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LUMINESCENCE SPECTROSCOPY OF SEMICONDUCTOR 
SURFACES AND INTERFACES 

L.J. Brillson•, S. Chang, A.D. Raisanen and I. M. Vitomirov 

Xerox Webster Research Center, 800 Phillips Rd 114/41D, Webster, NY 14580 

Abstract 

Low energy cathodoluminescen~ spectroscopy 
(CLS) employing incident electron energies in the range 
of a few kV or less enable measurement of electronic 
structure near semiconductor surfaces and interfaces. 
Coupled with photoluminescence spectroscopy (PL), the 
CLS technique has been extended to characterize elec­
tronic structure tens of nanometers below the free 
surface at metal-semiconductor and semiconductor-semi­
conductor junctions. CLS has revealed discrete, deep 
electronic states for clean and metallized semiconductor 
surfaces as a function of atomic ordering as well as 
vicinal surfaces as a function of misorientation. A com­
bination of CLS and PL reveals deep level features asso­
ciated with strain relaxation and dislocations at hetero­
junction interfaces as well as variations in epilayer 
growth conditions. Such observations demonstrate the 
existence of discrete, deep levels in the semiconductor 
band gap and their sensitivity to chemical and atomic 
structure near surfaces and interfaces. Furthermore, the 
energies and densities of such deep levels provide a con­
sistent picture of Fermi level stabiliz.ation and band 
bending at semiconductor contacts. Finally, our results 
indicate that deep level CLS/PL measurements are an 
effective, in-situ probe of surface and interface quality. 

Key Words: Cathodoluminescence, metal-semiconduc­
tor interface, semiconductor heterojunction, Schottky 
barrier, interface states, defects, deep levels, GaAs, 
InGaAs, ZnSe, dislocations, buried interface. 
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Introduction 

The electronic structure of semiconductor-metal 
interfaces have been the subject of considerable research 
aimed at understanding the processes of charge transfer 
and Schottky barrier formation (Brillson, 1982, 1992, 
1993); Rhoderick and Williams, 1988). 'However, de­
spite nearly fifty years of research, these phenomena are 
still far from well understood. Furthermore, the rectifi­
cation which they produce is central to a wide array of 
electronic devices. A central feature of interface charge 
transfer and band bending are the electronic states local­
ized near the interface, into and out of which charge 
may transfer. Researchers have employed a variety of 
surface science techniques to probe these localized inter­
face states and have found that extrinsic, chemical and 
atomic structural features of the interface region rather 
than the intrinsic properties of the metal and/or the semi­
conductor can produce the dominant interface states 
(Brillson, 1982). Low energy cathodoluminescence 
spectroscopy (CLS) studies have provided some of the 
most direct evidence for such extrinsic surface and 
interface states and their dependence on preparation and 
subsequent processing (Brillson et al., 1985, 1988; 
Brillson and Viturro, 1988; Yacobi & Holt, 1990). 
Furthermore, CLS provides a unique method of probing 
interface states localized tens to hundreds of nanometers 
below a free surface. Such "buried• interfaces may in 
fact be altered by chemical and structural processes 
which are different or not present with only a few mono­
layers or less of adsorbate on a semiconductor surface. 
Indeed, CLS results provide strong evidence for an evo­
lution of interface states with increasing (metal) over­
layer thickness on a semiconductor surface (Viturro et 
al., 1986). 

We have now extended the CLS technique, in con­
cert with laser-induced photoluminescence (PL) spectros­
copy, to a wide array of extrinsic states at semiconduc­
tor surfaces and buried interfaces. Here, we present 
CLS/PL results for near-surface and buried interface 
electronic states. In the following sections, we present 
a description of the luminescence techniques, near-sur­
face state measurements from atomically-ordered and 
metallized surfaces and vicinal surfaces, and bulk and 
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buried interface states from misfit dislocations and 
chemically-altered heterojunctions. Also discussed are 
the correlation between the energies of these localized 
states and the interface Fermi levels. Finally, we dis­
cuss the application of these luminescence techniques to 
the monitoring and control of semiconductor device 
structures. 

Low Energy Cathodoluminescence Spectroscopy 

Low energy CLS has a number of advantages rela­
tive to other techniques in probing interface states. 
These include: (i) probe depths which can extend tens to 
hundreds of nanometers beyond the immediate surface 
region of adsorbed overlayer, multilayer film and/or 
epilayer film; (ii) variable probe depths which depend on 
incident beam energy; and (iii) the capability to generate 
free electron-hole pairs and thereby induce radiative 
recombination through deep levels and new band struc­
ture. Such radiative emission may be characteristic of 
atomic scale defects, extended structural imperfections 
and even new compounds. Except for metallic overlayer 
thicknesses beyond a few nanometers, the luminescence 
from these features can be detected in a backscattering 
geometry, permitting additional flexibility in preparing 
or processing such surfaces and interfaces under ultra­
high vacuum (UHV) conditions. Detection through opti­
cally opaque overfayers is also possible in alternate 
experimental configurations. 

In order to perform surface and interface experi­
ments under controlled chemical conditions, we em­
ployed a UHV chamber equipped with surface character­
ization and modification tools. These tools include a 
low energy (300-3000eV), glancing incidence electron 
gun, a monochromator and photon detector with near in­
frared sensitivity, and appropriate photon collection 
optics. Photon collection optics include a quartz or 
CaF2 lens to collect the emitted light within the chamber 
and a sapphire viewport to transmit the light to a prism 
or grating monochromator and a detector. All spectra 
are normalized to the black body throughput of the opti­
cal train. For the results described here, we used a Ge 
photodiode (North Coast) with a low energy cut-off at 
0.7 eV. InSb or PbS detectors are available with sensi­
tivity extending to lower energies, albeit with consider­
ably reduced detectivity. For experiments involving op­
tical emission above 1. 1 eV, photomultipliers provide 
detectivity orders of magnitude greater than the Ge pho­
todiode. The near-surface and interface sensitivity de­
rives mainly from the short penetration depth of the low 
energy electron beam. Furthermore, band bending near 
the interface/free-surface can enhance the recombination 
at localized sites by increasing the local density of mi­
nority carriers. We can estimate the maximum electron 
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range and depth of maximum energy loss (e.g., maxi­
mum rate of electron-hole creation) by extrapolation of 
expressions derived for higher kinetic energies (Everhart 
and Hoff, 1971; Shea, 1984). These extrapolations are 
described in a previous publication (Brillson and 
Viturro, 1988). The maximum energy loss occurs at 
depths which are orders of magnitude smaller than those 
of conventional high ke V or Mev electron beams. In 
order to analyze the energy dependence of CLS spectra, 
we maintained constant power dissipation by decreasing 
the incident flux inversely with beam voltage. Previous 
work confirms that the intensities of surface and bulk 
contributions to CLS spectra vary with energy in a com­
plementary way (Brillson and Viturro, 1988). Further­
more, the high surface sensitivity and energy dependence 
of CLS spectra demonstrate that diffusion of beam-gen­
erated free carriers do not blur the excitation depth 
effect appreciably, presumably due to influence of band 
bending in moving minority free carriers toward surface 
or interface recombination centers (Brillson and Viturro, 
1988). 

A number of researchers have used CLS tech­
niques previously to probe semiconductors (Brillson and 
Viturro, 1988; Yacoby and Holt, 1990). In 1985, 
Brillson and coworkers described the first use of CLS at 
low energies to probe metal-semiconductor interfaces. 
In succeeding years, CLS studies of metal-semiconductor 
interface states provided evidence for the metal-specific 
nature of such states (Viturro et al., 1986), their depend­
ence on crystal growth (Shaw et al., 1988, 1989) and 
their dependence on processing (Raisanen et al., 1993; 
Vitomirov et al., 1992, 1992a). These results under­
scored the presence of discrete states at semiconductor 
interfaces which depend sensitively on extrinsic factors. 

Atomically-Ordered and Metallized 
Semiconductor Surfaces 

Studies of atomically-ordered and metallized semi­
conductor surfaces demonstrate the sensitivity of CLS to 
surface electronic states. The experiments described 
here were performed on clean GaAs(lOO) surfaces 
grown by MBE and analyzed under UHV conditions. 
By thermal decapping of a protective As overlayer, it 
was possible for us to transport such surfaces from the 
growth chamber to the UHV chamber through air and 
achieve LEED-ordered surfaces. Desorption and an­
nealing at different temperatures produces a wide variety 
of atomic reconstructions and chemical compositions 
(Brillson, 1982). Figure 1 demonstrates the surface sen­
sitivity achievable with low energy CLS. Here, deep 
level emission versus incident electron energy is shown 
for a GaAs(lOO) c(8 x 2) surface, obtained by annealing 
the epilayer at 580°C under UHV conditions. Figure 1 
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Figure 1. CLS spectra of a clean, ordered GaAs(lOO) 
c(8 x 2) for excitation energies of 1, 1.5 and 2 kV. 
Deep level emission peaked at 1.2 eV increases with de­
creasing excitation range, characteristic of near-surface 
luminescence (Vitomirov et al., 1992a). 
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Figure 2. CLS spectra of a clean GaAs(lOO) (1 x 1) 
surface (bottom), with deposition of 1 nm Al (middle), 
and subsequent annealing at 350°C (top). Al deposition 
induces pronounced emission at 0.7-0.8 eV, which is 
removed by annealing (Vitomirov et al., 1992a). 
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shows a deep level emission feature which extends from 
the low energy detector cutoff to the near band edge 
emission at 1.42 eV. This emission increases with de­
creasing energy, particularly at energies around 1.2 eV. 
Such behavior is characteristic of recombination local­
ized near the free GaAs surface. In contrast to the Ga­
rich GaAs(lOO) c(8 x 2) surface, annealing at 350°C 
produces an As-rich surface, which exhibits considerably 
less surface emission in analogous CLS spectra, indi­
cating the influence of surface preparation on the optical 
emission (Vitomirov et al., 1992a). 

Metallization of these GaAs surfaces results in 
more dramatic differences in optical emission with initial 
surface preparation. Such deep level emission is charac­
teristic of the metal-semiconductor interface. Figure 2 
shows that 1 nm Al on (1 x 1) surface induces 
pronounced additional emission at' 0.7-0.8 eV. 
Furthermore, annealing of this interface at 410°C for 5 
minutes serves to remove this metal-induced feature. 
Since Al reacts strongly with As on the GaAs surface, 
the variations in emission in these spectra indicate that 
changes in chemical bonding are responsible for these 
spectral features. 

Metal-induced states at Al-OaAs(lOO) interfaces, 
in fact, exhibit a systematic dependence on the tempera­
ture of GaAs(lOO) surface preparation. Figure 3 il­
lustrates difference spectra for reconstructed GaAs(lOO) 
surfaces prepared at representative temperatures. With 
increasing temperature, the 0. 8 e V feature prominant for 
the (1 x 1) surface disappears, whereas the 1.2 peak fea­
ture appears only for the (4 x 6) surface. A third fea­
ture at 0.95 eV appears to be present for all three recon­
structions. For Au, no such effects with temperature are 
observed, consistent with the qualitatively different inter­
face chemistry (Vitomirov et al., 1992a). 

The deep level ermss1on observed for 
AI/GaAs(lOO) interfaces leads to interface states energies 
within the gap which correlate with observed Fermi level 
positions. Fermi level energies derived from soft x-ray 
photoemission (SXPS) data on similar reconstructed sur­
faces are found to vary with reconstruction, shifting 
from 0.84 eV to 0.96 eV, with temperature increasing 
from 420°C to 620°C (Vitomirov et al., 1992). Assum­
ing that the CLS emission corresponds to transitions 
from states near the conduction band to acceptor states 
below in energy, we find a good correlation between the 
Fermi level positions and the deep levels, whose relative 
weighting of intensities shifts from 0.8 eV-0.95 eV to 
1.05 eV-1.2 eV with increasing temperature over the 
same temperature range (this assumption for CLS emis­
sion from InGaAs and GaAs has been confirmed by sur­
face photoconductivity (Raisanen et al., 1994) and 
photovoltage (Burstein et al., 1991) measurements). 
Thus, the interface states detected via CLS correspond 
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Figure 3. Difference spectra between clean GaAs(lOO) 
prepared at different temperatures and the corresponding 
spectra for deposition of 1 nm Al. Spectral features at 
0.8 eV, 0.95 eV and 1.2 eV exhibit systematic varia­
tions with incrt>.asing temperature of clean surface prep­
aration (Vitomirov et al., 1992). 

both in energy and in temperature dependence to Fermi 
level movements measured by SXPS. 

To summarize these results for atomically ordered 
and metallized GaAs surface, we find: (i) multiple deep 
levels present near the surface and metal interface; (ii) 
energies and intensities which are sensitive to semicon­
ductor temperature and reconstruction; (iii) energies and 
intensities which are sensitive to the chemical nature of 
metal overlayers; and (iv) deep level energies which cor­
relate with independently measured Fermi level position. 
These results underscore the utility of CLS for studying 
near-surface and interface electronic structure. 

Vicinal Surfaces and Interfaces 

The CLS technique is also sensitive to extrinsic 
states associated with surface morphology (Viturro and 
Brillson, 1987). In this section, we show that states 
form within the semiconductor band gap due to presence 
of steps and dangling bonds at vicinal surfaces. The 
electronic activity of such vicinal surfaces are of 
practical importance since they are used to accelerate the 
growth of MBE films. GaAs single crystal surfaces 
misoriented from the [100] direction indicate significant 
changes in .both chemical and electronic properties. 
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Figure 4. CLS spectra for vicinal GaAs(lOO) misorien­
ted 2 degrees toward [110] with deposition of 1.2-1.3 
nm Al. Al induces new features at 0.9 and 1.2 eV for 
the stepped surface (Chang et al., 1991). 

Nanometer deposition of Al on GaAs(lOO) stepped 
surfaces leads to clear differences in the extent of 
chemical reaction, depending on the misorientation 
direction and angle. SXPS measurements of such thin 
Al/GaAs interfaces reveals the presence of dissociated 
Ga due to Al bonding with near-surface As atoms 
(Chang et al., 1990a). This reaction product increases 
with the density of active atomic sites, that is, with 
misorientation direction in the order [110] < [lll]A < 
[lll]B, as well as with increasing misorientation angle. 
Correspondingly, new interface states appear for Al on 
vicinal GaAs in addition to those of the oriented 
GaAs(lOO) surface. Figure 4 illustrates emission 
structure induced by Al deposition centered at 0.9-0.95 
and 1.2 eV. The top difference spectrum illustrates the 
predominant emission at 0.9-0.95eV for Al on stepped 
surface. 
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analysis of Fermi level positions for 
GaAs(lOO) misoriented surfaces with 
Al and Au overlayers. The energy 
versus metal work function family of 
curves depends on the densities and 
energies of acceptor levels in the GaAs 
band gap. Curves intersecting data 
points provide corresponding deep level 
densities (Chang et al., 1990a). 
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These misoriented GaAs/ Al interfaces also exhibit 
a range of band bending and corresponding Fermi level 
positions. Significantly, similar misoriented GaAs inter­
faces with Au exhibit little or no such variation (Chang 
et al., 1992), presumably due to the qualitative differ­
ence in interface chemistry (Brillson, 1982). From a 
self-consistent electrostatic analysis of Fermi level 
position (Duke and Mailhiot, 1986) for the different met­
al junctions (Chang et al., 1990a), one can derive a set 
of interface state densities for each misoriented surface. 
Figure 5 illustrates how a family of curves based only 
on the energies and densities of two acceptor levels fits 
the measured Fermi level positions. The inset shows the 
energies of the states required to obtain this fit, in good 
agreement with the optical emission energies (measured 
at 90 K versus room temperature) shown in Figure 4. 
Furthermore, the densities of these states exhibit a linear 
correlation with the calculated densities of active chemi­
cal sites expected for each misoriented surface, assuming 
an ideal lattice termination (Chang et al., 1991). This 
analysis indicates near-unity charge per active lattice 
site, a result supported by scanning tunneling micros­
copy studies (Pashley, 1992). 

In summary, CLS studies of vicinal surfaces reveal 
that electronic states are present at stepped surfaces 

5.00 

177 

5.50 

which depend on misorientation direction and step densi­
ty. These states depend sensitively on metal, and their 
energies within the semiconductor band gap agree with 
a self-consistent electrostatic analysis. Finally, the CLS 
spectra provide an electronic description of interface 
states which scale with chemically-active atomic sites. 

Buried Heterojunction Interfaces: Dislocatiom 

Low energy cathodoluminescence spectroscopy has 
now been extended to the examination of electronic 
structure localiz.ed at heterojunction interfaces. In 
tandem with PL, one is able to excite free carriers and 
recombination over a large range of depths normal to the 
free surface and interface. It is possible, in this way, to 
confirm the buried interface nature of the optical emis­
sion. 

Heterojunction growth involving dissimilar semi­
conductors with different lattice constants leads to new 
morphological features and associated electronic states. 
At low coverages, lattice mismatch is accomodated by 
strain and is termed pseudomorphic. Above a character­
istic "critical" thickness, the epilayer lattice relaxes and 
forms misfit dislocations to relieve the strain (Mayer and 
Lau, 1990). Misfit dislocations may act as electrically 
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Figure 6. CLS and PL spectra for 100 nm In o.s Ga 
o.92 As(lOO) on GaAs(lOO) for 1 kV, 2 kV, HeCd and 
HeNe excitation. Ratio of near band edge peaks indi­
cates relative ranges of excitation, extending from near­
surface to beyond the epilayer substrate interface 
(Raisanen et al., 1994a). 

active sites such as recombination centers and deep 
traps. Such electrically active sites can alter dramatical­
ly the transport, electrostatic and ultimate failure rate 
properties of devices incorporating such interfaces. 

Combined CLS and PL measurements on heteroin­
terfaces provide both a measure of localized electronic 
state properties and a demonstration of the depth selec­
tivity possible with these techniques. For InGaAs grown 
on GaAs by MBE, one can use the relative emission 
from these two materials to help calibrate the relative 
depth of excitation. Thus, Figure 6 illustrates the band 
edge peaks at 1.42 (InGaAs) and 1.51 eV (GaAs), 
whose relative intensity changes systematically with the 
type of excitation (Raisanen et al., 1994a). For 100 nm 
Ino.08Gao.92As/GaAs(100) shown in Figure 6, transmis­
sion electron (TEM) micrographs display features of 
partially relaxed InGaAs on GaAs corresponding to Ia3-
Io5 cm· 1. For In concentrations of ca.IO%, critical 
thicknesses are in the range of a few tens of nanometers. 
1 kV excitation causes near bend edge emission predom­
inantly from the epilayer. 2 kV and Heed laser excita­
tion leads to a more balanced emission from both mate-
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Figure 7. CLS and PL spectra for 300 nm In 0.1 Ga o.9 
As(lOO) on GaAs(lOO) for 1 kV, 2 kV, HeCd and 
HeNe excitation. The independent intensity variation of 
the 0.87, 0.96 and 1.13 eV peaks indicates their differ­
ent spatial origin above the GaAs substrate (Raisanen et 
al., 1994b). 

rials, and HeNe excitation produces excitation weighted 
substantially toward the GaAs substrate. 

Figure 6 also shows a number of emission features 
at energies deep within the semiconductor band gaps. A 
number of discrete peak features are apparent at 0. 76, 
0.83, 0.96 and 1.22 eV. The peak at 0.83 eV appears 
largest for excitation centered primarily on the interface 
region. The remaining peaks appear for excitations ex -
tending over a range of depths and correspond to bulk 
trap levels. These features exhibit a significant depend­
ence on the epilayer thickness. 

For 300 nm Ino.1 Gao.9 As/GaAs(lOO), no emission 
from the GaAs substrate is evident for all but the HeNe 
excitation, as shown in Figure 7. This is consistent with 
the energy-range relationship mentioned earlier and with 
the absorption depth of HeCd and HeNe laser photons 
within the InGaAs. The continued appearance of the 
deep levels in the absence of the GaAs emission demon­
strates their InGaAs or interface origin. As expected for 
these thicker epilayers, dislocation-induced peaks are 
present in all these spectra, albeit shifted to 0.87 eV. 
The independent variation of peak intensities for differ-
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Figure 8. HeCd PL spectra for InGaAs/GaAs(lOO) het­
erojunctions with increasing lattice relaxation measured 
via TEM. The dislocation feature at 0.83-87 eV in­
creases in intensity with dislocation density (Raisanen et 
al., 1994b). 

------------------
ent excitations demonstrate that the 0.87, 0.96 and 1.13 
e V peaks are not due to the same defects since they are 
spatially distinct. 

Specimens with increasing densities of dislocations 
exhibit additional evidence for the dislocation nature of 
the 0.83-87 eV peak. Figure 8 illustrates spectra for 
InGaAs/GaAs(lOO) heterojunctions with increasing lat­
tice relaxation (and thereby dislocation density) meas­
ured via TEM. Thicknesses increase from the bare 
GaAs substrate to well above the critical thicknesses for 
dislocation formation. Likewise, the increase in relaxa­
tion for the same 100 nm epilayer thickness is due to an 
increase in In concentration and lattice mismatch. Fig­
ure 8 shows the 0.83 eV peak appearing in spectra for 
thicknesses above 200 nm and shifting to 0.87 for higher 
dislocation densities. On an absolute intensity scale, this 
deep level feature increases monotonically with disloca-
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Figure 9. CLS and PL spectra for a 500 nm thick ZnSe 
epilayer on GaAs(lOO). Spectra features at 0.9, 1.0 and 
1.14 e V appear to decrease preferentially with increasing 
penetration range relative to the 1.3 eV peak. The rela­
tive intensities and their spatial variations vary signif­
icantly with Zn/Se beam pressure ratio during MBE 
growth. 

--------------------
tion density. Surface photoconductivity measurements 
indicate that this emission corresponds to optical transi­
tions from near the conduction band to a level 0.83-0.87 
e V below. This position agrees well with spatially-re­
solved electron energy loss spectroscopy results (Batson 
et al., 1986) and differs from previous results derived 
from deep level transient spectroscopy (Watson et al., 
1992). 

Overall, these dislocation measurements show that: 
(i) misfit dislocations introduce a discrete deep level near 
mid-gap, (ii) this deep level lies 0.83-0.87 eV below the 
conduction band edge, (iii) the deep level intensity in­
creases with lattice relaxation, (iv) deep levels are local­
iz.ed near the heterojunction interface, (v) only minor 
shifts in energy occur with relaxation and composition, 
(vi) the CLS and PL tandem measurements provide a 
rich variety of electronic and spatial information on the 
buried interface feature. 
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Epitaxial Growth-Induced Deep Levels 

ZnSe/GaAs heterojunctions provide a final ex­
ample of electronic information extracted via lumines­
cence from buried interfaces. Figure 9 illustrates the 
combined CLS and PL spectra for a 500 nm thick ZnSe 
epilayer grown on GaAs(lOO). These spectra exhibit nu­
merous spectra features deep within the semiconductor 
band gaps. Such features have not been reported previ­
ously since most luminescence measurements for this 
system are taken near the semiconductor band edges 
(Gutowski et al., 1990). The epilayer interface was 
grown under Zn-rich conditions, with a background Zn 
vs. Se pressure ratio of 10. The CLS spectra exhibit no 
evidence for GaAs emission, demonstating that the fea­
tures at 0.9. 1.0, 1.14 and 1.3 eV are due to the epi­
layer or the epilayer interfaces. Only for the more 
penetrating HeCd or HeNe excitations is the GaAs near 
band edge emission apparent. Figure 9 also illustrates 
that the deep level emissions vary independently with 
excitation depth. The 0.9, 1.0 and 1.14 eV peak fea­
tures appear to decrease preferentially with depth rela­
tive to the 1.3 eV emission peak. This depth depend­
ence is characteristic of such ZnSe epilayers for other 
growth conditions as well. Data such as that shown in 
Figure 9 can be used to show that the 1.3 eV peak in­
creases toward the ZnSe/GaAs interface. ZnSe/GaAs 
growth under different growth conditions, e.g., lower 
Zn/Se beam pressure ratios, leads to similar deep level 
energies but strikingly different relative intensities 
(Raisanen et al., unpublished). The CLS /PL technique 
can also provide information on very thin epilayer struc­
tures, ranging down to thicknesses less than 5 nm. 
These results demonstrate the importance of growth con­
ditions on the deep levels resident within the epilayer 
film and at the heterointerface. Such states are impor­
tant since they can affect the heterojunction band offset 
between the two semiconductors (Nicolini et al., 1994). 

Deep Level Luminescence Measurements 
and Semiconductor Devices 

The measurements presented here are of utility in 
understanding and controlling the performance of semi­
conductor devices. The presence of discrete deep levels 
can account for the Fermi level stabilization noted for 
III-V compound semiconductors such as GaAs. Such 
extrinsic state.s provide a chemical basis for modeling 
charge transfer between metals and semiconductors. 
Deep levels near semiconductor-semiconductor junctions 
can account for variations in the local dipoles which 
alter the heterojunction band offsets. From such mod­
els, it may be possible to design growth and processing 
techniques which optimize such states to achieve desired 
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interface properties. The strong dependence of deep lev­
els on chemical treatments in general has led researchers 
to new interface preparations which have yielded much 
wider ranges of Schottky barrier formation (Brillson, 
1992). 

Such luminescence probes have utility in monitor­
ing the preparation of real semiconductor devices as 
well. CLS and PL can provide an in-situ diagnostic of 
electronic structure during semiconductor growth and 
processing. Luminescence features could provide an 
indication of the onset of dislocations, for example, 
above a critical growth thickness or chemical composi­
tion, thereby serving to maintain high device yields. 
Luminescence detection of interface features may also 
provide indicators of chemical and electronic degradation 
during normal processing steps (e.g., etching, pattern­
ing, annealing) as well during accelerated' life tests. 

Conclusiom 

Overall, the work presented here serves to show 
that CLS and PL are effective probes of electronic states 
ne..ar surfaces and interfaces. Secondly, these deep elec­
tronic states vary sensitively with surface or interface 
preparation. These deep level properties support a dis­
crete state model of Schottky barrier formation. Finally, 
the CLS and PL techniques provide an in-situ probe of 
semiconductor electronic and structural quality which 
may find increasing utility for actual device fabrication. 
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