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Abstract 

The purpose of this paper is to discuss some ele­
ments of dynamical theory and to introduce some basic 
ideas on defect image formation in X-ray topographs. 
After some explanations of the basic principles of dy­
namical theory of X-rays, examples of defect contrast 
are given. Two examples of studies of quartz single 
crystals by X-ray topography are developed. First, the 
analysis of the X-ray spherical wave topographs of vari­
ous Y-cut plates of synthetic quartz crystals show that 
the coherence of the lattice between the seed and the 
grown crystal is directly related to the density of the 
dislocations present in the seed. For the samples, the 
local deformations are essentially related to the density 
of the dislocations. Plane-wave topography shows that 
the local deformations can be estimated with good preci­
sion and related to the growth defects. The second 
example concerns Stroboscopic X-ray topography. With 
the use of synchrotron radiation, we have examined 
three quartz resonators. Several types of vibration 
modes and the perturbations due to the defects are 
described. Defects such as growth bands and especially 
dislocations disturb acoustic wave propagation in the 
crystals and can induce losses by untrapping a part of 
the energy of the mode conversion. 

Key Words: X-ray topography, quartz, stroboscopy, 
synchrotron radiation, growth defects. 
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Introduction 

The topographic technique for studying imperfection 
in nearly perfect crystals was developed 30 years ago by 
Lang [11) among others. It is now widely used through­
out the world and has received many applications. Its 
principle is based mainly on the difference in the intensi­
ties of X-rays diffracted by deformed and perfect regions 
of the crystal [5, 14, 25). 

The aim of this paper is to first give the theoretical 
basis necessary for the interpretation of the contrast of 
the images of the defects on X-ray topographs and then 
show examples of possible studies. The first part of the 
paper is devoted to the theory of the diffraction of X­
rays by a perfect crystal, the second part to the princi­
ples of various topographic techniques and the third part 
to applications through the study of quartz crystals. 

Dynamical Theory of the Diffraction 

Two main theories have been developed to interpret 
the intensities of X-rays diffracted by a crystal: the geo­
metric or kinematical theory and the dynamical theory. 

Kinematical theory 

In the kinematical theory, it is assumed that the am­
plitudes of X-rays incident on all diffracted centers of 
the crystal are the same. This leads to a very simplified 
calculation of the global intensity diffracted by the crys­
tal which is only valid for very thin crystals or, more 
generally, very imperfect crystals. 

Studying the diffraction by a thick perfect crystal, 
one has to take into account all the interactions between 
the incident and diffracted waves. It can be shown that 
for very thin crystals or highly deformed crystals the 
results of the dynamical theory tend asymptotically to­
wards those of the kinematical theory. 

Dynamical theory 

Diffraction by a perfect crystal. Let us consider 
a plane parallel slab and a transmission setting. In order 
for the dynamical theory to apply, we must assume that 
the specimen thickness is not too small (otherwise, the 
kinematic theory could be used). 
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Figure 1. Diffraction of a plane wave (Direct Space). 

Plane wave case. Following Laue's treatment, 
we shall look for those solutions of Maxwell's equations 
which are compatible with the triperiodicity of the medi­
um. A plane wave, characterized by its wave vector k, 
far from the diffraction conditions, gives rise in the 
crystal to a transmitted (refracted) wave with wave vec­
tor k 0 = nk, where n is the index of refraction. The 
diffraction condition can then be stated as: 

(1) 

where h is a reciprocal lattice vector. 
A solution to the propagation equation can easily be 

obtained in the form of a Bloch wave. In the two beam 
case, such a Bloch wave is the superposition of two 
plane waves: 

-2niK 0 · r - -2niKh · 7 
D = D 0 e + Dh e . (2) 

This superposition is called a wavefield, a concept which 
is very useful when one wishes to understand the physics 
of the propagation of an X-ray wave. 

If the incident wave is a pseudo plane wave (i.e., a 
"plane" wave of finite lateral extension), two wavefields 
propagate inside the crystal (Figure 1). The direction of 
these wave fields depends on the departure of the incident 
wave from the exact Bragg angle (as it is given by 
Bragg's formula). 

Wavefield propagation inside the crystal can easily 
be handled by consideration of the reciprocal space. 
Two spheres of radius k centered at O and H (two lattice 
points of the reciprocal space) are drawn; in the plane of 
incidence, these two spheres give two circles intersecting 
at point La (Figure 2a), the center of Ewald's sphere. 
Two other spheres of radius K

0
, also centered at O and 
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H are drawn. Diffraction occurs when the extremity of 
k 0 lies near La. The extremities of those wave-vectors 
which correspond to propagation inside the crystal lie on 
a surface which is called the dispersion surface. Close 
to the diffraction conditions, the intersection of this 
surface with the plane of incidence is no longer made of 
two circles intersecting at La; it is split into two 
branches of a hyperbola as shown in Figure 2b. The 
two branches of the hyperbola which asymptotically 
merge in the two circles are separated by a distance 
which is about 106 times smaller than the radius of those 
circles; so that in the vicinity of La these circles can be 
approximated by their two asymptotes T

0 
and Th (Figure 

2c). 
In fact, due to the electromagnetic nature of X-rays, 

polarization should be taken into account in the descrip­
tion of the X-ray wave; this gives rise to two hyperbolae 
1r and er (one for each eigenstate of polarization) rather 
than one. S1S2, the diameter of a given hyperbola is 
then, for a symmetric reflection, 

ICI~ 
cos e 

(3) 

where I CI = 1 or cos 20 depending on the polariza­

tion, Xh and x;; are the h and h coefficients of the 
Fourier expansion of the electric susceptibility x-

The incident wave is represented by a point M lying 
on the circle of radius k, so that 

r::;;M 
ti0 = -k-, (4) 

where ti0 is the departure from the exact Bragg's angle. 
A convenient parameter is: 

tie sin 20 
'Y/ =----~-

I CI (XoXh -) 
112 

(5) 

The normal to the crystal faces drawn from M then in­
tersects the dispersion surface at P 1 and P2 which are the 
characteristic points of the wavefields which propagate 
inside the crystal. Since the location of P 1 and P2 
depend on 'Y/, the directions of propagation of the two 
wavefields (which are normal to the dispersion surface 
at P 1 and P2, respectively), also depend on the departure 
from the exact Bragg's angle. 

To each direction or propagation inside the crystal 
there correspond two coherent waves, the spatial perio­
dicity of which is 

A 

N' 
(6) 

A0 being the inverse of the diameter S1 S2; 'Y/r here is the 
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Figure 2. (a) Spheres centered at the reciprocal lattice 
point O and H showing the position of the Laue point 
L8 • (b) Dispersion surface. (c) Dispersion surface: 
close-up view. 
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Figure 3. Perfect crystal. Reflecting curve. 

real part of 1/· This phenomenon is called Pendellosung, 
after Ewald. A is usually called the Pendellosung wave­
length, or extinction distance; Ao is the Pendellosung 
wavelength inside the reflecting plane. 

Intrinsic rocking curve. For a symmetric re­
flection, the full width at half maximum (FWHM) is ap­
proximately (see Figure 3) : 

bs = 2R A2 Fh 
V sin 208 ' 

(7) 

where R is the so-called classical radius of the electron, 
A the radiation wave-length, V the volume of the unit 
cell and Fh the structure factor. Expression (4) holds 
for both transmission and reflection settings. Typical 
values of FWHM are of the order of a few arc seconds. 
This' parameter was first introduced as a measure of the 
crystal perfectness. This is achieved by means of a 
double crystal setting ( +, -) , using two parallel and 
identical crystals for the same reflection [3]; the 
experimental FWHM of the second crystal is then ob­
tained from the convolution of the two individual 
FWHM, i.e., &/2 in the case of two perfect crystals. 

This technique is now being used when studying 
epitaxial layers as in heterojunctions of Ilf-V com­
pounds, garnets and so on. The best experimental re­
sults are obtained by using a plane wave as means of 
exploration of the crystal to be studied. This technique 
was initiated by the those working with Kohra [10] in 
Japan who designed and realized the first multiple reflec­
tion monochromators. Plane waves of reasonable inten­
sity can be fairly easily obtained by using synchrotron 
radiation [15]. 

The concept of FWHM is of importance in topo­
graphic techniques since it gives a qualitative estimation 
of the width of the so-called direct dislocation images. 

Spherical wave. X-ray tubes deliver waves 
which must be described as spherical waves. In most 
experimental set-ups, the divergence of the X-ray beam 
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Figure 4. (a) Diffraction of a spherical wave: fanning 
out of the wave-fields. (b) Dispersion surface. (c) In­
terference maxima. (d) Section topograph. (e) Princi­
ple of section topography. 

224 

Source 

e 

incident on the crystal is therefore much larger than the 
width of the rocking curve, and the Laue plane wave 
theory cannot be applied. Various theoretical treatments 
[7, 8, 9] have been developed in order to deal with non­
plane waves. We shall be concerned here with one of 
them, namely Kato's treatment of spherical waves. In 
this theory, a given spherical wave is expanded as a sum 
of plane waves by means of a Fourier transform so that 
the notion of dispersion surface can be maintained. 

Let us assume an incident beam having a divergence 
t:., such that 

(8) 

The whole dispersion surface is then excited and the X­
ray beam intensity is distributed inside a fan of angle 
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Figure 5. Schematic explanation of the diffracting planes deformation for a pure edge dislocation. 
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Figure 6. (a) The dislocation cuts the direct beam in D. (b) The rnisoriented regions around D give rise to the direct 
image. 
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28, lying between the incident and the reflected direc­
tions (see Figure 4a). Therefore, although the diver­
gence of the useful part of the incident beam is only a 
few arc seconds, the divergence of the corresponding 
wavefields inside the crystal is of the order of several 
degrees. In other words, a large angular amplification 
is to be observed. Another important feature of the 
propagation in the spherical wave case is the following: 
the two wavefields which propagate along a given path, 
AM, inside the crystal correspond to two conjugate 
points P 1 and P' 2 on the hyperbolic dispersion surface 
(see Figures 4b and 4c). Two wavefields like these 
which are excited by the same incident wave and 
propagate along the same trajectory must interfere; Kato 
has shown that the corresponding maxima of these 
interferences are distributed on hyperbolae, the 
asymptotes of which lie along the incident and reflected 
directions. The distance between two successive 
maxima as measured along the axis of these hyperbolae 
is just Ao, the Pendellosung wavelength introduced in the 
case of an incident plane wave. 

A photographic plate in the reflected beam will then 
show a set of parallel lines, the existence of which can 
be considered as an indication of the crystal perfection 
(Figure 4d). 

Tn the case of weak absorption, a high density of 
wavefields is to be observed along AB and AC (Figure 
4c), resulting in a margin effect (Figure 4d). The 
topograph shown on Figure 4d was obtained using the 
Lang technique (Figure 4e). For absorbing materials, 
wavefield 2 is strongly absorbed; the intensity on the 
exit surface is therefore mainly due to wavefield 1; in 
this case, no fringes are observed. 

A simultaneous translation of the crystal and the 
photographic plate (traverse topography) will then give 
rise (assuming a perfect and parallel slab) to a uniform 
contrast on the photographic plate. 

Diffraction by a non-perfect crystal. In order to 
treat the case of a distorted crystal (neither perfect nor 
mosaic), two different approaches are possible: one can 
develop either a global theory or a ray theory. 

Global theory (Takagi [20], Taupin [22]). In this 
theory, the amplitude of the crystal wave at a given 
point is calculated. The concepts of dispersion surface 
and of wavefields cannot be maintained which can be 
viewed as the main drawback of this kind of approach 
since these notions are very useful if one wishes to visu­
alize the diffraction process. Takagi and Taupin equa­
tions (partial differential equations), in principle, contain 
all the information concerning the wave in the crystal 
whatever its local deformations may be. Nevertheless, 
these equations can be solved analytically only in a limi­
ted number of cases. The general case can be treated 

226 

using a computer. The importance of Takagi-Taupin's 
theory, therefore, comes from its ability to deal with any 
kind of defect. 

Ray theory (Penning and Polder [18], Kato 
[6]). In these theories, it is assumed that it is possible 
to define a local dispersion surface in each region of the 
distorted crystal. This is valid only as long as the 
crystal deformations do not vary too rapidly. By 
analogy with the theory of light propagation in a medium 
of slowly varying index of refraction, a theory of 
wavefield propagation is then developed. It is clear that, 
in the case of a crystal containing a dislocation, for 
example, these theories cannot be applied in the regions 
right to the core of the dislocation. This prevents one 
from using such theories in order to perform computer 
simulations of a dislocation image. But, contrary to the 
global theory, this theory provides useful qualitative 
information concerning the diffraction process. 

Defect Imaging and Characterization 

Among all kinds of possible crystal defects, only a 
relatively small number can be visualized using topo­
graphic techniques. These can be classified as such: 

• linear defects (dislocation); 
• two-dimensional defects (subgrain boundaries, 

twin boundaries, stacking faults, antiphase-boundaries, 
domain walls in magnetic or ferroelectric materials, 
growth sector boundaries, growth bands, ... ); and 

• inclusions, precipitates, swirls, ... 
Defects such as dislocations or stacking faults are 

defects which can be unambiguously characterized by a 
vector, be it the vector bin one case or the fault vector 
7 in the other. These defects are easily imaged on topo­
graphs, and their characteristic parameters can, in prin­
ciple, be determined. Other defects are not so easy to 
characterize, either because their structure is not com­
pletely known (which is the case for domain walls in 
ferroelectrics) or because they cannot be assigned quanti­
tative definition (which is the case of growth bands 
which nevertheless are extensively studied). 

Another requisite, if one wishes to characterize a 
defect, is that the defect should be isolated or at least 
that the density of such defects be low enough: this last 
restriction comes from the lack of resolving power of 
the topographic technique, as compared to transmission 
electron microscopy. One therefore must always first 
find the most adequate technique among those available 
and even use several techniques, as for example, in the 
case of the Lang technique, combining traverse and 
section topography. 

Local variations of the departure from Bragg's law 

The effective misorientation, or local departure from 
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Figure 7. (a) Traverse topograph of a lithium fluoride 
crystal. 200 reflection. (b) Enlargement of the upper 
part of Figure 7a. Scale mark: 460 µm. 

Bragg's law, is a very useful parameter in all discus­
sions concerning the visibility of those defects which 
induce a rotation of the lattice planes and/or a change in 
the lattice parameter. Let t.0 be the departure from 
Bragg's angle after the deformation. Then b(t.0) = 
t.0' - t.0 is the local variation of the departure from 
exact Bragg's angle. Let d be the lattice spacing and a 
the angle by which the lattice planes are rotated around 
a certain direction (defined by the angle (3 it makes with 
the normal to the plane of incidence). Then: 

b (t.0) = acos{J - a
2 

tan0 + t.dtan0 (9) 
2 d 

which can conveniently be expressed by introducing the 

atomic displacement u as: 

(10) 
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Figure 8. Formation of dislocation images in section 
topographs. 1: dynamic image; 2: intermediary image. 

where 7h is the unit vector along the reflected direction. 

Dislocations 

In the vicinity of a dislocation, ;, the atomic dis­
placement, is related to the Burger's vector b: 

; = Ab + Bbe + Cb + 1, (11) 

be being the edge component of the Burger's vector and 

T a unit vector along the dislocation line itself. A, B, 

and C depend on the coordinates of the point where ; 
is calculated. 

Figure 5 qualitatively illustrates the criterion for the 
visibility of a dislocation in the case of a pure-edge and 
rectilinear dislocation. In the case illustrated by Figure 
Sa, h is parallel to _b, -~md the reflecting planes are 
greatly misoriented; h · u is maximum. In Figure Sb, 
h is perpendicular to b, and the reflecting planes are 
less misoriented; the term involving h · (b x I) still 
remains. Finally, in Figure Sc, h ·; = 0, and the 
reflecting planes are not misoriented. We therefore 
expect an intense image in the geometry corresponding 
to Figure Sa, a weak image in the geometry 
corresponding to Figure Sb and no image at all in the 
geometry corresponding to Figure Sc. By studying the 
way the contrast of a given image is changed, it is 
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Figure 9. Traverse topograph: dislocation images. 200 
reflection. 

therefore possible to determine the direction of the 
Burger's vector of the dislocation. As for its length, it 
can usually be guessed from considerations on the 
crystal structure; computer simulations can then be 
useful in order to check a previous guess. Here, in 
Figure 5, we have considered different dislocations with 
different orientations and a fixed h; in reality, the 
dislocation is given and the reflection vector h is 
changed. Although the Burger's vector of a pure edge 
or pure screw dislocation can be determined along this 
procedure, one may run into difficulties when dealing 
with a dislocation of a mixed-type. 

Direct images [ 1, 11] 

When the divergence ~ of the incident beam is large 
compared to that of the rocking curve (o), only a small 
fraction of the beam is diffracted at the entrance surface, 
giving rise to wavefields which propagate inside the 
triangle ABC (Figure 6a). Most of the intensity of the 
incident beam (that which corresponds to a divergence 
which is larger than o and smaller than ~ propagates 
along AB and is submitted to the ordinary photoelectric 
absorption process. If this part of the beam then 
intersects a dislocation line at D, the lattice planes which 
are severely disoriented around D will kinematically 
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Figure 10. Wave-field propagation in a crystal contain­
ing a stacking fault. A': focal point of the new wave­
fields. 

diffract the beam which will therefore propagate parallel 
to the reflected direction, i.e., parallel to AC. In this 
model, it is assumed that the impinging beam is kine­
matically diffracted inside a small volume such that 

o (~0) > XO, (12) 

where x stands for a parameter the value of which is 
close to 1. 

The image then appearing (as a dark image) on the 
detection device (Figure 6b) is called the "direct image" 
of the dislocation. Figure 7 shows a topograph of a 
crystal of lithium fluoride separated in subgrains. Inside 
the grains, one observes individual dislocation images; 
these are direct images. 

Dynamical images [2] 

The propagation of wavefields inside a distorted 
crystal is submitted to the following rules: 

• In the case of a weak deformation, the wavefield 
trajectories are no longer rectilinear but curved. Using 
Penning and Polder's theory, Malgrange [13] was able 
to state a qualitative but very useful rule which concerns 
the case of a constant value of (o/oS0) o(~8). This rule 
applies as long as the rotation of the lattice planes over 
a distance equal to A is not larger than o/2. 

• In highly distorted regions, the concept of a 
wavefield which belongs to geometrical optics is no 
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Figure 11. (a) Optical micrograph of the surface of a (111) silicon wafer. (b) Twin lamellae B1, B2 , and B3 . (c) 

Traverse topograph: 111 reflection; MoKa 1• (d) 333 reflection; MoKa 1. (e) Enlargement of Figure lOc; scale mark: 
150 µm. (f) 111 reflection. MoKa 1 (g) 111 reflection; CuKa 1. 

longer valid; diffraction phenomena then occur, resulting 
in the creation of new wavefields. 

With these two rules, it is possible to explain, at 
least qualitatively, the formation of those images which 
are not direct images (see Figure 8). Since the ray 
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which would have travelled along AN, if the crystal 
were perfect, now travels along a curved trajectory, one 
expects a lack of intensity in the corresponding direction 
AN. A white (or approximately white) image therefore 
appears at I on the photographic plate; its contrast is 
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important only if the value of µ0t is larger than 1 or 
even larger than 2. This contrast is usually called the 
"dynamical image". Besides, in the highly distorted re­
gion, right to the core of the dislocation, new wavefields 
are created; these propagate along directions, such as 
ME, which are different from the incident direction AM. 
At E, on the exit surface of the crystal, one expects 
interferences between those wavefields which have 
travelled along AME and those which have propagated 
directly along AE. Therefore, one observes, at 2, a new 
type of contrast, called the "intermediate image" which, 
under favorable conditions (adequate value of µ0t, 
geometric features of the dislocation), appears as a set 
of fringes (Figure 9). 

Phase shift contrast: Stacking fault 

When the crystal is divided into two parts, I and II, 
by means of a stacking fault, part II is translated with 
respect to part I. The translation vector 7 characterizes 
this type of defect. From the diffraction point of view, 
this defect introduces a phase-shift a = 21r h · 7 so 
that the h-coefficients in the Fourier expansion of the 
electric susceptibility are such that: 

(13) 

The corresponding theoretical treatment has been 
achieved by Authier [2], assuming a spherical incident 
wave, a fixed crystal and a geometry of the Laue-Laue 
type (see Figure 10). A wavefield which propagates 
along Aq up to the interface then excites in part II a new 
wavefield which propagates along qp. The segment qp 
can be determined using the following procedures. 
From the two points B1 and C 1 where the stacking fault 
intersects AB and AC, one draws a set of lines parallel 
to the transmitted and the reflected directions. The point 
where these lines intersect - call it A' - is the point 
where the new wavefields focus. The amplitude at p (on 
the exit surface of the crystal) of the reflected wave is a 
superposition of 8 terms: 2 normal wavefields (i.e., 4 
terms) which have propagated along Ap and 2 new 
wavefields (i.e., 4 terms) which have propagated along 
qp. 

The intensity at the exit surface is usually expressed 
as a sum of 3 terms: 

(14) 

where 

(15) 

I b 
. 2a 

2 = sm -, 
2 

(16) 
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I . 2a d . 
3 = c sm _ + sma. 

2 
(17) 

This formula holds for points along B2C2 (Figure 10) 
since these points are reached by the new wavefields. 
Along BB2 and C2C, only 11 should be taken into 
account. Note that 11 is reduced as compared to what it 
would be, if the crystal were perfect; this reduction 
corresponds to the creation of new wavefields. 

Each of these 3 terms gives rise to a set of fringes: 
11: interference between normal wavefields; 
I2: interference between new wavefields; and 
13: interference between normal and new waves­

fields. 
As can be seen on the above mathematical expres­

sion, only 13 really depends on the sign of the phase­
shift (via sin a). Besides, the only fringes which can be 
observed when the absorption is strong are those corre­
sponding to 13. On a traverse topograph and using a 
parallel slab, fringes of type 11 disappear. 

This discussion is summarized in Figure 11 where 
an example of these variations of the observed contrast 
is shown. A stacking fault lies in the region A3 of the 
crystal. The plane of the stacking fault is parallel to 
(111). The image of this fault can be observed in Figure 
l lc (and even better in Figure 1 le where it has been en­
larged); the contrast is neither strong nor weak since /lo 
is = 0.5; the fringes corresponding to 12 and J3 are 
superposed. In Figure I lg, the fringes (13) are much 
contrasted but can be observed only on the exit surface 
since µ 0t = 5. In Figure l ld (3rd order reflection) and 
in Figure 11 f (the reflecting planes are parallel to the 
plane of the fault), the fault is out of contrast. 

Since the first work by Kohra and Yoshimatsu [10] 
on stacking faults in silicon, many new results have been 
obtained, especially by Patel [16] who demonstrated how 
fruitful a mixed study which combines traverse and sec­
tion topographs may be. 

Quartz crystals 

Specimen growth and sample preparation 

The three quartz crystals under investigation have 
been chosen from the standard production of various 
companies. Specimen Ql, Q2, and Q3 were grown at 
the Toyo company (Japan), University of Peking (China) 
and SICN (France), respectively. From the initial bars, 
plates oriented parallel to (010) planes (commonly 
named Y-cut plates) were cut (Figure 12). After me­
chanical a:1d chemical polishing, these samples, about 1 
mm thick, were examined by X-ray transmission spheri­
cal wave topography and by planewave reflection topog­
raphy. 
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Figure 12. (a) Schematic drawing of a synthetic quartz 
crystal. The X, Y, Z orthogonal axis used in piezoelec­
tricity. The Y-cut plates are cut perpendicular to the Y­
ax is. (b) Drawing of the various growth sectors or 
zones observed in the Y plates: X, Z, G (seed);. We 
have labelled K0, K180, ~ 0 , and K270 the projections of 
the diffraction vectors following the four azimuths used 
for the plane-wave topography method. 

Figure 13. X-ray transmission topograph of the sample 
Q 1; 100 reflection; MoKa 1. The seed G was cut in 
zone Z and presents very few dislocations in the differ­
ent growth zones. 

X-ray transmission topography 

X-ray topographs of each of the three samples are 
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Figure 14. X-ray transmission topograph of the sample 
Q2; 100 reflection; MoKa 1. Note the important density 
of the dislocations in zone Z due to the dislocations 
present in the seed G. In zone X, we can note the 
bundles of the dislocations created on the seed. Two 
particular dislocations d and d' create rotations of the 
lattice in this sector X. In c, we can remark an unusual 
sector created at the end of the growth. 

Figure 15. X-ray transmission topograph of the sample 
Q3; 100 reflection; MoKa 1• This central part shows 
that the seed G contains many dislocations which have 
been developed in the grown crystal. 

presented in Figure 13 (Ql), Figure 14 (Q2) and Figure 
15 (Q3). Some comparative remarks can be deduced 
from these topographs: 

Crystal growth. These three samples show classi­
cal growth sectors [27]. Howev~, a more detailed ob­
servation shows two Z' and Z' sectors which are 
different from the usual Z zones. 
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As in the case of the two growth sectors a and b 
composing the S zones, these two Z' faces are of vicinal 
type and are initiated on the seed at the corners of the X 
face. The development of these two "faces" gives a 
reentrant angulation on the external final morphology 
more or less accentuated on the two Z sides of the crys­
tal. 

Apart from the classical a and b faces composing 
the S zones, the Q2 sample (Figure 14) presents a sup­
plementary c vicinal face. Moreover, the X sector is 
composed of a great number of small growth zones cor­
responding to different vicinal faces which contribute to 
the very irregular form presented by this X "face". 

Dislocations. From the observations of the topo­
graphs (Figures 13-15), it appears that all the seeds of 
the studied samples were cut in a Z zone of synthetic 
quartz. Following the sample, these three seeds contain 
few (QI), several (Q2) or many (Q3) dislocations. This 
initial density of the dislocations is directly related to the 
final amount of these linear defects in the three samples. 

Plane-wave reflection topography 

Method. Plane-wave reflection topography was 
used for measuring local variations in lattice spacing and 
orientation in these Y-cut plates. For the experiments, 
synchrotron radiation was employed as a source. On the 
first axis of a double-axis spectrometer, a multiple 
reflection monochromator ( 17] is adjusted so as to re­
lease an extended wave of narrow angular and spectral 
divergence. The principal characteristics of this beam 
are [19]: >-. = 1.2378 A, fl>-.!>-. = 7.10- 6; intensity = 
2. 107 photons/cm 2/sec (1. 72 GeV, 100 MA); and area 
= 1.5 x 1.5 cm2. On the second axis, the sample, 
adjusted for the 040 reflection, is mounted. The Bragg 
angle is 35.6° and for this case, the calculated half­
width of the rocking curve is 1.3 arc seconds for a 
perfect crystal. Four reflection profiles corresponding 
to four azimuth positions labelled 0, 180, 90, 270 have 
been recorded for all the three samples. Then, on 
different regularly spaced positions on each profile about 
ten topographs were obtained. An analysis of these 
series of topographs gives the tld/d values corresponding 
to the variations of the lattice parameter d (spacing of 
the (010) planes) and the A<P values corresponding to the 
rotations between each considered zone and a reference 
zone (Z sector in our case) by the following relations 
[26]: 

(18) 

(19) 

with: 
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• A0 0: angular difference between the position on 
the O profile where the considered zone gives the maxi­
mum intensity and the position where the reference zone 
has its intensity maximum; 

• A0 180: Angular difference between the maximum 
intensity position for the same zone considered as for 
tl0 0 but obtained from the 180 profile; and 

• 0 8 : Bragg's angle. 
We have also calculated the following values: 

where A0 90 and A0 270 are obtained from the 90 and 
270 rocking curves and topographs, respectively. In 
fact, the results concerning the Ad/d should not depend 
on the considered azimuth coupled pairs but should 
allow for a comparison between the values obtained 
from the expression (8b) and (9b). 

The A<Px and A<Pz notations and values are different 
because they refer to the calculated rotations around the 
X- and Z-axis. The 0-180 and 90-270 diffraction vector 
projections lie parallel to the Z- and X-axis, respec­
tively, as is shown in Figure 12. 

Reflection profiles. The profiles obtained for the 
three samples present different features for their half­
width and for their maximum intensity. The experi­
mental half-width is generally about 3 inches [7 .6 cm; 
the theoretical value for the perfect crystal is 1. 3 inches 
(4 cm)]. This is due to the fact that the crystal is not 
perfect and is composed of various growth sectors. 
Thus, the enlargement and the splitting presented by the 
profiles depend on the quality of the crystal and the 
different azimuths used. 

Plane-wave topographs. Figures 16-18 present one 
profile and two typical topographs obtained for each of 
the studied samples. 

Ql sample. Two topographs of this sample are 
shown in Figure 16. We can note the symmetry about 
the X-axis of the contrast obtained for two equivalent 

sectors (Z and Z for example) and the quite perfect 

Figure 16 (on facing page). (a) Reflection profile of the 
sample Ql obtained for the azimuth 90. (b) Plane-wave 
reflection topograph corresponding to the position 24 on 
the reflection profile. The X and Z zone are out 
reflection in contrary to the S zones. (c) Plane-wave 
topograph corresponding to the position 21 on the 
profile. Note that only the X, Zand Z' zones and some 
part of the seed are in reflection. 
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Figure 17. (a) Reflection profile of the sample Q2 ob­
tained for the azimuth 90. Note that this profile is rela­
tively large (3.2" or 8.1 cm). (b) Plane-wave 
topograph. Position 55 on the profile. The contrasts 
are complicated and do not present the symmetry about 
the X axis. Note the particular local contrast created by 
the dislocations d and d' in the X growth sector. (c) 
Planewave topograph. Position 57 on the profile. The 
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contrasts are very complicated. We can note that the S 
zone is out of contrast, in contrary to the symmetrical S 
sector. 

homogeneity of this contrast in the X, Z and Z zones. 
These two features will not be verified for the two 

other samples (Q2 and Q3). The quantitative results 
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relative to this slice are given in the drawing of Figure 
19 and are in good agreement with those obtained by 
Yoshimura et al. (26) for similar crystals also grown at 
the Toyo company. 

Q2 sample (Figure 17). This plate shows two 
interesting features: (1) a very clear asymmetry of the 
contrast witlJ respect to the X-axis essentially concerning 
the Z and Z zones; and (2) the lattice rotations due to 
the dislocations, particularly those situated between the 

z and Z zones and the bundle of dislocations in the X 
sector. The values obtained for the deformations of the 
(010) planes in this plate are given in Figure 20. 

Q3 sample. A profile and two topographs of 
this slice are given in Figure 18. The numerous disloc~­

tions give important deformations particularly in Z, Z, 

Z' and Z' zones and are at the origin of the heterogene­
ous contrast of these topographs. The complexity of the 
deformations is also revealed by the obtained four pro­
files which show very different half-width values (3.2", 
2.5", 5.53" and 12" (8.1, 6.3, 14.0, and 30.5 cm) for 
the 0, 180, 90 and 270 azimuth positions, respectively], 
depending essentially on the lattice rotations created by 
the high density of the dislocations. The quantitative 
results relative to this slice are given in Figure 21. 

Lattice parameter variations. The distribution of 
the lattice parameter of the (010) planes in the various 
zones with respect to the reference Z growth sector is 
quite similar over these three samples (Figure 19-21). 
Following the zones the tld/d is about 2 x 1 o-6 to 3 x 
10-5. However, some general features can be noted: (1) 
there is a good agreement between the obtained value for 
the seed G and the Z growth zone (reference). This re­
sult agrees with the quite good growth continuity of the 
samples from the seeds belong int to the Z zone; and (2) 

the S (a, b or c growth sectors), S, and X growth zones 
show important lattice parameter variations with respect 
to the Z reference zone. These growth sectors corre­
spond to "fast" faces and show important local param­
eter variations at the level of growth bands due to incor­
porated impurities. 

Orientation variations of the lattice planes. One 
of the advantages of the technique of plane wave topog­
raphy is related to the four azimuth settings used for this 
study. The rotations of the lattice planes can be 
analysed with respect to two perpendicular X- and Z­
axes, and a precise analysis concerning the local defor­
mations can be done. Concerning this point, the three 
samples show great differences due to localized individ­
ual defects (Figures 19-21). 

Measurement precisions. Measurement couples 0-
180 and 90-270 allow the control of the result validity 
obtained for the parameter variations tld/d. Apart from 
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Figure 18. (a) Reflection profile of the sample Q3 ob­
tained for the azimuth 90. This broad profile is due to 
the great inhomogeneity of the crystal. (b) Plane-wave 
topograph. Position 44 on the profile. We can note the 
great density of the dislocations which create great de­
formations in the Z sectors. The X sector presents a good 
contrast while the S zones are out of contrast. (c) 
Planewave topograph. Position 47 on the profile. The 
deformations due to the dislocations in the Z zones are 
very complicated. 
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Figure 19. Sample Ql. (a) Results of the calculations 
obtained in the various zones concerning the variations 
of the parameter (!id/d) (x 106) from the plane-wave re­
flection topographs. The comparisons of the results ob­
tained from the relations (lb) and (2b), respectively, 
noted (I) and (II) are in good agreement. (b) Results of 
the disorientations ti<I> (in arc seconds) obtained from the 
(la) and (2a) relations, respectively, and corresponding 
to the rotations about the X-axis (I) and Z-axis (II). 

some results, the agreement is generally satisfactory. 
The important sources of errors are due to several fac­
tors: (1) the precision on the maxima of intensity is 
variable following the sample and is related to the homo­
geneity more or less effective in the various growth 
zones; and (2) the stability of the setting during the ex­
posure of the film and correlatively the quality of the 
mounting which can change from an experiment to 
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Figure 20. Sample Q2. (a) Results of the calculations 
obtained for the (!id/d) (x Hf). (b) Results of the 
rotations ti<I> (in arc seconds) about the X-axis (I) and Z­
axis (II). We can note important rotations of the lattice 
with respect to the Z reference sector. The d and d' dis­
locations (in the X zone) induce rotations about the X­
axis. The part bounded by these two dislocations pre­
sents a value of rotation different from these obtained at 
the outside of this zone. 

another one. 
These factors contribute to an imprecision for the 

obtained results which we have estimated to 5 x 10-6 for 

tid/d and about 0.2" (5 mm) for ti<I> in the X, Z, Zand 
Z' sectors. For the sectors wh~re the lattice parameter 

variations are important (X, S, S) and which correspond 
to positions located on the sides of the profiles, the 
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Figure 21. Sample Q3. (a) Results of the calculations 
obtained for the (~d/d) (x Hf). (b) Calculations of the 
rotations ~q, (in arc seconds) of the various zones about 
the X-axis (I) or the Z-axis (II). The reference zone is 
the Z sector. 

lattice parameter variations were estimated at 8 x 10-6 

and the rotations at 0.5'' (1.25 cm). 

Stroboscopic topography 

Experimental techniques [4] 

Synchrotron radiation from storage ring has a time 
structure because the circulating particles are concen­
trated in bunches. Two fixed parameters of this time 
structure are the circulation time of an individual bunch 
and its length. For DCI (double collision in the igloo; 
Orsay, France), these values are 315 ns and 1 ns. An­
other variable parameter, in some other cases, is the 
number of stored bunches but in our experiments this 
number is always I because the storage ring of DCI was 
running in single-bunch mode. 

The setting of the experiment is composed of two 
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Figure 22. Set-up of the stroboscopic topography. 

Re 

Figure 23. Drawing of a piano-convex resonator. 

x, 

Figure 24. Representation of the deformations due to 
the thickness shear mode in an AT-cut piano-convex 
resonator. 

parts: 

Topographic setting. The topographic setting is 
quite simple because the topographic station at LURE 
(Laboratoire pour I 'Utilisation du Rayonnement Synchro­
ton, Orsay, France) is equipped with a double-axis spec­
trometer. This spectrometer permits, when the quartz 
sample is placed in the incident (white) beam, one to 
obtain a Laue pattern of topographs [24]. This setting 
is simple because the resonator, mounted on a goniom­
eter head with a support adapted for the frequency ad­
justment is placed perpendicular to the beam without 
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Table 1. Results of stroboscopic experiments. 

Resonance Mode Re F 2ho 
frequency (MHz) (overtone) (mm) (mm) (mm) 

Ql 3.169280 Third 150 15 1.592 
Q2 6.338560 Fifth 150 15 1.322 
Q3 6.338560 Fifth 150 15 1.322 

precise adjustment. However, the most interesting as­
pect of this spectrometer is the monochromatic setting. 
In this case, the first axis holds a (110) sample of 
germanium which is adjusted to select only one 
wavelength from the white beam. The 220 reflection 
was chosen and the wavelength of the beam on the 
second axis was 0. 7 A for a Bragg angle 0 = 10.08°. 
From the resonator, adjusted on this axis, 
monochromatized images were obtained. By the use of 
a very fine slit, we also obtained "section" topographs. 

Electronic control. To obtain an exact synchroni­
zation of the X-ray pulses and of the piezoelectric vibra­
tion of the resonators, a pulse signal obtained from the 
positron bunch (by a capacitive pick-up) is used to gen­
erate the excitation signal of the resonators. This signal 
is shaped in a sinusoidal form by· filtering at the recur­
rence frequency (f0 = 3.169280 MHz) or at an harmon­
ic of this frequency (nf0 with n = 2, 3, ... ). A phase 
shifter permits one to vary the relative phase between 
the synchropulse and the sinusoidal signal used to excite 
the resonance of the crystal (after a level adjustment). 

To have an exact resonance condition (resonator 
voltage in phase with resonator current) the resonators 
were adjusted by metallization to have frequencies very 
close to f0 (or nf0). A fine adjustment (a few Hertz) is 
made with a large serial variable capacitance. 

The electrical parameters of the resonator are meas­
ured, in-situ, with a vector voltmeter (level of excitation, 
verification of the zero phase resonance condition). An­
other vector voltmeter is used to monitor the relative 
phase angle between the resonator current (or voltage) 
and the synchronization pulse. After calibration, this 
relative phase between the resonator current and the X­
ray pulse (RPCX) is known with a precision of about 3 ° 
with most of the uncertainty resulting from the effects of 
the temperature fluctuations on the resonator. 

The general principle of the set-up is given in 
Figure 22. 

Experiments 

The purpose of this study was to determine the role 
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Figure 25. Three X-ray t~pographs obtained from the 
same Laue pattern. (a) The central black contrast which 
depends on the u1 component of the deformation is 
clearly visible for the 112 reflection. (b) The black 
contrast is also visible for the 223 reflection. (c) 013 
reflection. The contrast vanishes. For this reflection 
h-~ = o. 

of defects on the acoustical vibrations. 
In the stroboscopic experiments the samples were 

piano-convex resonators having the basic design of high 
Q factor 5 MHz, 5th overtone resonators (Table 1). 
The first resonator Ql made with a premium Q quartz 
was operated at the third overtone at the synchrotron 
frequency. The second Q2 and the third with Q3 crys­
tals were made with premium Q synthetic Quartz and 
with natural crystal, respectively. They were operated 
as fifth overtone at two times the synchrotron frequency 
(Figure 23). 

All resonators were electroplated with Cr/ Au metal­
lization (electrode diameter 8 mm; mass loading= 1 %). 

As established by the theory [231, the used vibration 
modes are much more trapped in the case of Q2 and Q3 
than for Ql. 

The dominating vibration mode in the AT-cut is the 
thickness-shear mode which correspcnds to a standing 
transverse wave in the crystal (Figure 24). The planes 
parallel to the surface are displaced in the X I direction 
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leading to a sinusoidal shear of planes perpendicular to 
the X 1-axis. 

The components u2 and u3 of the displacement are 
generally weak in regard to the u 1 component when no 
coupling to flexure or planes occurs. 

On the X-ray topographs, the most important con­
trast located under the electrodes is due to the u1 
component and depends on the level of the amplitude of 
the vibration applied on the crystal. This contrast de­
pends also on the diffraction conditions. Particularly, 
when the product h · ii', where h is the reflection vec­
tor and ii' the displacement due to the deformation, give 
zero, the contrast due to the deformation vanishes. 

In our cases, the most important u1 component of 
the displacement was along the (100) direction. Then, 
on the topographs corresponding to the (Oki) reflecting 
planes the contrast of the deformation did not appear. 

Observation 

Different types of X-ray topographs have been ob­
tained varying the RPCX, the level of the input signal 
and the topographic setting (Laue, monochromatic, sec­
tion topographs, etc.). We shall only report the most 
important observations we have obtained for the studied 
resonators [28). 

Ql resonator. In Figure 25, we present three topo­
graphs of the same Laue pattern obtained for 120° 
RPCX and a power of 0.9 mW. It can be observed 
that, depending on the reflection, the contrast due to the 
deformation changes. The central black contrast which 
depends on the u 1 component of the deformation is 
clearly visible for the 112 (Figure 25a) and 223 (Figure 
25b) reflections but vanishes for the 013 reflection 
(Figure 25c). For this reflection, h · ii' = 0 and the 
contrast (broad fringes) due to the u3 component of the 
deformation is more visible. 

Figure 26 presents two topographs of the crystal ob­
tained for 112 reflection for two different RPCX (with 
the same vibrating level). For 90° RPCX (Figure 26a), 
the crystal presents a very similar contrast to that ob­
tained without vibration because the diffracting planes 
are not deformed. The high density of the dislocations 
oriented parallel to the C crystallographic axis can be 
observed. The faint circular contrast is due to stresses 
in the electrode metallization. The effects of the disloca­
tions on the vibration mode are shown in Figure 26b 
(and also in Figures 25a and 25b) where it can be obvi­
ously seen that the zone of vibration does not have the 
quasi-circular symmetry expected and that where a large 
density of the dislocations exists they unconfine the 
mode. This was also observed elsewhere by convention­
al X-ray topography (continuous exposure during the vi­
bration). 
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Figure 26. Two topographs of the same crystals ob­
tained for two different RPCX. (a) 90° RPCX. No 
vibrations are observed. (b) The dislocations unconfine 
the mode of vibration. 

Figure 27. Monochromatic topograph; 210 reflection. 
The dislocations unconfine the mode. It can be observed 
in the central zone fringes of "moire" type. 

The same feature can be observed on the monochro­
matic topographs. In Figure 27, a monochromatic topo­
graph (210 reflection) of the same resonator shows an­
other interesting contrast in the central resonating zone: 
fringes of "moire" type appear, and their configurations 
change with the RPCX. These fringes are due to inter­
ferences between X-ray wavefields propagating in the 
crystal. They are generally located at the level of the 
dislocations and probably characterize very locally 
deformed zones. 

Q2 resonator. This crystal is characterized by a 
better confinement of the vibration. The four monochro­
matic topographs presented in Figure 28 were obtained 
varying the level of the input signal (without vibration in 
Figure 28a, 15 mW in Figure 28b, 35 mW in Figure 
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Figure 28. Four monochromatic topographs obtained 
varying the level of the input signal. (a) Without 
vibration. (b) 15 mW. (c) 35 mW. (d) 350 mW. 

28c, and 350 mW in Figure 28d). The density of the 
dislocation in this crystal is less important than in the 
previous one. However, the "moire" type fringes are 
visible in the central part at the level of the dislocations. 
Their configuration varies with the RPCX. 
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Figure 29. Four monochromatic topographs of the same 
resonator. (a) Without vibration. (b) 45° RPCX. (c) 
0° RPCX. (d) 135° RPCX. It can be observed that the 
growth bands changes the confinement the mode of 
vibration. 

The geometrical aspect of the central vibrating zone 
seems less deformed than the vibrating part of the QI 
crystal. For the Q2 resonator it appears, due to their 
lower density, that the influence of the dislocations is 
less important. On the other hand, circular fringes Jo-
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cated between the black contrast and the edge of the 
electrodes present a contrast which varies with the 
RPCX. They are also due to interferences of the propa­
gating wavefields in the crystal but reveal a probable 
secondary mode of vibration. 

Q3 resonator. Four monochromatic topographs are 
presented in Figure 29. The last three were obtained 
with the same level of the vibration (90 mW) but for dif­
ferent RPCX (45° in Figure 29b, 0° in Figure 29c and 
135° in Figure 29d). The topograph in Figure 29a was 
obtained without vibration. This crystal is a natural one, 
and the defects present are only growth bands. 

This crystal shows different interesting features: 
• The central black zone presents a contrasted part 

which depends on the RPCX; 
• This is also verified for the "moire" type fringes 

which configuration changes between Figures 29b-29d; 
• The external circular fringes (between the vi­

brating zone and the edge of the electrodes) appear only 
when the crystal is vibrating and seem to be invariable 
when the RPCX changes; and 

• The growth bands seem to have a very less impor­
tant effect on the lateral confinement of the vibration 
mode than the dislocations do. 

To summarize the different observations, it can be 
said that the global effect of the dislocations in AT-cut 
resonators is to decrease the lateral confinement of the 
thickness shear mode when their density is important 
(more than 102 to 103 per cm2). The dislocations seem 
to increase the phase velocity of the shear mode locally 
and therefore to contribute to the local untrapping of a 
confined mode. This hypothesis appears to be rein­
forced by the observed fact that bunches of dislocations 
of similar orientations constitute a guiding structure for 
the shear wave at the periphery of the vibration mode. 
This permits one, in the case of weakly trapped modes, 
to observe an important untrapping effect. Although no 
direct experimental evidence of this phenomenon has yet 
been obtained, one can wonder whether the dislocations, 
like other elastic discontinuities, may or not may 
introduce some mode conversion (fast shear to slow 
shear or longitudinal). 

Additionally, the higher impurity level in the growth 
band may also introduce local variations of the phase 
velocity of the shear mode, leading to an increase (or to 
a decrease) in the energy trapping parameters locally. 
However, due to the complexity of the growth bands 
structure of the studied sample, no simple conclusion 
about this point can be drawn at this time. 

The technique of the Laue Stroboscopic topography 
can directly reveal the different modes of the vibration 
by visualization of all the components of the (instantane­
ous) deformation [28]. "Moire" type fringes show local 
deformations (associated with the defects which seem to 
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induce perturbations in the vibration modes). "Section" 
topographs indicate the depth of the acoustic contrast in 
the studied crystal (the area with the maximum curvature 
of planes). It is most probable that the deformations of 
the "moire" fringes (produced by an X-ray interference 
process not already fully elucidated) correspond to local 
modifications of the transverse wave shape resulting 
from the influence of the defects (surface defects appear 
to produce similar defects). The stroboscopic method 
can also permit one to obtain other information about 
piezoelectric resonators such as information relative to 
the localization of acoustic dissipations, or to the 
influence of imperfect geometries of the surfaces. 
Further experiments are requested, with resonators 
exhibiting different dislocation densities and different 
energy trapping parameters, to gain a full understanding 
of the importance of the interactions of defects with 
vibration modes. 

Conclusion 

The purpose of this paper was to discuss some ele­
ments of dynamical theory and to introduce some basic 
ideas on defect image formation. Since only a few types 
of defects have been considered, the reader should go 
further into the subject with, for example, Tanner's 
monograph on X-ray Diffraction Topography [21]. 

The analysis of the X-ray spherical wave topographs 
of various Y-cut plates of synthetic quartz crystals has 
shown that the coherence of the lattice between the seed 
and the grown crystal, following the (010) planes, is di­
rectly related to the density of the dislocations present in 
the seed. For three samples, the local deformations are 
essentially related to the density of the dislocations. The 
plane-wave topography has shown that the local defor­
mations can be estimated with good precision and related 
to the growth defects. 

The time structure of synchrotron radiation enables 
Stroboscopic X-ray topography, and with the use of the 
beam delivered at LURE, we have examined three 
quartz resonators. By the use of different topographic 
settings, several types of vibration modes and the pertur­
bations due to the defects have been observed. Defects 
such as growth bands and especially dislocations disturb 
the BA W (bulk acoustic wave) propagation in the crys­
tals and can induce losses by untrapping a part of the 
energy of the mode conversion. However, the topo­
graphic contrast due to the propagation of X-ray wave­
fields in the deformation fields of acoustic waves, is not 
well understood, and calculations of the beam trajec­
tories in the crystal and simulation of topographs will be 
necessary to explain the observed contrasts. 
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Discussion with Reviewer 

F. Hasselbach: Which types of lattice defects can be 
detected by X-ray transmission topography? What is the 
resolution of this method compared to transmission elec­
tron microscopy? 
Author: Only extended defects like dislocations, growth 
bands, stacking faults or precipitates can be detected by 
X-ray transmission topography. The resolution obtained 
by X-ray transmission topography is very poor in com­
parison with that obtained by electron microscopy. It is 
about 3 to 5 µm. 

F. Hasselbach: By "plane-wave reflection topography" 
is it possible to detect lattice misorientations around 
dislocations and measure them? 
Author: Yes. It is possible as it can be observed in the 
case of the third sample Q3; but generally, the 
dislocations are grouped in bundles, and it is very 
difficult to measure the exact misorientations. Neverthe­
less, it is possible. 

F. Hasselbach: You have studied different types of res­
onators using the "stroboscopic technique" and observed 
effects concerning the bulk acoustic waves and their 
interactions with the lattice defects. Is it possible to 
observe such interactions in resonators and transducers 
also for surface acoustic waves? 
Author: Yes. This was done first by H. Graeff and his 
collaborators [ 4], and presently, we are doing such 
studies on Niobate lithium crystals. 

F. Hasselbach: You stated that "the simulation of 
topographs" will be necessary to explain the observed 
"contrast". Is this always true? And, if not, in what 
cases is it necessary? 
Author: It is true that the observation of a topograph 
generally permits one to understand some usual contrasts 
such as those given by the dislocations or the growth 
bands. In many other cases, the contribution of a theo­
retical explanation and also the simulation allow a better 
understanding of the contrast and the associated defor­
mation given by a defect. 

242 


	X-Ray Topography
	Recommended Citation

	tmp.1608677311.pdf.3Fkph

