𝛾 ∗
𝑥2) using lognormal distributions, parameters bounded 0-1, and variable bounded 1-10.   
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   Mean    Median  Variance 5% Quantile 95% Quantile  

Y1 11.0763 11.0623 0.2787   10.2372     11.973                       

Y2 11.25   11.2519 0.2905   10.3696     12.1452       

                   Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       1.0161                1.0171         1.0424 

Figure C26. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 ∗ exp (− exp(𝑏 −
𝛾 ∗ 𝑥)) using lognormal distributions, parameters bounded 0-1, and variable bounded 1-10.   

 

   Mean    Median  Variance 5% Quantile 95% Quantile  

Y1 28.7528 28.7353 1.2207   26.9758     30.5915                      

Y2 26.59   26.5953 1.2305   24.7739     28.4243       

                    Mean(y2)/Mean(y1) Median(y2)/Median(y2) Var(y2)/Var(y1) 

Ratios of T2 to T1       0.9246                0.9255         1.0080 

Figure C27. Descriptive statistics for Technique 1 vs Technique 2 for 𝑦 = 𝑎 + 𝑏 ∗ exp (−𝛾 ∗
(𝑥 − 𝛿)2) using lognormal distributions, parameters bounded 0-1, and variable bounded 1-10.   
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APPENDIX D. R CODE 

D.1. Example R Program 

Any2fn=function(Seed,Steps,Simulations,Distribution1,Parametera1,Parameterb1,Distribution2,Parametera2,Paramete

rb2,func){ 

  #Set seed based on input 

  set.seed(Seed) 

   

  #Determine function from input 

  eval(parse(text = paste('fn = function(x1,x2) { return(' , func , ')}', sep=''))) 

   

  #Create dataframe to save distributional and parameter inputs 

  params_df<-data.frame(Distribution = c(Distribution1,Distribution2), 

                        Parametera = c(Parametera1,Parametera2), 

                        Parameterb = c(Parameterb1,Parameterb2)) 

   

  #Set number of parameters 

  nparam = 2 

   

  #Create empty matrixes and vectors to fill with simulated data 

  input = matrix(rep(NA,Steps*Simulations*nparam),nrow = nparam, ncol = Steps*Simulations) 

  inputmean = matrix(rep(NA,Simulations*nparam),nrow = nparam, ncol = Simulations) 

  ExpectedVal = as.vector(rep(NA,nparam)) 

  Var = as.vector(rep(NA,nparam)) 

 

  #Set f = parsed function 

  f=fn 

  

  #Run this loop for each parameter 

  for(i in 1:nparam){ 

  #Set of if else statements that determine which distribution to draw from for each variable 

  if(params_df$Distribution[i]=="normal"){ 

    #Draws for technique 1 

    input[i,] = abs(rnorm(Steps*Simulations,params_df$Parametera[i], params_df$Parameterb[i])) 

    #Draws for technique 2 

    inputmean[i,]= rnorm(Simulations, params_df$Parametera[i], sd=(params_df$Parameterb[i]/sqrt(Steps))) 

  } 

  else if(params_df$Distribution[i]=="lognormal"){ 

    #Convert lognormal parameters into normal approximations 

    ExpectedVal[i] = exp(params_df$Parametera[i]+((params_df$Parameterb[i]^2)/2)) 
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    Var[i] = (exp(params_df$Parameterb[i]^2)-1)*exp(2*params_df$Parametera[i]+(params_df$Parameterb[i]^2))  

    #Draws for technique 1 

    input[i,] = rlnorm(Steps*Simulations,params_df$Parametera[i],params_df$Parameterb[i]) 

    #Draws for technique 2 using converted lognormal parameters 

    inputmean[i,]= rnorm(Simulations,mean=ExpectedVal[i], sd=sqrt(Var[i]/Steps)) 

  } 

  } 

   

  

   

  #Function applied to Variable and Parameters 

  output1 = f(input[1,],input[2,]) 

  output2= f(inputmean[1,],inputmean[2,]) 

   

  #Create Matrices for Variable 

  outmat1 = matrix(output1, nrow=Simulations, ncol=Steps) 

   

  #Scale Y's to have an equal number of data points 

  y1= rowSums(outmat1) 

  y2= output2*Steps 

   

  #Convert data into dataframes 

  y1dat=data.frame(y1) 

  y2dat=data.frame(y2) 

   

  #Combine dataframes for graphics  

  ycomb = cbind(y1,y2) 

  ydat = data.frame(ycomb) 

 

  #Plot histograms for each outcome 

  Compared = ggplot(ydat) + geom_histogram(aes(x=y1),fill = "blue", alpha = .2, bins = 100)+ 

                            geom_histogram(aes(x=y2),fill = "red", alpha = .2, bins = 100)+ 

                            labs(title = paste("Function: Y = ",func),x = "Technique 1=Blue  Technique 2=Red") 

  grid.arrange(Compared) 

   

  #Create qqplot to compare distributions 

  qqPlot(y1,y2,xlab = "Technique1", ylab = "Technique2", main = paste("Function: Y = ",func), add.line = TRUE, 

qq.line.type = “0-1”, equal.axes = TRUE) 

   

  #Create table of descriptive statistics 

  out_table = matrix(c(round(mean(y1),4),round(median(y1),4),round(var(y1),4),round(as.numeric(quantile(y1,.05,

na.rm =  TRUE)),4),round(as.numeric(quantile(y1,.95,na.rm = TRUE)),4),round(mean(y2,na.rm = TRUE),2),round(medi

an(y2),4),round(var(y2,na.rm = TRUE),4),round(as.numeric(quantile(y2,.05,na.rm = TRUE)),4),round(as.numeric(qua

ntile(y2,.95,na.rm = TRUE)),4)), ncol = 5, byrow = TRUE) 
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  colnames(out_table) = c("Mean", "Median", "Variance", "5% Quantile","95% Quantile") 

  rownames(out_table) = c("Y1","Y2") 

  print(as.table(out_table)) 

 

  #Create table of proportional differences 

  out_table2 = matrix(c(round(mean(y2)/mean(y1),4),round(median(y2)/median(y1),4),round(var(y2)/var(y1),4)),nco

l = 3,byrow = TRUE) 

  colnames(out_table2) = c("Mean(y2)/Mean(y1)","Median(y2)/Median(y2)","Var(y2)/Var(y1") 

  rownames(out_table2) = c("Prop. diff.") 

  print(as.table(out_table2)) 

   

} 

 

D.2. Example R Output Program 

#######Semi-linear####### 

#Bound a between 0,1 

 

#2 parameters 

"y = 1-(1/x^a)" 

Any2fn(100,100,10000,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"1-(1/x1^x2)") 

 

#3 parameters 

"y = a*x^b" 

Any3fn(200,100,10000,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"x1*x2^x3") 

"y = (a*b*x)/(1+b*x)" 

Any3fn(300,100,10000,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"(x1*x2*x3)/(1+x2*x3)") 

 

#4 paramters 

"y = 1/(a+b*x+c*x^2)" 

Any4fn(400,100,10000,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"1/(x1+x2*

x3+x4*x3^2)") 

"y = a*exp(-exp(b-c*x))" 

Any4fn(500,100,10000,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"x1*exp(-e

xp(x2-x3*x4))") 

 

#5 parameters 

"y = a+b*exp(-c*(x-d)^2)" 

Any5fn(600,100,10000,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal",-1.6,.4,"lognormal

",-1.6,.4,"x1+x2*exp(-x3*(x4-x5)^2)") 

  




