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ABSTRACT 

Effects of Climate Forcing Uncertainty on High-Resolution Snow Modeling and 

Streamflow Prediction in a Mountainous Karst Watershed 

by 

Conor Tyson, Master of Science 

Utah State University, 2021 

 

Major Professors: Drs. Bethany Neilson and Tianfang Xu 

Department: Civil and Environmental Engineering 

 

In the mountainous Western U.S., a considerable portion of water supply originates as 

snowmelt passing through karst watersheds. Karst watersheds are basins containing 

fissures, fractures, and conduits in carbonate rocks, creating heterogeneous groundwater 

flow and storage dynamics. Accurately simulating streamflow in snow-dominated, karst 

basins is challenging. Meteorological forcings are affected by complex terrains and 

exhibit high spatial variability, while observation data are typically scarce. The spatially 

varying forcings and topography lead to high spatial variability in snow accumulation and 

melt rates. In addition, commonly used rainfall-runoff models may not perform well 

when faced with the hydrogeologic heterogeneity of karst watersheds. To overcome these 

challenges, we simulated snow processes at a fine resolution using a physically based 

snow model and used the model outputs to run a deep learning model to simulate 

streamflow. The snow model was forced with meteorological variables from a Weather 

Research and Forecasting (WRF) model and the North American Land Data Assimilation 
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System (NLDAS). The two datasets were used at base resolution and orographically 

adjusted according to topography.  This study was performed to understand how the 

choice of climate data and downscaling techniques affect the simulation of snow and 

streamflow in a snow dominated, mountainous, karst watershed. We found the climate 

datasets and downscaling methods resulted in large differences in simulated snow water 

equivalent (SWE) and snowmelt rate. The differences in SWE between the datasets are 

noticeably larger than the differences in precipitation, showing the effects of other 

variables, particularly radiation and temperature. In addition, the WRF dataset resulted in 

snow melt occurring about a month later than the NLDAS dataset. Despite the 

differences, the resulting simulated streamflow from the deep learning model showed a 

close match to the measured streamflow during training and testing periods. This 

suggests that when deep learning models are trained on a particular dataset, it learns the 

rainfall-runoff response and performs well on testing datasets with similar patterns. 

Among all experiments, streamflow simulated using orographically adjusted WRF 

meteorological forcings resulted in the highest accuracy due in part to the relatively high 

base resolution, temporal consistency, and later melt of the WRF dataset. 

(73 Pages) 
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PUBLIC ABSTRACT 

 

Effects of Climate Forcing Uncertainty on High-Resolution Snow Modeling and 

Streamflow Prediction in a Mountainous Karst Watershed  

Conor D. Tyson 

 

Snow-dominated, karst watersheds present particular challenges to accurately modeling 

streamflow in response to differing climate conditions. This is due to the uneven 

distribution of snow within a basin, the varied melting rates due to terrain and climate, 

and the difficulty determining flow paths through karst conduits below ground. One 

possible solution to these challenges is to model snow at a fine scale, but climate 

variables are not available at these smaller spatial scales. The choices about which 

climate dataset to use, and how to downscale the data to a fine scale, will likely affect the 

accuracy of streamflow simulations. This comprises the primary goal of the thesis. For 

this project we simulated fine resolution snow processes using two climate datasets 

downscaled in two different ways and used the simulated snowmelt to feed a deep 

learning model that can learn patterns between the simulated snowmelt and observed 

streamflow to then simulate streamflow. The climate datasets differ significantly and 

resulted in highly different patterns of snow accumulation and melt. However, the deep 

learning model was able to learn the patterns with the different datasets and accurately 

generate streamflow for all climate datasets and downscaling methods. 
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CHAPTER I 

INTRODUCTION 

 

In many areas of the world, particularly northern latitudes, continental interiors, 

and near mountainous regions, much of the water for residential and agriculture use 

originates as snowpack (Adam et al., 2009). Many of these snow-dominated watersheds 

include karst formations where carbonate rock has undergone dissolution resulting in 

fissures and conduits. Water is able to flow through karst conduits much faster than in 

porous matrices. Karst watersheds supply water to approximately one fourth of the 

world’s population (Hartmann et al., 2014). Streamflow in karst, snow-dominated 

watersheds is controlled both by snow processes and karst hydrogeology. Accurate 

quantification of snow accumulation (often measured as snow water equivalence (SWE)) 

and melt in these snow-dominated, karst regions are critical for simulating streamflow 

and water supply availability. 

Karst watersheds can contain three porosity types within the carbonate rock: 

micropores, small fissures, and large conduits (Hartmann et al., 2014). In snow-

dominated Karst regions, portions of meltwater enter sinkholes directly connected to 

karst conduits, diffuse through small fissures into the karst conduits, and enter soil 

matrices and slowly diffuses into karst conduits or streams (Hartmann et al., 2014; 

Spangler, 2011; White, 2002). Therefore, karst watersheds contain high spatial 

heterogeneity in groundwater recharge and flow. Depending on the location within the 

watershed where the snowmelt occurs, recharge can take a wide range of travel times to 

reach the stream channel, varying from days to years (Spangler, 2011). In addition, karst 
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watersheds frequently display “piracy”, where water in one watershed flows across 

topographic watershed boundaries into neighboring watersheds (Hartmann et al., 2014; 

Spangler, 2011).  

Hydrologic models are commonly utilized to simulate streamflow at various 

spatial and temporal scales. However, these models are run at scales unable to simulate 

heterogeneity found in karst basins. Many of these models use a lumped 

conceptualization of the snow processes, where the spatial variability of the snowpack is 

not considered or simplified (e.g., snowmelt represented by a limited number of elevation 

bands). For instance, Najafi et al. (2012) combined SNOW-17, a lumped model with 

elevation bands that simulates snow accumulation and melt, with the Sacramento Soil 

Moisture Accounting model, a lumped catchment water balance model, for ensemble 

streamflow prediction (ESP) in a 754 km2 watershed and found improved estimates of 

probable streamflow ranges. Hegdahl et al. (2019) used HBV, a lumped hydrologic 

model for snow and glacial melt, with ten elevation zones throughout Norway and found 

temperature accuracy had a large effect on streamflow simulation accuracy, particularly 

in the snowmelt season. It is clear the fine scale spatial variability of SWE cannot be 

represented in lumped and coarse grid snow models, yet is likely to have a significant 

effect on streamflow at mesoscales (areas from one hundred to one thousand square 

kilometers), particularly in karst basins. 

SWE levels and melt rates in mountainous regions have high spatial variability 

due to topography (i.e., elevation, slope, aspect) and canopy coverage and their combined 

effects on precipitation, temperature, and radiation (Shamir and Georgakakos, 2006; 

Winstral et al., 2014) as has been demonstrated in field studies. For instance, Flerchinger 
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et al. (1992) studied a 0.26 km2 watershed in Idaho and collected groundwater depth, 

precipitation, snow accumulation, snowmelt, and streamflow at a 30 m resolution for two 

years to characterize the response of groundwater and streamflow to SWE levels. They 

found the groundwater response time from snowmelt of isolated snowdrifts to streams 

was 2-3 days for a year with average precipitation, while was 32-46 days for a year with 

less than average precipitation levels. Clark et al. (2011) studied two watersheds of 30 

km2 and 12.5 km2 in Colorado and collected over 2000 snow depth and density 

measurements to determine which factors control SWE variability. They found SWE 

variability at a watershed scale (100-10,000 m) is driven by elevation, temperature, and 

radiation but fine scale (<100 m) SWE variability is dominated by wind drift, slope, and 

canopy interception. Tarboton et al. (2000) studied a 9.5 km2 watershed in the Austrian 

Alps. They combined aerial surveys of snow cover with field measurements of SWE to 

set initial snow cover conditions for a snow model with 25 m resolution, then compared 

simulated snow cover at later times to aerial surveys and field measurements 

observations. The difference between model simulated and observed snow cover was 

within 10% and arose primarily from combinations of incorrect albedo and the effects of 

complex topography. These in situ studies produced high resolution results, but the 

methods are impractical for mesoscale studies.  

At the mesoscale, the spatial variability can be resolved by high resolution 

distributed snow modeling. Winstral et al. (2014) looked at a small watershed in Idaho 

covering 6.2 km2 to determine the effects of different resolutions of climate data on 

modeled SWE levels. They downscaled climate variables to a 10 m resolution, averaged 

the 10 m resolution variables into coarser resolution grids ranging from 30 m to 1500 m, 
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and used these data in a distributed, two-layer snow model (ISNOBAL). The simulated 

SWE and snowmelt from the coarser grids were compared to results from the 10 m 

resolution as a benchmark. They found the 100 m resolution simulated SWE differed 

from the 10 m resolution simulated SWE for both snow accumulation and ablation 

periods by less than 4%. Resolutions of 250 m, 500 m, and larger differed in simulating 

SWE accumulation and melting by 12%, 18%, and >20%, respectively. Schlӧgl et al. 

(2016) studied the effect various snow model modifications (e.g., resolution, roughness, 

albedo) have on simulated snow cover for two watersheds in the alps with areas of 145 

km2 and 356 km2 utilizing Alpine3D, a physics-based, spatially distributed, three 

dimensional snow model. For studying the effect of resolution, they ran the model using 

resolutions from 1000 m to 25 m and found coarser grids flattened slopes, causing 

overestimation of SWE for southern slopes and underestimation of SWE for northern 

slopes.  They concluded there was an overall 10% positive bias in simulated SWE for the 

1000 m resolution compared to the 25 m, while only an overall 2% negative bias in 

simulated SWE between the 200 m and 25 m resolutions.   

High resolution distributed snow models require topography (e.g., elevation), land 

use (e.g., canopy coverage), and climate forcing data at scales appropriate for the model 

grid size. While topography and land use data are available at a fine resolution (e.g., < 

100 m), climate forcing data (temperature, precipitation, radiation, humidity, and wind 

speed) are not generally available at a fine resolution (Mizukami et al., 2016; Shamir and 

Georgakakos, 2006) and need to be downscaled to the resolution of hydrologic models. 

Mendoza et al. (2016) studied the effect of different resolutions of climate data on 

hydrologic responses using data dynamically downscaled to resolutions of 36, 12, and 4 
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km by a Weather Research and Forecasting (WRF) regional climate model on three 

watersheds in the Colorado River basin. They found the 36 km and 12 km resolution 

simulation results underestimated basin-average precipitation compared to the 4 km 

resolution, resulting in lower runoff on all three tested hydrologic models, demonstrating 

climate data resolution has a larger effect on modeled runoff than the choice of 

hydrologic model. Mizukami et al. (2014) used a variety of climate forcing data and 

downscaling techniques over the continental United States to investigate the effects of 

different downscaling techniques on hydrologic model responses. They found up to 20% 

difference in simulated runoff at high elevations is due primarily to differences in 

temperature and radiation among the forcing datasets and the interpolation techniques. 

Although downscaled climate data improves simulation results, downscaling to a fine 

resolution (<1 km) brings additional uncertainty and challenges to the modeling process. 

To overcome these challenges, several researchers have developed methods for 

downscaling climate variables to fine resolutions (< 1 km) for use in distributed 

hydrologic models. These methods generally use the available fine resolution topography 

data and adjust climate variables according to known topographical effects on climate. 

Hungerford et al. (1989) developed MTCLIM which extrapolates climate data from a 

ground station to nearby areas using elevation, slope, and aspect. Liston and Elder (2006) 

developed MicroMet, which interpolates climate data from ground stations to 30-1000 m 

resolution utilizing elevation, slope, aspect, and cloudiness. Thornton et al. (2012) created 

Daymet, which expands MTCLIM algorithms to produce national 1 km gridded output. 

Fiddes and Gruber (2014) developed TopoSCALE, which downscales climate model 

reanalysis data utilizing pressure derived from elevation in addition to topography.  Sen 
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Gupta and Tarboton (2016) developed MSDH, a software tool furthering the methods of 

Liston and Elder (2006) to use topography-based interpolation to downscale climate 

variables down to a 30-100 m resolution. Daly (2006) reviewed strengths and weaknesses 

of multiple downscaling techniques such as kriging, Daymet (Thornton et al., 2012), and 

PRISM (Daly et al., 1994) and recommended using multiple datasets and downscaling 

methods because datasets and methods typically contains bias, and combining methods 

may cancel out these biases. 

 Fine resolution, downscaled climate data used to force a snow model will 

generate detailed snow accumulation and melt simulations. However, due to the 

complexities of karst geology, common hydrologic models fail to adequately model flow 

in karst basins. One possible solution to this problem is to feed the snow model results to 

a deep learning process or machine learning technique. Machine learning techniques are 

powerful tools for learning complex, nonlinear relations. For instance, Ren et al. (2018) 

combined HBV with a Bayesian neural network for modeling streamflow. They found 

the combined models had higher accuracy in simulating streamflow and streamflow 

uncertainty than either of the two model components alone. Machine learning models are 

not dependent on understanding hydrologic processes within a specific watershed, and 

thus less prone to structural error. Data driven, deep learning network architectures can 

potentially address the complexities of hydrologic processes within karst aquifers.  

This study aims to understand how modeling fine-resolution snow accumulation 

and melt with different climate datasets and downscaling techniques affects our ability to 

simulate streamflow in a snow-dominated mountainous karst watershed. As a test, we 

focus on the Logan River watershed in northern Utah. The watershed is the main drinking 
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and agricultural water supply for the City of Logan, Utah. Using a high-resolution snow 

model and a deep learning rainfall-runoff model, our specific objectives include: 

1. Quantify the spatial and temporal patterns of SWE and snowmelt rate and how 

these patterns are affected by the choice of climate inputs and downscaling methods. 

2. Identify how streamflow responds to spatially and temporally varying 

snowmelt. 

3. Determine the accuracy of streamflow predictions using simulated snowmelt 

rates from different climate datasets and downscaling techniques.  

We will first discuss the study area where the study was performed. Next, we will 

discuss the methods used in this study including forcing data, snow model, and deep 

learning model. Then, the results of this study are discussed and how they relate to the 

three main objectives. We conclude with the main points covered and the engineering 

significance of this study. 
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CHAPTER II 

STUDY AREA 

 

Our study area is the canyon portion of the Logan River watershed located in 

northeastern Utah and southeastern Idaho (Figure 1a). This portion of the Logan River 

watershed has an area of 550 km2 and an elevation range from under 1400 m to over 

3000 m (Figure 1b). The study area is heavily forested (Figure 1c) and contains both 

coniferous and deciduous forests. Average basin-average precipitation is about 0.9 m, 

with high variability due to the terrain, but more than 50% of the precipitation falls as 

snow as seen in the data used for this study (Section 3.1). Water flows primarily from the 

north and east to the south and west of the watershed. However, developed karst conduits 

and sinkholes in the watershed add complexity to water flow direction.  

The karst features in the watershed result in significant karst piracy, requiring the 

study area to include terrain outside the topographic watershed, particularly in areas with 

known karst geology (Spangler, 2011). The western border of the watershed includes 

terrain composed of formations known to contain karst springs in the watershed: Garden 

City Formation, Lake Town dolomite, Water canyon formation, and Beirdneau 

Formation (Spangler, 2011). Thus the western edge of the study area was expanded to 

include outcrop of these formations and potential recharge area (Figure 2), and also to 

include Green and Water canyons, where tracer studies have demonstrated water from the 

neighboring watershed enters the Logan watershed (Spangler, 2011). The northern border 

of the watershed was expanded to include all of the area near Franklin Basin, an area with 

relatively flat terrain that leads to uncertainty in topography-based watershed boundary 
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delineation. To the north of Franklin Basin and northeast of the study domain, 

groundwater flow appears to generally carry water away from the watershed. The eastern 

and southern boundaries of the topographical watershed have geology with less karst 

conduit development, so in these areas less expansion of the study area was required 

(Spangler, 2011).  

 

 

 

Figure 1: Maps showing (a) location (b) elevation and (c) canopy coverage (NLCD, 

2019) of study area. In addition, topography boundary of Logan River watershed and 

locations of SNOTEL sites and USGS station are indicated. 
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Figure 2: Study area geology, including major springs, areas of known piracy, and 

labeled formations with known karst features. Note: The Utah and Idaho geology maps 

have different color schemes and levels of detail (Dover, 2007; Lewis et al., 2012). 

 

Hydrologic and climatic data of the study area are available from a USGS stream 

gage and seven SNOTEL sites. Discharge records of the Logan River are provided by 

USGS station 10109000 (Figure 1b, c) at a daily interval since 1954 and a 15-minute 

interval since 1984. For this study, daily streamflow was determined by summing the 

daily flows from the USGS gage, diversion rates of Highline Canal upstream of the 

USGS gage, and diversion rates at DeWitt springs within the study area. The combined 

rates from the three sites are hereafter referred to as measured streamflow. 
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There are seven SNOTEL (snow telemetry (USDA, 2016)) stations within the 

study area (Figure 1b, c, Table 1).  Two of the SNOTEL sites have been collecting daily 

SWE and precipitation data since the late 1970s, one site began collecting data in 2001, 

and the remainder began collecting data between 2007 and 2009. All SNOTEL stations in 

the study area now collect SWE, precipitation, and minimum and maximum temperatures 

on a daily basis. SNOTEL data provides actual on-site data, and is a valuable source for 

verification of simulated data. However, ground based data still has problems of bias and 

inaccuracies, including the phenomenon of under-catch (Mizukami et al., 2014; Raleigh 

et al., 2016). In addition, SNOTEL stations are typically built in flat clearings, and are not 

representative of the entire landscape. 

 

Table 1: SNOTEL stations in study area with first year of data.  Elevation and canopy 

coverage are calculated for the UEB grid where the station is located as described in 

Section 3.1. 

Site Name Year Data 

Begins 

Elevation 

(m) 

Canopy 

Coverage (%) 

1 Franklin Basin 1979 2479 29 

2 Garden City 

Summit 

2009 2342 70 

3 Klondike Narrows 2009 2219 37 

4 Temple Fork 2001 2257 38 

5 Tony Grove Lake 1978 2579 34 

6 Tony Grove RS 2009 1934 23 

7 USU Doc Daniels 2007 2623 43 
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Another available source of measured data in the study area is satellite derived 

fractional snow-covered area (SCA) from the MODIS datasets (Hall and Riggs, 2016). 

MODIS has a number of different SCA datasets available for the study area, but for this 

study the MOD10A1 dataset was selected. This dataset provides daily SCA with a 500 m 

resolution over the study area. Being completely separate from SNOTEL or other ground 

based information, MODIS provides a secondary source of validation for model results. 

However, MODIS data is known to have lower accuracy in areas of high vegetation or 

complex terrain, two factors very prevalent in the study area (Hall and Riggs, 2007; 

Huang et al., 2011). 
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CHAPTER III 

METHODS 

For this project, climate data was taken from two sources, a Weather Research 

and Forecasting (WRF) regional climate model and the North American Land Data 

Assimilation System (NLDAS-2) (Scalzitti et al., 2016; Xia et al., 2012). These datasets 

were orographically adjusted according to the study area topography. The raw and 

adjusted climate data were used to run a physically-based snow model, Utah Energy 

Balance (UEB) model (Mahat and Tarboton, 2012). The snow model results were then 

used to run a deep learning model using a new network structure (Xu et al., In Prep). 

Using measured data from the study area, including snow water equivalent (SWE), snow-

covered area (SCA), and streamflow, simulated results were analyzed and compared to 

measured results. 

3.1  Meteorological Forcing Data 

Two sources of climate forcing data were used to run the UEB model. The first is 

a dynamically downscaled dataset derived using a WRF dataset centered on the Wasatch 

Mountains, Utah (Scalzitti et al., 2016). The WRF model was run with initial and 

boundary conditions from Climate Forecast System Reanalysis (CFSR). The CFSR data 

is downscaled based on elevation and ground cover down to a 4 km resolution. The 

resulting data was verified using SNOTEL data in the Utah region. The resulting dataset 

has results with hourly time steps from 1985 to 2010. This WRF dataset has an advantage 

of being downscaled to a relatively fine scale over Utah with extra steps taken to match 

local conditions. This provides global climate data better focused on this study area. 
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However, the base data of CFSR is very coarse (38 km) and has errors and biases 

transferred to the WRF data (Scalzitti et al., 2016). In addition, the verification used 

creating this data (SNOTEL), is also used as a verification in this study, and thus not a 

true independent verification source. 

 The second climate forcing utilized is the NLDAS (Xia et al., 2012) forcing 

dataset, a national dataset commonly used in hydrologic studies. Most NLDAS forcing 

data is derived from North American Regional Resolution (NAAR), a dataset with 32 km 

spatial resolution and 3 hour temporal resolution from 1979 to the present. The data is 

derived from ground station, satellite, and airborne data across the nation (Mesinger et 

al., 2006). NLDAS interpolates the NAAR data to a resolution of 1/8 degree (about 14 

km in the study area) and hourly time steps. In addition, pressure, longwave radiation, 

temperature, and specific humidity are adjusted for the elevations of the NLDAS grids. 

NLDAS precipitation is not derived from NAAR, but from a separate national database 

of daily precipitation gages. Therefore, NLDAS-2 data is primarily from observational 

data, this has the advantage of being “on site” actual data, but has the potential 

disadvantages of unequal spatial distribution, measurement error, and gage bias.   

3.2  Orographic adjustments of meteorological forcings 

To run the UEB model, the two climate datasets described in section 2.1 were 

used as climate forcings both as raw data and with orographic adjustment. The following 

variables were obtained from the WRF dataset: 2 meter specific humidity (Q2), 

downward shortwave surface radiation (ACSWDNB), downward longwave surface 

radiation (ACLWDNB), directional 10 meter wind speeds (U10 and V10), 2 meter 
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temperature (T2 ), surface pressure (PSFC), and precipitation (RAINNC). The WRF 

cumulative variables of precipitation and radiation were first converted to hourly 

variables. Relative humidity (RH) was derived from specific humidity (Q2) and pressure 

(PSFC) using Equation 1 (Monteith and Unsworth, 2008; Sen Gupta and Tarboton, 

2016). Equation (2) was used to convert 10 m wind (U10 and V10) to 2 m wind (U2 and 

V2), with z0 = 0.01 m and d = 0 m (Archer and Jacobson, 2003), while Equation 3 was 

used to combine the wind speeds in x (U2), y (V2) directions for total wind speed (WS) 

(Sen Gupta and Tarboton, 2016). 

 

𝑅𝐻      =  

𝑃𝑆𝐹𝐶 ∗ 𝑄2
. 622 + 𝑄2

611 ∗ 𝑒
17.27∗𝑇2
𝑇2+237.3

          (1) 

𝑈2 =  𝑈10 ∗
log (

2𝑚 − 𝑑
𝑧0 )

log (
10𝑚 − 𝑑

𝑧0 )
         (2)  

𝑊𝑆 =  √𝑈22 + 𝑉22                         (3)  

 

For NLDAS-2 data the following variables were obtained: specific humidity at 2 

meters, surface downward longwave radiation, surface downward shortwave radiation, 

directional wind components at 10 meters, air temperature at 2 meters, surface pressure, 

and precipitation hourly total. Since the NLDAS dataset has the same variables with the 

same units as the WRF dataset, the same conversions and calculations were performed to 

prepare variables for the UEB model.  
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For raw data simulations, each UEB grid cell within the climate dataset is 

assigned the value of climate variables from the area. For orographic adjustment runs, the 

raw climate variables are first bilinearly interpolated within the study area. These 

interpolated climate variables are then adjusted to account for elevation and other 

topographical features using methods developed in Liston and Elder (2006) and Sen 

Gupta and Tarboton (2016).  Here, temperature is adjusted using a lapse rate derived 

from SNOTEL stations in the study area.  Precipitation is adjusted based on a monthly 

adjustment factor and the elevation difference. The relative humidity value derived from 

the dataset is utilized to recalculate specific humidity. The specific humidity is then 

adjusted using elevation adjusted temperature calculated previously and the elevation 

difference. The adjusted specific humidity is used to calculate adjusted relative humidity. 

Incoming longwave radiation is altered first according to the previously adjusted 

temperature and then by calculating air emissivity for elevation. Shortwave radiation is 

altered according to the monthly B coefficient for the Bristow-Campbell equation (also 

needed for UEB model, determined by monthly average diurnal temperature range) and 

atmospheric pressure that has been altered according to the elevation difference. Wind is 

adjusted based on wind direction and the slope, aspect, and curvature of the grid cell and 

its neighboring cells.  

The UEB snow model was run for all years the WRF climate dataset was 

available (WY 1986-2010). UEB simulated hourly SWE and the combined snowmelt and 

rainfall were lumped to daily resolution by taking SWE from the last hour of the day, and 

summing up snowmelt and rainfall for each day.  
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3.3  UEB Snow Model 

We simulated snow accumulation and melt at 100-m spatial resolution and 1 hour 

temporal resolution using the UEB model (Mahat and Tarboton, 2012; Tarboton and 

Luce, 1996) for the study area. The UEB model is a physically based model utilizing 

mass and energy balances of the snowpack and represents the snow as two layers, one 

layer above the forest canopy and the other on the surface. The model simulates three 

state variables to represent the snow (SWE, energy content, and surface age) and can be 

run using a distributed (gridded) setup. The model requires numerous basin-wide 

parameters (albedo, snow density, etc.), and a number of site conditions such as canopy 

coverage, canopy height, leaf area, slope, aspect, latitude, and longitude. The model is 

driven by climate inputs of temperature, precipitation, wind speed, radiation, and relative 

humidity at a temporal resolution sufficient to discern the diurnal pattern.  

We utilized the UEB snow model with 100 m grids to capture the small scale 

variability in snow accumulation and melt. Based on preliminary results, changing 

resolution from 200 m to 100 m could affect SWE levels >20% at certain locations due to 

the smoothing out of aspect and slope. However, changing resolution from 100 m to 50 m 

alters SWE levels less than 5% suggesting 100 m resolution adequately captures slope 

and aspect. This model is run with the different climate forcings described in Section 3.1, 

WRF and NLDAS.  

Parameter values were set following recommendations in Tarboton and Sen Gupta 

(2013).  To obtain slope and aspect, a digital elevation model (DEM) with 1/3 arc second 

(about 9 m) resolution was used (U.S. Geological Survey, 2017). The average elevation 
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for each 100 m grid was calculated and ArcGIS used to calculate slope based on the 

elevation of each grid and its neighboring grids. Aspect was calculated using the 

elevation obtained for the neighboring grids. Atmospheric pressure was determined using 

the elevations and calculating average pressure at each elevation.  

Canopy coverage data was obtained from the NLCD 2011 tree canopy dataset 

(Coulston et al., 2012). NLCD datasets prior to 2011 did not include the tree canopy 

coverage. The dataset has a 30 m resolution, and the average value within each 100 m 

UEB grid was obtained. For leaf area index (LAI) and forest structure (ycage) 

parameters, the NLCD land use dataset was utilized (Yang et al., 2018). Although the 

NLCD has multiple years with land use datasets, comparisons between the different 

datasets for the study area showed no significant changes in the years of the study. The 

mode of land cover classes for the 30 m cells within each 100 m UEB grid was obtained 

because land classification systems cannot be averaged. These land cover numbers for 

each grid were converted to LAI and ycage following recommendations in Sen Gupta and 

Tarboton (2012) and land cover classes not covered therein were converted to the most 

similar class. Canopy height data was obtained from NASA Landfire database (Nelson et 

al., 2013), which also has a 30 m resolution. This resolution was higher than other canopy 

height datasets available, and the dataset had more variability than was obtained using the 

recommendations of Sen Gupta and Tarboton (2012) on land use type. The height data 

was upscaled to UEB resolution by averaging. Finally, since UEB requires canopy 

coverage, height of canopy, and leaf area index to all be either zero or not zero at the 

same grid point, all grids with a canopy coverage of zero had height and leaf area set to 
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zero, and any grid with canopy coverage value but no height or LAI had the zero value(s) 

raised to one. 

3.4  Deep Learning Karst Model 

A deep learning model using a new network structure, Modified ConvLSTM (Xu 

et al., In Prep) is applied to simulate Logan River streamflow based on the UEB model 

outputs. The Modified ConvLSTM architecture is tailored from the Convolutional Long 

Short-Term Memory (ConvLSTM) which was proposed for precipitation nowcasting (Shi 

et al., 2015). By combining multiple convolutional layers with two layers of LSTM cells, 

the Modified ConvLSTM is capable of learning long-term memory effects of the 

watershed storage and extracting spatial patterns from UEB simulated snowmelt and 

watershed storage. In order to alleviate overfitting, a dropout at a rate of 0.5 was 

implemented.  

 UEB simulated combined snowmelt/rainfall and potential evapotranspiration 

(PET) calculated from temperature using the Hamon method (Hamon, 1960), are inputs 

to the deep learning model. Inputs are taken from the day for which streamflow is being 

simulated and the preceding 364 days to capture temporal dependency up to an annual 

scale. In order to save computational time and decrease computational complexity, the 

100 m resolution grids of inputs are aggregated to 1.6 km resolution grids. At each time 

step, new inputs are combined with the previous time steps, analogous to the watershed 

storage, to determine the output (i.e., streamflow).  

 The aggregation of inputs to 1.6 km resolution results in data first being 

downscaled to run the UEB model, then upscaled to run the deep learning model. This 
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process appears odd, but is required for best results. High resolution is preferred for the 

snow model because both meteorological forcings and the snow accumulation and melt 

processes are controlled by topography, and topographic variables exhibit high spatial 

variability in mountainous areas (Schlögl et al., 2016; Winstral et al., 2014). However, 

this resolution results in a large amount of data, and it is necessary to upscale data to 

coarser resolution so that the computational cost for the data-driven model is affordable. 

 The model is trained on data from water years (WY) 1986-2002 and tested on 

data from WY 2003-2010, with the Mean Squared Error (MSE) (Equation 4 (Murphy, 

1998)) measured to determine coefficients used for the training. During the training 

period, the deep learning model learns the relationship between snowmelt/rainfall, 

potential evapotranspiration, and streamflow. Then it uses the learned relationships to 

simulate streamflow for years during the testing period when the model does not know 

the measured streamflow value.  

 The results from the deep learning model were compared between the different 

datasets and downscaling methods using three different statistics: MSE , Nash-Sutcliff 

efficiency (NSE, Equation 5 (Knoben et al., 2019)), and mean percent bias (PBIAS, 

Equation 6 (Khair et al., 2017)). A positive PBIAS shows the simulations are generally 

lower than the measured, while a negative PBIAS shows the simulations are generally 

higher than measured. The statistics are calculated using all data and high flow periods. 

High flow periods were flows above the median streamflow. 

 

𝑀𝑆𝐸 =  
∑(𝑌𝑚𝑒𝑎 − 𝑌𝑚𝑜𝑑)2

𝑛
                                           (4)   
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𝑁𝑆𝐸 =  
∑(𝑌𝑚𝑒𝑎 − 𝑌𝑚𝑜𝑑)2

∑(𝑌𝑚𝑒𝑎 − Ŷ𝑚𝑒𝑎)2
                                            (5)   

𝑃𝐵𝐼𝐴𝑆 =  ∑
𝑌𝑚𝑒𝑎 − 𝑌𝑚𝑜𝑑

𝑌𝑚𝑒𝑎
∗

100

𝑛
                                  (6)  

 

In equations (4-6), Ymea are the measured streamflow values, Ymod are the 

modeled streamflow values, n is the number of data points, and Ŷmea is the average of the 

measured streamflow values. 

3.5  Analyze Correlations between Snowmelt and Streamflow 

To determine if there are particular UEB grid cells in the study area where the 

modeled output snowmelt and rainfall input correlates closely with measured streamflow, 

we performed a correlation analysis. The analysis results complement the deep learning 

karst model and help interpret the model results. The snowmelt and rainfall input values 

for each grid cell between March 1 and August 31 yearly was selected to focus only on 

times with high flow (defined by months with snowmelt and rainfall inputs higher in at 

least one dataset). A correlation analysis was then performed using MATLAB, 

correlating the daily snowmelt and rainfall input for each grid to summed recorded 

streamflow that occurred on specified lag periods after the input. The lag times tested 

were 0-12 days, 20-40 days with 2 day steps, and 60 days. This analysis allows both a 

determination of which grids have the highest correlation with streamflow, and what lag 

time results in highest correlations with each grid cell.   
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1  Spatial and Temporal Patterns of SWE and Snowmelt Rate and Effects of the 

Choice of Climate Inputs and Downscaling Methods 

4.1.1  Comparing Weather Variables from Different Datasets and Downscaling Methods 

The climate datasets and downscaling methods differ in the amount of 

precipitation both at the point and basin scales. Basin wide, WRF annual cumulative 

precipitation is 15.5% higher than NLDAS, averaged over 1986- 2010 WY, with high 

interannual variation (Figure 3a). This variation ranges from NLDAS cumulative 

precipitation being 35% higher than WRF precipitation in 1986 to WRF cumulative 

precipitation 41% higher than NLDAS in 2006. This pattern of the coarser climate dataset 

having lower precipitation matches the results of Mendoza et al. (2016), where 

precipitation data from WRF data in three watersheds in Colorado at 36 km and 12 km 

resolution, were lower than precipitation from the 4 km resolution WRF data due to the 

smoothing effect of averaging over mountainous areas. Interestingly, overall this 

difference between the two datasets appears to increase over time. Prior to 2002 there is 

high annual variability between the two datasets with the NLDAS dataset occasionally 

having higher precipitation, starting in 2002 the WRF dataset  has noticeably higher 

precipitation values than the NLDAS dataset every year with less variation. This change 

in pattern suggests the relationship between the two datasets may not be consistent 

throughout the study period and that one of the datasets might have a temporal trend of 
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increasing bias. Orographic adjustments increase annual basin average precipitation by 

3.4% for both WRF and NLDAS, less than the difference between the two datasets and 

with little interannual variation. The differences in precipitation and other climate 

variables influences SWE as described in section 4.1.2. 

 

 

Figure 3: Comparing study area average (a) annual cumulative precipitation and (b) SWE 

between the different datasets and downscaling methods for the years both datasets had 

available. 

 

At the point scale, the differences between climate datasets and downscaling 

methods can show spatial variability (Figure 4). For instance, between WY 1986 and 

2010 WRF cumulative precipitation is 9.5% higher than NLDAS at the Franklin Basin 

SNOTEL site (FB) and 6.3% higher at the Tony Grove Lake SNOTEL site (TGL). 

Orographic adjustment of NLDAS data lowers precipitation at both sites by 4% and 
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3.9%, respectively, while for WRF data orographic adjustment lowers precipitation by 

6.9% at FB and increases precipitation by 6.6% at TGL. The spatial variability of 

precipitation difference results in varied effects on snow accumulation and melt in 

different areas within the study area. This is, however, dependent on the spatial 

variability within the dataset and the direction of elevation difference between the 

datasets for each grid. 

Figure 4 also compared the precipitation from the different datasets and 

downscaling methods to measured precipitation at the SNOTEL sites. It is not clear 

which dataset is an overall better match to the measured data. Figure 5 compares 

simulated and measured yearly precipitation for at FB and TGL, the two stations with 

data covering the entire study period. Table 2 further gives the NSE values for the 

simulated yearly precipitation values for these two sites.  

Looking as the NSE values, no single dataset or downscaling method is the best 

match for both locations. At FB, orographically adjusted WRF has the best fit, yet at TGL 

it has the worst fit while raw WRF has the best fit. Raw WRF precipitation appears to 

have overall good fit for the two combined areas. However, given the complexities 

induced by comparing the readings at a SNOTEL clearing to a 100 m by 100 m grid as 

well as precipitation measurement error, it is difficult to determine if any dataset is closer 

to actual conditions throughout the study area.  

The different climate datasets and downscaling methods also have differing 

values of temperature, incoming radiation, wind speed, and humidity, resulting in 

complex effects on the simulated snow. Table 3 shows the WRF dataset has lower 

temperature, lower incoming longwave radiation, higher incoming shortwave radiation,  
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Figure 4: Comparison of annual cumulative precipitation from different datasets and 

downscaling methods. Measured precipitation at SNOTEL plotted when available 

 

higher wind speeds, and higher relative humidity on average than NLDAS dataset. 

Although the higher incoming shortwave radiation would lower SWE, the lower 

incoming longwave radiation, lower temperatures, and higher precipitation all would 
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increase SWE levels. Wind speed, relative humidity, and their interactions with other 

climate variables could further affect SWE accumulation and snowmelt rate. 

 

Figure 5: Relationship between measured precipitation at two SNOTEL sites and forcing 

data precipitation at area of SNOTEL site. 

 

 

Table 2: NSE values between forcing data precipitation from different datasets and 

downscaling methods and measured precipitation at two SNOTEL sites in study area. 

 Raw WRF 
Orographic 

WRF 
Raw NLDAS 

Orographic 

NLDAS 

Franklin Basin 

(FB) 

0.75 0.83 0.77 0.66 

Tony Grove 

Lake (TGL) 

0.70 0.51 0.56 0.52 
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Table 3: Spatial and annual average of climate variables from different datasets and 

downscaling methods. 

 WRF raw WRF 

orographic 

NLDAS raw NLDAS 

orographic 

Annual 

Precipitation (m) 

0.93 0.96 0.80 0.83 

Temperature (﮿C) 2.4 2.2 5.0 4.9 

Incoming SW 

radiation (kg/m2/hr) 

856 858 727 729 

Incoming LW 

radiation (kg/m2/hr) 

880 875 912 909 

Wind Speed (m/s) 3.7 3.7 2.4 2.4 

Relative Humidity 

(%) 

66 66 55 57 

 

 

4.1.2  Temporal Patterns of SWE simulated from different datasets and downscaling 

methods 

Basin-average UEB simulated SWE arising from different climate datasets and 

downscaling techniques differ. The WRF dataset leads to higher SWE than the NLDAS 

dataset and orographic adjustment results in higher SWE than raw climate data for both 

datasets (Fig. 3b). The average difference in peak SWE between WRF and NLDAS 

forced runs is 90%, and can vary between 19% in 1998 to 170% in 2003. Interestingly, 

even in years where the NLDAS dataset had higher precipitation (e.g., 1998) WRF still 

simulated higher levels of SWE showing other climate variables beyond precipitation are 

affecting SWE levels. Orographic adjustment of WRF data results in SWE levels 9% 

higher than raw, with interannual variation ranging from 7% in 1989 to 15% in 2001, 
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while orographic adjustment of NLDAS data results in SWE levels rising an average of 

12%, with interannual variation ranging from 9% in 1986 to 19% in 2010.  

The differences in basin-average precipitation explains some, but not all, of the 

differences in simulated SWE resulting from the different datasets. As shown in Section 

4.1.1, the basin-average precipitation levels between WRF dataset and NLDAS dataset 

differ by 15%, yet the resulting peak SWE simulations differ by 90%.  In addition, 

orographic adjustment raises basin-average precipitation by 3.4%, yet raises peak SWE 

by 9% for WRF and 12% for NLDAS. This suggests the climate forcing variables are 

interactively affecting SWE.  

The differences in temperature and incoming longwave radiation among the 

different datasets and downscaling methods might explain much of the remaining 

differences in basin-average SWE levels. Lower temperatures would result in more of the 

precipitation simulated as snow, increasing SWE, while lower incoming longwave 

radiation and temperature would delay snow melt and further increase SWE levels. Since 

WRF generally has higher precipitation, lower temperatures, and lower incoming 

longwave radiation than the NLDAS dataset, these climate forcings can explain the 

higher SWE simulation results. Likewise, orographic adjustment increases basin average 

precipitation and lowers basin average temperature and incoming longwave radiation, 

leading to higher simulated SWE.  

WRF data does have higher shortwave radiation, which would reduce SWE. 

However, the high albedo of snow results in much of this radiation being reflected back 

into the atmosphere. Longwave radiation is absorbed at high rates by snow with snow’s 
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high emissivity. Higher wind and lower RH would decrease SWE, but these factors are 

likely to have a smaller effect than the other weather variables (Mizukami et al. 2014). 

Simulated SWE resulting from different climate forcing datasets and downscaling 

methods differs from measured SWE at SNOTEL sites, but the magnitude and direction 

of the difference varies among sites. As seen in Figure 6, WRF climate variables 

generally result in higher SWE at each SNOTEL site than was measured, while NLDAS 

climate variables generally results in lower SWE than measured. This occurs even when 

NLDAS had higher precipitation than was measured such as seen in Water Year 1998 at 

TGL (Figure 4). Meanwhile, orographic adjustment can both raise and lower SWE from 

raw input simulations based on whether the NLDAS and WRF datasets have a higher 

elevation than the actual elevation at the site, such as at Tony Grove RS, or a lower 

elevation than the actual elevation, such as at USU Doc Daniels. Also, orographic 

adjustment leads to large differences at some sites (Tony Grove RS for both WRF and 

NLDAS datasets), while almost indistinguishable difference (FB for the NLDAS dataset). 

 The climate dataset and downscaling method that yields SWE that best matches 

the measurements varies site to site (Table 4). Looking at the two sites with the longest 

recorded data at FB raw NLDAS has the best fit with a NSE value of 0.88, while at TGL 

WRF raw data result in the best fit to measured data with a NSE value of 0.94, no one 

dataset or downscaling method appears to be the best for all SNOTEL sites. The NSE 

values for change of SWE (Δ SWE) are low, suggesting neither dataset simulated the 

daily changes in snow accurately. All of these results support the suggestions of Daly 

(2006), that using multiple datasets from different sources are recommended to cancel out 

the biases in each individual dataset. Looking at Figures 4 and 5, the WRF data generally 
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over-predicts precipitation and SWE, while NLDAS data generally under-predicts both. 

Therefore, using both sets of data together can provide a more accurate picture of the 

actual weather and snow patterns in the basin. 

 

 
Figure 6: Comparison of SWE from different datasets and downscaling methods. 

Measured SWE at SNOTEL plotted when available 
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Table 4: NSE of UEB simulated SWE and change of SWE (Δ SWE) using different 

climate datasets and downscaling methods compared to SNOTEL change of SWE 

measurements during WY 1986 - 2010. 

SNOTEL 

Stations 
Years of 

data WY 

1986 - 

2010 

WRF Raw WRF 

Orographic 

NLDAS Raw NLDAS 

Orographic 

  SWE Δ 

SWE 

SWE Δ 

SWE 

SWE Δ 

SWE 

SWE Δ 

SWE 

Franklin 

Basin 

25 0.60 0.03  0.76 0.17 0.88 0.48 0.79 0.35 

Garden 

City 

Summit 

1 0.91 0.28 0.56 -0.26 -0.023 0.03 0.39 0.19 

Klondike 

Narrows 

1 0.10 -1.25 0.62 -0.51 0.82 0.58 0.51 0.31 

Temple 

Fork 

9 0.81 0.03 0.55 -0.22 0.69 0.36 0.87 0.44 

Tony 

Grove 

Lake 

25 0.94 0.34 0.85 0.14 0.80 0.42 0.81 0.43 

Tony 

Grove RS 

1 0.88 -0.81 0.98 0.02 0.99 0.15 0.96 0.32 

USU Doc 

Daniels 

3 0.88 0.41 0.70 0.13 -0.082 0.12 0.56 0.43 

 

The differences between modeled and measured SWE at SNOTEL sites are 

consistent with the differences between precipitation input data and measured 

precipitation at SNOTEL sites. The WRF dataset generally contained higher precipitation 

than recorded at SNOTEL sites and resulted in higher SWE simulations than measured at 

the sites. Likewise, the NLDAS dataset contained lower precipitation than SNOTEL 

measurements, and resulted in lower SWE simulations. In addition, sites or years which 

showed larger discrepancies between modeled and measured precipitation (e.g., TGL 

orographically adjusted WRF 1996) also showed larger differences between simulated 

and measured SWE. However, as with basin average, temperature and incoming 
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longwave radiation are also driving SWE, as seen when NLDAS has higher precipitation 

than measured (e.g., TGL in 1998) yet still simulated lower SWE than was measured.  

4.1.3  Spatial Patterns of snow coverage from different datasets and downscaling 

methods 

UEB simulated SWE arising from different climate datasets and downscaling 

techniques results in significant differences of spatial patterns of snow accumulation and 

melt throughout the study area. Table 5 shows the fractional snow-covered area (SCA) by 

month from the different input datasets and downscaling methods, averaged 1986-2010. 

For every month, WRF dataset results in higher SCA than NLDAS; orographic 

adjustment raises average SCA for both datasets. These differences are minor during 

peak snow cover (January and February) but become more significant during the 

snowmelt period (See also Figure 8b-e and 9b-e). In particular, the NLDAS dataset tend 

to result in the melt process occurring one month earlier on average. This is likely to have 

a significant effect on streamflow simulation.  

 

Table 5:  UEB simulated Fractional Snow Cover Area (%) by month with different 

climate datasets and downscaling methods (WY 1986-2010)  

 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

WRF raw 13 66 95 98 98 95 88 64 24 2.6 0.1 1.0 

WRF 

orographic 
15 69 95 98 98 96 89 67 29 4.9 0.4 1.1 

NLDAS 

raw 
6.1 48 86 95 94 86 60 25 4.5 0.1 0 0.2 

NLDAS 

orographic 
9.3 53 88 96 95 87 64 33 9.7 1.0 0 0.5 
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Simulated SWE resulting from different climate forcing datasets and downscaling 

methods also differs in fractional SCA compared to MODIS SCA (MOD10A1) (Hall and 

Riggs, 2016). Figure 7 compares SCA from the different datasets to MODIS SCA for 

WY 2001-2010. MODIS results in significantly lower SCA during the peak snow period 

(December through March). This can be partly explained by MODIS inability to detect 

snow under trees and other vegetation, particularly in complex terrain (Hall and Riggs, 

2007; Huang et al., 2011; Shamir and Georgakakos, 2006). Figure 8 suggests this 

problem is occurring here as MODIS results in a SCA value for every grid in the study 

area during winter, but at lower fractional values than is simulated.  

 

 

Figure 7: SCA by month from the different datasets and downscaling methods compared 

to the measured SCA from MOD10A1. Taken from WY 2001-2010. 

 

  The differences between simulated SWE and MOD10A1 SCA continue during 

the snow-melting periods. In May, the WRF raw input simulations result in 67% SCA, 

WRF orographically adjusted results in 70% SCA, NLDAS raw results in 24% SCA, 
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NLDAS orographically adjusted results in 33% SCA, and MODIS only has 13% SCA 

(Figure 7). Figure 9 shows the SCA difference between simulation results and 

MOD10A1 is from actual differing areas with no remaining snow rather than lower SCA 

on the same areas. Thus, WRF climate simulations still show widespread snow cover, 

NLDAS climate simulations results in less simulated snow coverage, while MODIS data 

shows even smaller areas of snow coverage.  

 

 
Figure 8: Spatially distributed Fractional Snow-Covered Area in the study area on 

January 29, 2007 from (a) MOD10A1 and UEB simulation with (b) WRF raw, (c) 

orographically adjusted WRF, (d) NLDAS raw, and (e) orographically adjusted NLDAS. 

 

 Because MOD10A1 SCA may suffer from degraded accuracy due to the presence 

of vegetation and complex terrain in the study area, we examined the monthly change of 

SCA in addition to the absolute values. Figure 7 shows that from April to May both 

MOD10A1 and NLDAS input simulations show a steep decline in SCA, while WRF 

input simulations also show an increased decline rate, but less steep than for the other 
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datasets. From May to June, only WRF input simulations show a steep decline in SCA, 

while both MOD10A1 and NLDAS input simulations have much less decrease in SCA. 

These results suggest that overall, UEB simulation driven by WRF meteorological 

variables seems to capture the early phase of the melt period (March to April) better than 

simulation driven by NLDAS, while the latter better captures the late phase of melt (April 

to May.) 

 

 
Figure 9: Spatially distributed Fractional Snow-Covered Area in the study area on May 

26, 2006 from (a) MOD10A1 and UEB simulation with (b) WRF raw dataset, (c) 

orographically adjusted WRF dataset, (d) NLDAS raw dataset, and (e) orographically 

adjusted NLDAS dataset. 

 

4.2  Streamflow Response to Spatially and Temporally Varying Snowmelt 

Combined snowmelt and rainfall simulated using the different climate datasets 

and downscaling methods were correlated to Logan River streamflow using the methods 

described in 3.5. The results showed highest correlation coefficients at grids at higher 



                                                                                                                              36 

 

elevations, with a max correlation slightly above 0.72 for all UEB simulations (Figure 

10). The low elevation area near the watershed outlet had lower coefficients, often below 

0.5. The high correlation coefficients of the higher elevations generally occurred at small 

lag times (0 to 5 days), while the grid cells with lower coefficients generally also had 

longer lag times corresponding to their max coefficients (30 to 60 days) (Figure 11). 

These lag times of max coefficient for each grid are comparable in length to the time 

between snowmelt at the same grid and Logan River streamflow.  

To further understand the response time of streamflow to snowmelt, Table 6 

summarizes the time between the centroid of snowmelt/rainfall between April and 

August at six selected grids and the centroid of streamflow in the same period. The 

location of the six grids were marked with black dots in Figures 10 and 11; the points are 

at different elevations and scattered over the study area. The average time between  

centroids and the lag times from the correlation analysis for each dataset and downscaling  

 

 
Figure 10: Maximum correlation coefficient in study area between lagged simulated 

snowmelt and rainfall inputs and measured streamflow time for (a) raw WRF, (b) 

orographically adjusted WRF, (c) raw NLDAS, and (d) orographically adjusted NLDAS. 

Numbered points refer to grids further analyzed in Figure 12 and Table 5. 
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method at each point are generally similar (Table 6). A negative time indicates the 

centroid of snowmelt and rainfall occurs after the centroid of streamflow, however the 

correlation analysis did not test for lag times less than zero. 

 

 
Figure 11: Time lag in days between simulated snowmelt and rainfall and measured 

streamflow corresponding to maximum correlation coefficients that were above 0.5 in the 

study area for (a) raw WRF, (b) orographically adjusted WRF, (c) raw NLDAS, and (d) 

orographically adjusted NLDAS. Numbered points refer to grids further analyzed in 

Figure 12 and Table 5. 

 

Table 6: The average time between centroid of snowmelt/rainfall and centroid of 

streamflow during peak flow times (Apr. – Aug.) and the lag time of maximum 

correlation coefficient, from 4 UEB simulations at selected points (locations shown in 

Figures 10 and 11). 

Point 

Number 

from 

Figures 10 

and 11 

Elevation 

(m) 

WRF raw WRF 

orographic 

NLDAS Raw NLDAS 

orographic 

Avg. 

time 

(days) 

Lag 

Time 

(days) 

Avg. 

time 

(days) 

Lag 

Time 

(days) 

Avg. 

time 

(days) 

Lag 

Time 

(days) 

Avg. 

time 

(days) 

Lag 

Time 

(days) 

1 2820 -3.6 0 -17 0 11 3 -1.1 0 

2 2875 21 12 10 0 41 60 36 34 

3 2036 18 12 24 20 26 26 34 40 

4 2999 4.1 1 -15 0 23 22 6.3 0 

5 1993 29 24 35 30 40 60 39 60 

6 1542 4.3 1 5.8 1 19 20 24 22 
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Correlation coefficients arising from raw data and orographically adjusted data 

result in slightly different results. Although max correlation coefficients and overall 

patterns were similar, there were some distinct differences at locations of high 

coefficients. The raw data resulted in high coefficients appearing to occur in regions with 

similar coordinates regardless of elevation in the study area. In the orographically 

adjusted input results, the high coefficients occur at the high elevations and the low max 

coefficients at low elevations.  

This correlation analysis was used to an attempt to identify sink holes or other 

areas in the study area where meltwater quickly recharges the karst aquifer and 

discharges to the river. To do this, grid cells with high correlation (<0.7) and lag times 

between 3 to 10 days were identified (Figure 12). This lag time range was selected as 

being typical flow times for water in karst conduits (Spangler, 2011). While many of the 

identified locations are aligned with outcrop areas of karstic geologic formations, they 

also coincide with higher elevation and north-facing slopes where snowpack is deep and 

snowmelt rates during high flow periods are large. In addition, snowpack may be stored 

in sinkholes and melt later than simulated by UEB, contributing to summer baseflow. 

Such delayed effects confounds the correlation analyses. Therefore, and no clear 

conclusions were made. 

Figure 13a plots the yearly simulated onset of snowmelt (determined by the first 5 

consecutive days in the water year with basin average snowmelt and rainfall over 2 mm) 

with the same water year’s simulated centroid of snowmelt and rainfall. This figure 

confirms WRF dataset generally results in later melt (both onset and centroid) than the 

NLDAS dataset, as was suggested by Table 5. Interestingly, orographic adjustment 
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generally does not affect the onset of melt timing, but does result in a longer melting 

period evidenced by a later centroid of melt time, as seen by blue dots generally being 

directly above red dots in Figure 14a. This lengthened melt period could result from the 

higher peak SWE of orographic adjustment. However, the difference between 

orographically adjusted and raw climate variables appears to be smaller than the 

difference between the two datasets. 

 

 
Figure 12: Locations where snowmelt and rainfall maximum correlation coefficients with 

Streamflow above 0.7 and lag times between 3 and 10 days-  using (a) WRF raw data, (b) 

orographically adjusted WRF data, (c) NLDAS raw data, and (d) orographically adjusted 

NLDAS data. 

 

Despite the differences in simulated snow accumulation and melt arising from the 

different climate datasets, the overall patterns across the different years are the same. For 

instance, all the datasets show 1986 and 1997 as years with higher precipitation and SWE 

and 1987 and 1994 as years with lower precipitation and SWE (Figure 3). For melt 

patterns, Figure 14a highlights two years corresponding to simulated early (2001) and 

late (2008) melt, respectively. Figure 13b shows measured streamflow for those two 
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years, confirming spring runoff occurred earlier in 2001 than in 2008. Therefore, major 

climate patterns between years (e.g., hot year, wet years, and early melt) are adequately 

captured by all of the datasets and downscaling methods, which should aid in accurate 

streamflow simulations.  

 

  

 
Figure 13: (a) Onset and centroid of the melting periods simulated using different 

datasets and downscaling methods. (b) Measured streamflow for an early melt year 

(2001) and a later melt year (2008). 
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Peak SWE is another simulated variable that can be compared to measured 

streamflow. Figure 14 shows the relationship between simulated peak SWE from the 

different datasets and downscaled methods to the annual average, peak, and average 

summer streamflows. These plots also show the relationship obtained by comparing peak 

SWE measured at SNOTEL sited (FB and TGL) to the measured streamflow. These plots 

show SWE simulated from WRF datasets results in regression slopes much closer to the 

SNOTEL data than the SWE simulated from NLDAS datasets. This result is consistent 

with the finding that the peak SWE from WRF simulations are closer to the measured 

SWE levels at these two SNOTEL sites (Table 2). The lower SWE in NLDAS 

simulations results in a flatter slope. However, the SWE simulated from NLDAS datasets 

does have a higher correlation to the streamflows than the SWE simulated from WRF. 

This suggests, despite NLDAS simulating lower SWE than measured, it is better at  

simulating the interannual variability. These mixed results again make it difficult to 

determine a single dataset resulting in the most accurate SWE simulations. 

Figure 15 compares the snowmelt and rainfall in one year to the streamflow of 

Logan River at the grids marked in Figures 10 and 11. All of the higher elevation cells (a, 

b and d) show orographically adjusted data results in simulated snowmelt continuing later 

than was simulated from the raw datasets. On the contrary, for lower elevations (c, e, and 

f) the differences between orographically adjusted and raw datasets appears smaller. The 

smaller summertime peaks are rain events and not snow melt. Therefore, the lengthened 

melt in the study area with orographic adjustment seen in Figure 13a is primarily an 

effect in higher elevations. This is reasonable because high elevations are less likely to be 

captured by the coarse resolution of WRF and NLDAS due to smoothing. Therefore, 
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orographic adjustment for these areas is more likely to adjust for higher elevations, which 

increases precipitation and decreases temperature and longwave radiation.  

 

 

Figure 14: Relationship between peak SWE from different datasets and downscaling 

methods to annual average, peak, and average summer Logan River streamflow. Linear 

regression lines, slope, and correlation coefficients are also shown. SNOTEL regression 

line represents linear regression between peak SWE at combined FB and TGL SNOTEL 

sites to annual average, peak and average summer Logan River streamflow. 

 

4.3 Effects of Choice of Climate Datasets and Downscaling Techniques on Simulated 

Streamflow 

Simulated streamflow during the training and testing periods from the deep learning karst 

model are shown in Figure 16. Overall, the simulations appear to match closely. No 

single dataset or downscaling method shows a clear bias or high variance from the 

measured streamflow values. The differences between the measured and simulated 
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streamflow values from all of the datasets are less than what was seen between simulated 

and measured SWE at SNOTEL sites. 

 

 

Figure 15: Combined snowmelt and rainfall at six selected grids and measured 

streamflow during the high flow period (Mar-Aug) in 2000. 
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Figure 16: Simulated streamflow from deep learning model using combined snowmelt 

and rainfall results from UEB model runs with different datasets and downscaling 

methods. The training and test periods are separated with the vertical line. 

 

Table 7 shows simulated streamflow performance by the deep learning model 

during both training and testing periods. First, the training period always has better values 

than the testing period. This is expected since the model was presented with streamflow 

observations and the weights of the deep network were adjusted to match the 

observations.  Second, in general, the WRF dataset results in better performance than the 

NLDAS dataset. Third, orographic adjustment to climate variables results in higher NSE 

and lower MSE during the testing period for both WRF and NLDAS datasets. However, 

this improvement in values is greater for the WRF dataset than the NLDAS dataset.  
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Table 7: Nash-Sutcliffe efficiency (NSE), mean square error (MSE), and percent bias 

(PBIAS) of deep learning model simulated streamflow during training (1986-2002) and 

testing (2003-2010) periods 

Climate 

Data 

Downscaling 

Method 

NSE MSE 

((mm/day)2) 

PBIAS (%) 

Training Testing Training Testing Training Testing 

WRF Raw 0.91 0.78 0.082 0.20 0.84 4.9 

Orographically 

Adjusted 

0.90 0.86 0.089 0.13 0.54 -6.5 

NLDAS Raw 0.87 0.79 0.13 0.19 -0.15 7.9 

Orographically 

Adjusted 

0.88 0.80 0.11 0.18 0.29 8.6 

 

Table 8 shows the same statistics as in Table 7, but calculated for high flow only. 

Similarly as in Table 7 the WRF dataset leads to higher NSE and lower MSE. In addition, 

the WRF-forced model runs also yielded less biased streamflow for high flow periods. 

This is likely because the WRF dataset provides climate variables at a finer resolution. 

Noteworthy, all simulations yield positive PBIAS, suggesting the deep learning model 

underestimates flows especially during high flow periods. NLDAS-forced models are 

noticeably higher in PBIAS, possibly suggesting that the model has trouble with the 

lower snowmelt and rainfall values generated with NLDAS data even after orographic 

adjustment. Another possibility is the trend observed in Section 4.1.1 where the WRF and 

NLDAS datasets have a larger difference in precipitation in later years. This is likely the 

result of one dataset (possibly the NLDAS) not having consistent precipitation values. 

Therefore, the training and testing period would have differing patterns between 

snowmelt/rainfall and streamflow, thus leading to bias in simulated streamflow during the 

testing period. 
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Table 8: Nash-Sutcliffe efficiency (NSE), mean square error (MSE), and percent bias 

(PBIAS) of deep learning model simulated high flow (exceeding median flow) 

streamflow during training (1986-2002) and testing (2003-2010) periods 

Climate 

Data 

Downscaling 

Method 

NSE MSE 

((mm/day)2) 

PBIAS (%) 

Training Testing Training Testing Training Testing 

WRF Raw 0.88 0.67 0.079 0.20 2.1 6.5 

Orographically 

Adjusted 

0.87 0.80 0.086 0.12 2.5 0.21 

NLDAS Raw 0.82 0.68 0.12 0.19 2.0 8.4 

Orographically 

Adjusted 

0.84 0.69 0.11 0.18 2.6 9.1 

 

Both Tables 7 and 8 show NSE and MSE values for the testing period are very 

similar between the raw WRF and NLDAS datasets. Orographic adjustment of the 

NLDAS dataset yields similar values, however, orographic adjustment of the WRF 

dataset yields noticeably improved values. The reason for this is not completely clear. In 

Section 4.1.2, the orographically adjusted WRF simulations did not always result in the 

closest match to SNOTEL SWE values, but it is the only dataset that led to NSE values 

all greater than 0.5 (Table 4). Section 4.2 showed the WRF dataset and orographic 

adjustment resulting in later melting or a lengthened melt period. Another possible reason 

for better streamflow simulations is the orographically adjusted WRF dataset has the 

latest and longest melt period, which is easier for the deep learning model to simulate 

later streamflow accurately.  

Figures 17 and 18 shows streamflow and spatially averaged UEB simulated 

snowmelt and rainfall from three years from the training and testing periods, respectively. 
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As expected from results seen in Section 4.4, the WRF dataset leads to later snowmelt 

than the NLDAS dataset.  

Figures 17a, 17c, 18a, and 18c show two or three peaks in streamflow (bi-modal 

and tri-modal patterns) within a year, which is common in the study area. These figures 

show the orographically adjusted datasets are sometimes able to capture later peaks better  

 

 

Figure 17: Measured and simulated streamflow compared to combined snowmelt and 

rainfall from the different datasets and downscaling methods for three years from the 

training period: (a) WY 1989 (an average year), (b) WY 1990 (a dry year), and (c) WY 

1997 (a wet year). 
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Figure 18: Measured and simulated streamflow compared to combined snowmelt and 

rainfall from the different datasets and downscaling methods for three years from the 

testing period (a) WY 2008 (an average year), (b) WY 2003 (a dry year), and (c) WY 

2006 (a wet year). 

 

than the raw datasets. For example, as shown in Figure 18a, the first two streamflow 

peaks are captured by simulations driven by the raw datasets, with the raw WRF dataset 

simulating the closest match to the second peak, but orographically adjusted data results 

in a higher distinct third peak. This occurs despite the snowmelt and rainfall having only 

small differences between raw and orographically adjusted data. Figure 16f shows a 

similar result. The results of Section 4.2 can possibly explain this ability to capture a later 
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peak due to snowmelt at higher elevations. Orographically adjusted data results in the 

same starting timing of snowmelt, but a longer melt period. Figure 15 in Section 4.2 

further showed this lengthened melt occurred primarily at higher elevations, which melt 

last. Therefore, orographically adjusted data would result in more simulated snowmelt 

when these later peaks occur. 

UEB simulations with the WRF dataset tend to have peak snowmelt very close to 

the time of peak streamflow, while NLDAS-forced simulations yield earlier peak 

snowmelt, matching the lag time values from Section 4.2. Since NLDAS-forced UEB 

consistently simulates peak snowmelt earlier than WRF-forced UEB, the deep learning 

model, is able to learn the different streamflow responses to snowmelt from the training 

period and yield satisfactory performance during the testing period. 

Overall, the results suggest the WRF orographic dataset produces more accurate 

streamflow than NLDAS or WRF raw data. Given the NLDAS dataset has a resolution of 

about 14 km, whereas the WRF dataset has a 4 km resolution and orographically 

adjustment downscaled to 100 m, these results suggest higher resolution climate data can 

improve streamflow predictions as was seen in other studies (Mendoza et al., 2016; 

Schlögl et al., 2016; Winstral et al., 2014). However, the added benefit from high 

resolution only justifies the extra time and work to downscale climate variables if the 

base dataset has consistent data patterns. Looking at Table 7, orographic adjustment of 

NLDAS data improves the NSE value for the testing period by only 0.01. However, 

orographic adjustment of WRF data improved the NSE by 0.08 and results in the best fit 

to the data. Overall, the deep learning model is able to compensate for many deficiencies 

in climate data resolution, provided the model is given sufficient data in the training 
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period to learn the patterns and responses of the specific dataset, but the model is best 

able to simulate streamflow when the dataset has consistent patterns between the training 

and testing period.  
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CHAPTER V 

CONCLUSIONS 

 

This project is focused on determining how the different climate datasets and 

downscaling methods affect snow and streamflow modeling of the canyon portion of 

Logan River, a snow-dominated karst watershed. Climate data from two datasets (WRF 

and NLDAS) as raw and orographically adjusted, respectively, were input to a UEB snow 

model to simulate snow accumulation and melt at a fine resolution (100 m). The results 

from the snow model were fed into a deep learning karst model to simulate streamflow.  

 In order to accomplish our first objective, we compared the meteorological 

forcings between the datasets, compared the resulting SWE levels temporally and 

spatially, and compared these simulated SWE levels to measured SWE in the study area. 

The datasets and downscaling methods led to different values of meteorological forcings. 

In particular, the WRF dataset has higher precipitation, lower temperature, and lower 

incoming longwave radiation than the NLDAS dataset. Overall, orographic adjustment 

raised average precipitation and lowered average temperature and longwave radiation for 

both datasets, but to a lesser degree than between the two datasets. Comparing the 

precipitation values to measured data at SNOTEL sites leads to mixed results. Generally 

WRF data has precipitation values higher than was measured, while NLDAS 

precipitation values were lower than measured. Therefore, neither dataset matched the 

SNOTEL measurements substantially better than the other. 

The different datasets and downscaling methods resulted in substantial differences 

in simulated SWE and timing and of snowmelt. The WRF dataset resulted in higher SWE 
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levels across all of the years simulated even in years when NLDAS data had higher 

accumulative precipitation. This suggested multiple climate variables interacted to 

influence SWE. In particular, the lower temperature and incoming longwave radiation of 

WRF dataset likely resulted in higher SWE. The WRF dataset resulted in snowmelt 

occurring one month later than the NLDAS dataset. This is likely the result of higher 

SWE and lower incoming longwave radiation. Orographic adjustment of data led to 

increased peak SWE for both datasets, but to a lesser degree than was observed between 

the two datasets. In addition, orographic adjustment increased the melting period length, 

resulting in more snowmelt occurring at a later date than was seen with raw datasets. This 

is likely because orographic adjustment increased precipitation and decreased incoming 

longwave radiation and temperature at higher elevation. 

Comparing the simulated SWE to SNOTEL measurements revealed similar 

patterns as observed when comparing the precipitation values. Overall, the WRF dataset 

resulted in SWE values higher than measured, while the NLDAS dataset resulted in SWE 

values lower than measured. Neither dataset had the best match to measured data at every 

SNOTEL site. However, comparing simulated SCA to a remote sensing product 

(MOD10A1) showed SCA simulated from the NLDAS dataset resulted in a closer match. 

Compared to MOD10A1, the WRF dataset resulted in similar onset of melt but the higher 

SWE levels result in snowmelt taking one month longer to complete. However, both 

SNOTEL data and MOD10A1 have known biases, and it is difficult to determine if any 

dataset results in simulated values closer to actual snow levels. 

In order to accomplish our second objective, we performed correlation analysis 

between simulated snowmelt and streamflow. We also compared some of these 
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correlations to correlations between measured values in the study area, and we observed 

how and where different datasets and downscaling methods affected the snowmelt 

simulations. Although the complexities of a large area, mountainous terrain, and geologic 

heterogeneity made correlation analysis inconclusive, multiple patterns between 

snowmelt rate and the streamflow were discovered. High and low flow years were found 

consistent with years with high and low precipitation, respectively, suggesting the 

interannual variability was correctly captured by all of the datasets. However, the higher 

peak SWE levels generated with WRF data better matched the patterns between peak 

SWE and streamflow seen in SNOTEL data. Interestingly, although NLDAS generated 

relationships between peak SWE and streamflow differed from the patterns observed at 

SNOTEL stations, they showed comparable levels of correlation. Therefore, as was seen 

in the simulated snow, neither dataset led to clearly higher correlation between 

streamflow and simulated snowmelt rates. 

Looking at the spatially varying snowmelt rates, orographic adjustment had a 

greater effect on snowmelt timing at areas of high elevation. This showed that higher 

elevations were more likely to have differences between dataset elevation and actual 

elevation, resulting in more pronounced orographic affects. Therefore the snowmelt 

differences between raw and orographically adjusted data occur mostly at high 

elevations, resulting in different spatial patterns between the two downscaling method 

weather data. 

In order to accomplish our third objective, we used the snow model outputs to run 

the deep learning karst model and analyzed the deep learning model’s results. Although 

the different climate datasets and downscaling methods resulting in highly different 
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snowmelt rate, when these results are fed into a deep learning karst model, the model is 

able to simulate streamflow with acceptable accuracy for all cases. Because the overall 

patterns of simulated snowmelt rate of each UEB runs are overall consistent through the 

training and testing periods, the deep learning model is able to learn the response for a 

specific dataset and accurately simulate streamflow for this dataset. However, for all 

datasets except for the orographically adjusted WRF, an overall positive bias is found 

during testing period mainly due to underestimating streamflow during high flow periods.  

The orographically adjusted WRF dataset results in the most accurate streamflow 

simulations. This is likely because the WRF dataset was generated by a high resolution 

regional climate model (4-km) and orographic adjustment led to higher SWE levels at 

high elevations and/or longer melt periods that more accurately represent actual 

conditions. However, for the NLDAS dataset the orographic adjustment only resulted in 

very small improvements in streamflow simulation accuracy, which may not justify the 

time and effort to downscale climate variables. Using longer periods of data to better 

constrain the deep learning model may be more useful in improving streamflow 

simulation accuracy. 

The methods used in this project can be applied to other watersheds, both karst 

and non-karst, to determine whether the results obtained are specific to the Logan River 

watershed. In addition, the methods could be applied to sub-watersheds which have 

measured streamflow or spring discharge. A smaller test area would result in individual 

cells accounting for a larger proportion of the flow, which is advantageous for the 

correlation analyses. 
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Additionally, sensitivity analyses could be performed on the trained deep learning 

model. For example, the model can be run repeatedly with modified snowmelt inputs, 

each time with one cell masked, to determine how sensitive the streamflow is to each 

cell. A map could then be generated of the watershed showing which areas have the 

largest effect on streamflow. Similarly, a temporal sensitivity analysis could be 

performed to identify the time period of snowmelt and ET that has the greatest effect on 

streamflow. 
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CHAPTER VI 

ENGINEERING SIGNIFICANCE 

 

 This study compared simulated precipitation and SWE from a dynamically 

downscaled dataset and an interpolated reanalysis dataset to measured values in the study 

area. Results show neither dataset capture field conditions exactly, however the 

dynamically downscaled data generally had higher precipitation and SWE than was 

measured, while the reanalysis dataset generally had lower precipitation and SWE. 

Researchers need to factor these biases when utilizing forcing datasets. However, 

comparing the simulated snow areas to satellite data, all simulations resulted in higher 

winter SCA than was detected. These results confirmed a shortcoming in satellite data, 

satellite SCA fails to accurately measure peak SCA in complex, highly vegetated 

landscape. Researchers need to be aware of this shortcoming when using the data to 

validate results.  

The results from this study confirm that orographic adjustment of climate 

variables down to a fine scale can help improve streamflow simulations; however, the 

improvement gained from orographic adjustment depends on the raw dataset. The lack of 

improvement to results from orographically adjusted NLDAS data show the importance 

of ensuring the base dataset does not contain temporal trends of bias. Further, results 

suggest that when utilizing a deep learning model, ensuring consistency in the data is 

more critical than adjusting the data to a fine scale. This finding can help future 

researchers determine where to focus their time for best results. The modeling method 

with a physically based snow model feeding a data-driven streamflow model utilized in 
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this paper provides a potentially useful means of simulating streamflow and providing 

information to support water resources management for areas with snow dominated karst 

watersheds.  

 

 

 

  



                                                                                                                              58 

 

REFERENCES 

Adam, J.C., Hamlet, A.F., and Lettenmaier, D.P. (2009). Implications of global climate 

change for snowmelt hydrology in the twenty-first century. Hydrological Processes 23, 

962–972. 

Archer, C.L., and Jacobson, M.Z. (2003). Spatial and temporal distributions of U.S. 

winds and wind power at 80 m derived from measurements: FEASIBILITY OF U.S. 

WIND POWER. Journal of Geophysical Research: Atmospheres 108, n/a-n/a. 

Clark, M.P., Hendrikx, J., Slater, A.G., Kavetski, D., Anderson, B., Cullen, N.J., Kerr, T., 

Örn Hreinsson, E., and Woods, R.A. (2011). Representing spatial variability of snow 

water equivalent in hydrologic and land-surface models: A review: REPRESENTING 

SPATIAL VARIABILITY OF SWE IN MODELS. Water Resources Research 47. 

Coulston, J.W., Moisen, G.G., Wilson, B.T., Finco, M.V., Cohen, W.B., and Brewer, 

C.K. (2012). Modeling Percent Tree Canopy Cover: A Pilot Study. 

PHOTOGRAMMETRIC ENGINEERING 78, 13. 

Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. 

International Journal of Climatology 26, 707–721. 

Daly, C., Neilson, R.P., and Phillips, D.L. (1994). A Statistical-Topographic Model for 

Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied 

Meteorology 33, 140–158. 

Dover, J.H. (2007). Geologic map of the Logan 30’ x 60’ quadrangle, Cache and Rich 

Counties, Utah, and Lincoln and Uinta Counties, Wyoming. 

Fiddes, J., and Gruber, S. (2014). TopoSCALE v.1.0: downscaling gridded climate data 

in complex terrain. Geoscientific Model Development 7, 387–405. 

Flerchinger, G.N., Cooley, K.R., and Ralston, D.R. (1992). Groundwater response to 

snowmelt in a mountainous watershed. Journal of Hydrology 133, 293–311. 

Hall, D.K., and Riggs, G.A. (2007). Accuracy assessment of the MODIS snow products. 

Hydrological Processes 21, 1534–1547. 

Hall, D.K., and Riggs, G.A. (2016). MODIS/Terra Snow Cover Daily L3 Global 500m 

SIN Grid (Boulder CO, USA: NASA Snow and Ice Data Center). 

Hamon, W.R. (1960). ESTIMATING POTENTIAL EVAPOTRANSPIRATION. 

Massachusetts Institute of Technology. 



                                                                                                                              59 

 

Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., and Weiler, M. (2014). Karst 

water resources in a changing world: Review of hydrological modeling approaches: 

KARST WATER RESOURCES PREDICTION. Reviews of Geophysics 52, 218–242. 

Hegdahl, T.J., Engeland, K., Steinsland, I., and Tallaksen, L.M. (2019). Streamflow 

forecast sensitivity to air temperature forecast calibration for 139 Norwegian catchments. 

Hydrology and Earth System Sciences Discussions 1–28. 

Huang, X., Liang, T., Zhang, X., and Guo, Z. (2011). Validation of MODIS snow cover 

products using Landsat and ground measurements during the 2001–2005 snow seasons 

over northern Xinjiang, China. International Journal of Remote Sensing 32, 133–152. 

Hungerford, R.D., Nemani, R.R., Running, S.W., and Coughlan, J.C. (1989). MTCLIM: 

a mountain microclimate simulation model (Ogden, UT: U.S. Department of Agriculture, 

Forest Service, Intermountain Forest and Range Experiment Station). 

Khair, U., Fahmi, H., Hakim, S.A., and Rahim, R. (2017). Forecasting Error Calculation 

with Mean Absolute Deviation and Mean Absolute Percentage Error. Journal of Physics: 

Conference Series 930, 012002. 

Knoben, W.J.M., Freer, J.E., and Woods, R.A. (2019). Technical note: Inherent 

benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. 

Hydrology and Earth System Sciences 23, 4323–4331. 

Lewis, R.S., Link, P.K., Stanford, L.R., and Long, S.P. (2012). Geologic Map of Idaho. 

Liston, G.E., and Elder, K. (2006). A Meteorological Distribution System for High-

Resolution Terrestrial Modeling (MicroMet). Journal of Hydrometeorology 7, 217–234. 

Mahat, V., and Tarboton, D.G. (2012). Canopy radiation transmission for an energy 

balance snowmelt model: CANOPY RADIATION FOR SNOWMELT. Water Resources 

Research 48. 

Mendoza, P.A., Mizukami, N., Ikeda, K., Clark, M.P., Gutmann, E.D., Arnold, J.R., 

Brekke, L.D., and Rajagopalan, B. (2016). Effects of different regional climate model 

resolution and forcing scales on projected hydrologic changes. Journal of Hydrology 541, 

1003–1019. 

Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P.C., Ebisuzaki, W., Jović, 

D., Woollen, J., Rogers, E., Berbery, E.H., et al. (2006). North American Regional 

Reanalysis. Bulletin of the American Meteorological Society 87, 343–360. 

Mizukami, N., P. Clark, M., G. Slater, A., D. Brekke, L., M. Elsner, M., R. Arnold, J., 

and Gangopadhyay, S. (2014). Hydrologic Implications of Different Large-Scale 

Meteorological Model Forcing Datasets in Mountainous Regions. Journal of 

Hydrometeorology 15, 474–488. 



                                                                                                                              60 

 

Mizukami, N., Clark, M.P., Gutmann, E.D., Mendoza, P.A., Newman, A.J., Nijssen, B., 

Livneh, B., Hay, L.E., Arnold, J.R., and Brekke, L.D. (2016). Implications of the 

Methodological Choices for Hydrologic Portrayals of Climate Change over the 

Contiguous United States: Statistically Downscaled Forcing Data and Hydrologic 

Models. Journal of Hydrometeorology 17, 73–98. 

Monteith, J., and Unsworth, M. (2008). Principles of Environmental Physics (USA: 

Academic Press). 

Murphy, A. (1998). Skill Scores Based on the Mean Square Error and Their 

Relationships to the Correlation Coefficient. Monthly Weather Review 116, 8. 

Najafi, M.R., Moradkhani, H., and Piechota, T.C. (2012). Ensemble Streamflow 

Prediction: Climate signal weighting methods vs. Climate Forecast System Reanalysis. 

Journal of Hydrology 442–443, 105–116. 

Nelson, K.J., Connot, J., Peterson, B., and Martin, C. (2013). The Landfire Refresh 

Strategy: Updating the National Dataset. Fire Ecology 9, 80–101. 

Raleigh, M.S., Livneh, B., Lapo, K., and Lundquist, J.D. (2016). How Does Availability 

of Meteorological Forcing Data Impact Physically Based Snowpack Simulations? Journal 

of Hydrometeorology 17, 99–120. 

Ren, W.W., Yang, T., Huang, C.S., Xu, C.Y., and Shao, Q.X. (2018). Improving monthly 

streamflow prediction in alpine regions: integrating HBV model with Bayesian neural 

network. Stochastic Environmental Research and Risk Assessment 32, 3381–3396. 

Scalzitti, J., Strong, C., and Kochanski, A.K. (2016). A 26 year high-resolution 

dynamical downscaling over the Wasatch Mountains: Synoptic effects on winter 

precipitation performance: DYNAMICAL DOWNSCALING WASATCH. Journal of 

Geophysical Research: Atmospheres 121, 3224–3240. 

Schlögl, S., Marty, C., Bavay, M., and Lehning, M. (2016). Sensitivity of Alpine3D 

modeled snow cover to modifications in DEM resolution, station coverage and 

meteorological input quantities. Environmental Modelling & Software 83, 387–396. 

Sen Gupta, A., and Tarboton, D. (2012). Definitions of parameters and variables in 

UEBGrid snow and glacier melting model. 

Sen Gupta, A., and Tarboton, D.G. (2016). A tool for downscaling weather data from 

large-grid reanalysis products to finer spatial scales for distributed hydrological 

applications. Environmental Modelling & Software 84, 50–69. 

Shamir, E., and Georgakakos, K.P. (2006). Distributed snow accumulation and ablation 

modeling in the American River basin. Advances in Water Resources 29, 558–570. 



                                                                                                                              61 

 

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., and Woo, W. (2015). 

Convolutional LSTM Network: A Machine Learning Approach for Precipitation 

Nowcasting. 

Spangler, L. (2011). Karst hydrogeology of the Bear River Range in the vicinity of the 

Logan River, northern Utah. Geological Society of America Rocky Mountain – 

Cordilleran Section Meeting. 

Tarboton, D., and Sen Gupta, A. (2013). UEBGridInterfaceDesign.docx. 

Tarboton, D.G., and Luce, C.H. (1996). Utah Energy Balance Snow Accumulation and 

Melt Model (UEB). 64. 

Tarboton, D., Bloschl, G., Cooley, K., Kirnbauer, R., and Luce, C. (2000). Spatial Snow 

Cover Processes at Ku¨ htai and Reynolds Creek. In Spatial Patterns in Catchment 

Hydrology: Observations and Modelling, (Cambridge: Cambridge University Press), pp. 

158–186. 

Thornton, P.E., Thornton, M.M., Mayer, B. W., Wilhelmi, N., Wei, Y., Devarakonda, R., 

and Cook, R. (2012). Daymet: Daily surface weather on a 1 km grid for North America, 

1980-2008. Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center 

for Biogeochemical Dynamics (DAAC). 

U.S. Geological Survey (2017). 1/3rd arc-second Digital Elevation Models (DEMs). 

USGS National Map 3DEP Downloadable Data Collection: U.S. Geological Survey. 

USDA (2016). Snow Telemetry (SNOTEL) Data Collection Network. 

White, W.B. (2002). Karst hydrology: recent developments and open questions. 

Engineering Geology 65, 85–105. 

Winstral, A., Marks, D., and Gurney, R. (2014). Assessing the Sensitivities of a 

Distributed Snow Model to Forcing Data Resolution. Journal of Hydrometeorology 15, 

1366–1383. 

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., 

Wei, H., Meng, J., et al. (2012). Continental-scale water and energy flux analysis and 

validation for the North American Land Data Assimilation System project phase 2 

(NLDAS-2): 1. Intercomparison and application of model products: WATER AND 

ENERGY FLUX ANALYSIS. Journal of Geophysical Research: Atmospheres 117, n/a-

n/a. 

Xu, T., Qianqiu, L., Tyson, C., Zeng, R., and Neilson, B. (In Prep). Hybrid physically-

based and deep learning modeling of a snow dominated mountainous karst watershed. 

Yang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Bender, S.M., Case, A., Costello, 

C., Dewitz, J., Fry, J., et al. (2018). A new generation of the United States National Land 



                                                                                                                              62 

 

Cover Database: Requirements, research priorities, design, and implementation strategies. 

ISPRS Journal of Photogrammetry and Remote Sensing 146, 108–123. 

 


	Effects of Climate Forcing Uncertainty on High-Resolution Snow Modeling and Streamflow Prediction in a Mountainous Karst Watershed
	Recommended Citation

	tmp.1614024835.pdf.LKo3o

