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Abstract 

The present paper shows the potential contribution 
of conventional and high resolution scanning electron 
microscopy (SEM) to trace short intracortical circuits in 
cryofractured fish, primate and human cerebelli. Con
ventional SEM slicing technique allowed us to identify 
afferent mossy and climbing fibers and their synaptic 
relationship in the granular layer. SEM freeze-fracture 
method exposed the mossy glomerular synapses and the 
axo-dendritic connections of climbing fibers. At the 
Purkinje cell layer, the cryofracture process removed the 
satellite Bergmann glial cell layer, displaying a partial 
view of the supra- and infra-ganglionic plexuses of Pur
kinje cells and the ascending pathways of climbing 
fibers. High resolution SEM (HRSEM) showed the 
specimen specific secondary electron (SE-I) image of 
axosomatic synapses on Golgi cell surface. At the 
molecular layer, the outer surface of parallel fiber 
synaptic varicosities were distinguished, establishing the 
cruciform en passant synaptic contact with the Purkinje 
cell dendritic spines. HRSEM showed the fractured par
allel fiber synaptic varicosities containing spheroidal 
synaptic vesicles embedded in a high dense extravesicu
lar material. Conventional SEM and gold-palladium 
coating are useful to trace intracortical circuits. With 
HRSEM and chromium coating, it is possible to study 
the outer and inner surfaces of synaptic connections. 

Key Words: Scanning electron microscopy, nerve 
circuits, synapses. 
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Introduction 

Cryofractured teleost fish, primate and human cere
belli were processed for conventional scanning electron 
microscopy (SEM) and high resolution scanning electron 
microscopy (HRSEM) in an attempt to characterize cere
bellar afferent fibers (climbing and mossy fibers) and 
their intracortical neuronal relationship, as well as to 
identify short intracortical circuits, such as granule cell 
(parallel fiber) and stellate cell axons-Purkinje cell 
relationship. Intracortical circuits have been classically 
described with Golgi light microscopy (Scheibe! and 
Scheibe!, 1954; Ramon y Cajal, 1955), transmission 
electron microscopy (TEM) (Palay and Chan-Palay, 
1974), computer aided methods, injection of vital stains, 
electrophysiological recordings, and immunocytochemi
cal methods (Llinas and Hillman, 1969; Kuffler et al; 
1984; Shepher, 1988). However, until now, very few 
attempts have been made to trace intracortical circuits 
with SEM and HRSEM (Lewis, 1971; Castejon, 1981). 
The cryofracture method for SEM (Haggis, 1970; 
Humphreys et al., 1974) applied to the brain tissue 
(Castejon, 1984, 1986, 1988, 1990 a,b, 1993; Castejon 
and Apkarian, 1992) allowed us to visualize, in the cere
bellum, the cytoarchitectonic arrangement or layered 
structure of a gray center (Castejon and Caraballo, 1980; 
Castejon and Valero, 1980) and to explore neuronal ge
ometry in situ (Castejon, 1991) thereby examining outer 
and inner surfaces of synaptic contacts (Castejon and 
Apkarian, 1993). 

The aim of the present paper is to show the potential 
contribution of scanning electron microscopy and the 
cryofracture method for obtaining new information on 
the three-dimensional hidden relationships between the 
extrinsic afferent fibers (climbing and mossy fibers) and 
the cerebellar nerve cells and also to show how the scan
ning electron microscope probe could be used to trace 
through a three-layered structure such as the intrinsic 
cerebellar circuits, formed by the parallel fibers and 
Purkinje cell dendrites. 
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Material and Methods 

Slicing technique for conventional SEM (Castej6n and 
Caraballo, 1980) 

Specimens of teleost fishes, Arius spixii, weighing 
30-32 g and kept in aquaria at room temperature, were 
used. Pieces of tissue were fixed: 1) by immersion in 
5 % glutaraldehyde in 0.1 M phosphate buffer, pH 7.4; 
or 2) by vascular perfusion with 4 % glutaraldehyde in 
0.1 M phosphate buffer solution, pH 7.4; or 3) by im
mersion in Kamovsky fixative. Slices of 2-3 mm thick
ness were cut with a razor blade and fixed overnight in 
the same buffered fixative. After washing in buffered 
saline, the tissue blocks were dehydrated through graded 
concentrations of ethanol, dried by the critical point 
(CPD) method with liquid CO2 as recommended by 
Anderson (1951), mounted on copper stubs, and coated 
with carbon and gold-palladium. The specimens were 
examined in a JEOL JEM l00B electron microscope, 
equipped with ASID scanning attachment, operated at an 
accelerating voltage of 20 kV. 

Freeze-fracture for conventional SEM (Castej6n, 
1981) 

This method was applied to study the cerebellar 
cortex of two teleost fishes: Arius spixii and Salmo 
trout. After Kamovsky fixation, cerebellar slices, 2-3 
mm thick, were cut with a razor blade and fixed by im
mersion in the same fixative for 4-5 hours. After wash
ing in buffered saline, they were postfixed in 1 % osmi
um tetroxide in 0.1 M phosphate buffer solution, pH 
7.4, for 1 hour. After rinsing in a similar buffer, tissue 
blocks were dehydrated through graded concentrations of 
ethanol, rapidly frozen by plunging into Freon 22, 
cooled by liquid nitrogen (Haggis, 1970; Haggis and 
Phipps-Todd, 1977) and fractured with a precooled razor 
blade. The tissue was then dried by the critical point 
method with liquid CO2 and coated with gold-palladium. 
Specimens were examined in the same JEOL JEM lO0B 
EM-ASID operated at an accelerating voltage of 80 kV. 

Conventional SEM and cryofracture technique of 
human cerebelli (Castej6n and Valero, 1980) 

Seven human cerebelli obtained from young people 
(11-25 years), who died by drowning or non-neurologi
cal diseases were used in the present study. The cere
bellum was removed at the autopsy 4 to 11 hours after 
death. Macroscopically, the cerebellum showed anoxic 
changes and moderate brain edema. Small samples of 
cerebellar cortex, 3-5 mm thick, were processed accord
ing to the technique of Humphreys et al. (1974, 1975) 
with minor modifications (using phosphate buffer instead 
of cacodylate buffer). The samples were fixed for 2 to 
16 hours in 4% glutaraldehyde-phosphate buffer solu
tion, 0.1 M, pH 7.4, dehydrated in ethanol and frozen 
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in liquid nitrogen (LN2). The fracture was made with 
a precooled razor blade and the fragments placed in 
ethanol at room temperature for thawing. The critical 
point drying was done with liquid CO2 followed by a 
coating of carbon or gold-palladium in a JEOL JEE-46 
high vacuum evaporator. The tissue was observed with 
same JEOL JEM 100B EM-ASID. 

Nerve tissue fixation for HRSEM (Castej6n and 
Apkarian, 1992) 

Upon intracardial cannulation juvenile rhesus mon
key cerebellar cortex was flushed with Ringer lactate 
buffer and then perfused fixed with 4 % paraformalde
hyde and 0.1 % glutaraldehyde in 0.05 % phosphate buf
fer, pH 7.4. Prior to excision a perfusion of 5 % buf
fered sucrose cleared all upper body vasculature. 

Excised rhesus cerebellar cortex was minced into 2 
mm3 pieces and further fixed in 2.5 % electron micros
copy (EM) grade glutaraldehyde in 0.1 M cacodylate 
buffer, pH 7.4, overnight in order to provide complete 
intracellular proteinaceous cross-linking. Cacodylate 
buffer, pH 7.4, was used to completely remove the pri
mary fixative by rinsing the tissue several times under 
gentle agitation. Postfixation of phospholipid moieties 
was accomplished by immersion in 1 % OsO4 in 0.1 M 
cacodylate buffer, pH 7.4, for one hour and then rinsed 
in cacodylate buffer several times. 

Delicate specimen preparation 

A graded series of ethanols (30, 50, 70, 80, 90, 
2x100%) was used to substitute tissue fluids prior to 
wrapping individual tissue pieces in preformed absolute 
ethanol filled parafilm cryofracture packets. Rapid 
freezing of packets was performed by plunging into 
Freon-22 at its melting point (-155°C) and then stored 
in LN2. A modified tissue chopper (Sorvall TC-2) 
equipped with a LN2 copper stage and a precooled frac
ture blade (-196°C) was utilized for cryofracture. First, 
the packet was transferred from the LN2 storage vessel 
with LN2 chilled forceps in order to avoid thermal 
damage. Secondly, the cooled fracture blade was raised 
from the LN2 , the packet was orientated under the 
blade, and the arm was immediately activated to strike 
only the top of the packet (Apkarian and Curtis, 1986). 
Fractured tissue fragments were transferred into chilled 
absolute ethanol ( 4 °C) and thawed. Tissues were loaded 
into fresh absolute ethanol filled mesh baskets within the 
boat of a Polaron E-3000 critical point dryer, the boat 
loaded into the dryer, and exchange with CO2 gas at a 
rate of 1.2 I/min. The CPD chamber was then thermal
ly regulated to the critical tt!mperature and pressured at 
a rate of 1 °C/min. Following the phase transition, the 
CO2 gas was released at a gas flow rate of 1.2 I/min. 
(Peters, 1980). Dried specimens, shiny face up, were 
mounted onto aluminum stubs 9 mm x 2 mm x 1 mm 
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Figure l. Teleost fish cerebellar granule cell layer. 
Thin parent climbing fibers (CF) establishing 1 to 1 axo
dendritic contacts with granule cell (GCl, GC2) den
drites at the sites indicated by arrows. The large depth 
of focus of SEM allows us to appreciate the underlying 
granule cells (asterisks). SEM slicing technique. Gold
palladium coating. 

for the ISi DS-130 SEM upper stage or onto brass 
mounts for the Hitachi S-900 SEM with silver paste and 
degassed at 5 x 10-7 torr prior to coating. 

Metal coating for HRSEM imaging 

Dried and mounted specimens were chromium 
coated with a continuous 2 nm film in a Denton DV-602 
turbo pumped sputter deposition system operated in a 
vacuum of Argon at 5 x 10-3 torr (Apkarian, 1994). 
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Figure 2. Teleost fish Purkinje cell layer. The climb
ing fibers (CF) are observed leaving the granule cell 
(GC) layer, approaching the Purkinje cell body (PC) and 
ascending toward the molecular layer (ML). SEM slic
ing technique. The Bergmann glial cell cytoplasm en
sheathing the Purkinje cell has been removed during the 
SEM slicing procedure, thereby allowing visualization of 
intracortical course of climbing fiber and Purkinje cell 
outer surface. 

Scanning electron microscopy (SEM) 

Specimens were introduced onto the condenser/ob
jective (C/0) lens stages (predominantly primary beam 
generated secondary electron, SE-I, signal mode opera
tion) of either an ISi DS-130 equipped with LaB6 emitter 
or a Hitachi S-900 SE equipped with a cold cathode field 
emitter. Both instruments were operated at accelerating 
voltages of 25-30 kV in order to produce minimal spot 
size and adequate signal to noise ratio at all magnifica
tions. Micrographs were focus printed to reduce instru
mental noise (Peters, 1985). 



O.J. Castejon, R.P. Apkarian and C. Valero 

318 



SEM tracing of cerebellar intracortical circuits 

Figure 3. Teleost fish cerebellar cortex. Molecular 
layer. Climbing fibers (CF) are seen ending (arrows) on 
the outer surface of Purkinje dendritic branches (Pd) by 
means of bulbous endings (thin arrows). SEM slicing 
technique. Gold-palladium coating. 

Figure 4. Teleost fish cerebellar cortex. Granule cell 
layer. Thick parent mossy fibers (arrows) are observed 
crossing the granule cell (GC) layer and establishing en 
passant mossy glomerular (MG) contacts with several 
granule cell groups. Fine identified fibers (arrowheads) 
are observed dispersed throughout the granular layer; 
they may correspond to fine collaterals of mossy fibers, 
climbing collaterals, or Golgi cell axonal ramifications. 
SEM slicing technique. Gold-palladium coating. 

Figure S. Teleost fish cerebellar cortex. Granule cell 
layer. Fractured mossy fiber glomerulus showing the 
central mossy fiber rosette (asterisks) surrounded by 
granule cell (GC) dendritic processes (arrowheads). 
Freon freeze-fracture method. Gold-palladium coating. 

Figure 6. Fractured mossy fiber glomerulus showing up 
to 18 granule cells (GC) surrounding a central mossy 
rosette (MR). Note the granule cell dendritic processes 
(arrows) converging radially to the mossy rosette. 
Freon freeze-fracture method. Gold-palladium coating. 

Results 

SEM slicing technique 

Examination at low magnification of the cerebellar 
white matter processed according to the slicing technique 
showed the afferent fibers entering into the granular lay
er. At higher magnification, close scrutiny of the granu
lar layer showed bundles of thin parent fibers approach
ing the granule cell groups. These thin fibers gave off 
fine collateral tendrils, which spread toward the neigh
boring granule cell groups. The parent fibers were ob
served establishing contact with granule cell dendrites. 
At a higher magnification of the granular layer, the 
granule cell processes, both dendrites and axon, were 
clearly distinguished as well as their topographic rela
tionship with the afferent fibers. Close examination of 
these contacts allowed us to characterize axo-dendritic 
relations between climbing fibers and granule cell den
drites in a ratio of 1 to 1 (Fig. 1). 

Ascending to the Purkinje cell layer, we observed 
how the unbranched parent fibers approached the Pur
kinje cell body (Fig. 2) on their way to the molecular 
layer. In this layer, they were observed ascending to
ward the surface of the cerebellar folia along the surface 
of Purkinje cell dendrites and emitting ascending, trans
verse and descending collateral processes. These col
lateral processes were observed passing by or ending by 
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Figure 7. Teleost fish cerebellar cortex. Purkinje cell 
layer. The soma, primary dendritic trunk (asterisk) and 
axon hillock region (arrow) of a Purkinje cell (Pc) are 
appreciated. In addition, a partial view of the infra
ganglionic plexus (IP) and ascending climbing fiber (CF) 
are observed. Vestiges of Bergmann glial cell cytoplasm 
(arrowheads) are seen attached to the Purkinje cell outer 
surface. A cell (Lugaro cell?) (LC) is observed at the 
left comer. Freon-freeze fracture method. Gold-palla
dium coating. 

means of bulbous endings upon the surface of Purkinje 
cell tertiary dendritic shafts or in their spines (Fig. 3). 
According to the uniform caliber of the parent fiber, 
intracortical course, topographical relationship with 
Purkinje cell dendrites and presence of fine ramifica
tions, the parent fibers and their collateral processes 
were interpreted as climbing fibers. 

The mossy fibers were observed as thick parent 
fibers entering into successive granule cell groups in the 
granular layer and establishing en passant relationship 
with several groups of granule cells (Fig. 4). 

SEM free7,e-fracture method 

Since the slicing technique for SEM does not allow 
us to accurately differentiate climbing fibers from mossy 
fibers, we applied the freeze fracture SEM method of 
Humphreys et al. (1974, 1975) in order to obtain new 
views of intemeuronal relationship and expose hidden 
neuronal surfaces. At the level of the granular layer, 
the cerebellar glomerulus was fractured exposing the in
terior of the granule cell groups and the intimate rela
tionship of granule cell dendrites with the varicosities or 
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Figure 8. Human edematous cerebellum. Purkinje cell 
layer. A transversely running axon (arrows) is observed 
crossing the upper pole cell body of a Purkinje cell (Pc) 
and establishing an axosomatic contact (arrowhead) with 
the Purkinje cell somatic outer surface. Ethanol
cryofracturing technique. The asterisks label the 
primary dendritic trunk. The removed Bergmann glial 
cytoplasm occupied the dark spaces surrounding the 
Purkinje cell. Gold-palladium coating. 

Figure 9. Human edematous cerebellum. Purkinje cell 
(Pc) somatic outer surface. Fractured axo-somatic bas
ket cell endings (arrows) are observed interconnected 
(arrowheads) and attached to the Purkinje cell somatic 
outer surface. The ethanol-cryofracturing process has 
sectioned the incoming basket cell axons and removed 
the satellite Bergmann glial cell cytoplasm. Gold
palladium coating. 
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Figure 10. Teleost fish cerebellar cortex. Molecular 
layer. Outer surface of bundles of parallel fibers (PF) 
and vestiges of attached neuroglial cytoplasm (NC). The 
non-synaptic segment of parallel fiber shows uniform 
caliber. Gold-palladium coating. 

Figure 11. Teleost fish cerebellum. Molecular layer. 
Parallel fiber showing the synaptic varicosity (arrow) in 
contact with the en face view of a Purkinje dendritic 
spine body (arrowhead). The satellite Bergmann glial 
cell cytoplasm (Bg) is also seen. Gold-palladium 
coating. 
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Figure 12. Human edematous cerebellar cortex. Mo
lecular layer. A parallel fiber is observed making en 
passant axo-dendritic contacts (arrowheads) with succes
sive Purkinje dendritic branchlets (asterisks). The 
ethanol cryofracturing technjque has removed the enve
loping neuroglial cytoplasm. Gold-palladium coating. 

rosettes of mossy fibers (Fig. 5). Another fractured 
mossy glomerulus showed a group of granule cells with 
their dendritic processes radially converging onto the 
central mossy rosette expansion (Fig. 6). In this case, 
up to 18 granule cells were observed sending their den
drites to the mossy rosette, which gave an idea of the 
degree of divergent information at the level of each 
mossy glomerulus. These observations clearly differen
tiate mossy fiber (1 to 18 ratio) from climbing fiber (1 
to 1 ratio) relations with granule cell dendrites. 

At the level of Purkinje cell layer, the cryofracture 
process removed the satellite Bergman glial cell, a re
gional protoplasmic astrocyte covering the Purkinje cell, 
exposing the surface of a Purkinje cell body, the emer
gence of the primary dendritic trunk and the axon hil
lock region (Fig. 7). In addition, a partial view was 
obtained of the infraganglionic plexus of a Purkinje cell 
and neighboring cells, presumably basket cells. Exarru
nation of the upper pole body of a Purkinje cell, at the 
site of emergence of the primary dendritic trunk, permit
ted us to observe in human cerebellum, the tranversally 
running basket cell axons establishing axosomatic con
tacts with a Purkinje cell somatic surface (Fig. 8). 
These axons form part of the so-called supraganglionic 
plexus of Purkinje cells. A further exploration of the 
Purkinje cell somatic outer surface revealed attached 
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Figure 13. Rhesus monkey cerebellar cortex. Molecu
lar layer. A non-synaptic segment of parallel fiber (PF) 
is observed crossing the spiny surface of a Purkinje terti
ary dendritic branch (Pd). The high resolution scanning 
electron rrucroscopy and chromium coating gave a high 
material density to the parallel fiber and a gray, less 
dense appearance to the dendritic surface. Compare the 
improved quality image with the previous figures. 

Figure 14. Rhesus monkey cerebellar cortex. Molecu
lar layer showing two fractured synaptic varicosities of 
parallel fiber (PF) with clustered spheroidal synaptic 
vesicles (arrows), which appeared surrounded by neuro
glial cell cytoplasm (NG). 
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axosomatic boutons (Fig. 9). Apparently, the cryofrac
ture process sectioned the incoming fibers and separated 
the neuroglial sheath of Purkinje cells, thus exposing the 
axosomatic contacts. 

At the level of the molecular layer, examination of 
teleost fish cerebellum with the conventional SEM 
showed the longitudinal profiles of the non-synaptic seg
ments of parallel fibers (Fig. 10). They appeared as 
longitudinally running bundles partially separated by ves
tiges of intervening Bergmann glial cell cytoplasm. 

The parallel fibers showed fusiform varicosities or 
synaptic enlargements at the level of the contacts with 
the Purkinje cell dendritic spines (Fig. 11). Scanning 
the molecular layer of human cerebellum, we were able 
to characterize the en passa11t nature of the parallel fiber 
axospinodendritic synaptic contacts with successive 
Purkinje cell dendrites (Fig. 12). Parallel fibers 
appeared transverse I y running in the molecular layer, 
whereas the Purkinje cell dendrites appeared longitudi
nally ascending configurating "cruciform" or "crossing 
over" synapses. 

In primate cerebellar molecular layer, a more detail
ed view of the non synaptic region of parallel fiber and 
the outer surface of Purkinje tertiary dendrites was ob
tained (Fig. 13). In this case, using the delicate speci
men preparation, the chromium coating, and the instru
mental parameter of a high resolution electron micro
scope, permitted us to obtain an SE-I image of the outer 
surface of axons and dendritic processes, revealing the 
brilliant mass density of the axonal profiles and the gray, 
Jess dense smooth spiny surface of tertiary dendritic 
outer surfaces. 

Cross-sectioned parallel fiber synaptic varicosities 
contained the spheroidal synaptic vesicles (Fig. 14) and 
appeared surrounded by Bergman glial cell neuroglial 
cytoplasm. 

Discussion 

In the present paper, we have demonstrated that the 
slicing technique and the cryofracture method for SEM 
have some potential value for exposing the nerve cell 
circuits within a central gray nerve center. In the slicing 
technique, the plane of the section can be orientated for 
obtaining the desired sagittal, transverse or e11 face sec
tions of the cerebellar folia. With the cryofracture 
methods, either by liquid nitrogen (Humphreys et al., 
1974) or freon 22 (Apkarian and Curtis, 1986), the 
cleavage plane is randomly obtained. However, the ir
regular fracture surface permits an in depth analysis of 
the course of a particular nerve process. In the explo
ration of the intracortical course of an afferent fiber or 
an intrinsic fiber, we have taken advantage of the high 
resolution and large depth of focus of conventional and 
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high resolution scanning electron microscopes, which 
allow continuous exploration of nerve processes through
out the multilayered structure of the gray center. The 
cleavage plane is often produced at the intercellular level 
during the cryofracture process with liquid nitrogen 
(medium freezing rate), removing the neuroglial cyto
plasm covering the neuronal surface and the nerve cell 
processes. This exposes the trajectory of the almost in
tact nerve cell circuits and interconnections and facili
tates exploration with the scanning electron microscope 
probe. Since nerve tissue forms a compact neuropil, the 
fractured surface exposed hidden surface but unfortu
nately broke some interconnections. This limitation 
should be taken into consideration in identifying a partic
ular nerve fiber, since it alters the degree of lateral 
collateralization, a criterion which is important in the 
identification of a nerve fiber. 

The criteria of identification used in the present 
study took into consideration previous descriptions with 
the Golgi optical microscope and thin section transmis
sion electron microscope (TEM) studies combined with 
three-dimensional reconstruction. 

In the identification of climbing fibers in the cere
bellar cortex, the following features were considered: a) 
caliber of fibers (thinner than mossy fibers), b) intracor
tical course through the cerebellar cortex given by previ
ous Golgi light microscope studies (Scheibe) and 
Scheibe), 1954; Ramon y Cajal, 1955), combined Golgi 
and TEM studies (Palay and Chan-Palay, 1974), and dif
ferent SEM methodology, such as the ashing technique 
(Lewis, 1971), creative tearing technique (Scheibe) et 
al., 1981) or ultrasonic micro-dissection (Low, 1989); 
c) degree of collateralization in the granular layer (Palay 
and Chan-Palay, 1974) and in the molecular layer 
(Scheibe) and Scheibe), 1954; Castejon, 1983, 1986; 
Castejon and Castejon, 1987). In this context, scanning 
electron microscopy should be considered as a comple
mentary and powerful exploration technique that requires 
previous knowledge from related microscopic techniques 
for proper orientation and interpretation. 

For the identification of mossy fibers, we have 
taken into account the following features: a) larger cali
ber than climbing fibers (Mugnaini, 1972); b) classically 
described endings in the granular layer and typical ro
sette formations (Ramon y Cajal, 1955; Palay and Chan
Palay, 1974); c) glomerular type of engagement with 
multiple granule cell dendrites; d) dichotomous branch
ing pattern (Castejon, 1991), contrasting with the "cross
over" bifurcation pattern of climbing fibers (Castejon 
and Castejon, 1987). 

For the identification of fine delicate ramifications 
of the mossy and climbing fibers in the granular layer, 
we have ascertained that there is a source of confusion 
with the highly branched axonal ramification of Golgi 
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cell axons. In this case, the small area of the fracture 
surface limits scanning of the connection with the parent 
fibers and impedes a proper identification. 

The freeze-fracture method for SEM made it possi
ble to obtain an inner view of the mossy fiber glomeru
lus, complementing the information obtained with TEM, 
either by thin sections (Mugnaini, 1972) or freeze
etching replicas (Castejon , 1991). In addition, it 
seemed to establish the quantitative relation between 
granule cells and the mossy fiber rosettes. The mossy 
rosette-granule cell ratio is 1 to 15 (Fox et al., 1967) or 
1 to 20 (Eccles et al., 1967), as estimated by Golgi light 
microscope studies. This ratio gives an idea of the de
gree of divergence of information on each mossy glom
erulus. A systematic study with SEM could provide 
with a major degree of accuracy the exact degree of div
ergence. In a previous study (Castejon, 1991), we have 
preliminarily estimated a ratio of 1 to 18. The inner 
view of mossy glomerulus with the SEM cryofracture 
method opens new lines of research on quantitative 
analysis of glomerular synapses. 

Conventional scanning electron microscopy, in 
which the specimen is staged at a working distance 
below the final probe forming lens and using 5-10 nm 
gold-palladium coated samples, has provided for the first 
time, the outer surface image of cerebellar parallel fibers 
and confirmed the "crossing-over" type, and en passant 
nature, of parallel fiber-Purkinje cell dendrite synaptic 
relationship, as earlier described by TEM studies 
(Hamori and Szentagothai, 1964). In this synaptic 
relationship, as illustrated in Fig. 13, the HRSEM with 
the "in lens" position of the specimen and the ultrathin 
chromium coating have provided a close approximation 
to the true outer nerve cell process surface, allowing us 
to study spine synaptic relationship (Castejon and 
Apkarian, 1993). In this context, HRSEM offers new 
perspectives on the study of spine synaptic morphology. 

In the high resolution scanning electron microscope, 
an efficient detector placed above the condenser/objec
tive (C/O) lens specimen stage along with a high bright
ness LaB6 or a field emission (FE) emitter creates a con
dition of specimen collection specifically useful for 
imaging SE-I contrast (Apkarian, 1989). This new 
methodology could be used for tracing the final endings 
of extrinsic or intrinsic nerve fibers. As shown in Fig
ure 14, the inner surface morphology of a presynaptic 
ending could be obtained. The thinner chromium coat
ing used (2 nm thick) allowed us to obtain the relief con
trast of the limiting plasma membrane profile and the 
outer surface morphology of synaptic vesicles. This 
circumstance will make it possible, in the future, to 
obtain a higher magnification of the three-dimensional 
macromolecular architecture of synaptic membranes. 
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Discussion with Reviewers 

P. Mestres: In general, the SEM equipped with field 
emission gun (FEG) is advantageous in biology working 
at low voltage. Why do you use FEG at higher voltages 
(30 kV)?. 
Authors: We are using FEG at high voltage because at 
the present time, we are interested in tracing the fine, 
delicate afferent nerve fiber endings making surface con
tacts with dendritic outer surface. In addition, we want 
to show the inner surface of the cross-fractured synaptic 
endings. The S-900 at 30 kV has a theoretically pre
dicted probe diameter of 0.5 nm [Nagatani T, Saito S, 
Sato M, Yamada M (1987). Development of an ultra
high resolution scanning electron microscope by means 
of a field emission source and in-lens system. Scanning 
Microsc. 1, 901-909] and shows a resolution of signifi
cant biological structures 2-5 nm in diameter. In the fu
ture, when dealing with macromolecular imaging of neu
ronal membranes, we will use FEG below 4 kV in order 
to obtain better topographic contrast and even better 
resolution. 
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