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ABSTRACT 

Surface temperature is necessary for the estimation of energy fluxes and evapotranspiration from satellites and airborne 

data sources. For example, the Two-Source Energy Balance (TSEB) model uses thermal information to quantify canopy 

and soil temperatures as well as their respective energy balance components. While surface (also called kinematic) 

temperature is desirable for energy balance analysis, obtaining this temperature is not straightforward due to a lack of 

spatially estimated narrowband (sensor-specific) and broadband emissivities of vegetation and soil, further complicated 

by spectral characteristics of the UAV thermal camera. This study presents an effort to spatially model narrowband and 

broadband emissivities for a microbolometer thermal camera at UAV information resolution (~0.15 m) based on Landsat 

and NASA HyTES information using a deep learning (DL) model. The DL model is calibrated using equivalent optical 

Landsat / UAV spectral information to spatially estimate narrowband emissivity values of vegetation and soil in the 7–14-

nm range at UAV resolution. The resulting DL narrowband emissivity values were then used to estimate broadband 

emissivity based on a developed narrowband-broadband emissivity relationship using the MODIS UCSB Emissivity 

Library database. The narrowband and broadband emissivities were incorporated into the TSEB model to determine their 

impact on the estimation of instantaneous energy balance components against ground measurements. The proposed effort 

was applied to information collected by the Utah State University AggieAir small Unmanned Aerial Systems (sUAS) 

Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration 

eXperiment) over a vineyard located in Lodi, California. A comparison of resulting energy balance component estimates, 

with and without the inclusion of high-resolution narrowband and broadband emissivities, against eddy covariance (EC) 

measurements under different scenarios are presented and discussed. 

Keywords: High-resolution evapotranspiration, narrowband emissivity, broadband emissivity, microbolometer camera, 

deep learning, land surface temperature, UAV, microbolometer camera, NASA HYTES, UCSB MODIS Emissivity, 

Landsat 

1. INTRODUCTION  

Thermal information provides valuable information on historical and current human and environmental activities such as 

vegetation and soil conditions1–3, energy balance modeling4–8, environmental stressor effects9, and climate change10–12. In 

agriculture, thermal information has demonstrated its importance at global, regional, farm and sub-plant scales from an 

array of technologies that includes thermocouples13, infrared radiometers14,15, and microbolometer cameras16–18. The 

infrared sensors and microbolometer cameras are technologies that can provide continuous soil, plant, and sub-plant 

thermal information, with applications in consumptive water use, nitrogen content, fruit/root development, crop water 

stress, soil moisture, and other parameters19–22. 

Thermal information from infrared technologies is affected by four major factors: radiometric calibration, atmospheric 

conditions (water vapor, air temperature), spectral characteristics of the instrument23, and surface emissivity24. All four 
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factors must be addressed to adequately characterize the temperature conditions of the surface. The radiometric calibration 

can be addressed by using and verifying the infrared sensor’s radiometric measurements against a blackbody instrument25. 

The atmospheric conditions can be addressed through a collection of ground temperature measurements or by using models 

that describe the effects of water vapor and CO2—effects that vary with the spectral response26. The other two factors are 

interrelated. The thermal emissivity of the surface, is related to the nature of the material and either the difference in 

radiation between a blackbody object and the object under study at the same temperature and infrared sensor spectral 

response (narrowband) or across the wavelength range of thermal response of Earth materials (3 to +15µm)27. Tables and 

general criteria were developed to simplify assignment of emissivity values to Earth and man-made surfaces and were 

developed for existing thermal technology at the time of the table development (mostly satellite thermal sensors). These 

sensors are uniquely developed to address the four factors mentioned above, with emphasis on the selection of spectral 

regions that minimize atmospheric correction and allow for overall emissivity values for surface types (soil, vegetation, 

water). This is not the case for more recent portable or miniaturized thermal sensors, which may present significantly 

different emissivity values due to the broad spectral response (7 to 14µm). Still, assignment of emissivity values across 

agricultural or natural areas is mostly based on an initial classification of the surface (water, vegetation, and bare soil) 

using classification or vegetation indices (e.g., NDVI). Efforts to provide spatial emissivity estimates from satellite data 

exist, such as from the NASA’s ASTER Global Emissivity Dataset and  ECOSTRESS programs. These estimates are 

being used to derive surface temperature from Landsat and  ECOSTRESS28. For miniaturized microbolometer sensor 

databases, such efforts do not exist, with only hyperspectral laboratory measurements such as the MODIS UC Santa 

Barbara Emissivity database, and measurements from  NASA JPL Hyperspectral Thermal Emission Spectrometer 

(HyTES) currently available. These datasets are not well known or used by the UAV scientific community29,30.   

As shown in a previous study31, spatial narrowband emissivity could be estimated by a machine learning model (Random 

Forest) using Landsat optical bands (red, green blue, and near-infrared) vs. simultaneous emissivity values collected from 

the HyTES program. While the model was able to assign emissivity values to soil and vegetation, it had some limitations 

with surfaces such as vegetation with wet soils and service roads. The same study indicated that vegetation index–derived 

emissivity (NDVI) does not respond as previously reported in literature2 with Landsat and HyTES datasets or a linear 

combination of other spectral bands. These results opened the opportunity to test complex machine learning models such 

as deep learning for thermal emissivity estimation. Given the range of emissivity measurements in the UC Santa Barbara 

dataset, broadband emissivity for different surfaces can be inferred from the database and relate it to the narrowband 

emissivity as derived from the deep learning (DL) model. As such, this study has two objectives: (a) test and assess the 

performance of a DL model in the estimation of a thermal emissivity for microbolometer cameras and (b) test the impact 

of spatial narrowband and broadband emissivity in the estimation of evapotranspiration with UAV information. 

2.  MATERIAL AND METHODS  

2.1 Area of Study and UAV Sensor Description 

For the current study, spatial information from NASA HyTES, Landsat, and UAV was captured in 2014, as shown in 

Table 1 over a Pinot Noir vineyard located near Lodi, California (38.29 N 121.12 W), in Sacramento County as part of the 

GRAPEX project and described in references31,32. The UAV flight was synchronized with the Landsat satellite overpass 

and was operated by the AggieAir UAV research group at the Utah Water Research Laboratory at Utah State University. 

The study area employs a drip-irrigated system in which irrigation lines run along the base of the trellis at 30 cm agl with 

two emitters between each vine. The vineyard used a training system with “U” shaped trellises and canes trained upwards. 

The vine trellises were 3.35 m apart, and the heights to the first and second cordons were about 1.45 and 1.9 m, 

respectively33. 

Table 1.  Spatial products and capture times used in this study 

Spatial Product Spatial Information Ground Resolution (m) Capture Date and Time (PST) 

NASA JPL HYTES Hyperspectral Emissivity 6 2014-07-09 13:23 

Landsat ETM+ Surface Corrected Reflectance 30 2014-07-09 10:36 

AggieAir High-Resolution Reflectance and Temperature 0.15 Reflectance 

0.60 Temperature 

2014-08-09 10:36 
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The hyperspectral emissivity information from the NASA HYTES airborne program was retrieved for this project. Details 

of the sensor and technology34–37 and flown locations up to date 38 can be found in the references. The spatial emissivity 

information for the area of study covered different agricultural lands (vineyards, alfalfa) and natural environments, as 

presented in Fig. 1.  

 

Fig 1.  2014 NASA HYTES bands 150 (10.1 µm), 100 (9.2 µm), and 58 (8.5 µm) overpass over multiple vineyards and 

natural areas near Galt, CA. Two HYTES flights on the same date and time (NORTH and SOUTH, blue lines indicate 

flights) are used for this study. 

 

As is evident from Table 1 and explained in a previous study31, a direct comparison of surface temperature between HYTES 

and UAV information is not possible, thus making necessary the implementation of several additional steps shown in Fig. 

2 and based on the study described here 39. 

 

Fig. 2 Flowchart for estimation of UAV resolution narrowband emissivity for ICI cameras as used in this study. 

 

Proc. of SPIE Vol. 11414  114140B-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10 Mar 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

The different information sources are processed as described in Fig.2 for narrowband emissivity estimation. An important 

step is the UAV–Landsat band comparison to ensure that the reflectance values from both sensors agree, thus minimizing 

potential biases due to the optical sensor. A primary assumption in this analysis is the adequacy of the Landsat-Narrowband 

Emissivity model (developed using DL) for high-resolution imagery.  

2.2 Deep Learning Emissivity Model 

A DL model was calibrated using the same Landsat information as the documented Random Forest described in a previous 

study31 and Fig. 2 to estimate narrowband emissivity values. The DL model consisted of an Input Layer, Hidden Layers, 

and an Output Layer. The input layer consists of the Landsat bands, band ratios, and index values (i.e., four bands, six 

band ratios, and six Normalized Difference Indexes). The Output Layer consists of emissivity values. The hidden layers 

consist of a specific number of nodes that transform the input data and enable statistical interactions using activation 

functions (i.e., the Rectified Linear Unit function) between the inputs and outputs. A regularization method based on Lasso 

Regression was applied to avoid overfitting. The number of hidden layers, number of nodes per layer, number of epochs, 

and batch size had to be selected to find the appropriate DL model. The batch size is the number of training samples 

processed before the DL parameters are updated. Preliminary results showed that the optimal number of batch size was 

100. Readers interested in greater detail regarding the DL model and its parameters are referred to the Keras Sequential 

Model page40. The data sample consisted of 4932 observations. 70% of the data samples were used for training the model, 

and 30% were used for testing the model. Several DL models were built to include different parameter settings (the number 

of hidden layers (ranging from 1 to 4), the number of nodes per layer (ranging from 50 to 200 with increments of 50), and 

the number of epochs (1000 and 2000)). The goodness of statistics used for the selection of the model was the root mean 

square error (RMSE). The selected model is the one with the minimum RMSE corresponding to the testing phase (Table 

2).  

 

Table 2.  DL model performance for narrowband emissivity estimation based on Red, Green, Blue and Nir bands 

 

The narrowband emissivity from the DL model and a previously trained Random Forest31 were numerically and visually 

assessed. The emissivity result with the best goodness of fit statistics was then incorporated into the radiometric 

temperature. 

2.3 Broadband Emissivity 

An additional analysis was performed based on the hyperspectral emissivity UCSB dataset (from 3 to 14µm) to 

approximate the broadband emissivity estimates at the UAV pixel scale, using the narrowband emissivity estimation. The 

broadband emissivity is necessary to estimate the Outgoing Longwave Radiation, as part of the Net Radiation, once the 

surface (kinematic) temperature is available41. Given the closeness of the spectral range of the narrowband to the broadband 

emissivities, the narrowband to broadband model was developed first by estimating the narrowband emissivity by the ratio 

of the convolved sum-product UCSB emissivity, microbolometer spectral response and the Planck equation at a 

temperature of 300K, and the convolved sum-product of the microbolometer spectral response and the Planck equation. 

The broadband emissivity was calculated as the sum-product of hyperspectral emissivity and the Planck equation divided 

by the sum of the Planck equation for the 3 to 14 µm42. Additional details are presented in the following section. 

2.4 Two-Source Surface Energy Balance model 

To test the impact of sensor-specific and broadband emissivity in this study, the Two-Source Energy Balance (TSEB) 

model with the Canopy and Soil (also called Dual) Temperature estimation as described by Nieto et al.41 is used. The Dual 

Temperature approach is shown in Fig 3. In this figure, the estimation/separation of the canopy and soil temperature within 

DL Parameter Values Inputs Calibration scheme Fit Statistics

Hidden Layers: 3 4 Bands: Blue, Green, Red, NIR 70 % Training Obs: 4932

Nodes: 200 6 Ratios: Blue/Green, Blue/Red, Blue/NIR 30 % Testing RMSE Train: 0.003

Epochs: 1000 Green/Red, Green/NIR, Red/NIR RMSE Test: 0.004

Batch size: 100 6 Normalized Difference (ND) Indexes:

ND_Green&Blue, ND_Red_Blue, ND_NIR&Blue

ND_Red&Green, ND_NIR&Green, ND_NIR&Red
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a spatial domain grid is achieved by the linear behavior of NDVI (or any other vegetation index) with temperature and 

defining soil or canopy average temperature conditions by thresholds that identify these two vegetation conditions. For 

example, bare soil threshold is NDVI below or equal to 0.3, and fully developed vegetation threshold is NDVI equal to or 

higher than 0.75).   

 

Fig. 3 Canopy (Tc) and Soil (Ts) Temperature estimation over spatial domain grid based on a linear relationship between 

NDVI and Land Surface Temperature (LST). 

 

The TSEB model can use radiometric or kinematic temperature to infer (radiometric or kinematic, respectively) canopy 

and soil temperature, which in turn are used to estimate energy balance components for each of them. Typically, the 

radiometric temperature is used due to the lack of spatially estimated emissivity. Assuming no atmospheric correction is 

needed, the estimation of kinematic temperature from radiometric temperature is: 

 𝑇𝑠 =  (1/𝜀)0.25𝑇𝑟      (1) 

where Ts is the kinematic temperature, ε is the narrowband emissivity, and Tr is the radiometric temperature, as provided 

by the infrared thermal sensor. Internally, the TSEB model does not assign a narrowband emissivity to vegetation and soil 

conditions. Also, internally, the TSEB model estimates the Net Radiation components, which requires solving the 

absorption and reflection of short-wave radiation, as well as the outgoing and incoming long-wave radiations, expressed 

as follows: 

𝑅𝑛 = (1 − α)𝑅𝑠 − 𝐿 ↑ +𝐿 ↓      (2) 

where Rn is the net radiation (W m−2), Rs is the solar radiation (W m−2), α is the soil surface albedo (α = 0–1), L↑ is the 

outgoing long-wave radiation (W m−2) from the Earth’s surface, and L↓ is the long-wave incoming radiation (W m−2) 

from the sky. The long-wave radiation uses the broadband emissivity and the kinematic temperature: 

𝐿 ↑= 𝜀𝑏 (𝜎 𝑇𝑠4)        (3) 

where 𝜀𝑏 is the broadband emissivity, σ is the Stefan-Boltzmann coefficient, and Ts is the kinematic temperature. A 

traditional broadband emissivity value of 0.98 for vegetation and 0.95 for soil is assigned as implemented within the 

TSEB model. 

The incoming long-wave radiation values are obtained from eddy covariance (EC) instrumentation for clear skies, or it 

can be calculated as follow: 

𝐿 ↓= 𝜀𝑎 (𝜎 𝑇𝑎4)       (4) 

where 𝜀𝑎 is the air emissivity, and Ta is the air temperature at 2 m elevation from the ground. Figure 4 describes in detail 

the TSEB model process as well as the use of radiometric temperature and incoming and outgoing longwave radiation to 

solve the surface energy balance model. 
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Fig. 4.  Example of the TSEB Dual Temperature data processing. Note the broadband emissivity parameters used in the 

model for characterization of the soil and canopy energy balance components. 

As result of the TSEB model run, the instantaneous estimates of the four Energy Balance components are produced. These 

components are Rn: Net Radiation, G: Ground Heat Flux, H: Sensible Heat Flux, and LE: Latent Heat Flux, the last of 

which is the equivalent of evapotranspiration, in energy units (W/m2). 
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3 RESULTS 

3.1 Narrowband Emissivity Model 

Figure 5 shows the overall performance of the DL model for the estimation of narrowband emissivity using Landsat 

reflectance and NASA HyTES information. The scatter plot pattern indicates that, while the DL model results approximate 

the emissivity values, there are still conditions where the estimated emissivity does not relate to HyTES-derived emissivity. 

This limited relationship might be due to a potential issue where two or more inputs of the model are linearly related 

(multicollinearity) or the reduced relationship between used inputs and emissivity. This potential issue could lead to the 

wrong identification of relevant inputs and can affect the results. However, these are not definite conclusions, as they 

might not be sufficiently well supported. A more detailed analysis regarding strategies to improve the DL model 

performance will be carried out for future research. Still, Figs. 5 to 7 shows a better statistical performance of the DL 

model vs. the previously reported Random Forest model.  

 

(A) 

 

(B) 

 

Figure 5.  DL narrowband emissivity model performance (A) Training Phase, (B) Test Phase 

 

A visual comparison at UAV resolution (0.15m/pixel) between the DL and previously reported Random Forest models is 

presented in Figure 6 and 7.  

 

Visual assessment of the produced emissivity at UAV optical resolution (0.15m) in Fig. 6 indicates that obtained emissivity 

values by the DL model better represents the soil, vegetation, and water conditions than the results obtained by the Random 

Forest. Figure 7 clearly illustrates this statement. A  shallow wet earth canal displayed in the figure, fully covered by 

vegetation, is assigned emissivity values closer to 0.95 by the Random Forest model but higher than 0.96 by the DL model. 

The higher emissivity values go along with the expected soil moisture, water, and healthy vegetation emissivity. For soil 

emissivity, assigned values of 0.93 and 0.94 are similar in both emissivity models. Grapevine plant emissivity is higher in 

the DL model (0.95 and higher), while emissivity values for the Random Forest model are lower than 0.95. Based on these 

results, the DL emissivity model results will be incorporated into the TSEB model. Still, the DL model has some limitations 

on specific surfaces and locations (emissivity values under shaded conditions in the image were negative). In those cases, 

the DL emissivity results were replaced with the Random Forest results. 
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Figure 6.  Visual (left) and Narrowband Emissivity results from Random Forest (center) and DL (right) models 

 

Figure 7, Close up of the Visual (left) and Narrowband Emissivity results from Random Forest (center) and DL (right) 

models 
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3.2 Broadband Emissivity 

To estimate the broadband emissivity, water, soil, and vegetation emissivity samples from the UCSB emissivity archive, 

were processed as described in the methodology, along with a narrowband emissivity estimation for the ICI 

microbolometer UAV camera. The narrowband and broadband emissivity relationship and resulting linear equation are 

presented in Fig. 8. 

 

 

Fig. 8.  Broadband vs. ICI camera (narrowband) emissivity relationship based on the UCSB water, soil, and vegetation 

emissivity archive. 

The found relationship of broadband to narrowband emissivity approximates a linear relationship, due to the broad spectral 

response of the ICI camera (7 to 14µm)25. It is expected that other microbolometer sensors and infrared radiometers have 

a similar relationship due to their similar broad spectral response. Still, improvements to this equation can be made by 

separating the information in Fig. 8 by the type of surface (water, soil, vegetation) and developing separated relationships. 

For the purposes of this study, the presented equation is used then to estimate broadband emissivity from the DL emissivity 

results spatially. 

 

3.3 Impact of Emissivity in the TSEB Model 

The scheme detailed below was implemented to assess the impact of incorporating the spatial narrowband and broadband 

emissivities in the estimation of energy fluxes (net radiation, ground heat flux, and sensible and latent heat flux) in the 

TSEB model. 

Ground Truth information 

● EC measured fluxes (Ground Truth information) 

Incorporation of emissivity schemes: 

● Default TSEB narrowband and broadband emissivity values (no narrowband emissivity and 0.98 and 0.95, 

respectively, for vegetation and soil for broadband emissivity) (Emis Fixed) 

● Incorporation of narrowband emissivity in the radiometric temperature using only Equation (1) (DL emis) 

● Incorporation of narrowband and broadband emissivity in the TSEB model (Equations 1 and 3) (DL and 

Broadband emis) 

The incorporation of emissivity schemes was evaluated under the following four scenarios: 

● Using UAV radiometric temperature and using EC Incoming Long-wave Radiation (L↓) measured by Eddy 

Covariance (Tr Original and Measured L↓). 
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● Using UAV radiometric temperature and using Incoming Long-wave Radiation equation 4 (Tr Original and 

Calculated L↓). 

● Using UAV radiometric temperature with atmospheric correction as described by Torres25 and using EC 

Downwelling Radiation measured by the EC instruments  (Tr Corrected and Measured L↓). 

● Using UAV radiometric temperature with atmospheric correction as described by Torres25 and using Incoming 

Longwave Radiation equation 4 (Tr Corrected and Calculated L↓). 

 

These scenarios respond to the potential cases of radiometric temperature measurements and the Incoming Longwave 

Radiation information availability. These four incorporations of emissivity and four scenarios were evaluated under two 

EC instruments (North and South), over which the proposed analysis was performed. The location of the EC towers (red 

dots) and their footprint area (yellow area) are presented in Figure 9. 

 

Figure 9.  North (top) and South (bottom) EC towers located in the area of study. 

 

The results of incorporating the emissivity values (narrowband and broadband) under different proposed scenarios in the 

TSEB model is presented in Fig 10.  
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Fig 10.  Energy Flux comparisons between EC) measurements (NORTH, left column, SOUTH, right column) and 

proposed scenarios using different radiometric temperature information. 
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The detail in Fig. 10 provides the necessary information to assess the defined schemes and scenarios for incorporation of 

emissivity (narrowband and broadband). Overall, inclusion of emissivity causes a small improvement in the estimated 

energy balance components when compared against the EC values. The default emissivity results (Emis Fixed) tend to be 

slightly better or equivalent to the eddy covariance energy balance components, although the incorporation of spatial 

emissivities (DL Emis and DL and Broadband Emis)  significantly improve the performance of energy balance components 

for the SOUTH EC location. The improvement may occur because the emissivity values are likely adjusting the 

temperature values to the different vegetation conditions in the SOUTH location. Regarding the four evaluated scenarios, 

no preferable scenario emerged; although, for the Calculated L↓(incoming radiation) scenario, energy balance components

performed similarly to the Measured L↓. The similarity between Calculated and Measured incoming radiation is an 
indication that, for a location with no EC instrumentation, the incoming radiation will be adequately calculated. With 

regards to atmospherically Corrected vs. Original UAV temperature information, no clear difference was identified 

between the energy balance results under the different schemes and scenarios. This limited difference implies that, despite 

the effect from the atmosphere on the thermal information, the TSEB model is not sensitive to it, and estimated energy 

balance components under the emissivity information and the proposed scenarios are similar.  

A similar discussion can be done for each energy balance component. For Net Radiation (Rn), the scenario using NORTH 

and SOUTH EC locations, including emissivity (LD emis and DL and Broadband emis), and using Measured L↓ performs 

similar or better than Emis fixed. The Ground Heat Flux (G) value, which is internally estimated in TSEB, is overestimated 

for all emissivity schemes and scenarios. No preferable scheme nor scenario emerged, given the same estimate  G value. 

For Sensible Heat Flux (H), the emissivity schemes and four scenarios provide equal or better estimates than the default 

TSEB (Emis fixed), although for all schemes and scenarios, H is underestimated, with no preferable scheme or scenario. 

Finally, for Latent Heat Flux (LE), the schemes and scenarios performed similarly or better than the default TSEB (Emis 

fixed). Differences between schemes and scenarios are minimal, with none prefered over any other. 

These results, while performed over a single agricultural site and data, allows for the following overall conclusions. Spatial 

emissivity estimation (narrowband and broadband) does improve the energy balance model estimates, although in a small 

manner. Thus, whenever the availability of emissivity information from models like the proposed DL model used in this 

study or another is possible, then these emissivity values should be included in the analysis. The inclusion of only 

narrowband (DL emis) vs. both narrowband and broadband emissivities (DL and Broadband Emis) in the TSEB model in 

this study seems to indicate that the performance of these two schemes is similar, but using both by making use of 

relationships between the ~7 to ~14µm narrowband to broadband emissivity is still preferable, as derived in this study. 

Another point for consideration is the atmospheric correction of thermal images, which does not seem to influence the 

estimation of energy balance in the TSEB model, making it suitable to the range of optical and thermal instrumentation 

available for UAVs. The use of calculated L↓ performed well in this analysis, encouraging the use of the TSEB model 

with agricultural weather station information. One caveat of these findings is that these may not be extendable to other 

surface energy balance models that make use of temperature information due to the uniqueness of the dual temperature 

approach. Thus it is advisable to perform a similar effort to determine their sensitivity to emissivity for the sensor and 

broadband estimates.  

4. CONCLUSIONS

Estimation of surface temperature enhances vegetation and soil condition monitoring efforts in agriculture. To achieve 

surface temperature, estimation of emissivity is necessary. For UAVs temperature sensors, emissivity estimates can differ 

from traditionally emissivity values due to the waveband. In this study, an effort to improve the spatial estimation of 

thermal emissivity for UAV technologies using a DL algorithm is evaluated as along with its impact on the temperature 

information used to estimate surface energy balance. For this work, Landsat optical information, NASA HyTES emissivity, 

and UAV data were used to spatially estimate narrowband and broadband emissivities and test under three schemes (fixed 

emissivity, narrowband emissivity, and narrowband and broadband emissivities) and four scenarios which contemplate 

the combination of UAV radiometric and atmospherically corrected temperature as also considering incoming radiation 

(measured and calculated). The energy balance model considered was the Two-Source Energy Balance model. Compared 

to the previously published work31, which used a Random Forest algorithm for estimation of emissivity, the DL model 

provides an improvement, especially in locations with confounding factors (water, soil, healthy vegetation). Additional 

data sets and locations can improve these initial results from this DL implementation. In terms of improvements to the 

estimation of surface energy balance and evapotranspiration, the TSEB model was shown to be insensitive to the changes 
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in temperature and radiation that the schemes and scenarios provided and saw a small improvement in energy flux 

estimation by the inclusion of emissivity, thus its use is recommended whenever this information is available. Nevertheless, 

the documented insensitivity of the TSEB model to changes in temperature and radiation allows for its use with other UAV 

optical and thermal sensors, as currently available in the UAV sensor market. 
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