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Abstract 

This paper reviews the work undertaken on 
the X- ray microanalysis of growth cartilage 
particularly in relation to matrix 
calcification. Attention is focused on the 
methodology available to accurately locali ze and 
retain the elements of int erest. A method is 
described which involves rapid freezing, low 
temperature freeze drying in a custom built 
device, and embedding in Spurr resin. The 
results show that little tissue damage occurs 
and that e lements of physiological interest are 
accurate ly localized at the sub-cellular level. 
Where damage occurs to chondrocytes as a result 
of freezing, however, dense intra mitochondrial 
granules are seen suggesting a phase 
transformation takes place resulting in the 
precipitation of ca lci um phosphate. Further 
improvements may be made in retaining the more 
labile elements such as K by using resins which 
polymerize at low temperature. 

Key Wor~: X-ray microanalysis, cartilage, 
freeze drying, resin embedding 
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Introduction 

Growth cartilage, epiphyseal plate and 
mandibular condylar cartilage in particular, 
have been the subject of intensive investigation 
by X-ray microanalytical methods since the 
inception of the technique. Growth cartilage was 
given this attentio n because of the interest in 
the complex series of events which lead to the 
ordered deposition of an inorganic phase in the 
organic matrix and because the inorgani c phase 
was present in sufficient concentration to be 
detected by equipment available at the time. 
For example the early work of Brooks et al 
(1962) and Tousimis (1966), showed that calcium 
and phosphorus could be detected in the matrix 
of epiphyseal growth cartilage and that its 
relative concentratio n varied according to the 
site undergoing analysis. 

Much of the earlier work on the X-ray 
microanalysis of cartilage gave no regard to 
the artefacts of tissue preparation. Hall et al 
(1971, 1973), demonstrated the presence of 
calc ium and phosphorus in the membrane bound 
osmiophil ic extracellular matrix vesicles 
described by Bonucci (1967, 1970) and Anderson 
(1969) as the initial site of apatite nucleation 
in carti lage. These studies used carti lage from 
the costo-chondral junction of guinea pigs fixed 
in aqueous buffered 1% osmium tetroxide. Ali 
(1976) and Ali et al. (1977b) using 
conventiona lly fixed but unstained ca lcifying 
carti lage from the rabbit described the 
increased accumulation of calcium and phosphorus 
in matrix vesicles as the zone of extracellular 
matrix calcification approached. It is now very 
clear that any exposure to aqueous media, 
however brief, results in the loss or 
translocation of ions of physiological interest 
(Boothroyd 1964, Thorogood and Craig Gray 1975, 
Bishop and Warshawsky 1982). 

However a repetition of the work using 
cryofixation and cryoultramicrotomy produced 
similar results with matrix vesicles which 
contained on X-ray microanalysis material with a 
high Ca/P molar ratio indicative of 
hydroxyapatite (Ali et al 1977a). Additionally 
the chondrocytes contained electron dense intra­
mitochondrial granules with a Ca/P molar ratio 
more characteristic of amorphous calcium 
phosphate. Clearly the Ca/P molar ratios so 
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determined and presence or absence of 
intramitochondrial granules are related to the 
tissue preparation techniques. 

Recent work in our laboratory (Appleton et 
al 1985) suggests that the presence of 
mitochondrial granules is indicative of 
chondrocyte damage which can occur during rapid 
freezing. The studies of Landis (1979) and 
Landis and Glimcher (1982) on cryosectioned 
cartilage confirmed that differences exist in 
the Ca/P molar ratios between mitochondri al 
granules and non-membrane bound extracellular 
particles which they suggest are the initial 
site of matrix calcification. No signal for 
calcium was found in the extracellular matrix 
vesicles and there was no significant difference 
between the intra-vesicular and extra-vesicular 
phosphorus. It was suggested therefore that the 
presence of intra vesicular calcium and 
phosphorus may be an artefact of tissue 
preparation. However 07awa & Yamamoto (1983), 
Morris et al. (1983) using anhydrous methods for 
the examination of rat epiphyseal growth plate 
detected mineral deposits within or in close 
association with matrix vesicles. These mineral 
deposits were confirmed by using energy 
dispersive X-ray microanalysis. No other mineral 
deposits were found at other sites preceding 
matrix vesicle calcification. The necessity of 
avoiding aqueous media would tend to invalidate 
the study of Davis et al. (1982) who described a 
specific distribution of calcium and phosphorus 
around hypertrophic chondrocytes from chi ck 
cartilage fixed initially in aqueous solutions 
of glutaraldehyde. 

Boyde and Shapiro (1980) using separ ated 
intracellular and extracellular components of 
cartilage found on X-ray microanalysis high 
extracellular K levels. High levels of intra and 
extracellular Na and K were also found in rat 
epiphyseal (Barckhaus et al. 1981, Krefting et al. 
1981, 1984) and chicken growth plate (Hargest 
et al. 1985). It was also shown by Quint et a l. 
(1982) that significant amounts of K were not 
extractable when treated with buffer and it was 
therefore suggested that these ions were bound 
to negatively charged macromolecules such as 
proteoglycans. 

This study describes some of the X-ray 
microanalytical results obtained after rapidly 
freezing cartilage, freeze drying and embedding 
in resin. All of these measures are intended to 
minimise artefacts due to specimen prepar ation 
and thereby produce an accurate representation 
of element distribution. Improvements in fast 
freezing techniques and consequent minimising of 
ionic shifts have diverted attention from the 
solid intracellular and extracellular inorganic 
phases. Efforts are now also being focused on 
the distribution of ions in the chondrocytes and 
in the organic matrix before a solid phase 
appears. Therefore more effort is being directed 
towards understanding the role of cells in the 
calcification process. 
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Rapid freezing and freezing drying of cartilage 

A rapid rate of freezing is best achieved 
by using liquid nitrogen cooled liquid propane 
at several degrees below its equilibrium 
freezing point, i.e., at 93K (Elder et al 1981). 
The aim is to achieve a rate of cooling in which 
the ice crystals formed are so small, at least 
at the surface of the specimen, that they are 
beyond the limit of resolution of the electron 
microscope and therefore cause minimal tissue 
disruption or elemental redistribution. Condylar 
cartilages were removed from 5 day old black and 
white rats anaesthetised with Nembutal. The 
smallest pieces of tissue which could be 
practically manipulated were mounted on thin 
flat copper discs and flash frozen in liquid 
propane, ( Lyon et a I. 1985, Appleton et al. 1985). 
The propane was produced by allowing the gas to 
pass through a coiled copper tube immersed in 
liquid nitrogen according to the method of Elder 
et al.(1981)(Fig1). Thediscs were removed 
from the propane and stored in liquid nitrogen 
prior to rapid transfer onto the stage of a 
custom built freeze drying device the chamber of 
which had been flushed with Argon (Lyon et al. 
1985). The stage was pre-cooled to 150K prior 
to the transfer of the discs. There may be some 
slight initial rise in the temperature of the 
specimen but not enough to bring about freeze 
drying. Although specialised freeze drying 
devices are commercially available they were 
either too expensive or unable to maintain a low 
enough temperature to prevent ice re­
crystallization during freeze drying. Some low 
temperature freeze drying devices have been 
described (Stowell 1951, Hanzon and Hermudsson 
1960, Frederik and Klepper 1975, Sjost rand and 
Kretzer 1975, Terracio and Coulter 1975, Coulter 
and Terraci o 1977, Edelmann 1977, Zs Nagy et al. 
1977, Coutler and Terracio 1978) but the 
apparatus described in Fig 2 was designed to be 
inexpensive, ubiquitous and easy to operate. 
Furthermore it was designed to allow 
polymerization of low temperature resin on the 
cold stage. 

The freeze drier consists of a perspex 
chamber containing a thermostatically controlled 
cold stage cooled by means of a conduction bar. 
The chamber was maintain ed under vacuum by a 
rotary pump. A problem with perspex is that it 
absorbs most incident ultraviolet radiation. A 
requirement was that the freeze drier could 
subsequently be used for the polymerization of 
low temperature resins in situ using ultraviolet 
light (Carlemalm et al. 1982). Therefore, a 
silica glass window, transparent to this form of 
radiation was incorporated into the lid. 
Aluminium was chosen for the conduction bar as 
it has a lower thermal conductivity than copper 
or brass, but a lower specific heat capacity, 
and therefore thermal mass. In practice this 
allowed adequately low specimen temperatures to 
be maintained while ensuring economical use of 
liquid nitrogen. Thermal integrity between the 
aluminium stage assembly and conduction bar was 
achieved by having matching tapers on these 
components which then interlocked. The 
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Fig 1 Diagram of apparat us used to produce 
liquid propane. The gas (P) enters the copper 
tubing which is coiled (C) and immersed in 
liquid nitrogen. The liquid propane (Pp) is 
col lected in a plastic cont ainer supported by a 
bracket which c lips onto the wall of a vacuum 
flask. A stirrer (S) is connected to an electric 
motor via a flexible drive and the temperature 
of the liquid propane is monitored by a 
thermometer (T). The whole apparatus is enclosed 
in a fume cupboard for safety. 

Fig 2 The cast Perspex chamber of the freeze 
drying device containing the specimen stage to 
which are connected heaters and sensors and from 
which a conduction bar passes through the base 
of the chamber into a 251 Dewar flask of liquid 
nitrogen which cools the stage. Vacuum (10-3 
Torr) is obtained via a rotary pump and the 
chamber may be flushed with Argon, through a 
needle valve, before opening. 

1137 

conduction bar projects above the stage and being 
colder at BOK acts as a cold finger for water 
vapour from the drying specimens. 

The specimen stage has depressions machined 
on either side of the condenser to accept 
specimen stubs and a vessel containing low 
temperature resin could thus be used. A 
perfectly flat ground copper plate was inserted 
into the specimen side and ther mal contact was 
mai ntained with the stage by means of conducting 
paste. Beneath each depression a small 
resistance heater and thermocouple were fitted. 
These were connected to a contro l and monitoring 
device. 

During freeze drying the temperature was 
allowed to rise to 188K and maintained at this 
temperature until the tissue pieces were dry. 
Drying was complete as determined by visual 
examination in 24-48h after which the specimens 
were removed from the vacuum and the tissue was 
embedded in Spurr (1969) resin. With Spurr resin 
the tissue was kept under vacuum for 2-3 days at 
room temperature and then polymerised at 333K 
overnight. Some tissue was also exposed to 
osmium vapour prior to embedding. Embedding in 
resin facilitates tissue orientation and routine 
thin sectioning while avoiding the use of 
chemicals and thereby minimising potential 
artefacts . (Hohling et al. 1970, 1972, Hohling 
1972, Ingram et al. 1974, Ingram and Ingram 1975, 
Sjostrand and Kretzer 1975, Hoh Ii ng et a 1. 1976, 
Barckhaus and Hohling 1978, Hargest et a l. 1985, 
App I eton et al. 1985). 

X-ray microanalysis of sections 

Sections of unosmicated tissue 500 nm thick 
were cut dry with glass knives and placed on 
gold or copper grids and given a thin conductive 
coat of carbon in an Emscope sputter coater 
equipped with a carbon coating attachment . Gold 
grids were used for analysis . The grids were 
placed in a graphite holder and examined at 80kV 
in both the transmission (TEM) and scanning 
transmission mode (STEM) of a JEOL lOOCX 
electron microscope equipped with a li quid 
nitrogen cooled anti-contamination device, 
liquid nitrogen cooled baffles, and a Kevex 
detector together with a Link System 860 pulse 
processor. The holder was tilted at 30° and the 
peak to background ratio was improved by the use 
of a hard X-ray kit (JEOL UK Ltd) and molybdenum 
fixed apertures. Analyses were carried out in 
the STEM mode at 80kV with a 200 nm spot size. 
The chlorine present in the Spurr resin was used 
as a standard reference so that each analysis 
was carried out for a fixed integral of 1000 
counts for the chlorine peak. Attention was 
concentrated on the early hypertrophic and 
hypertrophic zones of the cartilage (Appleton, 
1969) mitochondria, cytoplasm and inter-cellular 
matrix were analysed. The relative mass 
fractions of Na, K, Mg, P, Sand Ca were 
obtained. In each case a window of 160eV wide 
was established and the total count recorded. 
The background was calculated as the mean of 
measurements on either side of the peak. A 



J. Appleton 

Fig 3 Chondrocytes of early hypertrophic zone 
after freeze drying, exposure to osmium vapour, 
and embedding in Spurr resin. Typically the 
chondrocytes contain mitochondria (-+-) and 
polarize d accumulations of glycogen (g). The 
nuclei (n) and matrix (m) exhibit some ice 
crysta llite damage. Bar= 2µm. 

Fig 5 Detail of mitochondria from damaged cell 
showing spaces (~ previously occupied by 
mitochondrial granules removed during 
processing. Bar= 0.5µm. 

continuum measurement was obtained by setting a 
window between 11.50 and 14.50eV (20eV/channel). 
If the mass of the section increased so did the 
continuum count. In order to establish the 
validity of the rapid freezing, freeze drying 
and embedding techniques employed in this 
investigation X-ray microanalysis was undertaken 
on selected intra-cellular and extracellular 
compartments to establish if there were 
differences in the relative amounts of elements 
present. 
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Fig 4 Adjacent chondrocytes exhibiting 
different amounts of ice crystallite damage. 
In the lower chondrocyte there is considerable 
damage and the mitochondria (+) contain 
numerous intramitochondrial granules. 
Osmicated carti lage. Bar= 2µm. 

• 
n 

Fig 6 Hypertrophic chondrocyte with some 
evidence of lacuna (1) formation. Ice 
crystallite damage is confined to nucleus (n). 
Unosmicated tissue. Bar= 2µm. 

Results 

Ultrastructure 
The results of the rapid freezing produced, 

in most instances, a zone up to 15 µm thick at 
the surface of the cartilage which was free of 
significant ice crystal damage. 

The chondrocytes of the early hypertrophic 
zone had a similar appearance to that described 
after conventional electron microscope 
preparation techniques (Appleton, 1969). That is 
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ce lls were flattened, often with polar 
accumulations of glycogen, and containing 
endoplasmic reticulum, Golgi apparatus, 
mitochondria and lysosomes (Fig 3). Resolvable 
ice crysta l damage was confined to the nuclei 
and extracellular matrix. The mitochondria of 
chondrocytes undamaged by freezing did not 
usually contain intramitochondrial granules, 
whereas cells which were damaged had 
mitochondria conta ining granules in large 
numbers. This is particularly well illustr ated 
where adjacent cells suffered different amounts 
of damage during the freezing process (Fig 4). 
Many mitochondrial granules were removed during 
routine thin sectioning, even though an alkaline 
section flotation medium was used (Fig 5). 

The highly hydrated matrix suffered the 
most significant ice crystal damage but in some 
inst ances vesicle like structures were evident. 
As chondrocytes enlarged to become hypertrophi c 
they were more rounded and were further 
separated by matr ix. Deeper in the hypertrophic 
zone the beginning of l acuna formation was 
evident (Fig 6). 
X-ray microanalysis 

The results are given in Tables 1, 2, 3, 4 
and 5. 

Discussion 

The object of this investigation was to 
produce a routine methodology by which tissue 
could be prepared for the accurate localization 
and quantitation of ions and molecules in 
cartilage and other calcifying tissues using 
energy dispersive analysis by X-rays. There is a 
considerable body of evidence to support the 
view that rapid freezing of tissues is the best 
method to achieve these ends and that chemical 
fixation is unsuitable (Landis 1979, Landis & 
Glimcher 1982, Morris et al. 1983). Thereafter 
the principal problems are associated with the 
handling of the frozen t i ssues prior to 
undertaking energy dispersive analysis. 

The difficulties associated with developing 
a reproducible freezing regime were large ly 
overcome by using liquid propane as a cryogen 
accordi ng to the method of Elder et al. (1981). 
Liquid propane at its melting point of 86K is 
capable of producing the fast cooli ng rates 
necessary to avoid ice crys t al damage (Schwabe & 
Terracio 1980, Elder et a I. 1981, Plattner & 
Bachmann 1982). Adequate tissue preservation, 
however,i s confin ed to a zone 12-l5µm thick at 
the surface of the specimen. This zone is co­
incident with the dr ied shell which rapidly 
forms around the specimen as ice sublimes during 
freeze drying. The frozen core will then dry as 
a function of the heat supplied to the specimen 
(Stephenson 1960). The most useful part of the 
specimen for morphological and analytical 
studies dries, therefore, at a very low 
temperature (167-173K) limiting ice re­
crystallization to a minimum. Damage may be 
caused to tissue if ice re-crystallization is 
allowed to occur. In this laboratory tissue on~~ 
frozen was maintained at or below 173K and 10 
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Torr and then allowed to rise slowly to 188K to 
facilitate drying. Although it has been 
ca lcul ated theoretically that drying under such 
conditions cannot take place over a reasonable 
time (Umrath 1983) there are numerous examples 
in the literature of tissues being dried well 
within the theoretically predicted figures 
(Hanzon & Hermudsson 1960, Sjostrand & Kretzer 
1975, Barckhaus & Hohling 1978, Roomans & 
Boekestein 1978, Appleton et al. 1985, Lyon et al. 
1985). In this investigation ice crystal damage 
was minimal and was considered to have taken 
place during the initial freezing. 

Cryosections which are subsequently freeze 
dried produce energy dispersive analytical 
results which indicate that elements of 
physiol ogic al interest are retained (Ali et al. 
1977a & 1978, Appleton 1978). However this 
technique is time consuming and technically 
difficult. The distinct advantage of embedding 
tissue in resin is that it facilitates t he rapid 
productio n of re producibl e sections for both 
morphologica l and analytica l st udies. The use of 
Spurr resin introduced chlorine but this was 
used as an internal reference standard. Res in 
will also dilute ce llul ar constituents by 
increasing the mass of the speci men and 
therefore affect the lower limit of detection 
(Ingram & Ingram 1975). It has als o been 
suggested that resin may leach or re-locate 
certain ions (Yarom et al . 1975). However the 
resu lt s of t his study provide no evidence to 
support these content ions. Furthermore the 
recent work of Hargest et a I. ( 1985) supports the 
view that resin embedding compares favourably 
with cryosect ioning as a means of accurate ly 
retaining and localizing element s. 

There were few, if any, mineral granules in 
those hypertrophic chondrocytes undamaged by 
freezing. This contrasts with the observation 
from numerous stud ies t hat mitoc hondrial 
granules appear in ce ll s associated with hard 
tissue formation and mineralization (Ali et al. 
1977a, Ali & Wisby 1975, Burger & de Bruijn 
1979, Goldberg & Escaig 1984, Landis et a l. 
1977, Landis & Glimcher 1982, Manst on 
& Katchburian 1984, Mar tin and Mathews 1969, 
1970, Posner 1978, Seveus et al. 1978). However 
mitochondrial granules were present in large 
numbers in ce 11 s damaged by freezing. It is 
suggested, therefore , that where chondrocytes 
were rapidly frozen mineral granules did not 
form even in the presence of relatively high 
concentratio ns of ca lcium and phosphate ions. 
The presence of mineral granules may represent, 
therefore, the result of a phase transformation 
which takes place because of inadequate freezing 
and subsequent tissue damage (Landis & Glimcher 
1982, App I eton et a I. 1985). 

The absence of tissue damage due to the 
initial freezing and the energy dispersive 
analysis results suggest that the methodology 
described in this study is reliable in retaining 
the localization of ions of physiological 
interest (Tables 1,2,3,4,5). For example there 
was a highly significant difference between the 
amount of Na present in matrix and mitochondria 
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TABLE 1 
Relative mass fractions of elements in mitochondria of chondrocytes from mandibular condylar 
cartliage freeze dried and embedded in Spurr resin 

Zone 
Early Hypertroph1c 
Hypertrophic 

No. of analyses 
6 
6 
p 

This 1nd1cates a marked difference 1n the 
Na and Ca are significant ly higher in the 
early hypertrophic zone. 

Na Mg P S K Ca 
33.9 30.3 66.6 69.6 21. 4 ~ 
50.3 29.9 48.5 107.5 21.5 69.4 

0.001> NS 0.05>---□. 01> NS ----□.ITT> 

relative mass fractions of al l elements except K. 
hypertrophic zone while Sand Pare higher in the 

TABLE 2 
Relative mass fractions of elements in matr ix of mandibular condylar cartilage freeze dried 
and embedded7n purr resin 

Zone No. of analyses Na Mg p s K Ca 
Eariy hypertroph1c 6 38.1 29.9 37.9 .14.o 22.5 36. 5 
Hypertrophic 6 62.0 32.3 38.6 109. 1 22. 1 34.0 

p 0.001> 0.1> NS 0.001> NS NS 
Shows a marked difference In Na, Mg and s al I of which are higher 1n the hypertroph1c matrix. 

TABLE 3 
Relative mass fractions of elements in cytoplasm and mitochondria of early hypertrophic 
chondrocytes fro m mandibular condylar cartilage freeze dried and embedded 1n Spurr resin 

Early hypertroph1c 
chondrocytes 
Cytoplasm 
Mitochondria 

No. of analyses 

6 
6 

Na 

35.9 
34.0 

Mg 

30.0 
30.3 

p 

52.5 
66.6 

> 

s K Ca 

61.2 22.0 29.0 
69.6 21.4 44.0 
.01> NS 0.001> 

Shows that there 1s a s1gn1f1cantly higher mass rac 10n o o and P 1n the mitochondria 
when compared with the cytoplasm of early hypertrophic chondrocytes. 

TABLE 4 
Relative mass fraction of elements in mitochondria and matrix of hypertrophic 
Cart il age freeze dried and embedded 1n Spurr resin 

Hypertroph1c carti !age No. of analyses Na Mg p s 
Mitochondria 6 50.3 29.9 48.5 107. 5 
Matrix 6 62.0 32.3 38.6 109.1 

p 0.01> 0.05> 0.05> Ns 
Shows that m1tochondr1a contain s 1gn1f1cantly higher mass fraction~ of Ca, P, 
compared with the matrix. 

TABLE 5 

K Ca 
21. 5 69.4 
22. 1 34.0 
NS 0.001> 

Na and Mg when 

Relative mass fraction of elements in cytoplasm and matrix of early hypertrophic chondrocytes 
of cart ilage freeze dried and embedded :n Spurr res in 

Early hypertr ophic No. of analyses Na Mg P S K Ca 
carti !age 
Cytop 1·a~s~m--------~6--- --~3~5~ _ 9~-~3~0-. 0----5~2~. 5~-6~ 1-.~2-~2-2 .~0--2~9~_~0-
Matr ix 6 38. 1 29.9 37.9 74.0 22.5 36.5 

P NS NS 0.01> 0.01> NS 0.01> 
Indicates s1gn1f1cant ly higher mass fractions of Ca and S 1n the matrix tha n 1n cytoplasm but 
s ignificantly lower fractio ns of phosphorus in matrix than cytop la sm. 

1140 
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of ear ly hypertrophic cartilage when compared 
with hypertrophic cartilage (P<0.001 ). These 
results for Na are similar to those of Hargest 
et al. (1985) and Barckhaus et al. (1985). In both 
cases however they detected s ignifi cant 
differences in the amount of K. For example, 
Hargest et al. (1985) using freeze drying 
embedding calculated 20mmol/kg wet weight of K 
in ear ly hypertrophic chondrocyte cytoplasm, 
208mmol/kg in early hypertrophic matri x and 
47mmol/kg in early hypertrophi c mitochondria. 
In the present study such differences were not 
detected and this may be due to incomplete 
drying at sufficiently low temperature (Edelmann 
1986). Therefore the specimen temperature may 
be higher than that recorded for the specimen 
stage or cellular ice thaws during the warming 
of the specimen. Such difficulties will be 
resolved by modifying the freeze drying device 
so that specimen temperature can be accurately 
monitored. 

Barckhaus et al. (1985) localized the Kand 
Na to particles bound to the cel l membrane of 
hypertrophic chondrocytes and furthermore these 
e lements are extractable with water (Barckhaus 
et al. 1985) but not extractable with buffer 
(Quint et al. 1982) indicating they are bound in 
some way. Attempts to observe such particles in 
condylar cartilage were not successful . The 
significance of the presence of these 
elements is uncertain but they may reflect 
exocytotic processes associated with Na-K-ATPase 
(Barckhaus et al. 1985). 

Significant differe nces were also noted, 
for example, in the relative mass fractions of 
Ca and Pin mitochondria from early hypertrophic 
and hypertrophic chondrocytes . In hypertrophic 
chondrocyte mitochondria the relative amount of 
Ca was higher but P was lower. The result for Ca 
is in line with previous investigations (Ali 
et al. 1978, Althoff et al. 1982, Hargest et al. 
1985, Landis & Glimcher 1982) but the result for 
P appears to be anomalous. 

There i s clearly scope for improvement in 
the methodology which may resolve, for example, 
the problem of the relatively low level of K 
found in this investigation when compared with 
other studies. The principal improvements which 
can be made are: 
1. To the freeze drying device by ensuring 
complete contact between the dis cs, which carry 
the specimens, and the stage of the freeze 
drier . In this way the actual temperature of the 
specimen can be more accurately recorded. A cold 
finger could be placed over and c lose to the 
specimens to trap water molecules l eaving the 
specimen during freeze drying. 
2. There is evidence to suggest that the use 
of low temperature resin improves the retention 
of labile e lements (Wroblewski & Wroblewski 
1985). The freeze drying device was designed to 
accommodate low temperature resin and such work 
is now in progress. 
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Discussion with Reviewers 

Reviewer 1: Chlorine in t he Spurr, which was 
also a constituent in the cells, was used in the 
present study as a standard. It is at the same 
time known that different cell compartments and 
extrace llular matrix at different locations in 
the growth plate vary in wet weight. How would 
this influen ce your data? 
Reviewer 3: You state that chlorine present in 
the Spurr resin was used as a sta ndard 
refere nce. However it can be expected that the 
tissue also contains endogenous chlorine. How 
does this influen ce your res ul ts 7 

Author: In the chick growth plate (Hargest et 
aT:---;--1985) and in the growth plate of pigs and 
rats (Krefting et al., 1981) t here i s little 
difference in the concentration of Cl between 
matrix and cytoplasm and this did not vary from 
zone to zone . In the chick, however, there was 
a higher concentra ti on of chlorine in the 
mitochondria and t here were differences in 
concentrat ion particularly between 
prehypertrophic and hypertrophic chondrocytes. 
However, the differentiated state of the early 
hypertrophic chondrocyte and hypertrophic 
chondrocyte in the condylar cart il age are not 
comparable to the prehypertrophic and 
hypertrophic chick growth plate. Furt hermore, 
counting for a fixed time, 200 secs, indi cate d 
t here was no significant difference in the 
intensity of the chlor ine peak bet ween the 
different cell compartments and zones 
invest igat ed in this study. Therefore , it was 
cons idered appropriate to use Cl as an internal 
refe rence standard. 

Reviewer 1: The concentr atio n of Na, Mg and K is 
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almost the same in the mitochondria, cytoplasm 
and the intercellu lar matrix of the early 
hypertrophic zone. Is there any possibility 
that redistr ibutio n of these ele ments occurred 
duri ng specimen preparation? 
Author: Care was taken to dissect and freeze 
tfietissue as rapid ly as possible and only the 
outer l ayer of 15 um was utilised in this study, 
Clearly some damage occurred due to ice crystal 
formation during the freezing/freeze drying 
process partic ul ar ly in the hydrous matrix but 
there was no evidence of redistribution of 
elements in the adjacent hypertrophic zone. It 
is reasonable to assume, therefore, that 
redistribution did not occur in the early 
hypertrophic zone. 

Reviewer 1: In Figs 3,4 and 6 there i s evidence 
of severe ice crystal damage in the 
extracellular cartilage matrix, which suggests 
that some redistribution of ions can be 
expected . In Figure 4 different degrees of ice 
crystal damage is seen in two almost adjacent 
cel ls, while the size of the ice crysta l s in the 
surrounding cartilage matrix is uniform. What 
factors could have influenced this variation? 
Author: The qual ity of preservation depends 
large ly upon the velocity at which the freezing 
is achieved. The rate of cooling is a poorly 
contro l led variable and important in this 
respect are the geometry of the specimen and 
holder, the size and nature of the tissue and 
the velocity at which it enters the liquid 
cryogen. Although some conditions may be 
standardised, such factors as the path the 
specimen takes through the cryogen cannot be 
determined. Al so cryofixed structures are 
thermodynamically unstable at low temperature 
causing partitioning of the specimen and pure 
ice may form outside cells causing dehydrati on, 
distortion and shrinkage. 

Reviewer 1: 
concentration 
especia l ly in 
What role may 
compartment? 

How do you explain the high 
of S in the mitochondria 
the hypertrophic chondrocytes? 
S be expected to pl ay in that 

Reviewer 3: In severa l measurements of 
m1tochondr1a and cytoplasm the concentration of 
Sis higher than that of P, whic h i s typical for 
matrix . Could your data have included 
intrace llul ar matrix granules? 
Author: Inorganic sulphur as part of iron 
suTpfwr proteins is an important part of the 
electron transport system in the inner 
mitocho ndrial membranes . The hypertrophic 
chondrocyte mitoc hondr i a have been impl icated in 
t he regul atio n of extrace l lul ar ca lcification 
by contro lli ng t he trans port of calcium and 
phosphate ions . If this were so then i t is an 
energy dependent process dependent on electron 
tra nsport . There f ore one could reasonably 
expect a high concentrat ion of sulphur . Great 
care was t aken to ensure t hat mitochondria were 
analysed and not ot her intrace llul ar organe l les. 

Reviewer 2 : How i s it possible to deter mine by 
vi sual examination complete drying of the 
tiss ue? 
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Author: Clearly this is not an objective method 
oywfiTch to determine complete drying . However, 
with the size of the pieces of cartilage used 
and under the conditions of temperature and 
vacuum described the cartilage which was j udged 
to be dry by visual examination could be further 
processed and satisfactorily embedded in resin 
without encountering any problems indicating 
that the tissue was indeed dry. Visual 
examination, that is looking for a change in the 
external appearance of the carti lage to a chalky 
white texture after approximately 48h, 
therefore, was an important consideration in 
estimating if the cartilage was dry. 

Reviewer 2 : Did you try to determine the 
percentage of shrinkage of the growth cartilage 
during the described freeze drying and embedding 
procedure? 
Author: No, no attempt 
percentage shrinkage 
shrinkage will occur 
procedure . 

was made to determine the 
but there is no doubt 
from any freeze drying 

Reviewer 3: Your data (Tables 1,3 and 5) appear 
to 1nd1cate that Ca is a major element in 
mitochondria and cytoplasm in early hypertrophic 
cartilage . Its concentration is genera ll y 
higher than that of K and more than half of the 
the phosphorus concentration. This would seem 
to indicate the level of at least 200/300 
mmol/kg dry weight. Wouldn't one expect 
precipitate formation at this level? 
Aut hor: The hypertrophic chondrocyte is 
a.ssci"clated with the production of the cartilage 
matrix and its subsequent calcification. 
Therefore it could be reasonably argued that the 
high levels of calcium are not inconsistent with 
this progression of events. A solid phase of 
calcium phosphate does appear in the 
mitochondria but only in those early 
hypertrophic chondrocytes which suffer damage 
probably during the freezing process. At this 
time it is suggested that the ca lcium and 
phosphate which may have previous ly been bound 
could become available resulting in 
precipitation . 

Reviewer 3 : You suggest that K may be lost from 
the sample due to embedding at room temperature . 
On the other hand you discuss t he fact that K i s 
bound to matrix molecules and diffic ul t to 
remove with buffer. Isn't it poss ible that t he 
relative ly l ow K levels have a biological 
sign if icance rather t han preparative arte fact ? 
Author: The si mi l ar figures for K thro ughout the 
areas analysed would suggest t hat diffusio n of 
this part i cular ion had take n place dur ing t he 
preparative procedure. However, it has been 
argued t hat cel l s containing high Na and low K 
are indicat i ve of cell damage. Whether th i s 
cell damage is artefactual as a resu lt of tissue 
process ing or whet her it is a res ul t of t he 
differe nt iation of the chondrocyte which 
eventua ll y dies bef ore the cart il age is replaced 
by bone is uncertain. 

Reviewer 1- J. Wroblewski; Reviewer 2- L. Edelmann; 
Reviewer 3- G.M. Roomans 
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