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Abstract 

The presence of mucus and/or cellular debris can 
obscure the fine morphology of the g·astrointestinal or 
respiratory luminal surface, when observed by scanning 
electron microscopy. With the intent of obtaining a 
good cleaning of the mucosal surface without altering 
the ultrafine morphology of epithelial cells, a new model 
of sonicator/ultrasonicator is presented. 

The instrument is supplied with a control system 
for wave frequency, amplitude and form, and permits a 
precise regulation of the wave energy. With this in
strument it is possible to produce a "cleaning effect" by 
using any kind of frequency (either sonic or ultrasonic) 
and/or amplitude and/or waveform and/or liquid. 

We report the application of sonic frequencies 
through water as a fluid for immersion to obtain a gentle 
and slow removing of mucus and in order to explore the 
possibility to clean hydrated tissues. 

With the employment of sonic frequencies (from 
5 to 15 kHz modulated by 200 Hz) and water as the im
mersion fluid, we were able to generate a gentle wave 
energy which effected an optimal removal of the mucus, 
with the consequent exposure of a well preserved epi
thelial surface of rat trachea and small intestine. 

Key Words: Scanning electron microscopy, ultrastruc
ture, specimen preparation, tissue exposure, ultra
sonication, sonic frequencies, epithelium, intestine, 
trachea, rat. 
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Introduction 

Conventional scanning electron microscopy tech
niques do not permit a satisfactory view of the gastroin
testinal or respiratory mucosa! surface, because of the 
presence of mucus and/or cellular debris. In fact, at 
high magnification, these materials can obscure the fine 
surface morphology of epithelial cells. 

Several studies proposed different cleaning proce
dures, besides washing, such as ultrasonication (Takagi 
et al., 1974), brushing (Zalewsky and Moody, 1979), 
the use of enzymes followed by mechanical agitation 
(Wood and Dubois, 1981) and rubbing of the mucosa! 
surface with gloved fingers (Al-Tikriti et al., 1986). 
These methods may have side effects which mainly re
sult in a surface damage of the luminal aspect of epithe
lial cells detectable at high resolution. The mechanical 
procedures such, as digital rubbing, may induce flatten
ing of microvilli and/or epithelium removal as well as 
alteration of the cellular microtopographic relationships. 
In addition, this technique allows only occasional good 
cleaning because it cannot be standardized. Chemical 
digestions using enzymes, though specific, are not al
ways reliable, and are used on unfixed, fresh samples. 
Treatment performed with ultrasonic instruments com
monly known as "tank cleaners" elicited a better selec
tive microdissection of biological tissues (Highison and 
Low, 1982; Low and McClugage, 1984; Low, 1989). 

The use of "tank cleaners" should not leave some 
physical characteristic of the sonic-ultrasonics waves out 
of consideration (Apfel, 1981). The frequency of the 
waves (i.e., the amount of kHz employed) has been usu
ally considered crucial for obtaining an acceptable sur
face cleaning without significant cellular damage. How
ever, many other factors, such as the amplitude, the 
morphology of the wave, the temperature and the liquid 
used, either at sonic or ultrasonic level, affect the quali
ty of dissection. With the conventional "tank cleaners" 
having a standard ultrasonic frequency (20-80 kHz) and 
amplitude, it is necessary to increase or decrease the 
time of application (within short limits) to vary the 
microdissection power of these instruments. Further
more, acetone is the liquid considered useful for the best 
microdissection (Low, 1989). 
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Figure 1. The instrumentation: (a) Block diagram of the sonicator/ultrasonicator; (b) photograph of the apparatus 
showing energy control system (l); sonic/ultrasonic cleaner cell (2), with specimen (arrow); and oscilloscope (3). 
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Fig. 2. Waveform diagram: [l] conventional ultrasonic 
waveform; [2] conventional ultrasonic waveform with 
power control; [3] waveform with amplitude, frequency 
and waveform control; and [4] envelope control system. 

With the intent to obtain a fine cleaning of the 
mucosa! surface without altering the ultrafine morpholo
gy of epithelial cells, a new model of sonicator/ultrason
icator is herein presented. The instrument was planned 
to allow a precise regulation of all physical parameters 
and of the energy applied to the sonic or ultrasonic 
wave. 

In this study, with the application of variable 
energies, we used sonic frequencies and distilled water 
that yielded a fine exposure of the epithelial cell surface 
of trachea and small intestine in rats. 

Materials and Methods 
The instrument 

The sonicator/ultrasonicator was provided with a 
control system for wave frequency, amplitude and form. 

The device consists of two oscillators: the first 
(with a frequency ranging from 20 Hz to 80 kHz) pro
ducing two waves: a square wave applied to a mixing de
vice and a triangular wave modulating the frequency of 
a second oscillator (with a frequency ranging from 20 
Hz to 2 kHz). 
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A mixer system mixes the signal of the second os
cillator with the square wave of the first one. The mixer 
system outlet is regulated by an envelope generator and 
modulator of the waveform by which it is possible to 
change the waveform symmetry and the "attack" and 
"decay" times of the envelope. The apparatus is also 
provided with an oscilloscope for monitoring the wave
form (Figs. 1 and 2). 

Experimental protocol 

Primary fixation. Samples of rat trachea and in
testine were immersed in 2 .5 % glutaraldehyde in phos
phate buffer (0.1 Mat pH 7.4) for 1-3 days. Then, half 
of the samples was sonicated and the other half was used 
as control. 

Sonicated samples. The following schedule was 
used: 

[l]. Washing in distilled water with sonication at 
frequency of 5-15 kHz modulated by 200 Hz for 2 hours 
at room temperature (20-25 ° C). 

[2]. Post-fixation in I. 0 % osmium tetroxide in 
distilled water with sonication at frequency of 5-15 kHz 
modulated by 200 Hz for 2 hours at ·room temperature 
(20-25°C). 

[3]. Washing in distilled water with sonication at 
frequency of 5-15 kHz modulated by 200 Hz for 20 min
utes at room temperature (20-25°C). 

[4]. Impregnation with 1.0% thiocarbohydrazide 
and 1.0% osmium tetroxide in distilled water according 
to Kelley et al. (1973). 

[5]. Dehydration in a series of ascending concen
trations of acetone. 

(6]. Critical point drying in liquid carbon 
dioxide. 

[7]. Observation in a field emission scanning 
electron microscope (SEM, Hitachi FE-S4000), oper
ating at 5-10 kV using secondary electrons and with a 
working distance of 5-9 mm. 

[8]. After SEM observation, selected samples of 
both trachea and small intestine, were cut in smaller 
size, immersed in pure acetone for 2 hours, embedded in 
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Figure 3. Rat trachea; scanning electron micrographs. (a, c). Control samples: a fine coating material partially covers 
the mucosa) surface. (b, d) Sonicated samples: the mucosa) surface is completely cleaned without superficial damage. 
Bars = 10 µm (in a, b) and = 1 µm (inc, d). 

---------------------------------------------------------------------------------------------------------

an epoxidic resin, and sectioned in a Reichert ultrami
crotome. Unstained ultrathin sections were observed in 
a Zeiss EM-150 CR transmission electron microscope 
(TEM). 

Control samples. The following steps were used. 

[l]. Washing in running tap water for 2 hours at 
room temperature (20-25°C). 

[2]. Post-fixation in 1.0% osmium tetroxide in 
distilled water for 2 hours at room temperature (20-
250 C). 

[3]. Washing in distilled water for 20 minutes at 
room temperature (20-25°C). 

Steps 4-8 were the same as in the schedule for 
sonicated samples. 
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Results 
Control samples 

Usually, using conventional scanning electron mi
croscopy techniques, only a few areas of the epithelial 
surface of both intestine and tracheal mucosae appeared 
clean (Figs. 3a and 4a). In fact, coating mucous mate
rial was present on the major extension of the epithelium 
surface, having the aspect of a fine superficial veil. 

Such material, at high magnification, showed a 
fine mesh work covering the tips of the microvilli and the 
cilia, masking their fine morphology (Fig. 3c). Cell 
borders appeared as slight depressions and were detected 
with difficulty; goblet cells in the intestinal mucosa were 
often filled with mucous secretion (Fig. 4c). 
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Figure 4 (above). Rat small intestine, scanning electron micrographs. (a, c) Control samples: a fine coating material 
masks the surface tips of microvilli. A goblet cell opening (in Fig. 4c) is filled with mucous secretion. (b, d). 
Sonicated samples: The mucosa! surface is completely cleaned. Note in Fig. 4b the hexagonal shape of the enterocytes. 
Goblet cell opening (in Fig. 4d) is devoid of secretion allowing the exposure of the epithelial cell surface; within the 
opening some cellular residuals are evident. Bars = 10 µm (in a, b) and = 1 µm (inc, d). 

---------------------------------------------------------------------------------------------------------

Figure 5 (facing page, top). Rat small intestine. Transmission electron micrographs of samples processed after SEM 
observation. (a, c) Control samples; microvilli (m) with their filamentous extracellular coat. (b, d) Sonicated samples; 
microvilli devoid of the extracellular coat. At higher magnification, note the integrity of the double-layered plasma 
membrane. The electron-dense area at the top of microvilli is due to the thiocarbohydrazide-osmium impregnation. 
Bars = 1 µm (in a, b) and = 100 nm (in c, d). 

Figure 6 (facing page, bottom). Rat trachea. Transmission electron micrographs of samples processed after SEM 
observation. (a) Control sample; cilia with their filamentous mucus covering. (b, c) Sonicated samples; cilia devoid 
of the mucous covering. At higher magnification the plasma membrane is preserved; a fine surface granularity is 
present (arrows). Bars = 1 µm (in a, b) and = 100 nm (inc). 
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Figure 7. Rat intestine, scanning electron micrographs of sonicated samples. (a, b) At high magnification the 
ultrafine features of microvilli are easily identified. Bars = l µm (in a) and = 100 nm (in b). 

By transm1ss10n electron microscopy, intestinal 
microvilli appeared evenly covered by a dense extra
cellular coat (Fig. 5a) that at higher magnification was 
filamentous in nature (Fig. 5c). The trachea samples 
showed a loose network of filaments covering the cilia 
(Fig. 6a). 

Sonicated samples 

Sonicated samples of intestine and trachea reveal
ed large clean areas of the mucosa! surface, in which no 
significant damage to the surface epithelial cells was ob
served (Figs. 3b and 4b). At high magnification, the ef
fect of removal of the mucous coat covering the cellular 
surface was more evident. The ultrafine features of api
cal cilia and microvilli were easily identified. At higher 
magnification the cilia were preserved. They showed a 
fine surface microgranularity, that indeed, did not mask 
the three-dimensional structure and arrangement of cilia 
(Fig. 3d). The microvilli, even when seen at higher 
magnification, were not damaged and uniformly distribu
ted on the surface of the epithelial cells (Figs. 7a and 
7b). The intercellular boundaries were well exposed and 
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the en terocytes appeared as regular hexagonal shaped 
elements (Figs. 4b and 7a). Goblet cells, in the intesti
nal mucosa, were devoid of secretion, and the goblet cell 
opening may be easily evidenced (Fig. 4d). 

Transmission electron microscopy showed the in
testinal microvilli devoid of their extracellular coat (Fig. 
5b). At higher magnification, the plasmalemma ap
peared clean and well preserved (Fig. 5d). At low mag
nification, transmission electron micrographs of trachea 
showed regularly arranged cilia devoid of the superficial 
mucus (Fig. 6b). At higher magnification the cilia sur
face was preserved and well exposed, only a fine surface 
granular material could be seen (Fig. 6c). 

Discussion 

Variable sonic frequencies (from 5 to 15 kHz) 
modulated by 200 Hz generated by our instrument permit 
an effective cleaning of the mucosa! surfaces without 
damaging their fine structures. The morphological as
pects that we obtained by using these sonic frequencies 
resulted in better preparations than those provided by 
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other cleaning procedures (Takagi et al., 1974; Zalewski 
and Moody, 1979; Wood and Dubois, 1981; AI-Tikriti 
et al., 1986). 

Several studies have used ultrasonic frequencies 
in order to microdissect biological tissues (Highison and 
Low, 1982; Low and McClugage, 1984; Low, 1989). 
The dissecting action depends on the alternation of posi
tive and negative pressures owing to the passage of ul
trasound through a fluid. However, both sonic and ul
trasonic frequencies, when passing through a liquid, cre
ate within this liquid an alternating condition of pres
sure/depressure, graphically corresponding to the posi
tive/negative tracts of the waves shown in Fig. 2. This 
action is more evident at the fluid-solid interface and 
varies with the frequency, amplitude, waveform, and the 
vapor pressure of the liquid in which the specimens are 
immersed (Apfel, 1981). When the pressure is negative 
(depressure phase) and the applied energy coincides with 
the cavitation threshold (the latter also related to the 
vapor pressure of the liquid phase), i.e, when the nega
tive pressure is reduced beyond the vapor pressure of the 
liquid, microbubbles containing vapor develop and vi
brate with the same frequency as the wave. When the 
pressure is positive (compression phase) and the applied 
energy exceeds the cavitation threshold, microbubbles 
implode and release a great deal of energy (under the 
form of thermic and pressure energy) in a very short pe
riod of time. In this way, the detachment of small parti
cles from the samples surface and the cleaning or dis
secting of the tissue is obtained (Coakley and Nyborg, 
1978; Apfel, 1981). 

The time of cavitation period and of the subse
quent fluid resting time influences the microdissection of 
the samples. This time, i.e., the time of formation of 
the microbubbles (earning energy) and the time of their 
implosion (releasing energy) may be modulated by: 

[l] Changing the waveform and symmetry, in a 
way that, at the same frequency, a square wave increases 
the time in respect to a sinusoidal or a triangular wave. 

[2] Changing the amplitude, in a way that increas
ing the amplitude the level of pressure/depressure in
creases and then the time increases. 

[3] Changing the frequency, in a way that increas
ing the frequency the time decreases. 

[ 4] Changing the shape of the envelope of the 
waves, in a way that envelopes with a steeper attack and 
decay decrease the time. In fact, the envelope is the 
graphic expression of the modulation of the wave ampli
tude. It has a diamond shape that may be varied. The 
period of the amplitude increase is the ascending tract, 
called attack, the period of the amplitude decrease is the 
descending tract, called decay. Changing the steepness 
of the decay or attack results in a variation of the time 
of microbubbles formation and implosion. 

[5] Changing fluids, in a way that different vapor 
pressures determine different cavitation thresholds. 

[6] Changing the temperature of the liquid, in a 
way that its variations cause changing of the vapor pres
sure of a given fluid. 
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Usually ultrasonicators, commonly known as tank 
cleaners, have fixed frequency (from 20 to 80 kHz) and 
power, so that, at a given temperature, only the time of 
exposure may be varied. Other models are provided 
with a regulatory system for power, but this is often not 
sufficient to obtain a fine regulation of the wave energy. 

It has been shown (Low, 1989) that the lower ul
trasonic frequencies (20 kHz) break-up the tissue sam
ples without selectivity. On the other hand, higher fre
quencies (80 kHz) were gentler and more selective. 
Therefore, it was suggested that an "ideal" microdissec
tion could be obtained with tissue samples immersed in 
pure acetone (225 mm Hg vapor pressure at 25°C) and 
exposed for 3-5 minutes at 80 kHz of ultrasound (Low, 
1989). The tissue damage seen at 20 kHz (at a fixed 
amplitude) could be related to the fact that the frequency 
used had higher peaks of acoustic pressure than at 80 
kHz. In fact, the higher the level of the peaks of the 
acoustic pressure, the earlier the cavitation threshold 
onsets (Apfel, 1981). However, by reducing the ampli
tude, it is possible to reduce the peaks of acoustic pres
sure; and by modulating the frequency, it is possible to 
choose the level of the peak of acoustic pressure. Our 
model of sonicator/ultrasonicator is supplied with a con
trol system for the wave frequency, amplitude and form. 
This yields an ultrafine regulation of the wave energy, 
and in particular, also permits to control the levels of 
the peaks of acoustic pressure at any frequency. 

In our study, we used sonic frequencies from 5 to 
15 kHz modulated by 200 Hz, and water as the immer
sion fluid (water vapor pressure is 23.7 mm Hg at 25°C 
and consequently the threshold of cavitation is higher 
compared to acetone) for four hours. This procedure 
generated a gentle wave energy that was effective in ob
taining a fine cleaning of the tissue treated. In fact, the 
cells we studied showed well preserved microvilli and 
cilia, not artificially flattened, with a regular micro
topographic arrangement, and without significant surface 
changes also when they were seen at high resolution 
SEM. The preservation of the cells, as well as the 
cleaning effectiveness of this procedure, was confirmed 
by TEM observation. 

Finally, we would emphasize the chances that a 
fine and slow cleaning effect of hydrated samples may 
imply, e.g., to associate this procedure to other tech
nique of tissue exposure such as the maceration methods 
by means of NaOH, osmium, or others, and to histo
chemical/immunological staining. 
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Discussion with Reviewers 

F .N. Low: If you are not already preparing a paper de
scribing the sonic frequency apparatus used in preparing 
your tissue samples, please indicate were this apparatus 
is described in detail so that other investigators may 
obtain and use it. 
E. Reale: An exact indication of the models types of 
oscillators, envelope generator and modulator, etc. 
would allow construction of the device in each interested 
laboratory. 
Authors: This paper mainly intended to describe the ap
plications of the technique. Therefore, an overly tech
nical description of the instrumentation was avoided. 
The block diagram of Fig. I gives the technical informa
tion necessary to build the instrument. All the compo
nents described in the blocks are not specific and are 
easily commercially available. However, according to 
your suggestion, we are now preparing a manuscript in 
which a more detailed description of the instrumentation 
will be reported. 
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L.G. Friberg: As you mention, other techniques have 
been used to avoid the mucus layer and surface debris. 
Using a more biologic method, cleaning by 1 % HCl was 
reported to give the same result as yours by Doran et al. 
(J. Anal. 110: 507, 1971), i.e., your more physical 
method by ultrasonicator could, maybe after all, give 
some kind of damage at high magnification. Have you 
compared other techniques with your technique? 
Authors: The paper you mentioned deals with the vil
lous surface as studied by means of a thermoionic scan
ning electron microscope with a resolution of about 70 
nm, as it was possible in the early seventies, of air dried 
and gold-palladium coated samples. Our study was in
tended for a field emission SEM with a resolution of 
about 5 nm and for critical point dried, uncoated, thio
carbohydrazide-osmium impregnated samples. The 
thickness of the mucus filaments ranges from 20-50 nm 
(Familiari et al,. Mier Res Techn 23: 225-229, 1992) 
and the filaments could be resolved only with the current 
models of SEMs. The observation we made at high res
olution did not show a significant epithelial surface dam
age. We did not compare our technique with others, 
but, as you suggested, it would be very interesting to 
combine our technique with those of others (for example 
that of Doran et al., 1971) and to evaluate the results by 
means of the current standard SEM. 

L.G. Friberg: Figures 3b, 4b and 7a illustrate the ex
cellent results with your method at medium magnifica
tion. High magnification showing cilia in trachea and 
microvilli in the intestine seems to present rigid cilia 
with a granular surface in both locations. Because you 
get smoother microvilli and a clean, non-granular sur
face by a biological method, the question is whether this 
cannot be an effect of the used technique itself? 
Authors: The fine microgranularity seen on the tracheal 
cilia both by high resolution SEM and TEM was not re
lated to any known damage of the plasmalemma. Its na
ture could be related to some residue of the extracellular 
material, but it should be further investigated in a 
dedicated study in which all the treatments performed, 
including staining, could be individually evaluated. 
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