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Abstract

Dynamic phenomena in cells that can be
analyzed on the ultrastructural level comprise
so different aspects as ion shifts, conformatio-
nal changes of macromolecules, membrane particle
rearrangements, lipid phase transitions, protein-
-protein interactions (notably ligand-receptor
interactions, including their sorting and
sequestration), reversible membrane-to-membrane
contacts, membrane fusions, transcellular
transport phenomena, restructuring of cytoskele-
tal elements, ciliary and flagellar beat, cell
shape changes, etc. Only some of these phenomena
can be analyzed under stationary conditions,
while others are unidirectional and sometimes
very rapid. Therefore, the methodical approaches
to be used (primary methods and follow-up
procedures) might be widely different. Quite
different methods are available, such as fast
freezing, specific labeling, low temperature
processing and/or analysis, x-ray-microanalysis,
etc. Only occasionally are there alternative
non-ultrastructural control methods available.
This survey paper tries to analyze the degree of
reliability (or uncertainty) of current methods
and to pinpoint the goals and eventually also
new methodical perspectives for an integrative
approach to analyze dynamic cellular processes
with the high temporal and spatial resolution
provided by the electron microscope.
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Introduction

Dynamic cellular processes can be sub-
grouped according to the speed of the events
involved (though this is not always precisely
known). With some of the fastest events (e.g.,
conformational changes of macromolecules),
however, one can also consider extreme states
without resolving individual processes. The
"time resolution" (c.f. Plattner and Bachmann
1982, Knoll et al. 1987) required to "catch"
dynamic events is accordingly quite different.
(The same holds true for "spatial resolution".)
Resolution has to be considered not only for
analytical but also for preparative procedures.
Further progress in the analysis of cell dyna-
mics will greatly depend on new methodical
developments. "Fast methods" frequently also
proved important to circumvent preparative
artifacts entailed by "slow methods" (chemical
fixation, e.g.), such as organelle distortion
and vesiculation.

Stationary phenomena will be considered
separately. For instance, electron microscopic
(EM) techniques, such as image filtering and
object reconstruction, have greatly contributed
to an understanding of the dynamics of inter-
cellular communication via gap-junctions (Unwin
and Ennis 1984). Many of the immuno- and affini-
ty-labelings also belong to this group of
techniques, though the phenomena involved are of
moderate speed. They, thus, can also be analyzed
under pulse-labeling conditions. Again recent
EM-work has greatly contributed to our understan-
ding of receptor-ligand interactions and intra-
cellular trafficking of the organelles involved
(Willingham et al. 1981; Geuze et al. 1984). New
preparation methods, such as ultracryotomy
(Tokuyasu 1983), low temperature embedding
(Carlemalm et al. 1985) or labeling with gold
particles of defined size classes (Slot and
Geuze 1985) etc., have allowed for this
progress.

As a prototype of very fast dynamic
processes one can consider membrane fusions.
"Fast methods" appear mandatory to get insight
into such processes (Knoll et al. 1987). Since
they must be expected to occur on the millise-
cond time scale or less (Siegel 1984, 1986),
cryofixation is the only possible EM-method. For
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a long time one faced the problem, e.g., to
analyze membrane fusion during exocytosis. One
either has to synchronize these events (Plattner
1987a) or to perform analyses on a statistical
level (Schmidt et al. 1983). Current cryofixa-
tion techniques (allowing for rapid freezing of
native biological materials) are surveyed by
Plattner and Bachmann (1982), Robards and Sleytr
(1985), Gilkey and Staehelin (1986), Menco
(1986) and Sitte et al. (1987). Most provide
sufficiently high cooling rates to analyze fast
processes; however, mere ultrastructural preser-
vation is not a sufficient criterion (Knoll et
al. 1987).

Fast processes, occurring in the time range
of a second (fractions or multiples thereof),
are represented, for instance, by muscle contrac-
tion, ion shifts, ciliary beat, endocytosis,
organelle shape changes, etc. There has accumula-
ted an increasing body of evidence for the
occurrence of considerable artifacts, when such
phenomena are analyzed by '"standard" chemical
fixation (Plattner 1981, Knoll et al. 1987), so
that again cryofixation, followed by freeze-frac-
turing or freeze-substitution, appears
advisable.

Slow processes are, e.g., restructuring of
cytoskeletal elements or some of the organelle
and cell shape changes. Although this is the
least problematic group of dynamic phenomena,
artifacts - avoidable though - may occur even on
this level (Cheng and Reese 1985; Sandoz et al.
1985a).

For each individual problem one has to
find, eventually to develop, the most
appropriate method. Fast freezing has become
highly important not only with regard to time
resolution, but also as a means to make just
"this one step behind the scene" which chemical
fixation does not allow for. Since this has been
postulated (Plattner et al. 1973), many arti-
facts have been published and many of them can
be ascribed to the non-critical adherence to
"conventional" (mostly chemical, hence slow)
preparation methods. The book by Rash and Hudson
(1979) contains a collection of examples.
Although this aspect is now generally accepted,
other new methods designed to analyze dynamic
cellular events now have to be purged from simi-
lar unexpected pitfalls. Just two most urgent
examples: Though affinity- and immunolabelings
became indispensible tools, the kind of affinity
marker (Farquhar 1978, Davies et al. 1981,
Gonatas et al. 1984) or of immuno-label
(Helenius and Mellman 1983, Ukkonen et al. 1983)
affects results with regard to kinetics and tar-
getings in the course of intracellular trans-
port. Another valuable new method is microin-
jection. Since it has only rarely been combined
with EM-analysis (Wehland and Willingham 1983),
we are hardly aware of potential pitfalls, which
are now gradually recognized (Momayezi et al.
1986 and unpublished observations, McClung et
al. 1987)

Only in some instances can one resort to
alternative methods, like cell fractionation,

vital staining, fluorescence energy transfer,
nuclear magnetic resonance, x-ray-diffraction,
etc. Some of them face similar problems as EM
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studies. Examples are the redistribution of
soluble proteins (during cell fractionation
(Scheele et al. 1978) or microinjection (see
above)) which now should be avoidable by the
latest developments of EM techniques. This will
bring us to a solution of challenging novel
problems. In this sense EM techniques develop to
an increasingly powerful integrative approach
for the analysis of cell dynamics with high
temporal and spatial resolution.

Analysis of dynamic processes

Cryofixation: State of a most important art

The analysis of fast processes requires, of
course, 'fast methods". Cryofixation is the only
approach principally possible (at least until
other techniques such as, e.g., microwave '"fixa-
tion" (Chew et al. 1983, Login et al 1986), have
proven to represent a reasonable alternative).
It is available in widely different variations
(for reviews, see Plattnmer and Bachmann 1982,
Robards and Sleytr 1985, Gilkey and Staehelin
1986, Menco 1986, Sitte et al. 1987) and each of
them might be particularly suitable for a
particular pgoblem. It can yield cooling rates
of 10% - >10 K/s (Plattner and Bachmann 1982,
Bachmann and Mayer 1987), and, thus, very high
time resolution values. Values actually required
for analyzing fast processes are discussed in
more detail by Knoll et al. (1987). Since some
dynamic phenomena, like lipid phase transitions
or membrane fusion might occur at temperatures
well above 273 K, high cooling rates right at
the beginning of the cooling process are
required (Plattner and Knoll 1984, Knoll et al.
1987). This might be provided by rather simple
methods like a l-side propane jet (Plattnmer and
Knoll 1984).

High pressure freezing (Moor 1987) avai-
lable for small tissue pieces does not appear
appropriate for investigating fast processes
(Sitte et al. 1987), but experimental proof for
this or the opposite assumption is not yet
available.

Only since a few years we know that the
highest cooling rates available allow for a true
vitrification of water from the liquid phase
(Mayer and Briiggeller 1982, Dubochet et al.

1982, Bachmann and Mayer 1987, Dubochet et al.
1987); but conditions to be used (either vigo-
rous injection of a fine jet or dipping of an
extremely thin film) are either so harsh, that
maximal freezing velocities cannot be expected
ever to be achieved with fragile biological
materials (Bachmann and Mayer 1987), or the size
of the biological material is limited to objects
of subcellular size (Stewart and Vigers 1986,
Dubochet et al. 1987). It is also important that
devitrification occurs already at 140 K (Bach-
mann and Mayer 1987). Since most currently avai-
lable follow-up procedures (freeze-etching,
-substitution and -drying) require higher tempe-
ratures (Robards and Sleytr 1985, Steinbrecht
and Zierold 1987), recrystallization artifacts
have to be expected, at least on a small scale
(Bachmann and Mayer 1987). As discussed below,
this must have implications for current discus-
sions on the hypothesis on the microtrabecular




Dynamics of cellular processes

Fig. 1:

Freeze-fractured plasma membranes of chromaffin cells rapidly frozen during stimulation with
carbachol. Exo-endocytotic openings of a variety of size classes are visible, marked by arrows and
arrowheads. While the larger openings show continuity of the aqueous compartments, the smallest
structures visible might represent local perturbations of the membrane bilayer.

a) Protoplasmic fracture face, b) exoplasmic fracture face. Bar = 0.5 pum. (From Schmidt et al. 1983,
with permission of the publisher)

organization of the cytosol (Wolosewick and
Porter 1979, Porter and Anderson 1982).
Very fast processes

Membrane fusions. Since estimates of the
time required for the actual process of membrane
fusion are in the range of 0.1 - 1 milliseconds
(Siegel 1984, 1986), it was not surprising that
the earliest fusion stages could not be detected
for a long time on freeze-fracture replicas
(Tanaka et al. 1980). Just the best cooling
rates obtained (Plattner and Bachmann 1982,
Knoll et al. 1987) might be sufficient and it is
also important to provide such high cooling
rates already right at the beginning of the
cooling process (Plattner and Knoll 1984). Using
such methods (propane-jet sandwich freezing)
Schmidt et al. (1983) were able to "catch" the
smallest early fusion stages (10 nm in size)
ever observed, in a biological membrane, during
exocytosis in chromaffin cells (see Fig. 1).
These stages might correspond to inverted micel-
les of the kind proposed by Verkleij (1984) and
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DeKruijff et al. (1985) as fusion intermediates,
but local stochastic deviations from the lipid
bilayer structure would also appear possible
(Bearer et al. 1982, Boni et al. 1984). Though
these data corroborate the "focal fusion con-
cept" (Plattmer 1981, 1987b) with important bio-
logical implications (see below), currently
available ultrastructural (or any other) methods
do not allow us to resolve the precise arrange-
ment of lipids in the actual fusion zone, of
course.

[here are highly temperature sensitive
lipids, the structure of which can be ascer-
tained only by fast freezing from above phase
transition temperatures (Ververgaert et al.
1973, Van Venetie and Verkleij 1981) as con-
firmed by low temperature x-ray-diffraction and
differential scanning calorimetry (Gulik-Krzywic-
ki and Costello 1978, Melchior et al. 1982).
Thermotropic phase separations as related "free-
zing artifacts" may occur due to insufficient
cooling rates in membranes containing mixtures
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Fig. 2: Freeze fractured plasma membranes of Escherichia coli K1060 rapidly frozen from above (a),
within (b) and below the lipid phase transition temperature (as revealed by differential scanning
calorimetry). Segregation of lipid and protein upon solidification of the membrane lipids (as visible
in (b) and (c)) may occur also due to insufficient cooling rates during freezing from above the
transition temperature.

Bar = 0.2 um. (From: Verkleij and Ververgaert 1975, with permission of the authors and of the
publisher)
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Dynamics of cellular processes

of lipids with different phase transition tempe-
ratures (Verkleij and Ververgaert 1975). In bio-
logical membranes this may be the cause that mem-
brane intercalated particles are ''squeezed out"
from smooth lipid patches (Wunderlich et al.
1973, Kleemann and McConnell 1974, Verkleij and
Ververgaert 1975) as illustrated in Fig. 2. In
this case the requirement of very high cooling
rates is demanded by the high lateral mobility
of the membrane lipids, which is orders of magni-
tudes higher than that of membrane proteins.
Lateral diffusion of membrane proteins has been
captured even with rather moderate cooling rates
after experimentally induced clustering (Schuler
et al. 1978, Sowers and Hackenbrock 1981).
Clustering of membrane particles can also be
achieved by a pH shock (PintoDaSilva 1972) or by
adding calcium (Verkleij and Ververgaert 1975,
Schober et al. 1977); this might have some
bearing on the subsequent subject.

Exocytosis. The occurrence of similar pheno-
mena in freeze-fractured stimulated secretory
cells has later been shown to be due to the use
of "conventional" chemical preparation tech-
niques (before freezing), (Orci et al. 1981,
Plattner 1981), possibly combined with a lipid
fluidization effect occurring under conditions
of exocytosis triggering (Chandler 1984). With
regard to exocytosis regulation, fast freezing
methods (followed by freeze-fracturing and -sub-
stitution) have yielded important new insights
(nerve terminals: Heuser et al. 1979, Heuser and
Reese 1981; oocytes: Chandler and Heuser 1979;
mast cells: Chandler and Heuser 1980; amoebo-
cytes: Ornberg and Reese 1981; chromaffin cells:
Schmidt et al. 1983; thrombocytes: Morgenstern
et al. 1987). In all cases, fusion was seen to
start with a rather small opening (also see
above) without the formation of a diaphragm
(Plattner 1981, 1987b). This is opposite to the
scheme derived from chemical fixation (Palade
1975). Furthermore, freeze-fracture replicas
revealed no shift of integral or peripheral
membrane proteins before fusion occurs (Plattner
1981, 1987b); this was again opposite to results
obtained with previously used '"standard tech-
niques'" (Orci et al. 1981). It was important to
find out the "true" sequence of ultrastructural
events during exocytosis, since only then the
question arose, what role proteins might play
during this process; subsequently this important
aspect could be systematically analyzed
(Plattner et al. 1987).

Recent calculations (Sitte et al. 1987)
have shown that - using cold metal surface tech-
niques - laborious and expensive work with
liquid helium is not mandatory, though this has
occasionally been inferred from work on trans-
mitter release (Heuser et al. 1979). It now
appears more important to pinpoint quite precise-
ly the actual plane within a nerve terminal, if
one wants to judge correctly the mode and time
course of exo-endocytotic processes, since these
are delayed in deeper layers of the object
(Torri-Tarelli et al. 1985). Another artifact
hazard inherent to slam freezing methods has
been discussed by PintoDaSilva and Kachar (1980)
who pointed out that delicate structures of
possible relevance for exocytosis might be
damaged by the strong impact.
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Fast freezing methods, especially when
combined with freeze-substitution, would appear
particularly suitable to solve the notorious
question (Finkelstein et al. 1986) of vesicle
swelling during exocytosis. EM evidence for its
occurrence is available so far only from recent
work with thrombocytes (Morgenstern et al. 1987,
see Fig. 3), but the authors - correctly - also
envisage microfusions (difficult to detect)
followed by swelling of vesicle contents as an
alternative explanation. Clearly more work, per-
haps with the application of exogenous markers
(Van Putten et al. 1987) to discriminate between
swelling before and after (micro-?) fusions,
would be desirable.

Fast processes

Muscle contraction. While the sliding fila-
ment hypothesis had been derived in 1953-1963
from static EM pictures (Huxley 1963), a decade
later it was possible by fast freezing and
freeze-substitution to visualize the extreme
functional states of contraction and relaxation
(Van Harreveld et al. 1974). One more decade was
needed to establish accompanying ion shifts,
again by cryofixation, but then followed by
ultracryotomy, freeze-drying and x-ray microana-
lysis (Wendt-Gallitelli and Wolburg 1984).

Ion shifts. The last mentioned example
shows that, although ion shifts occur rapidly,
they can be tackled by recent methodical develop-
ments. X-ray microanalysis and electron energy
loss analysis are applicable to native materials
subjected to rapid freezing, cryosectioning and
freeze-drying (Somlyo 1985, Somlyo et al. 1985).
Even liver tissue surfaces could be appropriate-
ly frozen (by forced contact with melting Freon)
and analyzed for ion distributions. This
revealed the endoplasmic reticulum, rather than
mitochondria, as physiological calcium stores
(Somlyo et al. 1985). Unfortunately, transient
changes of free intracellular calcium as a
second messenger are beyond the reach of such
methods (Somlyo 1985). Recently Schmitz and
Zierold (personal commun.) were able to analyze
ion shifts in secretory contents of paramecia
during rapid synchronous exocytosis (50 milli-
second events over 1 s; Plattner 1987a) which
was "caught" by fast freezing.

Ciliary and flagellar beat operate many
times per second. Therefore cryofixation is an
appropriate method for "fixing" metachronal beat
waves (Wooley 1974, Barlow and Sleigh 1979);
this can avoid inconsistencies which otherwise
often are obtained (Barlow and Sleigh 1979) when
using even optimally adapted chemical fixation
methods (Parducz 1967). It would now be intere-
sting to push analyses further into more subtle
details, such as - what we would like to call -
the "torsion beat hypothesis" by Omoto and Kung
(1980) or the question of conformational changes
of dynein arms (Heuser 1981; however, see
below).

Mitochondria as seen in live cells are
"extremely dynamic organelles capable of pro-
found changes in size, form, and location"
(Tzagaloff 1982). Shape and volume changes in
situ are linked to respiration and phosphoryla-
tion, as shown with time-lapse cinematography
(Frederic 1958). Structural transitions between
"orthodox" and '"condensed" stages, dependent on
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Fig. 3: Freeze substituted human platelets rapidly frozen after stimulation with thrombin. Swelling of
the secretory o.-granules (originally containing a condensed matrix (1)) with gradual dispersion of the
contents ((2), still containing denser inclusions, nucleoids (N)) is obvious. An extensively swollen
granule (3) is revealed which has fused with the plasmalemma (arrow in (a)). The small pore (50 nm in
diameter) is only visible in this section plane. In the adjacent sections (one of them is shown in
(b)) the organelle is surrounded by the organelle membrane and the plasmalemma.

Bar = 0.5 um. (Micrograph provided by E. Morgenstern, see Morgenstern et al. 1987 for details)

Fig. 4: freeze fractured isolated mitochondria rapidly frozen during oxidative phosphorylation reveal
varying degrees of apposition of outer (OM) and inner (IM) membranes as indicated by the fracture
plane deflections between the two membranes. The low degree of membrane interactions in (a) is due to
uncoupling, whereas the high degree of interactions in (b) is characteristic for well coupled
mitochondria.

(Bar = 0.2 pum. From: Klug et al. 1984, with permission of the publisher)
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Dynamics of cellular processes

the functional state of isolated mitochondria,
were also shown by EM-work after chemical fixa-
tion (Hackenbrock 1966). But only rapid freezing
of mitochondria at defined time-points allowed
for resolving the kinetics of these transitions
(Lang and Bronk 1978). Isolated mitochondria
rapidly frozen in different functional states
reveal an additional dynamic structural feature,
i.e, the wvariable interactions of the boundary
membranes (Knoll and Brdiczka 1983; see Fig. 4).
These dynamic contacts depend on metabolic con-
ditions (Klug et al. 1984) and are suggested to
be important for regulated metabolite transport
(Brdiczka et al. 1985, Riesinger et al. 1985),
import of proteins (Schleyer and Neupert 1985)
and transport of lipids (Van Venetie and
Verkleij 1982). Semifusions of the membranes
involving non-bilayer lipids are assumed to
represent the molecular basis of these contacts
(Van Venetie and Verkleij 1982, Verkleij and
Knoll 1986). Rapidly frozen chloroplasts reveal
similar structures (Cline et al. 1985).
Processes of moderate speed

Exocytosis-coupled endocytosis. Mode and
speed of exo-endocytosis coupling have been
found to differ depending on the analysis
method. As to nerve terminals, discrepancies
dependinc on the sample layer actually analyzed
after fast freezing (Torri-Tarelli et al. 1985)
have been discussed above. With Paramecium cells
exo-endocytosis coupling is also quite rapid (50
milliseconds for the individual event; 1 s for
all events in a cell) but they could convenient-
ly be followed by fast freezing techniques
(Plattner 1987a). With a typical gland cell,
these phenomena are non-synchronous, and, thus,
even more difficult to judge. There are indeed
considerable discrepancies in the literature on
this aspect. For instance, with adrenal chromaf-
fin cells it was found that antigens located on
the luminal side of secretory granules are
accessible to antibodies for a very long time
(Dowd et al. 1983), while exocytosis-coupled
fluid phase peroxidase endocytosis went on much
more rapidly (Grafenstein et al. 1986); after
tannic acid staining, ultrathin sections also
revealed the immediate formation of coated pits
indicative of rapid membrane retrieval (Geisow
et al. 1985). (For the possible influence of
IgG-labeling, also see below). This calls for
"rapid" methods which in turn, however, face the
problem that freeze-fracturing can differentiate
between exo- and endocytosis only on a statisti-
cal level (in conjunction with measurements,
e.g., of catecholamine output; Schmidt et al.
1983). It would now appear feasible to perform
precise kinetic analyses with the help of freeze-
-substitution methods, eventually combined with
markers (to monitor early fusions by EM staining
of secretory contents). The methodical potential
would now be available for such analyses.

Transcytosis. Impressive evidence of trans-
cytosis has been obtained with the use of peroxi-
dase-tagged antibodies, when they are transpor-
ted through small intestinal epithelial cells
(Rodenwald 1980), or with microperoxidase mole-
cules added to endothelial cells (Simionescu et
al. 1975). The latter have only little peroxida-
tic activity at physiological pH (Plattner et
al. 1977) and perhaps for this reason do not da-
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mage these sensitive cells. This clearly occurs
with horseradish peroxidase (Lin and Essner
1986). (For peroxidase as a marker, also see
below).

When endothelial cells were fast frozen and
freeze-substituted, the vesicle population
observed differed from aliquots processed by
"standard" chemical fixation (Wagner and Andrews
1985). Similarly no transendothelial channels
could be found (Casley-Smith 1981). Again fast
freezing methods appear more reliable, since
they act so much faster than chemical fixatives.

Microtrabecular structure. Ice crystal for-
mation during freezing or follow-up procedures
(see above) are important, when dynamic microzo-
nations of the kind of the microtrabecular
lattice (Wolosewick and Porter 1979) have to be
analyzed. Microtrabeculae are, thus, difficult
to ascertain by freeze-drying or by freeze-sub-
stitution (as by Porter and Anderson 1982) or by
freeze etching (as by Heuser and Kirschner
1980). Since it would not be visualized by
freeze-fracturing at acceptable temperatures, it
might even not at all be possible to depict this
structure reliably (Miller et al. 1983). The
correlation between local mesh size and speed of
saltatory movements (Bridgman et al. 1986) could
also be accounted for by different degrees of
hydration, which then could be considered as an
indirect indication of a different cytosolic sub-
structure. The situation is far from satisfacto-
ry, since critical point drying has also been
shown to induce - reproducible - artifacts in
the cytosolic compartment (Ris 1985). Hence, the
existence, shape and dynamics of the microtrabe-
cular structure remains open to further
investigations.

Some of the processes that take place with
"moderate" speed are discussed below in "Pulse
label experiments".

Pulse label experiments

When precursors are allowed to be integra-
ted into a labeled product, the dynamic proces-
sing of which has to be analyzed, pulse-chase
experiments are advisable. When subcellular
constituents are indirectly marked (e.g., by
immunocytochemistry), pulse labeling or "perma-
nent'" labeling under stationary conditions (see
below) can be used.

Autoradiography. Our understanding of trans-
cellular transport phenomena is essentially
based upon autoradiographic pulse-chase experi-
ments (Palade 1975). Radioactive labeling is not
hampered by the binding of the ligand-marker
complexes (see below). A particularly elegant
approach is the labeling of living cells by
surface iodination (Muller and Gimbrone 1986) or
by glycosyltransferases (Schwarz and Thilo
1983). However, radiation spread entails very
restricted resolution. Autoradiographic experi-
ments on transcellular transport can now be made
with a refined computer simulation of possible
radiation sources in a cell (Salpeter and
Farquhar 1981). Along these lines further pro-
gress has been made by digitizing EM autoradio-
graphic micrographs (Miller et al. 1985). Also
the use of physical developers has been shown to
yield better resolution than reqular processing
(Kopriwa et al. 1984). High resolution can also
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Fig. 5: Surface replica of a mouse peritoneal macrophage grown on a culture dish. The distribution of
40 nm-gold conjugated to acetylated low density lipoprotein reveals a preferential binding to

restricted regions of the plasma membrane surface.
S um. From: Robenek and Schmitz 1985, with permission of the authors and of the publisher)

(Bar =

be achieved with surface ligand labeling com-
bined with freeze-fracturing (Carpentier et al.
1985). Autoradiographic surface labeling can
also be followed by superimposing the backscat-
tered electron (BSE) image to the secondary
electron signal (Junger and Bachmann 1980).

Special cell surface analyses. For the last
mentioned approach, as well as for any other
surface labelings, new yttrium aluminium garnet
(YAG) BSE-detectors, combined with field emis-
sion electron guns, are of high interest, since
this provides considerably improved instrumental
resolution (Walther et al. 1984). Surface repli-
ca techniques combined with gold labeling also
represent a powerful tool to analyze cell sur-
face dynamics (Hohenberg et al. 1985). Fig. 5
shows an example for receptor localization in
restricted plasma membrane domains (Robenek and
Schmitz 1985).

Indirect labelings. Besides the methods
discussed above, the same procedures can be used
as indicated below for steady state conditions.
However, the time scale (and, hence, the direc-
tion of movements) can be strictly determined
only when the label is applied as a pulse. Impor-
tant data had already been obtained with non-spe-
cific EM markers. Only later it was recognized
that the charge of the marker used, be it peroxi-
dase (Farquhar 1978) or ferritin (Davies et al.
1981), greatly influences the pathway found.
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Gonatas et al. (1984) faced a similar discrepan-
cy, when they compared wheat germ agglutinin
binding, once using ferritin and once peroxidase
as a tag. Once again toxic side effects of horse-
radish peroxidase have to be recalled (Mazarie-
gos and Hand 1985, Lin and Essner 1986). Gold
markers of defined sizes (Slot and Geuze 1985)
to be used in conjunction with (potentially
multiple) immuno- or affinity-labelings would a
priori not entail such a problem, because conju-
gates are fully covered by IgG, protein A, a
lectin or another ligand. Yet other methodical
problems arose meanwhile in this context. The
time required for exo-endocytosis coupling in
chromaffin cells appears to be delayed by bin-
ding of IgG, as compared to monovalent Fab (Dowd
et al. 1983). Similarly Momayezi et al. (1987)
could inhibit exocytosis by crosslinking cell
surface antigens by IgG, but not by adding Fab
fragments. Also in chromaffin cells the forma-
tion of coated pits (Geisow et al. 1985) and
internalization of a fluid marker (Grafenstein
et al. 1986) was much more rapid than expected
from IgG labeling studies (Dowd et al. 1983). A
marginal remark in the work of Patzak and
Winkler (1986) indicates, that the clustering of
the label and the pathway of retrieved membranes
would not be different when either IgG- or Fab-
-labeling was used on the EM level. However,
their respective effect on the kinetics still
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would have to be scrutinized. Indeed such
effects have been observed with other cell types
(Helenius and Mellman 1983, Ukkonen et al.
1983).

Nevertheless labeling experiments of this
kind have successfully explored important
aspects of receptor-ligand internalization or
their uncoupling and differential targeting
(Willingham et al. 1981, Geuze et al. 1984).
Recently monoclonal antibodies allowed for a
further refinement of such analyses (Dunphy et
al. 1985, Weissman et al. 1986). It would be
awarding to use Fab fragments derived from
monoclonal antibodies for some of the problems
discussed in this context. A recent approach for
analyzing simultaneous intracellular traffic
along different (or the same) routes is the use
of double-label cytochemistry as illustrated in
Fig. 6 (Hedman et al. 1987). By the use of this
method the authors conclude that endocytosis-
-coupled membrane recycling and exocytosis
(which was independent of the endocytosis
analysed in the same cells) usually occur in
distinct vesicles, but also that some overlap
may occur.

Some of the experiments discussed here have
not necessarily to be carried out in the pulse-
-chase mode. They can equally well be done under
steady state conditions, when one just tries to
find out the pathways involved (see below).
Analysis of dynamic processes under stationary
conditions

Molecular level. Methods of image recon-
struction can be applied to macromolecular assem-
blies "fixed" under extreme situations. Negative
staining has been applied to isolated gap junc-
tions under conditions of uncoupling (+ calcium)
or coupling (- calcium) (Unwin and Ennis 1983).
Ihe authors found conformational changes of
connexon subunits; calcium causes a twist and,
thus, closing of the hydrophilic channels. The
limited size of such membrane fragments allowed
also for freezing as a thin film and direct
observation in a cryo-EM (Unwin and Ennis 1984).
Besides the faithful preservation of the native
material this preparation method allows for the
visualization of the complete structure inclu-
ding the membrane integrated parts of the sub-
units, which are not shown by negative staining.
However, intermediate structures as suggested to
exist during the close-open transitions (on the
basis of patch-clamp-studies; A. Kolb, pers.
commun. ), have not yet been shown so far to be
accessible with the present methods. Previous
freeze-fracture analyses of the overall gap
Junction structure, following chemical fixation,
have been completely invalidated by more recent
work using fast freezing techniques (Green and
Severs 1984, Miller and Goodenough 1985).

Cryo-EM had also been used to analyze the
dynamics of microtubule depolymerization (Mandel-
kow and Mandelkow 1985), indicating a simul-
taneous removal of monomers from the ends and
from the body of the microtubule. The preser-
vation (no flattening as occurring with negative
staining) allowed for a detailed structural

evaluation by Fourier transformation. Results
thus obtained are well comparable to the data
obtained by x-ray diffraction of hydrated
bundles before freezing (Mandelkow and Mandelkow
1985).

Another structure analyzed by direct ima-
ging is, e.g., ciliary dynein (Heuser 1981).
Fast freezing was used here, however, only to
allow for deep etching studies, while the struc-
tures had been fixed under working or relaxation
conditions and washed with a volatile solvent.
In a similar manner myosin crossbridges in
muscle actomyosin and coated pit formation could
be visualized (Heuser 1981). Similar analyses
showing the occurrence and time course of these
dynamic phenomena in vivo would deserve great
interest.

Another problem to be investigated in more
detail is the occurrence of particle movements
across the plane of the membrane, as observed in
response to local anaesthetics (Sekiya and
Nozawa 1983). Furthermore, in response to a trig-
ger for neurotransmitter release, a reduction of
membrane particles has also been reported to
occur (Israel et al. 1981). The dynamics and the
underlying mechanisms have not yet been
analyzed.

Cellular level. The label is principally
applied (a) as a pulse chase, (b) as a permanent
label before fixation ("pre-embedding methods"),
or (c) after fixation and further processing
("post-embedding methods"). Methods used are,
e.g., labeling with antibodies (or Fab fragments
thereof), lectins or other specific ligands
(enzymes, activators, hormones, inhibitors,
toxins, etc.) Only a brief outline with the
focus on current problems and developments can
be presented here. For a general survey of
immuno- and affinity-EM labeling techniques, see
Plattner and Zingsheim (1983).

Colloidal gold particles of defined size
(Slot and Geuze 1985, Van Bergen en Henegouwen
and Leunissen 1986) allow for simultaneous
double labelings, when they are coated with
antibodies, protein A, lectins or other ligands
(Roth et al. 1981, Handley and Chien 1987). Fur-
ther progress with regard to resolution, anti-
genic specificity and capacity may develop from
the possibility to covalently link very small
gold clusters to specific residues of Fab-frag-
ments (Hainfeld 1987).

The introduction of new low temperature
embedding procedures (Lowicryl® resins) has
greatly improved sensitivity for intracellular
labeling on plastic sections (Armbruster and
Kellenberger 1986). Recent achievements with
techniques of this kind are the use of
transferase-coated gold particles to localize
their site of action in the Golgi apparatus
(Lucocqg. et al. 1987) or the localization of the
site of prohormone -> hormone conversion by
monoclonal antibodies (Orci et al. 1985).

Comparable analyses on the microzonation of
Golgi elements (see Griffiths and Simons 1986)
could be made with cryosections from sucrose im-
pregnated aldehyde fixed cells (Tokuyasu 1983).
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Fig. 6: Double-label cytochemistry. Human epidermoid carcinoma (KB) cells, infected with vesicular
stomatitis virus (VSV), show transferrin(TF)-ferritin label (arrows) and immunoperoxidase label for
VSV-"G" protein (arrowheads). This figure shows the unusual image of single vesicular structures that
contain both TF-ferritin and VSV-"G" protein. The same procedures revealed usually specific label of
distinct vesicles. (a): Elongated tubular elements near the plasma membrane (pm), (b): vacuolar
structure near the Golgi stacks (GS), (c): vesicular element near a receptosome (R).

Bar = 0.1 um. (From: Hedman et al. 1987, with permission of the authors and of the publisher)

1208




Dynamics of cellular processes

Problems characteristic for immunolabeling on
cryosections and strategies to overcome them are
discussed in detail by Boonstra et al. (1987).

Cryostat sections can be infiltrated with
peroxidase-labeled antibodies (Brown and
Farquhar 1984) to localize sorting of lysosomal
enzymes, etc. These authors also indicate precau-
tions to avoid the notorious redistribution of
reaction product from diaminobenzidine (Courtoy
et al. 1983). Another example is the localiza-
tion of acidic compartments by a permeable
indicator that also serves as a hapten to be
localized by antibody-peroxidase conjugates
(Anderson et al. 1984).

A very promising approach seems to be the
combination of rapid freezing, freeze-
substitution and low temperature embedding
(Humbel and Miiller 1985). Recently uranyl
fixatives were shown to preserve well antibody
binding capacity (Erickson et al. 1985) and,
thus, would lend themselves for combination of
these methods with immunocytochemistry. This now
also appears possible even without any
fixatives, when one processes fast frozen
materials with new low temperature embedding
media (Carlemalm et al. 1985). This appears
particularly important with regard to the
localization of reversibly structure-bound
soluble antigens. In this case, however, one has
to face the possible problem of redistribution
of non-fixed cellular constituents during
preparation (H. Schwarz, pers. commun.).

Steady state conditions are also given when
stationary ion distributions are analyzed by
x-ray microanalysis. Some aspects, particularly
concerning cryofixation and calcium localiza-
tion, are discussed above. Zierold et al. (1984)
appreciate closed sandwich samples (rather than
"slam freezing" on a cold metal block, using
"open" samples with an uncontrolled fluid cove-
ring, that partly might evaporate as the sample
is slammed down), since sandwich freezing (see
Plattner and Knoll 1984) allows one to freeze
undisturbed cell monolayer cultures in their own
medium, in a defined space and composition,
without affecting ion distributions. Of course,
cells should be kept only for as small a time
period as possible within such a closed sand-
wich; (for vitality tests, see Plattner and
Bachmann 1982).

Slow processes

The advantage for the use of cryotechniques
even for the analysis of slow processes is exem-
plified by ameboid movement. Differences in ion
concentrations are detected in pseudopodia and
other sites of the cells during the slow move-
ment (Schéfer et al. 1985).

It is surprising to what extent cell shape
and slow cellular processes can be distorted by
chemical fixation. For instance, a goblet cell
no more deserves its name, since it has been
visualized by fast-freezing and freeze-substitu-
tion (Sandoz et al. 1985b). A long time ago the
same methods had proved useful to determine the
precise width of intercellular spaces in brain
tissue (Van Harreveld et al. 1965) and only
these data precisely matched the physiological
givings. Neuritic growth cones also can be faith-
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fully analyzed only with rapid freezing tech-

niques (Rees and Reese 1981), as was shown for
the true morphology of lysosomes (Robinson et

al. 1986).

Microtubules are another system quite sen-
sitive to chemical fixation at ambient tempera-
ture. Their number is much greater, when cells
are fast frozen and freeze-substituted (Sandoz
et al. 1985a). The reason might be the conside-
rable turnover between monomeric tubulin and
microtubules (Schulze and Kirschner 1987), which
could allow for rapid artifacts during chemical
fixation at ambient temperature. A "stabilizing"
fixative, with guanosinetriphosphate, a Ca-chela-
tor and Mg-ions added (Luftig et al. 1977),
later turned out to induce - as a supravital
artifact - the formation of new microtubules
(Mesland and Spiele 1984) that otherwise would
not occur. These multiple contradictory effects
make it difficult to establish the "true" appea-
rance of the microtubular system on the EM level
and data obtained on the light microscope level,
by intravital observations, might sometimes be
even more reliable (Schulze and Kirschner 1987).

All these aspects concerning slow processes
or even the mere preservation of "static", but
sensitive, structures are intimately connected
with problems discussed in the following
section.

Preparation Artifacts and Appropriate Controls

"Standard" techniques for chemical fixation
frequently entail serious distortions of dynamic
(and static) ultrastructural details. The fixa-
tive action may be too slow (Coetzee and
VanDerMerwe 1985) to avoid vesiculation of com-
partments during chemical fixation (Buckley
1973, Mersey and McCulley 1978, Fernandez and
Staehelin 1985). At the cell periphery lamellar
structures, thought to contribute to nerve
growth cone formation, disappear during chemical
fixation (Cheng and Reese 1985). Small vesicles
located beneath the cell membrane may totally
disappear from fibroblasts (Bretscher and
Whytock 1977). Other examples concerning secre-
tory organelles or endothelial vesicles, microtu-
bules or microtrabeculae are discussed above.
The book by Rash and Hudson (1979) contains an
ample collection of artifacts (induced by chemi-
cal treatments) which one could overcome since
the sixties by using one out of an ever growing
number of fast freezing techniques (see Van
Harreveld et al. 1965, Plattner et al. 1973,
Plattner and Bachmann 1982, Robards and Sleytr
1985, Gilkey and Staehelin 1986, Menco 1986 and
Sitte et al. 1987).

To control any possible effect of the mani-
pulations required for fast freezing techniques,
vitality of the cells has to be ascertained, but
only before freezing (Plattner et al. 1973).
Other controls are provided by in vivo affinity
labeling, eventually combined with image intensi-
fication which recently has been greatly im-
proved by computer assistance (Allen and Allen
1982, Kukulies et al. 1985). For this microin-
jection is required in most cases. Microinjected
antibody-coated gold particles could first be
localized in ultrathin sections (Wehland and




Willingham 1983), but now video-enhanced
contrast procedures also allow for identifying
gold labeled structures in vivo (DeBrabander et
al. 1986). So potentially both levels of obser-
vation could now be combined.

However, one has to caution that the appli-
cation of antibodies to living cells by microin-
jection also raises new problems, such as redi-
stribution of reaction products (with peroxidase
labeling; Momayezi et al. 1986) or crosslinking
and sequestration of soluble antigens (unpubl.
observ.).

Conclusions

Electron microscopy has substantially con-
tributed to an understanding of cell dynamics.
The arrangement of actomyosin elements in muscle
fibers had led Huxley (1963) to postulate the
sliding filament hypothesis. Meanwhile one can
even visualize binding sites of monoclonal
antibodies on individual myosin molecules and
simultaneously pinpoint interactions with the
contraction mechanism (Flicker et al. 1985). A
similar progress has been made with regard to
exocytosis (Palade 1975) and endocytosis (Geuze
et al. 1984, Willingham et al. 1981). The impor-
tance of the development of new techniques for
deeper insight into problems of cell dynamics
can be easily judged, when these data are com-
pared with the first visualization of the same
processes by DeRobertis and Vaz Ferreira (1957)
and by Palade (1959). These processes can now
also be faithfully analyzed in the millisecond
frame (Plattner 1987b). Most impressive are
recent data on routing of different ligands and
receptors from the cell surface to the interior
(Willingham et al. 1981, Geuze et al. 1984) and
on the sequestration phenomena occurring in the
Golgi area (Griffiths and Simons 1986).

All the progress achieved has depended on
the development of methods and instrumentation.
It remains to be hoped that this critical
balance of current achievements, goals, problems
and perspectives favours discussions on new
developments.
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Discussion with Reviewers

You make it clear that the only
useful preparation technique that is able to
preserve fast and very fast processes are such
that involve various quick-freezing methods. An
alternative method would have the advantage that
it is even quicker than the quickest freezing
method and one that penetrates at a great depth,
is the use of a strong neutron flash. This has
been suggested and evidently also attempted
successfully by John Luft from University of
Washington in Seattle. Do you have any comments?
Authors: Cryofixation has the limitations given
by the physical properties of water: poor heat
conductivity restricts the efficiency near the
surface of even optimally cooled biological
materials. Any alternative that would help us to
overcome these limitations would be revolutiona-
ry and open up new fields. But applicability of
alternatives with a similar possible impact
still would have to be shown.

BA Afzelius: The first fixation method that was
quick enough to preserve the cilia of protozoa
in their metachronal waveform was the chemical
fixation technique used by Parducz (1967). He
used a mixture of strong osmium tetroxide and
mercuric chloride at room temperature or above.
This technique evidently is so quick that it can
do what some of the early freezing methods could
not. Do you have any information of whether other
chemical agents, such as acrolein, could be
quick enough to compete with the freezing
methods, and whether the quickest fixation
methods in these chemical alternatives would be
used at an increased temperature.

Authors: Rapid freezing techniques are grown up
considerably since these early days. What has
been pointed out above as a principal drawback
of the freezing approach, the poor heat conduc-
tivity of ice, has an equivalent for chemical
fixatives, i.e., the limitations given by
diffusion velocities. We believe that
dissipation of heat should be much more rapid
than diffusion of chemicals. The problem is
emphasized by the difficulties which are
especially obvious with plant cells due to their
very poor diffusion properties.

K-R Peters: Which techniques are available to
image in bulk, quick frozen specimens, molecular
fine structures without having to warm the
specimen up above 140 K?

Authors: The real problem is to freeze bulky
specimens quick enough (of course without
cryoprotectants). Only then the avoidance of
higher temperatures (> 140 K) would be of any
significant advantage. If this would be
possible, freeze fracture (but not etching)
under very good vacuum conditions would be
possible.

K-R Peters: Do you know about any possibilities
for freeze substitution and embedding/etching
drying below 140 K?
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to

Authors: No. Data available so far point
applicability of these techniques only above
that critical temperature range. For etching,

see above.
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