Utah State University
DigitalCommons@USU

12-10-2020

(2,3)-Cordial Digraphs

Jonathan Mousley
Utah State University, jonathanmousley@gmail.com
Manuel Santana
Utah State University, manuelarturosantana@gmail.com

Follow this and additional works at: https://digitalcommons.usu.edu/fsrs2020
Part of the Mathematics Commons

Recommended Citation

Mousley, Jonathan and Santana, Manuel, "(2,3)-Cordial Digraphs" (2020). Fall Student Research Symposium 2020. 60.
https://digitalcommons.usu.edu/fsrs2020/60

This Book is brought to you for free and open access by the Fall Student Research Symposium at DigitalCommons@USU. It has been accepted for inclusion in Fall Student Research Symposium 2020 by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

(2,3)-Cordial Digraphs

Jonathan Mousley, Manuel Santana

Utah State University

Fall Student Research Symposium, December 2020

What is a (2,3)-Cordial Labeling

Conditions

- Directed graph
- Friendly vertex labeling
- Head minus tail arc labeling
- Balance of arc labels

Application: Balanced Networks

Parallel programming
Breaking down computer program into discrete tasks, then assigned to multiple processors that execute simultaneously.

Figure: Parallel program

Strategy

- Balance workload across processors
- Balance internal communication within processors
- Minimize external communication within processors HONORS PROGRAM

Simple Cases

There are 256 unique ways to orient the arcs.

This graph is not $(2,3)$-orientable.

A Proof

Figure: All labelings with one edge labeled 0

Figure: All labelings with two edges labeled 0

An Important Theorem

Theorem
Given a directed graph $G=(V, E)$ with vertex set V and $n=|V|$ with $n \geq 6$, and edge set E. The maximum size of E such that G is $(2,3)$-orientable for any given n is

$$
\begin{aligned}
|E|_{\max } & =\binom{n}{2}-Z+\left[\frac{1}{2}\left(\binom{n}{2}-Z\right)\right\rceil \\
Z & =\binom{\left\lceil\frac{n}{2}\right\rceil}{ 2}+\binom{\left\lfloor\frac{n}{2}\right\rfloor}{ 2} .
\end{aligned}
$$

Hypercubes

Figure: k-dimensional hypercubes for $k=0,1,2,3$

(2, 3)-Cordial Oriented Hypercubes

$$
k=1
$$

$$
k=2
$$

(2, 3)-Cordial Oriented Hypercubes

Proof by Induction

Theorem
All hypercubes of dimension $3 k$ for $k \in \mathbb{N}$ are (2,3)-orientable.
Base Case
Dimension 3.
Induction Hypothesis
Some k-dimensional oriented hypercube is $(2,3)$-cordial.

Proof by Induction

Inductive Step, $k \Longrightarrow k+3$

- $Q_{i}:(2,3)$-cordial k-dimensional oriented hypercube
- Dashed arc: represents 2^{k} arcs, one from each vertex
- δ : vertices of different labels connected
- β : vertices of like labels connected

Other Results with Hypercubes

Theorem
All hypercubes of dimension $k \geq 1$ are (2,3)-orientable.
Theorem
Not all orientations of cubes are $(2,3)$-cordial.
3D Identification Problem
Cataloged several properties that guarantee (2,3)-cordiality in oriented cubes.

A 3D oriented hypercube, $\boldsymbol{\theta} \quad(2,3)$-cordial

Future Work on Hypercubes

- Continue study of properties that prevent $(2,3)$-cordiality for 3D case
- Generalize results from 3D case to k-dimensional case

Bibliography

1. L. B. Beasley, J. Mousley, M. Santana, D. Brown, (2,3)-Cordial Digraphs, Submitted.
2. L. B. Beasley, Cordial Digraphs, In Press.
3. I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Comb. 23(1987) 201-208.
4. M. Hovey, A-cordial graphs, Discrete Math. 93 (1991) 183-194.
