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Abstract 

The interaction of an electron beam with a solid can be 
modeled by the so-called Monte Carlo method. This 
technique produces a stepwise simulation of the electron 
trajectory by using random numbers to predict scattering 
angles on the basis of theoretical probability distributions or 
empirical models. The physical basis of electron scattering in 
a solid is described and two generic types of Monte Carlo 
model are then developed together with suggested examples 
of their application. An IBM PC compatib le disc containing 
these programs is available from the author. 
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Introduction 

Increasingly electron microscopy is becoming a 
quantitative rather than a qualitative science . In order to 
correctly interpret images or spectra, however, it is necessary 
to be able to describe in detail the processes which produced 
that data in the first place and this is not a simple task because 
the interaction of an electron beam with a solid is highly 
complex. Before ultimately losing its energy or escaping from 
the specimen, each incident electron may undergo hundreds or 
thousands of separate scattering events, distributed between 
elastic and a variety of inelastic processes. While simple 
functional relationships can be derived between certain 
macroscopic properties of the interaction, such as the 
backscattering or transmission coefficients, and the parameters 
describing the specimen and the electron beam, the enormous 
number of different ways in which a given electron could 
complete the sequence of interactions involved in a single 
trajectory precludes the construction of a detailed analytic 
model. Monte Carlo sampling techniques , first used 
extensively by Von Neumann during the Manhattan project, 
provide a practical way of obtaining both macro - and 
microscopic descri ptions of the beam interaction . The Monte 
Carlo technique uses random numbers as a means of 
predicting the magnitude of various events and as a way of 
se lecting between possible scattering options. This paper 
describes how these methods can be implemented on personal 
computers with particular emphasis on their practical 
application to scanning electron microscopy . 

Basic Principles of Monte Carlo Simulation 

The Monte Carlo technique, as applied in this context, 
attempts to describe the trajectory which takes the electron 
through the solid. Although no individual trajectory produced 
by the simulation will repre sent a 'real' trajectory, if the 
physics of the processes encountered by the electron are 
properly modeled then predictions based on a large number of 
trajectories will accurately describe effects which can be 
experimentally observed. In order to make these calculations 
we need two basic pieces of infom1ation - the angles through 
which the electron is deflected as it travels in the specimen, 
and an estimate of how far (on average) the electron will travel 
given some particular value of incident energy. The 
simulations described here make two significant 
approximations in order to answer these questions: 

(1) We assume that only elastic scattering events are 
significan t in determining the path taken by any given electron 
as it moves through the solid. Elastic scattering, described by 
the screened Rutherford cross-section and produced by the 
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coulombic attraction between the negatively charged electron 
and a positively charged nucleus , results in angular deflections 
of from a few degrees up to 180°. The great majority of 
inelastic scattering events , on the other hand, produce angular 
deflections which are typically 1/2° or less. Consequently 
elastic scattering events are likely to be the ones which 
dominate in determining the path taken by the trajectory , and 
ignoring the effects of inelastic scattering introduces only 
negligible error while greatly reducing the number of 
computations that are required. 

(2) The electron is assumed to lose energy continuously, at 
a rate determined by the Bethe (1930) relationship, rather than 
as the result of discrete inelastic events . This simplification 
allows the net result of all possible inelastic scattering 
processes to be accounted for without having to worry about 
the exact details of the individual events . 

Neither of these assumptions is essential to the successful 
construction of a Monte Carlo program, and indeed much 
work has been put into simulations which specifically seek to 
avoid such radical simplifications . In practice, however, the 
benefits resulting from the gain in accuracy achieved by a more 
rigorous approach are usually outweighed by the substantial 
increase in computing time required. The procedures 
discussed here provide an acceptable degree of accuracy (i .e 
as accurate as a typical experiment performed on an electron 
microscope) while at the same time remaining capable of 
generating statistically valid data in a reasonable time period 
(i .e a few minutes to a couple of hours) on a personal 
computer. 

The Sini:le Scatterini: Monte Carlo Model 

Within the constraints discussed above the most accurate 
Monte Carlo simulation of the electron beam interaction is one 
which attempts to account for each elastic scattering event 
suffered by the electron as it travels through the sample 
(Newbury and Myklebust 1981) . We assume (figure 1) that 
the electron undergoes an elastic scattering event at some point 
represented by the coordinates (x,y ,z) , after having traveled 
from its previous scattering event. We wish to calculate the 
coordinates (xn ,yn ,zn) of the next point to which the electron 
is scattered. The parameters which describe the instantaneous 
situation of the electron are its energy E and the direction 
cosines cx,cy,cz of the trajectory segment that brought the 
electron from its previous scattering location to the point 
(x ,y,z). These direction cosines are relative to a fixed set of 
axes attached to the specimen defined with the convention that 
the po sitive z-axis is normal to the specimen surface and 
directed into the specimen, the x-axis is parallel to the tilt axis, 
the x-y plane is the surface plane of a flat (i .e untilted) sample, 
and the y-axis completes a right handed set of axes. When the 
specimen is tilted the positive direction of the y-axis is down 
the surface of the specimen . To calculate the position of the 
new scattering point (xn ,yn,zn) we need to know the distance 
between it and the point (x,y,z) and the elastic scattering 
angles <j> and 'JI- ' 

The relativistically corrected screened Rutherford elastic 
cross-section CJE is given by the relation 

- 21-i- 41t (E+511)
2 

2 
crE=5 .2lxl0 ·r:2· a(l+a)" E+l0 24 (cm) (1) 

where E is the electron energy (in ke V), Z is the atomic 
number of the target, and a is a screening factor which 
accounts for the fact that the incident electron does not see all 
of the charge on the nucleus because of the orbiting electrons. 
Since it is difficult to predict a value for a theoretically we 
instead choose a value so that computed backscattering 
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coefficients agree with those measured experimentally .Here 
the expression used is (Bishop 1976) : 

2 0.61 

a= 3.4x 10- 3
. 7:r (2) 

The elastic cross-section in turn defines a mean free path A 
which is given by the formula 

A=_A_ 
N.pcrE 

(cm) (3) 

where Na is Avagadro's number, pis the density (in gm/cm 3) 
and A is the atomic weight (in gms/mole). A represents the 
average distance that an electron will travel between 
encountering elastic scattering events. Its value depends both 
on the beam energy and on the characteristics of the specimen , 
but is typically of the order of a few hundred angstroms at 
lO0keV . Experimentally the actual distance that an electron 
travels between successive scatterings will, of course, vary in 
a random fashion. In our Monte Carlo simulation this 
variability is introduced by saying that the distance (or step 
length) between the scattering events at x,y,z and xn,yn,zn 
is given by the relation 

step = - A loge (RND) (cm) (4) 

where RND is a equidistributed random number between 0 
and I selected by the computer. 

Figure (2) plots the variation of the step length, in units of 
A , as a function of the random number chosen. Since the 
random numbers are uniformly distributed between 0 and 1 we 
see, for example, that there is a 10% chance of drawing a 
number such that RND<0. l in which case the step will be 
equal to or greater than 2.3A, and equally there is a 10% 
chance of picking a number such that RND>0 .9 in which case 
the step length would be equal to or less than 0. lA. The step 
lengths therefore vary over a wide range of values depending 
on the random number picked by the computer but , as can be 
verified by integrating equation (4) , the average step length 
will be A. 

In the scattering event at (x,y ,z) which marks the start of 
the step , the electron is deflected through some angle <j> relative 
to its previous direction (see figure I). The size of this 
deviation is determined by dcrE/dQ = cr', the angular 
differential form of the Rutherford cross -section and in the 
program is found by solving the equation : 

(5) 

where CJE is the total Rutherford cross-section given above, 
and integration extends to a maximum value of <j>. The right 
hand side of equation (5) represents the probability of the 
electron being scattered through an angle less than q>. Since we 
do not know, for any given scattering event, what the 
probability actually is we pull a random number RND from the 
computer, equate this to the probability and run the equation 
backwards to determine the angle for which this value would 
be correct. By evaluating equation (5), an equation can be 
derived (Newbury et al 197 6) which relates the scattering 
angle q> to the random number RND: 

2a.RND 
cos(<j>) = 1 - (1 +a-RND) (6) 

where a is the screening coefficient given above. This 
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xn,yn ,zn 

from previous 
scattering event 

z 

y 

Figure 1. Coordinate system for Monte Carlo Simulation 

4 i 
; 3+-\* -li-+-+-+ - f--t-+-t-+--t--+-t-+- ~ 

0.2 0.4 0.6 0.8 1.0 
RANDOM NUMBER 

Figure 2 Di stribution of step length with random number selected 

equation generates a unique scattering angle in the range 
0«!><180°, producing an angular distribution which matches 
that obtained experimentally. Although all angles between O 
and 180° are possible, the great majority of scattering events 
are predicted by equation (6) to be less than 10°. Figure (3) 
plots the probability of obtaining an angular scattering of 
greater than some minimum value <!> for the case of a silicon 
target irradiated at IOOkeV. Note that while there is only a 1 in 
10000 chance of an electron being scattered by an angle in 
excess of 110°, more than 50% of all electrons are scattered 
through at least 1.5°. 

The electron can scatter to any point on the base of the 
cone shown in figure (1) so the azimuthal scattering angle \JI is 
given as 

\JI= 2n. RND (7) 

where, as before, RND is an independent random number 
selected by the computer. 

All of the information needed to specify the scattering step 
from (x,y,z) to (xn,yn,zn) is now available. Although the 
calculation is straig htforward, the algebra is cumbersome, 
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Figure 3 Angular distribution of scauering probability from equation (6) 

because of the need to present the result relative to the initial 
fixed coordinate axes described above. Following Newbury 
et al (197 6) we get: 

where 

and 

xn = x + step.ca 
yn = y + step.Cb 
zn = z + step.cc 

(8a) 
(8b) 
(8c) 

ca= (ex.cos<!>)+ (Vl.V3) + (cy.V2 .V4) (9a) 
cb = (cy.cosqi) + (V4.(cz.Vl - cx.V2)) (9b) 
cc= (cz.cosq>) + (V2.V3) - (cy.Vl.V4) (9c) 

VI = A .sin<!>, V2 =AN.AM.sin<!>, 
V3 = COS\j/, V4 = sin\j/ (!Oa) 

ex 1 
AN=-- andAM= -;=== 

CZ ✓ 1 + AN2 

Usin g this information the electron , given a starting 
energy, position and direction, can then be tracked through the 
sample a step at a time. 

As it travels through the solid the electron loses energy 
and since the scattering is energy dependent we need to be able 
to compute the instantaneous energy at any time. The rate 
-(dE/dS) at which the electron transfers its energy to the 
material in which it is traveling is given by the Bethe (1930) 
relation: 

~ = -78500. ~ . log( l.l:
6

E) (keV/cm) (11) 

where J is the "mean ionization potential" which represents the 
average rate of energy transfer due to all possible inelastic 
events (i.e the production of X-rays, Auger electrons, 
secondary electrons, phonons etc). At sufficiently high 
energies (E>30 keV) J can be found analytically from the 
Berger and Selzer (1964) expression: 

[ 
58 .5 ] -3 

J = 9.76 Z + zO 19 . 10 (keV) (12) 
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As E falls , however, the value of J also falls because some 
inelastic even_ts which might contribute to its magnitude are 
now inaccessible . For example a K-shell ionization will not 
contribute to the value of J once E<E where E is the critical 
energy and for a high Z material Ee ~ay be ten~ of keV. To a 
very good approximation this problem can be taken into 
account (Joy and Luo 1989) by rewriting equation (11) in the 
form: 

dE=-78500pZl (l.166E) 
dS AE og J +l (keV/an) (13) 

This expression is accurate down to energies of lO0e V or 
below and also avoids the difficulty that equation (11) cannot 
be evaluated for E<J. t.E, the energy lost along the step from 
(x,y,z) to (xn,yn,zn) using either expression is then: 

t.E = step.(dE/dS). (14) 

The sequence of operations needed to simulate the electron 
path through the specimen can now be written out 
schematically in an algorithmic form: 
repeat 

Get starting energy E of electron 
Get starting coordinates x,y,z for the step 

Get direction cosines cx,cy,cz relative to initial axes 
Compute mean free path A for energy E and given material 

_Calculate the ~tep length step from equation (4) 
Fmd_the scattenng angles q>,\!f from equations (6,7) 

Compute final coordinates xn,yn,zn from equations (8,9,10) 
Compute finish energy E' = E - step .(dE/ds) 

Reset coordinates x=xn,y=yn,z=zn 
Reset direction cosines cx=ca,cy=cb,cz=cc 

Reset energy E=E' 
until electron leaves sample or falls below some 
minimum energy 

This seq~ence_of steps is then repeated to simulate as many 
electron traJectones as are required to produce data of the 
desired accuracy. The computer code to accomplish this 
sequence of operations is quite short, typically only requiring 
50 lines or so in a language such as PASCAL, FORTRAN or 
BASIC. Addition of the code to provide such functions as a 
real time graphic display will, of course, make the program 
larger but overall program lengths even then rarely exceed a 
few hundred lines. On the disc, (for details see the end of this 
paper ), the source code for this program in Turbo Pascal™ 
V5.0 (s given in the file SS_MC.PAS, and an executable (i.e a 
complied and runnable) version is in the file SS MC.EXE 
Applications -

Fi~ure (4) shows trajectories computed using the single 
s~attenng_ f!10del for electrons traveling through 1 000A O thick 
films of silicon ~nd g_old at 100 and 400ke V . In this example 
the program, wntten in Turbo Pascal, was run on a Macintosh 
~omputer. Since at these energies the elastic mean free path A 
1s of the order of a few hundred angstroms, each electron will 
only_ be scattered a few times as it passes through the 
spec1me~, consequently only a few calculations per trajectory 
are reqmred and the program runs very quickly . On an IBM 
AT-cla~s machine equipped with an 8087 maths co-processor 
ch_1p this pro_gra_m runs a~out 1000 trajectories or more per 
minute and significantly higher speeds are possible on 386 or 
Ma~II class machines. It must be noted again that we are not 
saying that _any of the C<?mputed trajectories actually represents 
one t_h_at might be obtained experimentally under equivalent 
cond1t10ns. However, the representation obtained by averaging 
over _a large number of computed trajectories produces data 
that _is a good approximation to experimental reality. The 
rel~uve error of a Monte Carlo simulation varies as ✓N, where 
N 1s the number of trajectories computed so an accuracy of a 
few percent requires the computation of several thousand 
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trajectories. Consequently the time required to run 5000-10000 
trajectories is an important measure of the usefulness of this 
approach. 

By setting up appropriate criteria for detection, and the 
necessary code to count successful events, the fraction of 
electrons transmitted or backscattered by the sample as a 
function of the chemistry and thickness of the sample and the 
energy of the electron beam can be determined. In fact, since 
~II of the possible information about every computed trajectory 
1s ava!lable, we can also calculate information about other 
processes,. such as the generation of X-rays or secondary 
electrons, 1mt1ated by the incident electrons. For example, the 
Bethe cross-section for inner-shell ionization is: 

a = 6 52 10- 20 (J..i_) 1 { 0.65 E] ' . x EE og E 
e e 

( 15) 

in units of ionizations/eV/atom/cm 2 where E is the critical 
ionization energy (in keV) of the X-ray line ;f interest. The 
?(-ray production, Is (photons/electron) along the step segment 
1s then: 

Na 
Is= a,. T · p. step.w. f (16) 

where w is the fluorescent yield (photons/ionization) and f is 
the atomic fraction of the atom of interest in the compound. 
The X-ray yield from an element of interest can therefore now 
be found by including equations (15) and (16) in the 
computation loop given above, after first testing at each step 
that tJ:ie electron energy E is greater than Ee. Even for the case 
of a sm~le element target this computation is valuable because 
1t permits both the lateral and the depth distribution of the 
X-ray production _to be calculated . The program AEMMC, also 
included on the disk, uses the simulation described above and 
equations (15) and (16) to compute the spatial resolution of 
X-ray generation at the exit surface of a thin foil taking into 
account both beam spreading and finite probe diameter . The 
program plots the cumulative X-ray yield as a function of 
position relative to the beam impact point and by measuring the 
lateral distance over which this rises from 10% to 90% of its 
maxim_um _value,_ a reliable measure of the X-ray spatial 
resolullon 1s obtained. In the case of materials which are not 
homogeneous the Monte Carlo procedure is even more useful 
because the variation of X-ray production with incident beam 
position can _be computed for a sample of arbitrary geometry 
and compos1t1on. For example , in the case of a material 
containing a_boundary between two different phases, at each 
step of a traJectory the position of the electron is compared 
wnh the boundary position to determine f the atomic fraction 
of the element of interest. Equations (15) and (16) can then be 
evaluated as ?efore, even making allowance, if necessary, for 
the d1fferent1al mass-absorption caused as the X-rays from 
one phase leave the sample through the other phase. This 
computation can be performed simultaneously for each of the 
elements of interest. 

Alt~ou~h the single scattering model has been illustrated 
by appl!cat10ns to thin foils it is not restricted to this special 
case a~d figure (5) shows an example of the use of the single 
scattenng model to plot electron trajectories in copper at 
20keV. However, the problem with this approach for bulk 
samples 1s that, even on a fast computer, the calculation is 
~low b~cause a large number (typically 250 to 400) of 
interactions must be computed for each trajectory before the 
energy ?f t~e electron has fallen to a low enough energy, 
chosen in this case to be 0.5keV, for the residual range to be 
ignored. For m_any purposes involving bulk samples, 
ther~fore, a less ngorous, but substantially faster, model is 
applied and this is described in the next section of this paper. 
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Silicon 1 00ke V Silicon ~00ke V 

Gold l00keV Gold ~00keV 

250.8. 

Figure 4. Monte Carlo s imulation of electron trajectorie s in gold 
and si licon foils JO00A thick, at 100 and 400keV incident energies. 
250 trajectorie s are plotted in each example. 

The Plural Scatterini:; Model 

The basic assumptions of the plural scattering Monte Carlo 
model are the same as those for the single scattering model, 
but the implem entation is markedly different. The total length 
of the electron trajectory within the sample is taken to be the 
Bethe range R8 found by using Simpson's rule to numeric ally 
evaluate the integral: 

(17) 

where (dE/dS) is the stopping power given by equation (13). 
The Bethe range is then divided into, typi ca lly , fifty segments 
of equal length. This ensures that, unlike the single scattering 
case, there is a constant and relatively small number of 
computational steps associated with each trajectory. E[n], the 
energy of the electron at the start of the nth step of the 
trajectory, is found by numerically solving the equation: 

E[n]=E[n-1] -l (~)ds 
tep 

(18) 

where (dE/dS) is again obtained by the use of equation (11) 
and (13) in the appropriate energy ranges, E[l] is set equal to 
the incident beam energy E0 and E[51] is set equal to zero . 

The azimuthal scattering angle \j/ is given by the same 
expression as previously used (equation 7) and the axial 
scattering angle <I> is again described by the screened 
Rutherford cross-section but using a different formulation of 
the equation .. We write <I> in the form: 

(19) 

333 

Figure 5. Electron trajectories in bulk copper at 20keV 

computed by the single scattering Monte Carlo model. 

100 trajectories are shown. 

where p is the impact parameter (i.e the projected distance of 
closest approach of the electron to the nucleu s of atomic 
number Z), and b is l.44x10 -2Z/E, where E is the 
instantaneous energy of the electron in keV. In each of the 50 
steps making up one trajectory a large number of scattering 
events will occur (since the step length is now much larger 
than A). Some of these deflections may add, and others may 
cancel so, following the original suggestion of Curgenven and 
Duncumb (1971), the net scattering angle <I> is written as: 

cot(½)= 
2
: ✓RND (20) 

where RND is another random number between O and 1. In 
practice equation (20) has been found to introduce a systematic 
error into the simulation because it does not allow for a 
sufficie nt amount of small angle scattering. The equation is 
therefore rewritten as: 

in which form <I> approaches zero as RND goes to unity . The 
final problem is in determining a suitable value for the impact 
parameter p . The approach used here derives from Love et al 
(1977) who rewrite equation (21) in the form: 

where as before E0 is the incident beam energy and 

( 
<l>o )- 0.0144 Z 

tan 2 - 2pEo (23) 

(22) 

<l>o thus represents the minimum scattering angle for the 
incident electron with energy E0. As can be seen from the 
functional form of the Bethe equation (see equations 11-13) 
the variation of (E/Eo) is substantially independent of the 
atomic number Z (the variation coming only from the mean 
ionization potential J which occurs inside the logarithmic term, 
and the random number RND will average to a mean value of 
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0.5 when a large number of trials is made ). It therefo re 
follows that the backscatte ring coefficient TJ should depend 
only upon cot (<l>o/2). Experimentally this turn s out to be a 
good approximation and we find that - for any element - the 
relation between tan (<l>o/2) and the backscattering coefficien t TJ 
can be written as a polynomial: 

tan ( ~o) =0.016697+0.55 I08ri-0.96777ri 2 + 1.8846ri 3 (24) 

To make equation (24) a usable one in the program we 
need an estimate for TJ for our target. This can be done by 
using a relation due to Hunger and Kilchler (1979) which 
gives the backscattering coefficient TJ of a material of atomic Z 
at incident beam energy E as: 

where 

m=0 .1382 - O.~~ 
1 

and 

C=0.1904-0.2235(lnZ)+0.1292(lnZ>2-0.01491 (lnz)3 (25) 

Given E and Z, then equations 24-25 give a value of Tl and 
hence of tan (<l>o/2). (Note that if the target is not a single 
element but a homogeneous compound then the correct 
procedure is to find a value for Tlmix - the bac ksca ttering 
coefficient of the compound- using the relation (Castaing 
1960) 

(26) 

i 
where the C; are the concentrations of the element s, I, c; = I , 
and the TJi are found from equ ation 25, and then use thi s value 
in equation 24). 

This Hunger-Kuchler-Love-Cox-Scott procedure has the 
specia l advantage that the Monte Carlo simulation built around 
it can correctly predict the variation of the specimen 
backscattering coefficient with incident beam energy, an effec t 
which is quite significan t at energies below 5keV (Reimer and 
Stelter 1986) . This is not normally possible with a model 
using a screened Rutherford rather than a Mott (Reimer and 
Stelter 19 86, Czyzewski and Joy 1989 ) scatte ring 
cross-section. Although this procedure does not eliminate the 
need for the Mott cross-section, in many cases of intere st 
(such as the production of X-ray s or secondary electrons) the 
HKLCS approach does give an equally good fit to 
experimental data .The Monte Carlo loop then follows closely 
to the procedure described above and can be represented in 
algorithmic form as: 

for n=l to SO 
begin 
Get starting energy E[n] of electron 

Get starting coordinates x,y,z for the step 
Get direction cosines cx,cy,cz relative to initial axes 

Find the scattering angles <l>,'l' from equations (21 and 7) 
Compute final coordinates xn ,yn,zn from equations (8,9, 10) 

Check if the electron has been backscattered . 
If yes, exit the loop and add 1 to backscatter total 

otherwise: 
Reset coordinates x=xn,y=yn ,z=zn 

Reset direction cosines cx=ca,cy=cb,cz=cc 
end 

Figure (6) shows trajectory plots computed for a 15keV 
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beam into bulk samples of carbon, aluminum, copper and gold 
using this procedure. Note how both the size of the 
interaction volume and its shape changes as we move to 
progressively higher atomic number materials. For carbon the 
interaction volume is almost a cone hanging down from the 
surface, while for copper it is about spheroidal and for gold it 
is an oblate ('egg-shaped') spheroid. The source code for thi s 
program on the disc is in the file PS _MC .PAS and the 
corresponding executable file is PS_MC.EXE . Because each 
trajectory is now limited to 50 steps or less these programs run 
rapidly and on an IBM AT class machine the time 3 to 5 
trajectories per second can be possible. Despite the apparent 
simplicity of this approach the agreement between predictions 
made using the plural scattering model and the single scattering 
model is generally excellent and except for a few cases where 
the granularity (i.e the size of the step length) of the plural 
sca ttering model is too high to permit a model to be realistic it 
is usually preferable to employ this technique when dealing 
with bulk samples since any slight drop in accuracy is 
outweighed by the gain in precision obtained from the much 
higher number of trajectories that can be run . 
Applications 

The plural scattering model can be applied in exactly the 
same way as the single scattering model, but the nature of the 
approxi mation s made (particularly the limited - and fixed­
number of the steps in a trajectory resulting in low resolution 
when the Bethe range is long) makes this approach mo st 
usefu l at low beam energies, i.e less than 20ke V. It is 
therefore particularly adapted to SEM related studies . The type 
of model has been used to explain Type II magnetic contrast 
(Newb ury et al 1976), to investigate low-lo ss images (Wells 
1976) , to quantify EBIC measurements (Joy 1986) , to study 
seco ndar y electron production in solids (Joy 1987) and even to 
characterize energy disper sive X-ray detectors (Joy 1985). An 
example of a typical application is given on the disc as the 
program PHIROZ .EX E. This displays the generation volume 
and rel ative density of generation of X-rays within a solid 
sa mple and computes and plots the <p(pz) curv e (i.e the 
integr ate d variation of X-ray production with depth) for the 
material (Russ 1984 ). As interest in sca nning electron 
microscopy con tinue s to increa se the se sorts of tasks will 
become increasing ly important. 

Conclusions 

Monte Carlo sim ulations of electron beam -so lid 
interactions are powerful tools for the modern microscopist, 
and they are well suited for the age of the personal computer 
since the programs are compact and rapid in operation. A disc 
containing the Turbo Pasc al™ (version 5.0) source code, as 
well as executable versions, of some of the programs 
discussed in this paper has been prepared. These programs 
will operate on any IBM PC or clone, with or without a maths 
co-processor, and with any of the common graphics cards . 
The disc contains a text file containing detailed instructions on 
running and using these programs . To obtain a free copy send 
a 51/4" or 31/2"disc, together with a stamped addressed disc 
mailer, to the author at the address on the front of this paper . 
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Figure 6. Monte Carlo simulations of trajectories in bulk samples of carbon, aluminum 

copper and gold at 15keV. 250 trajectorie s are shown for each example. 
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Discussion with Reviewers 

K,Murata Have you made a comparison between results 
obtained with the single scattering model and the plural 
scattering model over a wide range of energy? If so, could you 
comment on which model gives a better accuracy generally? 
A.u1h.o.t The relative accuracy of the two approaches depends 
on which parameters of the beam interaction are being 
simulated, and on the form of the specimen. In general when 
the specimen is solid (i.e non electron-transparent) then either 
approach can give equal accuracy for calculations of such 
global quantities as the yield of X-rays, or secondary, or 
backscattered electrons provided that appropriate precautions 
are taken. However, parameters of the interaction which 
depend on individual scattering events, for example the 
angular and energy distribution of backscattered electrons, will 
always require the use of a single scattering approximation. 
When the specimen is thin in comparison to the elastic mean 
free path length then only a single scattering approximation can 
be used. 
K.Murata Could you comment on the accuracy of the models 
mentioned at very low energies, say lOOeV? 
Author The scattering models discussed here are not, in 
principle, suitable for incident beam energies below _lkeV 
since at such low energies the Rutherford cross-section 1s not 
accurate and a Mott cross-section must be used (see for 
example Czyzewski Zand Joy DC, "Fast Monte Carlo method 
for simulating electron scattering in solids", J.Microsc . 156, 
285-291, 1989; Czyzewski Z et al, "Calculations of Mott 
Scattering Cross Sections", J.App.Phys., 68, 3066, 1990). 
However, as noted above, for many purposes the difference in 
predictions between a simulation using the Mott cross-section 
and one employing a modified Rutherford cross-section is 
small because of the homogenizing effect of the plural 
scattering. The stopping power equation used here is only 
good down to about 50eV so computations in the low energy 
range will require a more detailed stopping power model. 
K,Murata Is it possible for us to observe a group of electron 
trajectories e.g 100 trajectories on the display in a three 
dimensional way by rotating coordinates with your PC. 
Author This is certainly possible to do since the start and 
finish x,y,z coordinates for each step of every trajectory are 
available. It would only be necessary to record these to a file 
and use a standard plotting program to display them. 
.G.J.&.v.e How is the form of equation 4 determined ? One can 
see that the average step length will be A if equation 4 is used 
but that does not necessarily mean the distribution of values 
about A is appropriate. 
All1hfil The actual distance that an electron travels between 
successive elastic scatterings varies in a random fashion. The 
probability p(s) of an electron traveling a distance s when the 
mean free path is A is 

p(s) = exp(-sA) 

An estimate for the distance actually traveled can then be found 
by sampling this distribution with a random number RND, 
which involves solving the equation 
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which gives 

and hence 

s 

J exp (-sA) ds 

RND = ----=-
0
-----

fo exp (-sA) ds 

RND = (1 - exp(-sA) 

s = - A log0 (1 - RND) = - "-log0 (RND) 

(since RND is a random number between O and 1, 1-RND is 
also a random number in the same range and so can be 
replaced by yet another random number RND). This is the 
result of equation 4. 
Y,Ho A Monte Carlo program implemented on a personal 
computer, and suitable for calculating secondary , 
backscattered, Auger electron, and X-ray yields for incident 
energies in the range from 3keV to 30keV, will be quite 
significant. What plans do you have to further develop the 
physical and calculation methods? 
Author The programs discussed in the text represent the 
basic skeleton of a Monte Carlo simulation. The program disc 
available from the author contains examples of how this 
framework can be adapted to solve specific problems in 
electron microscopy. More generally further developments of 
the physical basis of these programs would involve the use of 
more accurate cross-section models (e.g a Mott cross-section) , 
a more detailed stopping power model, and the removal of one 
or more of the major approximations identified at the start of 
the paper, for example including both elastic and inela stic 
scattering events in the trajectory computation. From a 
computational point of view the major advance is to take 
advantage of the very compact nature of the actual Monte Carlo 
calculation and to exploit this so as to achieve parallel 
computation on suitable machines . This would greatly reduce 
the time required to achieve adequate statistical accuracy and 
enhance the utility of these methods. 
P.Rez Your statement in the introduction is too strong . It is 
certainly possible to write down a tran sport equation 
describing all scattering in a solid. The equation might not 
have a closed form analytic solution when the bound ary 
conditions are applied. 
Author You are correct. The reason why Monte Carlo 
methods rather than transport theory calculations have become 
common tools is not that the Monte Carlo method is more 
accurate or rigorous, but that for typical practical situations a 
transport theory solution is too complex to be tractable. 
P.Rez I object to the use of the word "predicting" to describe 
the application of distributions generated from Random 
Numbers. To be strictly accurate the Monte Carlo distribution 
simulates the electron scattering provided that the statistical 
sampling has been done correctly . 
A.u..t.h..o.r Correctly this method is called Monte Carlo sampling 
because random numbers are being used to select between 
various options on the basis of their relative probability. The 
simulation follows from this sampling. In the earliest Monte 
Carlo work on electron interactions the scattering distribution 
was not, in fact, generated by the computer at all, instead a 
measured experimental distribution was sampled by the 
random number generator. 
P.Rez I have always been unhappy at the circular arguments 
used by the Monte Carlo community. The screening parameter 
is fixed to give the correct backscattering coefficient, so one 
should not be surprised if the subsequent calculation gives the 
correct result for quantities related to backscattering . I should 
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also point out that the prescription of Curgenven and Duncumb 
is not based on any proper treatment of multiple scattering. 
The justification appears to be that as the calculations gives 
results in agreement with experiment then it must be right. 
Author The 'circularity' of the arg ument is unavoidable 
because many of the parameters needed to perform the 
computations are not available even to a first approximation. 
Fitting the computed yields to experimental backscattering 
values provides a way of replacing the unattainable 
microscopic data by a piece of readily available macroscopic 
data. The proof that this procedure is viable is not that it then 
reproduces the backscattering yield that it was originally 
normalized with, but that it correctly predicts the behavior of 
this and other parameters of the electron beam interaction 
under conditions that are quite different to those used to 
produce the initial agreement.The Curgenven and Duncumb 
treatment of multiple scattering was not intended to be 
rigorous, rather it was a device to permit rapid evaluation on 
the rather smal l computer then available. However their 
approximation is neither unreasonable nor unphysical, as 
evidenced by the fact that removing it and replacing it by a 
proper treatment actually produces little substantial increase in 
accuracy for the majority of conditions . Since we are 
sampling a distribution it is not necessary to know, or be able 
to reproduce in detail, the exact mechanism by which this 
distribution is obtained. We are only required to be able to 
state with sufficient accuracy what form the distribution takes. 
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