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Abstract 

Over the last decade electron energy loss spectros
copy has been increasingly used as a microanalytical 
technique. Under favorable conditions a spatial 
resolution better than 1 nm has been achieved. It is 
therefore possible to obtain spectroscopic information 
at an atomic scale. Such a spectrum can be used for 
the investigation of 

the elemental composition 
defect levels 
surface excitations 
the fine structure. 

The spatial sensitivity of such experiments implies, 
that the initial or the final state of the scattered 
electrons must have a spatial structure. The theory 
for the scattering of wave packets will be discussed, 
focussing on the implications for the attainable 
spatial sensitivity in energy filte,·ed images as well 
as in site-specific electron energy loss spectroscopy. 

Key words: Electron energy loss spectroscopy, in
elastic scattering cross section, inner shell ionisation, 
energy filtered imaging, spatial resolution, channeling, 

site specific spectroscopy. 
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Introduction 

Scattering experiments yield a wealth of information 
about physical objects. For the investigation of 
solids x-rays, neutrons, ions or electrons are used 
as incident particles. One can distinguish between 
elastic and inelastic scattering processes. In the 
former case the object remains in its initial state, 
whereas in the latter case it undergoes a transition 
to an excited state. By elastic scattering experiments 
such as x-ray or neutron diffraction one therefore 
probes the initial state (most often the ground 
state) of the object. Inelastic scattering processes 
probe the energy levels of the specimen. We shall 
focus our interest on a particular technique, namely 
electron energy-loss spectroscopy. For a recent 
review of the technique see Egerton (1986). 

More specifically, we shall deal with the excita
tion of core-levels by high-energy incident electrons 
in the transmission mode. From such a spectrum one 
can obtain different types of information. The signal 
under characteristic edges permits an analysis of the 
chemical composition of the specimen on a microsco
pic scale. Under favorable conditions a spatial resolu
tion of less than 1 nm has been demonstrated (Ottens
meyer and Andrew, 1980; Scheinfein and Isaacson, 
1986; Mory et al., 1988). The finer details of the 
spectrum yield information on the chemical state of 
a particular element in the specimen. 

The Differential Cross-Section 

We assume that high-energy electrons are trans
mitted through a thin specimen, so that only single 
scattering processes have to be considered. Then the 
first-order Born approximation can be used to calcu
late the differential cross section. The transition 
rate w from an initial state II> to a final state IF> 
under a perturbation V is determined by Fermi's 
golden rule (Landau and Lifshitz, 1965): 

In a scattering experiment the initial state is given 
by a product state of an incident plane wave with a 



Cs 

c-,(P g 

y(d) 

D(ITT 

d 

Table of Symbols 

aperture function 

Bohrs radius 

objective aperture angle 

spectrometer acceptance angle 

spherical aberration constant 

Bloch wave coefficient 

phase shift due to lens aberrations 

detector function 

thickness of the crystal 

total energy of the final state 

Rydbergs energy 

total energy of the initial state 

E
0 

energy of the incident electrons 

e
0 

charge of the electron 

tiE energy loss 

E(K,w) 

df(E,K) 

dE 

If> 

IF> 

M 

Ii> 

II> 

dielectric funtion 

generalized oszillator strength 

final state of the object 

final state of the total system 

defocus 

Hamilton operator of the object 

Plancks constant 

initial state of the object 

initial state of total system 

current of the incident beam 

spherical Bessel function 
➔➔ I 
K,K scattering vectors 

kB 

ltf 

lltf > 

it; 
nti > 

X 

m 

wave vector of the j-th Bloch wave 

Boltzmann constant 

wave vector of the scattered electron 

final state of the scattered electron 

wave vector of the incident electron 

initial state of the incident electron 

wave number of the emitted electron 

electron mass 

atomic wave function 

radial wave funtion 

H. Kohl 

18 

➔ 
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.<ifo,2 0> 

p(i) 

Pi( 

S(K,w) 

S(K,Kl,w) 

dOd(tiE) 

w 

position of the j-th electron in the object 

center of the spot 

coordinates in the object plane 

electron density 

Fourier transform of the electron density 

dynamic form factor 

mixed dynamic form factor 

double differential cross section 

characteristic angle for inelastic scattering 

interaction potential 

transition rate 

spherical harmonic 

wave vector !ti and the initial state Ii> of the object: 

➔ 

I I > I ki > I i > (2) 

Correspondingly the final state is given by: 

I F > = I kf > I f > (3) 

where kf denotes the wave vector of the scattered 
electron and If;, the final state of the object. 

Following the procedure of Bethe (1930) as out
lined by Landau and Lifshitz (1965) we obtain fo1· the 
differential cross section for the transition i ➔ f: 

➔ ➔ 

I < f kr I V I k. > 12 
l (4) 

Considering that the perturbation V is given by the 
Coulomb interaction between the incident electron 
and the electrons in the specimen, we obtain: 

do 
dOd(tiE) a2 k_K4 

H l 

L I < f I L exp (-iKi) I i >1
2 

S ( Ei - Ef - tiE) 
f 

(5) 

➔ ➔ ➔ ➔ 
whe1·e K = k; - kf is the scattering vector and rj the 
position of the j-th electron in the object. As the 
final state is not determined, we have to sum over 
all final states coJTesponding to a given ene,·gy loss 
tiE. The matrix element contains only object prope1·
ties. 
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The Characterisation of Object Properties 

Before we proceed to the actual computation of 
the c,·oss section we shall discuss several quantities 
,·elated to the square of the matrix element in eq. 
(5). Following Bethe (1930) one defines the generalized 
oscillator strength per unit ene,·gy (for continuum 
states) 

df(E,Kl 2m E 
= 

dE f12 K2 

(6) 

This quantity has been discussed by Bonham (1990) 
and Bichsel (1990). In the limit K ➔ 0 it is equal to 
the optical oscillator strength. 

From a thermodynamic point of view one is 
inte,·ested in correlation functions. We define an 
operato,· Pi< to describe the Fou.-ie,· transform of the 
electron density 

p< 1> = Z: s (i?- 1.> <7> 
j J 

in the object. The Fourier-transfo,·m is given by: 

p ➔ = J p( 1) exp (-i if;.) d3 1 
K 

l exp (-i K;:'.) (8) 
J 

Its time evolution in the Heisenberg rep,·esentation 
can be formally written as: 

where H
0 

denotes the Hamilton operator of the 
object. The Fou,·ier transform (with ,·espect to the 
time) of the density-density con-elation function: 

S(K. w) 
1 

2rr 
J < pK(t) p -K > T exp(iwt) dt (10) 

is the so-called dynamic form factor (van Hove, 
1954-). The brackets < >T denote the thermal average. 
Evaluating eq. (10) using eigenstates of the Hamil
ton-operator H

0
, we obtain (Kittel, 1964,): 

➔ 1 " S(K, w) = Zrr.L, pi 
,,f 

< f Ip ➔ Ii > eiwt dt = l P. I < i I p ➔ I f > 1
2 

-K I K 
i,f 

X 
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l Pi I < i I (J t I f > 1
2 

S(wi - wr + w) , 
i,f 

(11) 

where Pi is the probability that the object is initially 
in the state Ii>. If the object is in its ground state, 
S(K , w) is equal to the sum over the final states in 
eq. (5) (apart from a factor il). 

Another related quantity is the dielectric function 
E(K , w) . Using the dissipation - fluctuation theorem 
it can be shown that (Platzman and Wolff, 1973): 

➔ 

S(K, w) (12) 

This equivalence permits us to compute the dielectric 
function from experimental energy ➔ loss ➔ spectra 
measured in the forward direction ( K ➔ 0 ). This 
approach is extremely valuable for the determination 
of the dispersion and absorption of matter in the 
vacuum UV and soft x-ray range (Raether, 1980; also 
see Schattschneider, 1990). 

The Matrix Element for Free Atoms 

We shall now focus on inner-shell excitations. If 
one is interested in the chemical composition of the 
specimen, it is natural to approximate the total 
cross section by the sum of free-atom cross sections. 
We thereby neglect the fine structure in the energy 
loss spectrum. For microanalytical purposes one 
uses the signal in a rather large energy window, 
thus averaging over the finer details. It has been 
demonstrated by explicit calculations that the error 
introduced by the free-atom model is small (Weng 
and Rez, 1988) as compared to the overal I accuracy 
of the current quantitation procedures (Hofer and 
Golob, 1988). Generally one uses the central-field 
model for quantitative calculations, thereby con
sidering the electron-electron inte.-action only in a 
rather global manner. The merits and drawbacks of 
this approximation have been reviewed by Starace 
(1982). Using a central potential, the eigenfunctions 
can be written as (Manson, 1972): 

(13) 

for the (bound) initial state with the quantum numbers 
n,l,m and 

(14) 

for the final state, where the formerly bound electron 
leaves the atom with an energy 1'12x 2 /2m Using the 
expansion of a plane wave into spherical harmonics: 

exp (i K 0 
(15) 

4rr "' i12 i·
1 

(Kr) y* (& ➔ ➔) Y (& ) L..., 
2 

12 m 2 K'cp K 12 m 2 ,cp 

lz,mz 



we obtain for the matrix element 

➔ ➔ 

< x 11 m 1 I exp ( i K r )I n I m > = 

l2,m2 

(16) 

where 

denotes a 3-j symbol (Messiah, 1964). For a quantitative 
computation one has to determine the radial wave 
functions for a given potential and then the integral 
in eq. (16). In general these steps have to be performed 
numerically. Only for a hydrogenic model can the 
generalized oscillator strength be calculated analyti
cally. This has been done by Egerton (1979, 1981, 

1986) for the excitation of K and L electrons. Subse
quent comparisons with experimental data taken on 
standards indicate, that the K-shel I cross sections 
are accurate to within about 10%, whereas for L-shel Is 
larger deviations occur (Hofer and Golob, 1988). 

Extensive numerical calculations have been undertaken 
by Leapman et al. (1980), Rez (1982) and Ahn and Rez 
(1985). 

The Scattering of Wave Packets 

In the preceding chapters we have dealt with the 
scattering of an electron from one plane wave state 
into another. It is obvious that for such a situation 
the scattering probability wi 11 be independent of the 
position of the scatterer. To obtain any spatial 
information, we have to impose a spatial structure 
onto the incident (or the scattered) wave. To demon
strate the principle we consider the coherent super
position of two plane waves as depicted in Fig. 1. 

Such an initial state can be prepared by means of a 
biprism. On the specimen we find interference fringes. 
In other words, the intensity distribution is sinusoidal
ly modulated. The initial state is a product state of 
the incident electron and the object It is described 
by: 

1 
[exp (ik;i + exp (icp) exp(i k' ;)] Ii> /z 

-I~ [I k i > + exp (i cp)I k1 i>], 

(17) 
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object 

..,. 
K' K u--detector 

.!:lg.,__! Experimental arrangement to measure interfer
ence effects in elastic and inelastic scattering. The 
object is illuminated by a coherent superposition of 
plane waves with the wave vector It and It 1 

• The 
detector registers the intensity in the direction of ltf. 

where I i > denotes the initial object state. 
The phase factor exp (icp) controls the position 

of the intensity maxima. To calculate the transition 
probability to the final state: 

➔ ➔ I I ➔ exp (i kf r) f > = kf f > 

we use first order perturbation theory. The app1·oxima
tions are exactly equivalent to those used in the 
preceding chapters. To obtain the transition rate w, 
we have to sum over all possible final states with a 
given energy: 

2rr 1 
w =--x 

-f,2 2 

I I < kf f I v( I k i > + exp (icp l I 0 i > ) 1
2 

f 

rr 

K2 l (I 
f 

< k f I V I k i > 1
2 

+ 
f 

+ I < k f I V I k1 i >12 
+ 

f 

+ exp (icp) < k i I V I kf f > < kf f I V I k.1 > + 

+ exp(-icp) < 0 i I VI kff > < kf f I VI k i >) 

X b ( Wi - W f + W). (18) 

This generalizes our eq. (1). It is interesting to note 
that the scattering of wave packets composed of a 
coherent superposition of plane waves has already 
been discussed in Born 1s ( 1926) pioneering paper on 
quantum mechanical scattering processes. 



Spatially Sensitive EELS 

By algebraic manipulations, similar to those 
outlined in chapter 3, one can show that the spatial 
object properties are contained in the so-cal led 
"mixed dynamic form factor" (Rose, 1976; Kohl and 
Rose, 1985), which is defined as: 

= 
➔ 

S(K ~I w) 
2

rr J < pK(t) p -Kl > T exp (iwt) dt, (19) 

where K1 
= k1 

- k f is the second scattering vector 
involved in our set-up. Again, this quantity can be 
related to a generalized dielectric function. We note 
that spatially homogeneous media (such as a free 
electron gas) are completely described by the function 
S(K,w) = S(K,K,w) (Pines, 1964). For K f K' the mixed 
dynamic form factor is nonzero only for inhomoge
neous media (Kohl and Rose, 1985). The contributions 
where K * K1 

therefore describe the spatial structure 
of the excitation. 

The Theory of Image Formation 

In a scanning transmission electron microscope 
(STEM) the electrons are focussed onto a small spot 
(d "" 5A) on the specimen. This spot is scanned over 
the object. The count rate of the scattered electrons 
is displayed as grey level on a synchroneously deflec
ted cathode ray tube. 

The initial state of the electrons is now given 
by a coherent superposition of all plane waves 
passing the objective aperture 

where A{;) denotes the aperture function. For a 
circular aperture subtending an angle cx

0 
we find: 

A(&) {~ for icil < C(o 

othe1·wise 
(21) 

The phase shift, 

Ya<ii'l = 
( cs 4 M cxz ) k - C( -

0 4 2 
(22) 

introduced by the objective lens depends both on the 
coefficient of the spherical abet-ration Cs and the 
defocus M . The vectors p0 and p denote the position 
of an object point and the position of the center of 
the spot, respectively. Using this expression and 
integrating over all angles 0 < 0

0 
subtended by the 

detector, we obtain for the current per unit energy 
in the detector (Rose, 1976; Koh I and Rose, 1985): 

21 

di 
3 

k kQEl:.I X 

dE rr3 z h Ea C( 
0 

J A(;) A(;i) D([3) exp(i{y
0

(;) - Yo(;I))) x (23) 

➔ ➔ 

exp( ik
0 

p(d-d 1)) S(K,K 1,w) dz ';I dz ;i dz t 
KZKIZ 

where 

➔ 

➔ { for 101 < Ba 
IXB) (24) 

0 otherwise 

denotes the detector function, 1
0 

the incident beam 
current, 0

0 
the spectrometer acceptance angle (at 

the specimen), EH.= 13,6 eV is Rydberg 1s energy and 
E

0 
the energy of the incident electrons. The scattering 

vectors K and K1 are given by : 

K k
0 

[ 0E ;z + ( ; - 13 I ] 

and 

K1 = k
0 

[ 0E ;z + ( ~ - !3 I ] 

where k
0 

= 2rr/:X. is the wave number of the incident 
electrons and 0E = liE/2E

0 
the characteristic angle 

for inelastic scattering with an energy loss liE. 
In eq. (23) the integrations are performed over 

the reciprocal (angular) variables it and al An 
alternative formulation in real space has been given 
by Ritchie and Howie (1988). As the equations are 
entirely equivalent it is a question of computational 
efficiency which one is used in a particular case. 

Quantitative studies of "inelastic images" have 
been undertaken for plasmons and for inner-shell 
losses. The former subject is treated in detail by 
Ritchie (1990). Images using the surface plasmon 
loss electrons have been shown to permit a spatial 
resolution of a few nanometers (Batson, 1982 a, b, 
1985; Ach~che et al., 1986). This is in good agreement 
with theoretical predictions (Schmeits, 1981 ; Ritchie, 
1981; Kohl, 1983, Fe1-rell and Echenique, 1985; Ritchie 
and Howie, 1988). 

We shall now discuss the resolution attainable 
in elemental maps. So far, th1·ee different criteria 
have been used to determine the resolution. Scheinfein 
and Isaacson (1986) have measured the intensity 
distribution crossing a Si/CaFz interface. Within the 
experimental error, the Si-Lz 3 loss signal (liE = 99 
eV) decays within 5A from the interface. 

Shuman et al. (1986) have taken images of an 
uranium-stained catalase crystal using the U - 0 45 
loss at liE = 112 eV. Taking the Fourier-transform of 
their images, they obtained the transfer function at 
spatial frequencies corresponding to reciprocal 
lattice vectors. As they used a conventional trans
mission electron microscope, the transfer of the 
higher spatial frequencies was greatly damped due to 
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E_gJ Set-up to create lattice periodic wave fields. The 
two upper crystal plates constitute a biprism, the 
lower crystal is the specimen. 

the axial chromatic aberration of the objective lens. 
Their method is very promising. One has to take 
care, however, that the crystal is thin enough so 
that multiple elastic-inelastic processes are unlikely 
to occur. 

Mory et al. (1988) have imaged a random distribu
tion of small urani m clusters using the U-0

45 
loss. The ha! f width ' the peak of the cross-correla
tion function between two simultaneously taken 
pictures constitutes a good measure of the resolution 
in the image. This method has been extensively used 
by Frank (1980) for phase-contrast images. In a 
STEM it is possible to obtain a dark-field signal 
simultaneously with the inelastic image. Mory et al. 
(1988) have used the former to characterize the 
cluster sizes and compared the resolution (judged by 
the cross-correlation method) of the dark-field 
images with the resolution in the U-0

45 
loss images. 

In the inelastic image the resolution was only slight
ly worse than in the elastic one. The best resolution 
determined in a U-0 45 loss image was 4.2 A (Mory, 
personal communication). 

These experiments clearly demonstrate that 
sub-nanometer resolution can be obtained with 
images taken at an energy loss of about 100 eV. This 
is in good agreement with calculations using the 
dipole approximation for the scattering matrix element 
(Koh I and Rose, 1985). 

Site Specific Electron Energy Loss Spectroscopy 

A method to build a biprism for electrons is to 
use crystal plates as schematically shown in Fig. 2 
(Marton, 1952), oriented so that a Bragg-reflex is 
excited. The first two crystal plates constitute a 
biprism, the third one corresponds to the specimen. 
As there are no optical elements in this setup, it can 
be used equally well for x-ray and neutron inter-

H. Kohl 
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ferometry (Bonse and Hart, 1965 ; Rauch et al. 1974). 
The distance between the crystal plates is determined 
by the requirements of the interferometric experiment. 
When diminishing the distance to zero we have one 
oriented crystal left. In it the wave field is modulated 
with a period corresponding to the excited reciprocal 
lattice vector. In particle physics this is named the 
"channeling effect". The position of the maxima can 
be varied by slightly tilting the crystal. The scattering 
probability will then depend on the exact orientation 
of the specimen. Correspondingly, the emitted secon
dary radiation (x-rays, Auger-electrons etc.) wi 11 be 
orientation dependent. This effect is used in the 
ALCHEMI (_Atomic Location by Channeling J;_n
hanced Microanalysis) technique proposed by Taft0 
(1982) and discussed by Krishnan (1989) at this confer
ence. 

The variation of the double differential cross-sec
tion near the iron L23 edge has been used by Taft0 
and Krivanek (1982) to determine the valency of 
Fe-ions on different sites in a chromite crystal. 
Taft..S (1984) has investigated the fine structure of 
the Al K-edge in sillimanite. In this crystal there are 
octahedral ly as we! I as tetrahedrally coordinated 
Al-atoms, which have different fine structures. By 
varying the orientation of the crystal he could deter
mine the origin of characteristic structures in the 
spectrum. Thus it is possible to obtain energy loss 
spectra which stem predominantly from one site. 
The practical application was hindered by the rather 
low signal level. The recent advent of parallel recor
ding spectrometers should help to circumvent these 
limitations. 

The practical application of site speci fie electron 
energy energy loss spectroscopy necessitates prior 
knowledge of the scattering probabilities from the 
different sites as a function of crystal orientation. 
We shall now briefly review recent theoretical ad
vances in this field. 

The important point is that the initial and final 
state of the incident electron is given by a coherent 
superposition of Bloch waves. In the following we 
shall assume that the crystal is thin enough, so that 
only single inelastic scattering processes occur. The 
multiple elastic scattering is taken into account by 
use of the Bloch-wave formalism. Fol lowing Maslen 
(1987) we shal I therefore use first-order perturbation 
theory for the inelastic scattering processes between 
Bloch waves. This method is equivalent to the distorted 
wave Born approximation, which is frequently used 
in nuclear physics. The initial state of the incident 
electron is given by (Metherel I, 1975): 

l c~il" c;<j> exp [i(k<i> + g) -; ] 
g,j 

(25) 

Outside the crystal, the scattered electron is des
cribed by a plane wave with wave vector Jt1 . Taking 
into account the boundary conditions at the exit 
surface, we obtain for the wave function after the 
scattering (Maslen and Rossouw, 1984; Saldin and 
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Rez, 1987; Weickenmeier, 1987): 

[ (➔ (ii) ➔) ➔] exp i k + h I r (26) 

where d denotes the thickness of the crystal. 
For the calculation of the transition matrix 

element, the functions (25) and (26) have to be 
multiplied by the wave function of the initial and 
the final object state, respectively. For these we 
shal I use atomic wave functions. The transition 
matrix element for an atom at a position R is then 

a 
given by: 

< FI V I I > 

j, "g, ii, -.z1 

where (27) 

and 

To compute the cross-section, we have to take the 
modulus square and sum over all final states with 
an energy Ef = Ei + llE . This includes a sum over all 
positions Ra of the atomic species considered. We 
obtain (Maslen and Rossouw, 1984; Maslen, 1987; 
Saldin and Rez, 1987) 

X 

➔ ➔ ➔ 

X 
exp[i(Q1 - Qz) Ra] 

E~ Qf Qi 

X (28) 
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\ 

z 

1--- ~ t--

.r 

o Mg I 
~ Mg II 
• Ti 

--j t----~+--
.... 

·--

.. 

E&.._;l Projection of the Mg 2 Ti0 4 unit cell onto the 
x-z plane. For simplicity we have omitted the oxygen 
atoms. The lattice constant is equal to a = 8.441A. 
(From Weickenmeier and Kohl (1989). Copyright 1989 
Taylor & Francis Ltd., London). 

where 

➔ 

The calculation of the matrix elements Wi/Ql has 
been discussed in chapter 3. For numerical evaluations 
two alternative routes have been taken. Maslen and 
Rossouw (1984) and Saldin and Rez (1987) have per
formed the summations over Ra analytically. Then the 
time requirements are set by the N8 terms in the sum 
over the Bloch-wave coefficients. 

Alternatively Weickenmeier and Kohl (1989) have 
rewritten eq. (28) as a sum over squares of expression 
like (27). In this case the number of Bloch-wave 
terms is proportional to N4 . The summation over Ra 
however, has then to be performed numerically. To 
demonstrate the feasibility of such calculations we 
quote a result on Mg 2 TiO 4 The projection of the 
structure onto the x-z plane is shown schematically 
in Fig. 3 . We note, that there are two inequivalent 
types of planes. 

For the calculations we have assumed a crystal 
oriented so that a (400) systematic row is excited. 
We have performed a 21-beam calculation for the 
differential cross-section in the forward direction 
for the K-excitation of Mg and Ti as a function of 
the crystal tilt (Weickenmeier and Kohl, 1989). The 
result is shown in Fig. 4. We observe, that for 
tilt-angles smaller than 0 400 the contribution of 
the Mg-II planes predominates, whereas for 0 > 

0 400 the scattering of the Mg-I planes is dominant. 
Thus it should be possible in the near future to 
interpret experimental results quantitatively. 
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~ Variation of the differential cross section in 
the forward direction as a function of the tilt angle 
0. We have assumed a SI nm thick Mg 2 Ti 0 4 crystal, 
an incident energy E

0 
= 100 keV, and an energy loss 

of L'.E = 1405 eV for Mg and of L'.E = 5066 eV for Ti. 
(From Weickenmeier and Kohl (1989). Copyright 1989 
Taylor & Francis Ltd., London). 

Conclusion 

To obtain a spatially sensitive signal it is necessary 
to impose a spatial structure unto the incident 
and/or the scattered electron. This can be done 
either by means of external electric and/or magnetic 
fields (namely electron lenses) or by the object 
itself. It has been recently demonstrated both experi
mentally and theoretically that sub-nanometer resolu
tion is possible when imaging with energy-losses in 
the 100 eV range. Thus high-resolution elemental 
mapping is feasible, provided that the specimen is 
sufficiently radiation resistent. 

Illumination of an oriented crystal by a parallel 
beam of electrons results in a Bloch-wave field 
within the crystal. If we measure the variation of 
the cross-section as a function of the tilt, we obtain 
a signal, which depends on the site of the scatterer 
within the unit cell. The feasibility of such site-specific 
EELS has been demonstrated by Taft0 and Krivanek 
(1982). They could distinguish between the positions 
of Fe 2

+ and Fe 3
+ in a chromite spinell. Taft0 (1984) 

has obtained spectra for Al in octahedral and tetrahe
dral sites. This method is very promising for the 
investigation of the local electronic structure in 
materials with a complicated unit cell. 
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Discussion with Reviewers 

Peter Schultz: You suggest that spatial resolution 
limits are in part due to inner-shell excitations 
induced by large impact parameters. This contribution 
can be calculated by the EM impulse (virtual photon 
exchange) of the incident electron, and compared 
with the integrated effect of close collisions using 
the MDller (e - e) cross-section. Our calculations 
indicate that distant collisions can be important for 
K-shell ionization, but insignificant for L-shell (or 
greater). This means that distant collisions are 
probably not contributing to resolution broadening. 
Author: The relative contributions of close and 
distant collisions depend strongly on the detailed 
experimental conditions. Important parameters are 
the characteristic angle 0E = t.E/2E 0 , and the 
angles <X0 and i30 , which are typically about 10- 2 in 
an electron microscope. Under these conditions the 
dipole approximation can be used. Then a degradation 
of the resolution occurs only for 0E below about 
10- 3 . For 0E much larger than about 10- 2 , the 
minimum momentum transfer becomes so large, that 
the dipole approximation is no longer valid. Presumab
ly you are thinking of a situation in that regime. 
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P. Schattschneider: The angular hat fwidth 01/ 2 of 
any form factor (dynamic or static) qualitatively 
determines the spatial range d over which an incoming 
plane wave interacts with the scatterer by d "' A /0 1/ 2 . 
Why, then, is the criterion not valid in your example? 
Author: The rule of thumb d ss :X./01/ 2 relies on the 
Heisenberg uncertainty principle, relating the standard 
deviations of position and momentum by: 

~✓- n y 1..1x- i'lp2 "2 

Putting d ss ~ and / i'lp2 ss nk 0 / t10 2 we obtain 

1 :X. 
d " 2k -/ t1ez = 4rc-/ i'102 ' 

0 

where tl02 is the standard angular deviation. For the 
image calculations we have used the dipole approxima
tion. In that case the angular distribution is a Lo
rentzian and the standard deviation diverges. 

It should be noted that the standard deviation 
rather than the half-width is needed for that type of 
calculation. 

C. Col!iex: Borns (1926) paper is not easy to find. 
Can you develop on this point? 
Author: In § S of his paper Born (1926) writes down 
the differential equation for the movement of a free 
particle 

i'l<j; + k2 <j; = 0 (7) 

and writes a little further down " Die allgemeinste 
U:isung von (7) ist 

( 11) 

wo s ein Einheitsvektor und dw das Element des 
Raumwinkels ist. Sie stellt Tragheitsbewegungen 
aller moglichen Richtungen mit derselben Energie 
dar; nach unseren Prinzipien ist lc(i)l 2 die pro Raumwin
keleinheit gerechnete Anzahl der Teilchen, die in der 
Richtung s fliegen." 
Translated into English, he says: "The most general 
solution of (7) is 

( 11) 

where tis a unit vector and di! the element of the 
solid angle. This solution represents the free move
ment in all possible directions with a given energy; 
following our principles lc(i)IZ is the number of 
particles per unit solid angle flying in the direction 
of 't." 

As we have used the smal I angle approximation, 
the correspondance is given by 

sx = ax, sy = ay , sz ss 1 and 

leading directly to our equation (20). 
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C. Colliex: How do you drop the ik
0
p

0
(£! - c£1 between 

eqs. (20) and (23)? 
Author: 
The expression in eq. (20) is the wave function in a 
STEM near the object plane 

Here t = (p0 ,z 0 ) is the variable, whereas p is a 
parameter defining the position of the spot. This 
parameter 9 is varied by use of the deflection coils. 
When calculating a matrix element, one has to 
integrate over the variable 1'0 . As a simple case let 
us consider the calculation of a matrix element for 
the elastic scattering off a given potential V(i'0 ) 

from ki to "tf 

➔ ➔ [ ➔ ➔ ➔ .➔ ➔ 3➔ ➔ 
<kf IVI k/ =. exp(-ikf r 0 ) V(r 0 ) exp(1kir 0 )d r O V(K), 

where V(K) denotes the Fourier transform of the 
➔ ➔ ➔ 

potential and K = ki - kf· 
In a STEM the initial state is given by the wave 

packet <J;p"{f0 ) rather than by a plane wave expOit7 0 ). 

The matrix element is then given by 

x exp [ - i y (t)] d 3 1
0 

dz "t = 

f V[k
0

(;;-13)] A(;;) exp [-iy(cx)] exp(-i k
0 

p ex) dz -;J , 

whe1·e 13 is a vector perpendicular to the optic axis 
➔ ➔ 7<' 

defined by kf = k 0 e 2 + k 0 p • 

Thus the variables p
0

, z
0 

disappear by integration, 
whereas the parameter p remains, describing the 
spatial dependance of the signal. 

The derivation for the inelastic case is outlined 
in Kohl and Rose (1985). 
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