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Abstract 

This communication deals with the applicatio!l of a 
transfer-matrix strategy for the quantitative evaluation of 
the tunnel current in a scanning tunneling microscope 
(STM). The image given by a simple atomic-size object 
deposited on a metal surface is specifically examined in 
both modes of STM operation namely the constant
height and the constant-current modes. The two-dimen
sional corrugation induced at low temperature by Xe 
atoms physisorbed on an otherwise clean, unrecon
structed Ni (110) surface is studied in detail. It is 
shown that the simple consideration of the elastic scat
tering of electrons by the three-dimensional potential 
barrier between the tip and the metal substrates provides 
a quantitative description of the images produced by the 
instrument: (1) the Xe atom appears as a conic protru
sion, approximately 7 A wide, with a corrugation 1.3 A 
high; (2) in Xe clusters, each adjoining atom is resolved, 
with a shape in full agreement with experiment. In 
order to obtain correct quantitative results, image-charge 
corrections to the potential cannot be neglected. 
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tion, image, xenon, nickel, scattering, conductance, 
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Introduction 

The topography of metal surfaces has been studied 
at very different scales, using various techniques. The 
ancestor of the scanning tunneling microscrope (STM), 
a field-emission tip carried by a piezoelectric tripod -
the "topografiner" of Young et al. (Young et al., 1971, 
1972; Young, 1966, 1971) - could display the geomet
ric corrugation of a metal surface with a lateral resolu
tion of a few thousand A, and a normal uncertainty 
reaching ten A or so. Taking advantage of a much bet
ter mechanical stability, the scanning tunneling micro
scope of Binnig and Rohrer improved these figures by 
several orders of magnitude. The breakthrough was to 
succeed in bringing the tip and the scanned sample in 
close contact. By switching from the field-emission to 
the tunneling regime, the object is placed in the electron 
near-field evanescent waves of the tip and overcomes the 
quantum-mechanical diffraction effects. 

The extreme localization of the probe calls for more 
care in the interpretation of the images. These cannot 
always be understood as reflecting the metal surface 
topography but rather as a signature of the tip and 
sample electronic structures. In other words, the STM 
image reflects the amount of overlap of the tip and sam
ple wave functions at the tunneling energy: using the 
approximation introduced by Bardeen (Bardeen, 196 I) 
and further simplifications later described by Tersoff and 
Hamann (Tersoffand Hamann, 1983, 1985; Hansma and 
Tersoff, 1987), the tunneling current reduces to the pro
duct of the Fermi-level tip density of states and the sam
ple local density of states at the tip center of curvature. 
In the approach suggested by Sacks and Noguera (1991), 
the current relates to the local density of states of the 
coupled tip-sample system. 

Because the charge density in conductors is strongly 
delocalized, their STM images usually appear to be 
weakly corrugated in spite of the fact that atomic 
resolution is undoubtedly reached by the instrument. 
The lack of corrugation can be seen as a drawback when 
one thinks of using the STM to assess crystallographic 
parameters, but it is actually a strong asset for the 
observation of isolated adsorbed objects. In such an 
observation, the metal surface plays the role of a sample 



J.P. Vigneron et al. 

holder, and it is extremely valuable if the adsorbate is 
easily distinguished from its "background". This does 
not mean, however, that the substrate plays no role in 
the imaging process when the adsorbate is clearly con
trasted. The adsorbate states are significantly modified 
by the proximity of the substrate and by the influence of 
the terminating atoms in the tip apex, especially when 
atomic-scale information is sought. The surface- and 
tip-induced broadening of the adsorbate states is of 
crucial importance as a sufficient broadening of the 
levels is necessary to provide density of states at the 
system Fermi level. In this situation, where the adsorb
ate becomes electronically bound both to the metal sur
face and to the tip, we cannot make use of rigid wave 
functions for the tip or the sample: because the states in 
the tip cluster and in the adsorbate extend well beyond 
the potential wells which control their localization, the 
wave functions in the tip and in the sample are distorted 
well before a perforation - or even a strong 
modification - of the potential barrier occurs (a situa
tion which defines the atomic contact). 

A reliable description of the scattering process 
taking place in the barrier starts with a careful descrip
tion of the different elements in the potential energy and 
is followed by a very accurate representation of the 
associated scattered carrier wave functions. Such an 
approach, which improves on many computations based 
on the Bardeen transfer hamiltonian combined with 
approximate models of the tip and sample wave func
tions (Lang, 1985, 1986; Selloni et al., 1985; Chung et 
al., 1987; Leavens and Aerts, 1988), has been intro
duced by Lucas et al. (1988a, 1988b). Similar ideas 
have since been applied to solve more refined STM 
models (Doyen, 1990) or to exhibit more detailed 
information about the electron flow (Laloyaux et al., 
1988; Lucas et al., 1992). In this work, a similar path 
is followed within the framework of a transfer-matrix 
approach. This method is used to model the STM 
operation on clusters of Xe atoms physisorbed at low 
temperature on a clean Ni ( 110) surface. The results of 
these simulations are compared with available 
experimental data. 

Methodology 

A detailed algebraic development of the transfer
matrix approach used to solve the three-dimensional 
scattering problem can be found in a specific paper by 
Derycke et al. (1991). This section only introduces 
those elements of the theory needed to correctly appreci
ate the content of the present simulations. 

The region where the scattering takes place is the 
uniform gap between the planar surfaces of two free
electron metals (Figure 1). The first metal (I) carries 
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Figure l. The tunneling takes place in the space sepa
rating a supported atomic-size cluster and a metallic 
sample holder carrying the adsorbate. The tunnel cur
rent depends on the three-dimensional electron scattering 
induced by the potential barrier corrugation. 

the tip cluster (t on Figure 1) and the second metal (III) 
carries the adsorbate (a on Figure 1). The free-electron 
metals are each described by two parameters, the experi
mental work functions <l>s (sample side) and cf>-r (tip side) 
(in the range 4-6 eY) and the bulk Fermi levels EFs and 
£Ff (in the range 10-20 eY). At equilibrium (vanishing 
external bias V), the Fermi levels coincide so that the 
barrier between the planar metals has a trapezoidal shape 
with the top slightly tilted by the contact electric field 
arising from the difference in work functions. This trap
ezoidal barrier is further modified by the multiple image 
potential arising from the dynamic charge induced on 
both metal surfaces (Lucas er al., 1984). The image po
tential has been shown to contribute a significant reduc
tion of the barrier height in typical STM geometries 
(Persson and Baratoff, 1988). Imbedded in this one
dimensional potential, we then find the three-dimensional 
potential change induced by the presence of the cluster 
of atoms representing the tip apex and, on the other 
side, the cluster of atoms representing the adsorbate. 
These potential wells induced by the presence of these 
sharp protrusions inside the vacuum barrier will be re
placed, in the present computations, by one-electron 
pseudopotentials, usually local and fitted to gaussian 
functions, for analytical convenience. The semi-infinite, 
flat metal support of the tip apex cluster is not quite a 
convincing representation of the macroscopic tip: the 
capacitor shape of the two metal holders at large dis
tance from the tunneling channel generates a constant 
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current density which, for infinite plates, becomes in
finite. Chosing finite-size planar holders is not a good 
idea as the computed current then experiences size ef
fects and will be sensitive to the boundary conditions 
applied at the plate edges. Following a suggestion of 
Doyen, it is more appropriate to suppress this unphysical 
infinite capacitor leak current by analytically subtracting 
the planar capacitor contribution from the current pro
duced by the corrugated plates. Several test cases have 
shown that on an absolute scale the current provided by 
this procedure is effectively independent of the lateral 
boundary conditions. 

Images are generated by moving the tip cluster over 
the adsorbate at various, but fixed, tip-sample separa
tions and by calculating the total current in the manner 
described below. From the stack of two-dimensional ar
rays of current values, simulated STM images are gener
ated either by chosing a specific constant separation 
between the tip and the sample or by keeping the tunnel
ing current constant. 

The transfer-matrix approach of the tunneling cur
rent computation is basically borrowed from dynamic 
low-energy electron diffraction theory (Pendry, 197 4). 
When a bias is applied to the junction between the me
tallic substrates, the resulting tunnel current arises from 
the unbalanced contributions of the incident waves trans
mitted from occupied states found in the tip and in the 
sample. If we assume, without loss of generality, that 
the sample is brought to a positive potential V, the cur
rent-carrying electrons have energies ranging from EFf -
eV - VT and EFf - VT, where EFf is the Fermi energy 

at the tip side and VT is the average potential energy in 
the tip. These electrons are characterized by 
wavevectors k limited to the domain (we will refer to it 
as the "source domain K") bound by the hemispheres of 
equations h2k2l2m = EFf - eV - VT and h2k2l2m = EFf 
- VT and further constraint by the requirement k

2 
> 0 

(the z-axis is normal to the metal substrate surface and 
directed towards the sample). The enumeration of 
incident waves is made discrete by periodically repeating 
the tip and the adsorbate in both lateral x and y 
directions ( coordinate p) in a supercell large enough to 
contain these clusters entirely and make negligible cell
to-cell interactions. The incident waves are then 
described as two-dimensional Bloch waves, which can be 
expanded into a two-dimensional Fourier series, leading 
to the so-called Laue (or g-z) representation. In this 
representation, the wavevector k is naturally split into a 
Brillouin-zone vector q and a supercell reciprocal lattice 
vector g: 

'I', (r) = "" ,i.(ql,(z) ei (q+g').p. 
(q,g) L, 'l'gg (1) 

g' 

The Schrodinger equation is then a linear system of 
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complex ordinary differential equations 

r,2 d2¢1~,(z) + (n2lq+ g'l2 E) ¢<q>,(z) 
2m dz2 2m gg 

(2) 

+ L, Vg'-g"(Z) ¢~~ .. (z) = 0 
g" 

which, if solved with the appropriate boundary condi
tions, provides the dynamic (i.e., multiply-scattered) 
wave functions needed to compute the current. 

Three-dimensional tunneling boundary conditions 

In the tip and the sample substrates, the potential 
keeps a constant value (VT on the tip side and Vs on the 
sample side), and the general solution of the above sys
tem of one-dimensional Schrodinger equations can be 
written analytically. In the tip holder region (region I, 
z < z1), we have 

where O is the plane wave normalization volume, and 
where the z-component (of positive real part) of the 
wavevector is given by 

(4) 

while in the sample substrate region (region III, z > 
Zm), we have 

with a z-component of the wavevector given by 

kg•m = 2m(E- Vs) I '12 -q+g 
fi2 

(6) 

The aim is now to study the scattering of a single 
incident wave of wavevector q + g, that is to find the 
continuous wave (with continuous first derivative) con
strained by the conditions a; 'g 1 = og'g and ag' III = 0. 
The transfer-matrix representation requires the following 
notation: we denote the matrix of coefficients a; 'g I by 

At and, similarly, ag'g I by Ai, a; 'g III by Atn, and 
ag'g III by Aiu· It can be shown immediately that these 
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matrices are related by the following equation 

(7) 

and that the transfer matrix can be easily found from the 
following expressions 

M -+ -[ 1 < e . ,1 cc· >] - - gg•+I-- ' 
2 kgm 

where 

and where 

if 

These definitions must be understood as the result of 
the integration to zm of the one-dimensional system (2) 
subject to the specified initial conditions imposed at z1. 

The integration of the system can be carried out very 
efficiently using, for instance, an Adams multistep impli
cit scheme and accounting for the fact that the first deri
vatives do not appear in the Schrodinger equation. For 
local barrier potentials, the evaluation of the convolution 
product appearing in the differential equations can be 
done via the two-dimensional fast Fourier transform, and 
for non-local potentials, other fast procedures have been 
proposed (Gonze et al., 1989). With these tools, the 
current computation can be carried out with high accura
cy (typically, 256 g-vectors can easily be kept for con
vergence) and still with enough efficiency to enable the 
generation of entire arrays of image pixels in a reason
able time. 

The boundary conditions require the following 
values for the "known" matrices: At = 1 and Aiu = 0 
(in the matrix sense). From these conditions, the ampli
tudes of the wave reflected back into the tip can easily 
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be computed as the solution of the algebraic system of 
linear equations: 

(9) 

From this solution, the amplitude of the transmitted 
waves can also be computed: 

+ ++ M+-A-Am == M + 1. (10) 

Tunneling current from the scattered wave function. 

The total current which exits from a supercell can 
be computed by integrating the quantum mechanical 
expression of the current density over the area a of this 
cell: 

(11) 

If the integration surface is chosen to be a plane 
area parallel to the surface of the substrate, only the z
component of the current will be needed, as the surface 
element is directed along the z-axis: dS = e;J-p2. Then, 
we are led to calculate this component of the current 
density by summing the contributions of all incident 
waves originating from the source domain K, described 
above: 

(12) 

Here, j ?,g)(r), the current density transported by 
the scattered wave function '¥ (q,g/r), is given by 

S(k) denotes the hemisphere of radius k, and ,!"(I) and 
k/2) are the inner and outer Fermi wavevectors limiting 
the domain K. The surface integration can be carried out 
on the kz = 0 circular projection of the hemisphere, and 
tum the integration over the sphere radii k into an ener
gy integral. This leaves us with the following expres
sion 

Jz(r) = 

EF 8(k 2 (E)) 
J dE I, J dq2 j~q,g\r) gI (14) 

EF-eV g ZB kgi(E) 

where 
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(15) 

in which the Bloch form of the scattered wave function 
can be inserted, to yield: 

For a weak applied external potential V, the current 
can be linearized, and it is advisable to compute the tun
nel conductance which, for a vanishing bias, requires 
only the knowledge of the wave function at E = EFf: 

i)J 2e2 
<T 

e--=Re--, 
. iJV h 4n 2 

I 2 '° . rn (q)*( ) gg gl 

[ 

d..flilq).(z)l8(k2 (E))(l7) 
dq £., (-1) -vf1¢gg' z dz k (E) 

ZB gg' gl 

In this expression, one recognizes the quantum Hall 
conductance e2th = 1/25813 o-1. 

We are now ready to relate this expression to the 
reflection coefficients calculated in the preceding section. 
The calculation leads to 

i)[ 
e-

iJV 

which can most easily be deduced, assuming the integra
tion plane is pushed away to the remote region z ""' -oo. 
By construction, however, the current remains constant 
for all position of this plane. As mentioned above, the 
expression of the conductance is sensitive to the size of 
our supercell and is not the appropriate expression to be 
compared to experiment. Our last step is then to sub
tract the reference (planar capacitor) current, an opera
tion which removes the large (but unphysical) contribu
tion brought in by the extended flat area surrounding the 
tip cluster and the adsorbate. Since the potential is not 
corrugated in the direction parallel to the substrate 
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surface, the parallel momentum is conserved, and the 
coefficient matrices are immediately diagonal. The only 
coefficients needed are then explicitly given by 

(19) 

with the same meaning as before for the different terms 
0 and .6. These coefficients allow us to write the fol
lowing final expression of the tunnel conductance: 

(20) 

X [1a-g'g1l2 - 1a-Oggil2og1g) 

The following computation is the result of the appli
cation of this formula, including the reference current 
subtraction, to the simple case of a cluster of rare-gas 
atom physisorbed on a metal surface. The tip apex is 
reduced to a single atom but is carried by the surface of 
a flat, semi-infinite, free-electron metal holder. 

Xe on Ni (110) Surface 

Xe atoms have been observed as a very stable ad
sorbed system on the (110) nickel surface at cryogenic 
temperatures (Bigler et al., 1991). Clusters of these 
atoms can be assembled by use of the tunnel tip and are 
stable enough to be scanned again afterwards. The im
age of a Xe atom produced by the STM under usual 
conditions is actually very simple: even in the case of 
several atoms in contact with each other, the constant
current surface has the shape of a rounded cone, with a 
basis diameter of 7 A, and a height of about 1.6 A. 
This roughly corresponds to the charge density contour, 
or the "shape", of the ion core of the Xe atom so that 
the image can be - naively - interpreted as a topo
graphic image (Lang and Williams, 1982). It should be 
emphasized, however, that a STM image must be ex
plained in terms of the tip, adsorbate, and substrate elec
tronic structure interactions and, in particular, be put in 
relation with the changes of the scattered electron distri
bution as the tip position is varied. Standard semi
empirical quantum chemistry is now able to provide in
put to highly sophisticated and convincing STM simula
tions (Sautet and Joachim, I 992), including the case of 
adsorbate imaging (Cerda et al., 1992). This is also 
what is done in the following simulation where specific 
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models have been designed to describe the scattering of 
electrons on the single atom apex of a tungsten tip, 
scanning a single Xe atom, or a group of three aligned 
Xe atoms, adsorbed on a Ni (110) surface. 

The macroscopic single-atom-tip holder, considered 
to be tungsten, is modelled by a Sommerfeld metal sur
face, terminating abruptly at z = z1 = 0. The Fermi 
level EFT is set to 19.1 eV above the constant effective 
potential VT, and the work function 4>r is set to 4.6 eV. 
The tungsten apex atom is modelled as a gaussian 
pseudopotential well of depth chosen to be 24 eV and a 
radius of 1. 6 A with an adsorption distance of 2. 7 A 
relative to the Sommerfeld potential step. These values 
have been chosen to keep the model consistent with the 
Sommerfeld description of the tip holder: the tungsten 
atom well is then simply a gaussian attractive protrusion, 
sticking out of the planar tungsten surface. We use 
another Sommerfeld metal to model the sample holder 
beginning at z = Zm = s. The corresponding param
eters for the nickel are the Fermi level EFs and the work 
function ¢s set to 9.3 eV and 6.0 eV respectively. The 
Xe atom is also modelled by a gaussian pseudopotential 
well, with a standard spread parameter matching the Xe 
atomic radius of 1.14 A and an adsorption distance of 
1. 7 A measured from the center of the Xe atom to the 
edge of its supporting Ni Sommerfeld metal. This dis
tance is equivalent to a Xe-Ni center-to-center separation 
of 2.4 A or 4.5 bohr, comparable to the 5 bohr chosen 
by Eigler et al. The depth ( 178 e V) is chosen to bring 
the xenon p-state 7.6 eV below the Fermi level. This is 
the value suggested by the atomic calculation of 
Clementi et al. (Clementi and Roetti, 1974). The 
contact with the substrate may influence these values: 
photoemission measurements locate the 5p 112 and 5p312 at 
7.6 eV and 6 eV below the Fermi level, respectively. 
Changes of the adsorbate electronic structure are 
partially included (i.e., lacking self-consistency) in our 
calculation: the contact to the substrate turns the 
adsorbate bound states into scattering resonances, or 
"radiative states". Figure 2 shows a perspective view of 
the tunnel conductance as a function of the tip position, 
when the distance, relative to the potential steps, 
between the tip and the sample substrates is kept 
constant (s = Zm - z1 = 8 A). The tunnel current is 
maximum, as expected, when the distance between the 
center of curvature of the tip and the center of the Xe 
atom is minimum. In this position [the W and the Xe 
atoms are then exactly in front of each other and 
separated by 5.5 A or 10.5 bohr, a value quite close of 
the distance of 11 bohr chosen by Eigler et al. (1991)], 
the broadening of the p-states below the Fermi level and 
the unoccupied s-states, above, experiences a maximum. 
This broadening reinforces the density of states at the 
Fermi level which leads to an increase of the junction 
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conductance. This effect is of course also expected 
when we consider an alignment of Xe atoms, but the 
quantitative question, here, is whether the theory 
predicts an atom image shape which allows to resolve 
each atom from its neighbors and whether the corm
gation found in this simulation explains the value 
observed. Figure 3 shows the result for a group of three 
Xe atoms, as those prepared and observed by Eigler et 
al. (1991). The Xe atoms are located "on top" of 
selected atoms of the Ni (lxl) surface cell and are then 
separated by 4.9 A. In the image computed with a fixed 
tip-to-substrate distance (s = 8 A), the Xe atoms show 
up as protrusions which spread over a surface of about 

·2 30 A . These images cannot however be compared 
directly to those shown in (Eigler et al., 1991) as the 
latter are obtained in the constant-current mode of the 
STM. In order to simulate this mode by our 
computation, the current has been computed on various 
planes at different distances s and iis logarithm 
interpolated as a function of s (using spline functions) at 
each lateral grid point. The constant-current surface (/ 
= 5 nA for V = 100 mV) has then been extracted by a 

numerical zero-finder: the result is shown on Figure 4. 
It is interesting to note that in these images the Xe atoms 
are still represented by cones reaching a diameter of 7 
A, as experimentally observed. The contrast exhibited 
for the group of three Xe atoms compares very 
convincingly with the experimental constant-current 
surface: in particular, the fact that the saddle point 
between two atoms falls very precisely at the correct 
altitude (compared to the maximum found at the adatom 
center) essentially means that the simulation reproduces 
the correct cone width in units of the Xe-Xe distance. 
The corrugation is found to be 1.3 A in this calculation, 
in good agreement with the experimental value of 1.6 A. 

These results show that the three-dimensional elastic 
electron scattering gives a convincing representation of 
the STM images of physisorbed Xe atoms. Some 
important limitations of this approach must be realized, 

Figure 2. The Xe atom viewed by a simulated constant
height STM scan. The distance s between the sample 
holder and the tip substrate is chosen to be 8 A. The 
quantity actually computed is the zero-bias conductance. 

Figure 3. A group of three adjoining Xe atoms (4.9 A 
from center to center) as viewed by a simulated 
constant-height STM scan. The zero-bias conductance 
is computed at a distance s between the sample holder 
and the tip substrate locked at 8 A. 
Figure 4. A group of three adjoining Xe atoms ( 4. 9 A 
from center to center) as viewed by a simulated 
constant-current STM scan. The constant conductance 
is chosen to be 50 no-I (tunnel resistance = 20 MO). 
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however, before building an objective appreciation of its 
generality: the main input to the simulation is the one
electron barrier potential, and this is not as easily 
described for all systems. 
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Discussion with Reviewers 

R.S. Becker: How would the corrugation and appear
ance of the Xe atoms change if the probe atom was 
modeled using other than Gaussian (s-wave) wave func
tions? In other words, what would the relative effect of 
Pz- or d-states have on the computed image? 
Authors: We have examined different potential models 
to represent the tip, including wells which support s
waves. The results are not qualitatively different for the 
following reason: ans-wave intrinsically gives a broader 
image than p- or d-states at the same tip-sample dis
tance. However, to maintain a similar level of current, 
it is advisable in the case of a s-state to reduce the tip
sample distance, an operation which tends to partially 
restore the resolution. 

R.S. Becker: Do you think that careful simulations 
along these lines may eventually allow the STM to be 
utilized in quantitative measurements of surface atom 
vertical and lateral positions to an accuracy greater than 
0.1 A? 
Authors: The agreement with the experiment on this 
simple system (1.3 A corrugation against 1.5 experi
mentally) is very promising. We tend to believe that the 
difference may be due to a substantial relaxation of the 
tip-Xe distance occuring during the scan. These defor
mations are not accounted for in the present simulation. 
Thus, we believe there is a good chance that this type of 
study can effectively help extract quantitative informa
tion from STM scans. 

W. Sachs: As pointed out, one expects tip-surface 
interactions to be important in this case. Indeed, your 
calculation scheme includes (although not self-consis
tently) some of these effects. Unfortunately, you reach 
no conclusions on this from your results. 
Authors: It is difficult to explain the large contrast 
observed when imaging Xe on Ni because none of the 
adsorbed Xe states lies close to the tunneling energy. 
Therefore, in the description of these images, it is 
crucial to include the contribution of the tip states to the 
Fermi level density of states. This is the virtue of the 
present approach to simultaneously incorporate the mul
tiple scattering on the tip apex and the sample and de
scribe the distortion of the wave functions because of the 
tip-sample interaction. 
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