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ABSTRACT

Development of a Two-Level Warping Algorithm and Its Application to Speech Signal 

Processing

by

Al-Waled H. Al-Dulaimi, Doctor of Philosophy

Utah State University, 2021

Major Professor: Todd K. Moon, Ph.D.
Department: Electrical and Computer Engineering

The objective of this dissertation is twofold. First, we develop a new two-level dynamic 

warping algorithm from regular dynamic time. An outer-level warping process, which does 

temporal warping alignment (dynamic time warping), invokes an inner-level warping process, 

which achieves spectral warping alignment (dynamic frequency warping).

The second direction of this dissertation is to apply this algorithm to two different 

kinds of speech processing applications. In one application, the two-level dynamic warping 

algorithm used in a computer-based tool to help train listeners to learn to imitate dysarthric 

speech. The tool could eventually be used to provide the learner with feedback regarding 

their speech imitation accuracy during training. The study reported in this work is to see 

whether the processing can distinguish between habitual and imitation attempts. Another 

application is to achieve voice transformation, for example, transforming from a male speaker 

to a female speaker. For this problem, the mapping function produced by inner warping 

(dynamic time warping) is used to move spectral information from a source speaker to a target 

speaker. This process of transformation involves only spectral magnitudes, and has been 

found to introduce significant deleterious signal processing artifacts with the transformed 

speech. It has been found that reconstruction of phase information significantly improves
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the quality of the transformed speech. Information obtained by dynamic frequency warping

is used to train an artificial neural network to produce spectral warping output information

based on spectral input data to assist in voice transformation. Objective evaluation measure

of spectral features and warping paths was applied to evaluate the quality of the transformed

speech.

(128 pages)
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PUBLIC ABSTRACT

Development of a Two-Level Warping Algorithm and Its Application to Speech Signal

Processing

Al-Waled H. Al-Dulaimi

In many different fields there are signals that need to be aligned or “warped” in order

to measure the similarity between them. When two time signals are compared, or when a

pattern is sought in a larger stream of data, it may be necessary to warp one of the signals

in a nonlinear way by compressing or stretching it to fit the other. Simple point-to-point

comparison may give inadequate results, because one part of the signal might be comparing

different relative parts of the other signal/pattern. Such cases need some sort of alignment to

do the comparison. Dynamic Time Warping (DTW ) is a powerful and widely used technique

of time series analysis which performs such nonlinear warping in temporal domain. The

work in this dissertation develops in two directions. The first direction is to extend the this

dynamic time warping to produce a two-level dynamic warping algorithm, with warping in

both temporal and spectral domains. While there have been hundreds of research efforts

in the last two decades that have applied and used the one-dimensional warping process

idea between time series, extending DTW method to two or more dimensions poses a more

involved problem. The two-dimensional dynamic warping algorithm developed here for a

variety of speech signal processing is ideally suited.

The second direction is focused on two speech signal applications. The First application

is the evaluation of dysarthric speech. Dysarthria is a neurological motor speech disorder,

which characterized by spectral and temporal degradation in speech production. Dysarthria

management has focused primarily teaching patients to improve their ability to produce

speech or strategies to compensate for their deficits. However, many individuals with

dysarthria are not well-suited for traditional speaker-oriented intervention. Recent studies
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have shown that speech intelligibility can be improved by training the listener to better

understand the degraded speech signal. A computer-based training tool was developed using

a two-level dynamic warping algorithm to eventually be incorporated into a program that

trains listeners to learn to imitate dysarthric speech by providing subjects with feedback

about the accuracy of their imitation attempts during training.

The second application is voice transformation. Voice transformation techniques aims to

modify a subject’s voice characteristics to make them sound like someone else, for example

from a male speaker to female speaker. The approach taken here avoids the need to find

acoustic parameters as many voice transformation methods do, and instead deals directly

with spectral information. Based on the two-Level DW it is straightforward to map the

source speech to target speech when both are available. The resulted spectral warping signal

produced as described above introduces significant processing artifacts. Phase reconstruction

was applied to the transformed signal to improve the quality of the final sound. Neural

networks are trained to perform the voice transformation.



vii

In memory of my dad. I love and miss him dearly

To my lovely wife
Ghufran Al-Juboori

To my Mother

To my kids
Hisham, Rayan, Alya and Lamar

To my siblings
Walaa, Wael, Mouloud, Ayat, Omar, and Binan



viii

ACKNOWLEDGMENTS

There are many people whom I want to mention their names here. Those who have

helped me in numerous ways not only on my path through the completion of my Ph.D. but

also in the other aspects of my life. First, and foremost, I want to thank my supervisor, Dr.

Todd K. Moon, for all the time and effort he invested in me throughout the course of my

study. His deep insights and positive manner have always been helpful and encouraging. He

has been very patient, great encourager and supporter, and sometimes though as it should

be. Next, special thanks go to my committee members, Dr. Gunther, Dr. Budge, Dr. Borrie,

and Dr. Moon for their support and help, particularly for their patience in reading my

dissertation draft. Using this space, I should specially thank Dr. Gunther for his consistent

support and encouragement. Furthermore, I would like to thank and express my gratitude

to Dr. Borrie for her support and help with my research as well. Also, special thanks to Dr.

Budge. I really enjoyed being a teaching assistant for three of his classes.

I also would like to express my gratitude to the Utah State University, as I enjoyed

studying over there and I learned a lot.

In addition, I want to thank Dr. Mohammad Shekaramiz, Dr. Abdurazag Khalat, Dr.

Mehedi Hassan, Md Munibun Billah, Sam Whiting, and many more for their friendship and

encouragement.

Also, I want to thank Tricia Brandenburg, Diane Buist, Kathy Phippen, Heidi Harper,

and Brady Forbush from the ECE department.

I would like to thank my gorgeous wife for having taken care of me in hard times. The

constant love and affection from my family is the backbone of any successful endeavor in

my life. Without their constant support and encouragement for quality education I would

never have achieved the right kind of exposure to fulfill my dream of working in my area of

interest.

I would like to take this space to express my gratitude to mom, and siblings for their

consistent help, support, and in particular, moral support in my journey including my



ix

academic career and other aspects of my life.

Al-Waled H. Al-Dulaimi



x

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 TWO-LEVEL DYNAMIC WARPING ALGORITHM . . . . . . . . . . . . . . . . . . . . . 6
2.1 Background and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Two-Level Dynamic Warping . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Outer Level Dynamic Warping . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Inner Level Dynamic Warping . . . . . . . . . . . . . . . . . . . . . 13

3 TRAINING SPEECH IMITATION ACCURACY USING DYNAMIC WARPING . 18
3.1 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Computer-Based Training Tool Using Dynamic Warping . . . . . . . 20
3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Linear Predictive Coding Magnitude Spectrum . . . . . . . . . . . . 24
3.2.2 Spectrogram Features . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Pitch Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Speech Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 TRAINING SPEECH IMITATION ACCURACY USING DYNAMIC WARPING . 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Voice Transformation Background . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Voice Transformation’s Related Works . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Codebook Mapping Method . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Dynamic Frequency Warping . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . 42



xi

4.3.4 Neural Network Methods . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Voice Transformation Process . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Two-Level Dynamic Warping for the Transformation . . . . . . . . . 44
4.4.2 Speech Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Spectral Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Effectiveness of Phase Reconstruction on Warped Speech . . . . . . . . . . 50
4.5.1 Phase Reconstruction Process . . . . . . . . . . . . . . . . . . . . . . 53
4.5.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Spectral Warping using ANN . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8 Proposed Method of Spectral Transformation using ANN . . . . . . . . . . 60

4.8.1 Interpolating the data to achieve constant length . . . . . . . . . . . 62
4.9 Mel-Cepstral Distortion as an Objective Measure . . . . . . . . . . . . . . . 63
4.10 ANN Architecture and Experiment . . . . . . . . . . . . . . . . . . . . . . . 65

4.10.1 Phase One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.10.2 Phase Two: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.10.3 Phase Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.10.4 Phase Four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 CONCLUSION AND FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Dysarthric Imitation Application . . . . . . . . . . . . . . . . . . . . 102
5.2.2 Voice Transformation Application . . . . . . . . . . . . . . . . . . . 103

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



xii

LIST OF TABLES

Table Page

3.1 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 MCD’s Obtained for Different Architectures using on . . . . . . . . . . . . . 72

4.2 MCD’s Obtained for Two-Level DW with and without Phase Reconstruction 94

4.3 Examples of different voice transformation sounds . . . . . . . . . . . . . . 94



xiii

LIST OF FIGURES

Figure Page

1.1 Detail of the Dynamic time (outer) warping process.
The point at (4,5) aligns x(4) with y(5). . . . . . . . . . . . . . . . . . . . . 2

2.1 Recursive way to find current cost distance (dT ). . . . . . . . . . . . . . . . 13

2.2 Dynamic time (outer) warping. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Inner/Outer Dynamic Warping . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Warping and distance measures for dynamic time (outer) warping . . . . . 21

3.2 Different measuring ways for distortion distance . . . . . . . . . . . . . . . . 21

3.3 Questionnaire page of the clinical test . . . . . . . . . . . . . . . . . . . . . 27

3.4 Own voice recording phase of the clinical test . . . . . . . . . . . . . . . . . 28

3.5 First attempt imitation phase of the clinical test . . . . . . . . . . . . . . . 28

3.6 Multi attempts imitation phase of the clinical test . . . . . . . . . . . . . . 29

3.7 Histograms of DT across all participants (males and females) and all phrases 32

3.8 Histograms of dT across all participants (males and females) and all phrases 33

3.9 Histograms of pitch variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Typical Speech Transformation System . . . . . . . . . . . . . . . . . . . . . 39

4.2 Block Diagram for Mapping Codebooks Method . . . . . . . . . . . . . . . 41

4.3 Distnce Measure for Outer Dynamic Warping for VT . . . . . . . . . . . . . 46

4.4 Spectrogram for Male, Female and Warped Male to Female . . . . . . . . . 51

4.5 One Spectral Segment Feature for Male, Female and Warped Male to Female 52

4.6 Griffin-Lim (GLA) Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Spectrogram Information for Male, Female and Warped Male to Female with
and without GLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



xiv

4.8 One Spectral Segment Feature for Male, Female and Warped Male to Female
with and without GLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 Block Diagram of Voice Transformation using two level DW . . . . . . . . . 59

4.10 Making DFW training data, and using this to train a neural network . . . . 61

4.11 Normal and interpolated paths . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.12 Block diagram of ANN of 1/IP − 1/OP architecture . . . . . . . . . . . . . 66

4.13 Block diagram of ANN of 3/IP − 1/OP architecture . . . . . . . . . . . . . 67

4.14 Spectrogram Information for Warped Male Speaker, Phase One . . . . . . . 73

4.15 Learned Warping Path a, Phase One . . . . . . . . . . . . . . . . . . . . . . 74

4.16 Learned Warping Path b, Phase One . . . . . . . . . . . . . . . . . . . . . . 75

4.17 Mean Squared Error (Learning Curve), Phase One . . . . . . . . . . . . . . 76

4.18 Spectrogram Information for Warped Male Speaker, Phase Two . . . . . . . 77

4.19 Learned Warping Path a, Phase Two . . . . . . . . . . . . . . . . . . . . . . 79

4.20 Learned Warping Path b, Phase Two . . . . . . . . . . . . . . . . . . . . . . 82

4.21 Mean Squared Error (Learning Curve), Phase Two . . . . . . . . . . . . . . 83

4.22 Clustering Analysis for the Spectral Information (k = 6) . . . . . . . . . . . 83

4.23 Cluster Training Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.24 Cluster Warping Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.25 Spectrogram Information for Warped Male Speaker, Phase Three . . . . . . 86

4.26 Learned Warping Paths a and b, Phase Three . . . . . . . . . . . . . . . . . 90

4.27 Mean Squared Error (Learning Curve) using Cluster Method . . . . . . . . 91

4.28 Spectrogram Information for Warped Male Speaker, Phase Four . . . . . . . 95

4.29 Learned Warping Paths a and b, Phase Four . . . . . . . . . . . . . . . . . 98

4.30 Mean Squared Error (Learning Curve), Phase Four . . . . . . . . . . . . . . 99



xv

ACRONYMS

1-DCNN One-dimension convolutional neural network

ANN Artificial neural network

AS Amplitude scaling

CNN Convolutional neural network

DFW Dynamic frequency warping

DTW Dynamic time warping

DW Dynamic warping

FFT Fast Fourier transform

GLA Griffin-Lim algorithm

GMM Gaussian mixture model

LPC Linear predictive coding

MCD Mel-cepstral distortion

ML Machine learning

MSE Mean square error

NN Neural network

VT Voice transformation



CHAPTER 1

INTRODUCTION

In this dissertation, the familiar dynamic time warping (DTW ) is extended to produce

a two-level dynamic warping algorithm, with mapping in both the temporal and spectral

domains. This two-level dynamic warping is applied in two application areas: evaluation of

dysarthric speech, and transforming speech from one speaker to another.

Since DTW is the starting point for this research, it is outlined here. More details are

provided in Chapter 2. In DTW, two sequences X and Y,

X = x1, x2, . . . , xi, . . . , xM

Y = y1, y2, . . . , yj , . . . , yN ,

(1.1)

are aligned in a nonlinear way. The idea is illustrated in Figure 1.1. There is a warping

function

C(X,Y) = [c(1), c(2), . . . , c(k), . . . , c(K)], (1.2)

where each c(i) is a pair of indices (i(k), j(k)), which represents the samples being matched.

K represents the length of the warping function path and may be greater than M or N . For

the example in Figure 1.1, the sequence X have nine samples (M = 9) and sequence Y have

seven samples (N = 7), with

X = 7, 9, 6, 9, 12, 6, 4, 5, 8

Y = 5, 6, 4, 3, 9, 5, 6.

(1.3)

And warping function path is

C(X,Y) = [(1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 5), (6, 6), (7, 6), (8, 7), (9, 7)], (1.4)
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Fig. 1.1: Detail of the Dynamic time (outer) warping process.
The point at (4,5) aligns x(4) with y(5).

where the length of C(X,Y), K, is given by the number of steps in the warping path

function. For this example, we have K = 10 steps in the warping process. The blue line in

Figure 1.1 shows the correspondence assigned between x(4) and y(5).

The DTW process computes the distance between each matched pair of samples of both

signals and these distances are used to find the least alignment. Let d(xi(k), yj(k)) denote a

distance or cost function between the samples. A typical cost function is the square of the

difference between the samples of both time series functions.

d(xi(k), yj(k)) = (xi(k) − yj(k))2
4
= d(c(k)). (1.5)

The warping function path is required to minimize the overall distance function

Dc(X,Y) =

K∑
k=1

d(xi(k), yj(k)) =

K∑
k=1

d(c(k)), (1.6)

and is usually subjected to some constraints (described in Chapter 2).
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The dynamic time warping distance or the total cost of (i(k), j(k)) is recursively

computed as the distance (or cost) computed in the current point plus the minimum value

of the cumulative distances of the adjacent points, according to

DT (xi, yj) = d(xi, yj) + min[DT (xi−1, yj), DT (xi, yj−1), DT (xi−1, yj−1)] (1.7)

When i = M and j = N , corresponding to the end of the time series functions, the dynamic

warping process has found the overall warped metric distance DT (xM , yN ) between the

sequence X and Y, which may referred as DDTW (X,Y). During this warping process,

two sequences of indices i = (i(1), i(2), . . . , i(K)) and j = (j(1), j(2), . . . , j(K)) are deter-

mined, which establish the temporal warping function path. These indices describe the

time alignment for both time series sequences, such that the new time aligned sequence

YTA(i(k)) = Y(j(k)) (k = 1, ...,K) and X are as similar as possible, so that, roughly, the

peaks and valleys of X align with peaks and valleys, respectively, of Y. The subscript TA

refers to Temporal Alignment warping process.

Comparison of two same phrases or statements from two different sources is central

to many speech recognition applications [1–6], and the DTW is frequently used in speech

applications. In this dissertation, the comparison between the speech sequences from two

different sources is done by mapping in both the frequency domain and time domain.

Warping in the time domain overcomes temporal variability of the spoken phrase, due to

differences in speech rates. The spectral information extracted from the human speech

sequences are time-aligned or matched by calculating similarity between segments of these

sequences. In addition, warping in the frequency domain compensates for variations in the

frequency domain of speech caused by vocal tract difference among different speakers [7].

Dynamic frequency warping (DFW ) used in this dissertation is reduces the effects of spectral

variations of the speech due to spectral differences [8].

This combination of dynamic time mapping and dynamic frequency mapping, or two-

level warping, is a new approach to speech processing. An outer warping process, which

temporally aligns blocks of speech (dynamic time warp), invokes an inner warping process,
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which spectrally aligns based on magnitude spectra (dynamic frequency warp). This two

level warping is applied in this dissertation to two applications. In the first application, we

applied this algorithm to dysarthric speech in a total used to train care givers to understand

dysarthric speech (Dysarthria is a neurological motor speech disorder that commonly results

in reduced intelligibility because of dysarthria is a characterized by spectral and temporal

degradation [9].) People can learn to understand the speech of someone with dysarthria

through perceptual training [10–14]. Vocal imitation of the degraded speech during perceptual

training has been shown to elevate this learning [12,14]. A tool was developed using two-level

dynamic warping that provides the learner with real-time feedback regarding the accuracy of

their imitation attempts during training to enhance and support this learning. This training

tool compares the production of a dysarthric speech with the imitation attempt of a healthy

speaker. This comparison uses a two-level dynamic warping to account for both spectral

and temporal vaiabilty that may ossur due to dysarthria.

The second application of this two level dynamic warping is to voice transformation.

Voice transformation, for example, from a male speaker to a female speaker or vice versa, refers

to the process of changing the parameters of the human speech or changing voice personality,

to achieve the conversion of a speech that uttered by one speaker (the source speaker) to sound

as if other speaker (the target speaker) had spoken it [15]. Voice transformation is achieved

in this dissertation using a two-level dynamic warping. The mapping function produced by

the dynamic frequency warping, DFW, is used to move spectral information from a source

speaker to a target speaker. This process of voice transformation involves only spectral

magnitudes, and has been found to introduce significant deleterious signal processing artifacts.

It has been found that the reconstruction of phase information significantly improves the

quality of the transformed speech. The spectral mapping information obtained from two

level dynamic warping is used as a training data to train neural network to assist in voice

transformation.

The organization of this dissertation is as follows. In chapter 2, a new two-level dynamic

warping algorithm is detailed. In chapter 3, some background of the dysarthria is first
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presented. The two-level dynamic warping algorithm is used in a computer-based training

tool to help train speakers learn to imitate dysarthric speech, by providing subjects with

feedback about the accuracy of their imitation attempts during training. Clinical testing

was conducted within the labs of Utah State University to test this tool.

Chapter 4 begins with presenting a brief background on a conventional voice transfor-

mation. Then, voice transformation using two-level dynamic warping algorithm is described

by transforming speech form one speaker (source speaker) to another (target speaker). After

that, the importance and effects of the phase on the warped speech is discussed. Then,

applying a specific phase reconstruction algorithm on the output of the dynamic warping

algorithm is achieved. A second phase of this chapter is to train a neural network to assist

in voice transformation. The time aligned source spectral feature information are used as

an input to the artificial neural network (ANN). The warping function paths (aF and bF )

computed by the two-level DW are used as training data. because of the length of the

warping paths (aF and bF ) may vary form phrase to phrase, an interpolation was applied

on the warping paths to produce fixed length of warping paths. After that, An ANN is

trained to map a sequence of time aligned source speaker’s spectral feature information

to the interpolated warping path information. This experiment of estimating the warping

paths (aF and bF ) using the ANN was contacted in four phases. Phase one was contacted

to decide which architecture for the ANN that achieves good quality for the process of voice

transformation. Phase two, the selected network from phase one was trained for 600 phrases.

In phase three, the spectral information of the 600 phrases was clustered into six clusters

and each cluster was trained with the selected network form phase one. Phase Four was

contacted using convolutional neural network (CNN).



CHAPTER 2

TWO-LEVEL DYNAMIC WARPING ALGORITHM

This chapter presents a new two-level dynamic warping algorithm, in which an outer-

level warping process does temporal alignment (Dynamic Time Warping, DTW ), which

temporally aligns block of features to compensate for temporal differences, invokes an

inner-level warping process (Dynamic Frequency Warping, DFW ) to achieve alignment of

spectral features to account for spectral shift.

2.1 Background and Previous Work

Dynamic time warping method (DTW ) is a dynamic programming technique that has

long been used to find an optimal alignment between the sequences of feature vectors from

two different sources [16,17]. The DTW method calculates the distance between each pair

of points of the two signals, then uses these distances to calculate the cumulative distance

matrix. The least expensive path through this matrix is then found. That least expensive

path is called the warping path [18]. This warping path used to synchronize signals, which

causes the distance between their synchronised feature vectors to be minimized [1].

DTW was first developed to be used for speech and word recognition in 1970s with sound

waves as the source [17]. DTW has since been used for a wide range of applications such as

human motion animation, human activity recognition, processor cache analysis, classifying

handwritten text, fingerprint indexing, time series classification and data mining [18–24].

DTW is widely used in finance, science, medicine, chemistry, astronomy, robotics, and

industry [25]. Also, DTW is widely used as a time series distance measure, across a host of

domain applications [26,27].

In previous work in this field, DTW research focused on speeding up the algorithm and

improving the efficiency of processing [1,27,28]. Applying constraints to the DTW process [29],

approximation method of the DTW algorithm [30], lower bounding techniques [21] and using
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spectral feature information instead of time feature information to do the alignment [31]

were considered as an examples for speeding up the DTW algorithm and improving the

efficiency.

Time series similarity search under the Euclidean metric is heavily I/O bound; however,

similarity search under DTW is also very demanding in terms of CPU time. One way to

address this problem is to use a fast lower bounding function, based on the warping window,

to help prune sequences that could not possibly be the best match. The authors in [21]

proposed new lower bounding distance measure technique and they showed that this new

technique speeding up DTW algorithm.

[29] introduced a form of modified DTW called Derivative DTW (DDTW ). With

the regular DTW, the cumulative distance matrix contains distances has been calculated

between the feature values of the sample points. In this proposed DDTW, the distance

measurement elements of the cumulative distance matrix has been calculated not between

the feature values of the sample points, but between their associated estimated first order

derivatives. Therefore, alignment is done based on the characteristics of the shape (slopes,

peaks, valleys) of the the sequences rather than simple values and they showed that this

modification to the DTW modification produces a significant alignments between time series.

The authors in [30] proposed Fast DTW, which is able to find an accurate approximation

of the optimal warping path between two time series. This approximation method has

linear time and space complexity, while the regular DTW has quadratic time and space

complexity. This method started by down sampling the time series into a smaller time series

representing low resolution. The warping path is calculated for theses lowest resolutions and

projected onto an incrementally higher resolution time series. This projected warping path

is refined form a lower resolution and projected again to get a higher resolution. The final

warping path for the full length (or resolution) time series is calculated by repeating the

above process of refining and projecting as much as the whole process is needed.

Because differences in vocal tract lengths among different speakers, there is a lot of

variations in frequency domain. These variations in frequency domain is an analogy to
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the variations in the time domain [30, 32]. For this reason, the authors in [31] have used

Mel-frequency cepstral coefficient (MFCC) features to reduce the degradation in a gender-

independence isolated word recognition. They showed that this way of using frequency

features instead of time valued features lead to decrease word error rate in isolated word

recognition system.

While there have been hundreds of research efforts in the last two decades that applied

and used the one-dimensional warping process idea between time series, extending DTW

method to two or more dimensions poses a more involved problem [4]. The input data is no

longer a one-dimensional feature vector but rather a two-dimensional or multi-dimensional

feature vectors. These two-dimensional features can represent images or any other two-

dimensional data. A two-dimensional dynamic warping algorithm could be used for a

variety of applications such as text, gesture, facial recognition. [26] proposed the two most

commonly used multi-dimensional DTW methods. We provide a description of the work

of [26] to demonstrate that it differs from the two-level dynamic warping. The authors refer

to their two methods as DTWD and DTWI, where “D” and “I” refers to dependent warping

process and independent warping process, respectively. The input for both methods are

the multi-dimensional time series functions. A data set Q = Q1, Q2, . . . , QM is a collection

of M individual time series (M ≥ 2), where each time series is a sequence of data points

ordered in time to be as a set of real values and the total number of real values is equal to

the length of the time series:

Q1 = q1,1, q2,1, . . . , qn,1

Q2 = q1,2, q2,2, . . . , qn,2

Q3 = q1,3, q2,3, . . . , qn,3

...
...

...
...

QM = q1,M , q2,M , . . . , qn,M

(2.1)

where n represents the length of each time series in the data set Q

Two input sets (Q and C) were proposed as a two data sets of M -dimensional time series.
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The first proposed method (DTWI) in [26] for doing multi-dimensional DTW (MDTW )

was based on computing the cumulative distances of all dimensions independently. These

distances were measured under regular DTW. For a specific mth dimension, the cumulative

distance of the DTW of mth dimension can be computed as the distance found in the current

location (d(qi,m, cj,m)) and the minimum value of the DTW cumulative distances of the

adjacent elements:

DTW (Qm, Cm) = d(qi,m, cj,m) + min[DTW (i− 1, j)m,

DTW (i, j − 1)m,

DTW (i− 1, j − 1)m]

i, j = 1, 2, . . . , n

(2.2)

where Qm and Cm are the mth dimension of the data set Q and C, respectively, and

d(qi,m, cj,m) be proposed to be d(qi,m, cj,m) = (qi,m − cj,m)2. Therefore, the MDTW can be

calculated as

DTWI(Q,C) =

M∑
m=1

DTW (Qm, Cm) (2.3)

In this method, each dimension is considered to be independent on each others to find the

DTW between two data set Q and C. This way of computing DTW gives each dimension

the freedom to warp itself independently of the others.

The authors in [26] proposed another way of computing MDTW, DTWD, by ignoring

the dimensions independent and forcing all the dimensions to warp identically for each

time index. In this way, they consider MDTW to be calculated in a similar way of regular

DTW algorithm used for one-dimensional, (2.2), except that they redefine d(qi, cj) as the

squared Euclidean distances of M -dimensional of two or multiple data sets of time series of

information instead of the single data point used in the more familiar one-dimensional case.

They proposed that for the same data set (Q and C) of multi-dimensional time series, the
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new equation for computing distance can be defined as:

d(qi, cj) =
M∑
k=1

(qi,k − cj,k)2 (2.4)

where qi,k is the ith element in the kth dimension of Q and cj,k is the jth element in the kth

dimension of C. Now, MDTW is calculated by redefining (2.3) as:

DTWD(Q,C) =
n∑
l=1

DTW (Ql, Cl) (2.5)

where n represents the length of the time series.

2.2 Two-Level Dynamic Warping

In this work, dynamic time warping (DTW ) is extended to a two-level model operating

on both temporal and spectral domains. The outer-level, DTW, temporally aligns block

of spectral features to compensate for tempo differences (such us different speech rates).

Dynamic frequency (spectrum) warping (DFW ) or “inner-level warping” is used to perform

spectral alignment based on spectral features of blocks of speech data, such as aligning

spectral features of male speaker to spectral features of female speaker. In this work, we

applied the combination of inner and outer warping, simply referring as ”dynamic warping,”

or DW .

2.2.1 Outer Level Dynamic Warping

Our description of DW begins with a review of dynamic time warping. The basic

concept was presented in Chapter 1. Here we expand this description. The language used in

this dissertation suggests application to speech data, but it could be used for other signals

as well. As suggested by the name “outer-level dynamic time warping” or “dynamic time

warping”, DTW seeks for temporal alignment to align block of feature vectors of speech

data to compensate for different speech rates.

For two speakers i (i = 1, 2), let si(t, f) refer to the feature information at a timeslice
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with integer time index t and integer frequency index f . The vector si(t, :), has k elements,

which represent the spectral feature vector information at timeslice with integer time index

t of speaker i. For speaker i, the speech data signal can be represented as a sequence of

Ti block of feature vectors computed from overlapping block of features of speech signal

information

Si = {si(1, :), si(2, :), . . . , si(Ti, :)}, i = 1, 2. (2.6)

Let d(s1(t1, :), s2(t2, :)) denote a metric distance between spectral feature vectors s1(t1, :)

and s2(t2, :) at time-slices t1 and t2. Let dT (t1, t2) represent the minimum cost distance

between the sequences S1 and S2, up to blocks at times t1 and t2. The subscript T refers to

time warping process. The goal of DTW is to find a warping function

C(S1, S2) = [c(1), c(2), . . . , c(k), . . . , c(K)], (2.7)

where each c(i) is a pair of indices (aT (k), bT (k)), such that the cost distance on this warping

function is minimized, with the following constraints [33]:

• Monotonicity:

aT (k − 1) ≤ aT (k) and bT (k − 1) ≤ bT (k).

This constraint prevents the alignment path from moving back in time.

• Continuity:

aT (k)− aT (k − 1) ≤ 1 and bT (k)− bT (k − 1) ≤ 1.

This constraint prevents skipping. This constraint ensures that the alignment process

will not neglect or hide any samples.

• Boundary:

aT (1) = bT (1) = 1, aT (K) = T1 and bT (K) = T2.

The warping function must match the endpoints of the two time series functions, the

alignment path must start and end at the bottom left and at the top right, respectively

(diagonally opposite corner).
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• Warping Window:

|t1 − t2| < wT ,

where wT > 0 is the window length. DTW constrains the alignment path to not to go

far from the diagonal.

With these constraints, the path may go several cells horizontally along the function with

the x-axis or vertically along the function with the y-axis.

The dynamic time warping distance or the total cost of (aT (k), bT (k)) is computed as

the distance (or cost) computed in the current point plus the cost of the cheapest path to it.

For any given node (t1, t2) in the path, as shown in Figure 2.1, and by the monotonicity

and continuity constraints mentioned above, three backward neighbors nodes (t1, t2 − 1),

(t1 − 1, t2), and (t1 − 1, t2 − 2), will be checked. However, these nodes are used to compute

the metric distance between the sequence S1 and the sequence S2, and to find dT (t1, t2),

recursively by

dT (t1, t2) = d(s1(t1, :), s2(t2, :)) + min[dT (t1 − 1, t2), dT (t1, t2 − 1), dT (t1 − 1, t2 − 1)] (2.8)

This is essentially a statement of Bellman principle of optimality. When t1 = T1 and

t2 = T2, corresponding to the end of the speech sequences, the outer (time) warping process

determines an overall warped metric distance dT (T1, T2) between the sequences S1 and

S2, which may be referred as dT (S1, S2). The DTW also computes a sequence of indices

aT = (aT (1), aT (2), . . . , aT (N)) and bT = (bT (1), bT (2), . . . , bT (N)), which are called the

temporal warping function paths. The length N of the warping function paths may vary

from one time sequence to another, depending on how many turns the temporal warping

paths have, and N may be different form T1 and T2. These indices describe the temporal

alignment for both source speech signal and target speech signal, such that the new temporal

aligned spectral information vectors s1TA(aT (i), :) = s1(bT (i), :) (i = 1, . . . , N) and s2 are as

similar as possible, where peaks and valleys of s1 align with peaks and valleys, respectively,
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Fig. 2.1: Recursive way to find current cost distance (dT ).

of s2. This is portrayed in Figure 2.2. The subscript TA refers to Temporal Alignment

warping process.

2.2.2 Inner Level Dynamic Warping

Analogous to the warping in the time performed by dynamic time warping (DTW ),

dynamic frequency warping (DFW ) can warp the frequency dynamically to align spectral

information.

The metric distance between frequency vectors s1(t1, :) and s2(t2, :) in (2.8), d(s1(t1, :

), s2(t2, :), can itself be computed using warping between these vectors. Because these

vectors typically represent frequency information, this is called dynamic frequency warping

(DFW), which is considered as the second level of warping. This warping is also referred to

as the inner warping. DFW can be computed in a way similar to the outer warping. Let

si(:) = si(ti, :), i = 1, 2 denote the spectral information vectors at time block number ti that

is passed to the inner warping function (DFW) from the outer warping function (DTW).

DFW is applied to calculate the distance between s1(:) and s2(:) as

dF (k1, k2) = dist(s1(k1), s2(k2)) + min dF (k1 − 1, k2), dF (k1, k2 − 1), dF (k1 − 1, k2 − 1) (2.9)



14

i

i

j

S
1 Source Siganl

T
a
rg
et

S
ig
a
n
l

C

s25

s23

s24
s22

s
1
4

s21

j

dT (S1, S2)

s
1
3

S2

(a1T
, b1T )

(aKT
, bKT

)

(akT
, bkT

)
s
1
1
s
1
2

Fig. 2.2: Dynamic time (outer) warping.

The subscript F refers to a frequency (or spectral) warping process, and dist(s1(k1), s2(k2))

represents the metric distance between elements of the feature spectral vectors. At the end

of frequency warping process, the distance between spectral vectors is computed as

d(s1(t1, :), s2(t2, :))
4
= dF (K,K). (2.10)

DFW produces another sequence of indices aF = (aF (1), aF (2), . . . , aF (M)) and bF =

(bF (1), bF (2),

. . . , bF (M)), which describe the spectral warping function path. The temporal aligned

source spectrum information, s1TA , is warped to match the target spectrum information, s2,

creating a modified source spectrum information ŝ1 according to

ŝ1TF (aF (i)) = s1TA(bF (i)), i = 1, . . . ,M (2.11)

where the subscripts T and F refer to temporal warping process and frequency warping

process, receptively. This spectral alignment mapping process drags spectral components of

the temporal aligned source blocks to match the target spectrum information, s2. The length
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M of the warping function paths may vary from one spectral feature vector to another,

depending on how many turns the spectral warping paths have. The warping path in DFW

is also subject to several constrains:

• Monotonicity:

aF (1) ≤ aF (2) and bF (1) ≤ bF (2).

This constraint prevents the alignment path from moving back in time.

• Continuity:

aF (k)− aF (k − 1) ≤ 1 and bF (k)− bF (k − 1) ≤ 1.

This constraint prevents skipping. This constraint ensures that the alignment process

will not neglect or hide any samples.

• Boundary:

aF (1) = bF (1) = 1, aF (M) = K and bF (M) = K.

The warping function must match the endpoints of the two time series functions, the

alignment path must start and end at the bottom left and at the top right, respectively

(diagonally opposite corner).

• Warping Window:

|k1 − k2| < wF ,

where wF > 0 is the window length. DFW constrains the alignment path to not to go

far from the diagonal.

The combination of the inner and outer warping processes applied to speech signal

is portrayed in Figure 2.3. Starting at the bottom of the diagram, speech signal is split

into different overlapping chunks. Spectral feature information is computed for each chunk.

These spectral feature vectors information are passed through DTW for temporal alignment

process, where at every stage of the temporal alignment process, spectral alignment process

or warping process is achieved using DFW. The method for doing DTW is given in Algorithm

2.1
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Algorithm 2.1 Dynamic Wrapping (DW )

Input:
First spectral sequence, S1 = {s1(1, 1 : nT ), s1(2, 1 : nT ), . . . , s1(nF , 1 : nT )}
Second spectral sequence, S2 = {s2(1, 1 : mT ), s1(2, 1 : mT ), . . . , s1(mF , 1 : mT )}
window size wT for DTW process
window size wS for DFW process

Output:
Distance between S1 and S2
Indices a(N) and b(N) for Temporal alignment
Indices b(M) and b(M) for spectral alignment

Begin
Initialize DTW array, DTW = array[0 . . . nT , 0 . . .mT ]
Initialize DFW array, DFW = array[0 . . . nF , 0 . . .mF ]
Adapt window size, wT = max(wT , abs(nT −mT ))
For iT = 1 to nT

For jT = 1 to mT

DTW [iT , jT ] =∞
End For jT

End For iT
Set DTW [0, 0] = 0
For iF = 1 to nF

For jF = 1 to mF

DTW [iF , jF ] =∞
End For jF

End For iF
Set DFW [0, 0] = 0
For iT = 1 to nT

For jT = max(1, iT − wT ) to min(mT , iT + wT )
Adapt window size, wF = max(wF , abs(nF −mF ))
For iF = 1 to nF

For jF = max(1, iF − wF ) to min(mF , iF + wF )
cost = norm(abs(log10(S1(iT , iF )))− (log10(S2(jT , jF )))
DFW [iF , jF ] := cost+minimum(DTW [iF − 1, jF ],

DFW [iF , jF − 1],
DFW [iF − 1, jF − 1])

End For jF
End For iF
Searching minimum path through DFW [iF , jF ], save aF , bF
costnew = DFW [nF ,mF ]
DTW [iT , jT ] := costnew +minimum(DTW [iT − 1, jT ],

DTW [iT , jT − 1],
DTW [iT − 1, jT − 1])

End For jT
End For iT
Searching minimum path through DTW [iT , jT ], save aT , bT



CHAPTER 3

TRAINING SPEECH IMITATION ACCURACY USING DYNAMIC WARPING

In this chapter, the method of two-level dynamic warping described in the previous

chapter is applied to explore whether the processing can distinguish between reading and

imitation attempts. Dysarthria is a neurological motor speech disorder that commonly

results in reduced intelligibility. Communication partners can learn to better understand

the speech of someone with dysarthria through perceptual training. Vocal imitation of the

degraded speech during perceptual training has been shown to elevate this learning. This

chapter presents a tool that could eventually be used to provide the learner with real-time

feedback regarding the accuracy of their imitation attempts during training which may

further enhance this learning. We describe a training tool that compares dysarthric speech

productions with the imitation attempts of healthy subjects, using a two-level dynamic warp

that accounts for both spectral and temporal degradation. Feature vectors derived from

both the spectrogram and LPC are examined.

3.1 Background and Introduction

Many individuals have been born with neuro-motor speech disorders or have obtained

it due to neurological injury or disease (e.g., stroke, traumatic brain injury, Parkinson’s

disease) which cause difficulties with speech production. These disorders are collectively

called dysarthria.

Dysarthria characterized by spectral and temporal degradation in speech production,

and typically results in reduced speech intelligibility. Speech intelligibility is defined as the

accuracy with which a message is conveyed by a speaker and recovered by listener. This

definition highlights the essential role of both speaker and listener in the communication

process. Speech intelligibility has traditionally been viewed as an attribute of the speaker,

but intelligibility is actually a function of both speakers and listeners [9]. Generally speaking,
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dysarthria management has focused primarily on the individual speaker (i.e. teaching

patients to improve their ability to produce speech or strategies to compensate for their

deficits). However, many individuals with dysarthria are not well-suited for traditional

speaker-oriented intervention approaches due to concomitant difficulties [34].

Recent studies have shown that speech intelligibility can be improved by training the

listener to better understand the degraded speech signal [11–14,35]. In other words, listeners

can improve their ability to recognize and understand speech that is difficult to understand

without placing additional demands on the speaker with a perceptual training. This

perceptual training involves familiarizing the listener with the degraded speech patterns and

written targets of what is being said. Pre- and post-tests reveal intelligibility improvements

as a function of training. It has recently been shown that vocal imitation during training

can increase the magnitude [12] and longevity [14] of intelligibility improvement following

training. Further, a significant relationship between imitation accuracy during training

and subsequent intelligibility improvements has been identified — subjects who were better

at imitating the degraded speech signal were better able to understand it in subsequent

encounters [12].

Motivated by this observation, it is desirable to develop and test assistive technology

that aids vocal imitation in perceptual training paradigms. In this work, we explore a

computer-based training tool to eventually be incorporated into a program to help train

listeners to learn to imitate dysarthric speech, by providing subjects with feedback about the

accuracy of their imitation attempts during training. The key to the learning tool is a means

of comparing the productions of a speaker with dysarthria with the imitation attempts of

someone without dysarthria (a healthy subject), in a way that accounts for both spectral

and temporal variations. This is achieved using a two-level dynamic warping algorithm in

both temporal and spectral domains.

As an initial step in the development and evaluation of this tool, we performed a human

subject test to examine the following hypotheses: Is this computer-based DTW tool able

to distinguish between mere repetition from written prompts (i.e. the subjects normal
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speaking voice) and attempts to imitate a dysarthric verbal prompt? Additionally, does

having multiple opportunities to imitate the dysarthric prompt result in improved accuracy

when compared to a single opportunity?

3.1.1 Computer-Based Training Tool Using Dynamic Warping

In this Section, DW, which is a combination of DTW and DFW algorithms, was applied

to dysarthric speech to provide visual cues to coach individuals to understand how to

modify their speech to provide better imitation (as a coach to them on how to modify their

speech), by developing a computer-based tool which provide subjects with feedback about

the accuracy of their imitation attempts during training. The learning key of the tool is to

compare the dysarthric speech with the imitation speech attempts of a healthy speaker, in a

way that accounts for degradations in both spectral and temporal domains. Because of the

degradations in spectral and temporal of the dysarthric speech, both temporal and spectral

alignment is used to make a comparison. So, this comparison is done using DW.

Our description of this tool starts with a two speakers, a speaker with dysarthria and

a healthy speaker. According to (2.6), let S1 be the sequence of dysarthric speech feature

vectors (target speaker) and S2 be the sequence of healthy speech feature vectors (subject

speaker). The minimum cost , (2.8), between sequences S1 and S2 is recursively computed.

At the end of speech sequences, there is a cost value, which is the overall warped distance

between the sequence S1 and S2, which may be denoted as dT (S1, S2), where the subscript

T emphasizes that this is warping in time. As mentioned in Chapter 2, DTW computes a

sequence of indices aN and bN , such that the sequence s1(aN , :) and s2(bN , :) is minimized.

If S1 and S2 are temporally aligned, then T1 = T2, and aN = bN = (1, 2, . . . , T1)
4
= I0. The

amount of deviation of (aN ,bN ) from (I0, I0) is a measure of how much the path of sequences

had to be “stretched” to achieve a best-matching alignment. Let DT (S1, S2) denote the

path stretch distortion function. There are two ways of measuring the amount of distortion

between the signals. There is the distance between the signals themselves dT (S1, S2), (2.8),

and the path distortion DT (S1, S2). This is portrayed in Figure 3.1, which schematically

illustrates the warping between a target speaker sequence and a subject speaker sequence.



21

Target Speaker

dT (S1, S2)

DT (S1, S2)

S
u
b
je
ct

sp
ea
k
er

n1

n2

Fig. 3.1: Warping and distance measures for dynamic time (outer) warping

Figure 3.2 shows different ways (area measure, horizontal distance and vertical measure)

of measuring this path distortion distance. In this work, area measure between the line

determined by (I0, I0) and the path (aN ,bN ) was considered.

As mentioned in Chapter 2, the metric distance between frequency vectors s1 and s2

in (2.8), d(s1(t1, :), s2(t2, :), can itself be computed using warping between these spectral

feature vectors. The distance between elements of the frequency feature vectors in (2.9),

dist(s1(k1), s2(k2)), is computed as |s1(k1) − s2(k2)|2. Then, DFW is applied using (2.9).

Fig. 3.2: Different measuring ways for distortion distance
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At the end of frequency warping process, the distance between spectral vectors, dF (k1, k2),

become dF (K,K), where K is the number of elements in each spectral feature vector and

where the subscript F refers to a frequency (or spectral) warping process. As mentioned in

section (2.2.2), DFW produces two spectral warping function paths (aM and bM ), which

can be used to compute a measure of the spectral distortion DF (s1, s2) needed to obtain

the best match of spectral features. The spectral distance dF (s1, s2), (2.9), and the path

distortion DF (s1, s2) are combined into a scalar value using αF as a weighting parameter.

When there are low energy speech segments (such as from unvoiced speech) which have no

particular spectral information to match, the distance dF (s1, s2) is generally meaningless.

In order to downplay this effect, when the signals are combined, the minimum energy,

Emin = min(‖s1‖2, ‖s2‖2) is used to scale the distance. The distance returned from the inner

DFW to be used in 2.8 is thus

dret = EmindF (s1, s2) + αFDF (s1, s2)
4
= d(s1(t1, :), s2(t2, :)) (3.1)

where the experimental validation found good performance with αF = 0.1. The method

for doing DW for this tool is shown in Algorithm 3.1. The difference between this one and

Algorithm 2.1, Chapter 2, was highlighted in blue color.

3.2 Feature Extraction

In most applications of speech processing, the speech signal is processed to extract

useful features (or parameters). These parameters keep most of the information needed to

recognize and identify the spoken units and the speech characteristics. Spectral features

information are believed to cover more speaker information, like individuality [36]. So,

for the purpose of making the analysis of the speech signal more convenient and also the

manipulation, speech signal should be represented with more suitable features. Speech data

in this tool was sampled at 8000 sample/sec. Different kinds of spectral information were

used in our experiments.
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Algorithm 3.1 DW to compare Dysarthric speech and healthy subject

Input:
Dysarthric spectral sequence, S1 = {s1(1, 1 : nT ), s1(2, 1 : nT ), . . . , s1(nF , 1 : nT )}
Subjected spectral sequence, S2 = {s2(1, 1 : mT ), s1(2, 1 : mT ), . . . , s1(mF , 1 : mT )}
window size wT for DTW process
window size wF for DFW process

Output:
Distance between S1 and S2
DT

Begin
Initialize DTW array, DTW = array[0 . . . nT , 0 . . .mT ]
Initialize DFW array, DFW = array[0 . . . nF , 0 . . .mF ]
Adapt window size, wT = max(wT , abs(nT −mT ))
For iT = 1 to nT

For jT = 1 to mT

DTW [iT , jT ] =∞
End For jT

End For iT
Set DTW [0, 0] = 0
For iF = 1 to nF

For jF = 1 to mF

DTW [iF , jF ] =∞
End For jF

End For iF
Set DFW [0, 0] = 0
For iT = 1 to nT

For jT = max(1, iT − wT ) to min(mT , iT + wT )
Adapt window size, wF = max(wF , abs(nF −mF ))
For iF = 1 to nF

For jF = max(1, iF − wF ) to min(mF , iF + wF )
cost = norm(abs(log10(S1(iT , iF )))− (log10(S2(jT , jF )))
DFW [iF , jF ] := cost+minimum(DFW [iF − 1, jF ],

DFW [iF , jF − 1],
DFW [iF − 1, jF − 1])

End For jF
End For iF
Searching minimum path through DFW [iF , jF ], save aF , bF
costnew = DFW [nF ,mF ]
Area between [(a(1),b(1)), (a(end),b(end))]F and (a,b)F
Minimum energy [S1(iT , :) and S2(jT , :)]
dret = Emin costnew + αF area
DTW [iT , jT ] := dret +minimum(DTW [iT − 1, jT ],

DTW [iT , jT − 1],
DTW [iT − 1, jT − 1])

End For jT
End For iT
DT = Area between [(a(1),b(1)), (a(end),b(end))]T and (aT ,bT )T
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3.2.1 Linear Predictive Coding Magnitude Spectrum

Linear Predictive Coding (LPC), often call an autoregressive (AR) model in other

domains [37], predicts the main features of speech using all-pole system function H(z) where

H(z) =
S(z)

E(z)
=

1

1−
∑K

i=1 aiz
−i

=
1

A(z)
(3.2)

where S(z) is the z-transform of the output speech signal, E(z) is the z-transform of the

input speech signal and A(z) is the inverse filter. The LPC model preserves the acoustic

information in the speech [37].

In our experiments, 14 LPC coefficients are used in each frame window of 25ms with

50% overlap. The coefficients are converted to an LPC magnitude spectrum |1/H(ejω)| for

K = 50 values of ω in [0, π], so that the spectrum can be meaningfully warped.

3.2.2 Spectrogram Features

Speech signals like many other signals change spectral content with time, like many

other signals. A spectrogram displays the temporal characteristics of the signal and provides

information about the distribution of frequency components of the signal as it varies with time.

The spectrogram plot contains time information along the x-axis, frequency information

along the y-axis, and the amount of energy amplitude in the signal at any given time

and frequency is displayed as a level of grey (or color). The spectrogram is computed

by calculating the Short-Time Fourier Transform (STFT ). The STFT is computed by

computing the FFTs of segments of data samples, where each sample maybe overlapped in

time [38,39].

In this work, the spectrogram is computed using 25-ms segments of speech sample,

windowed using a Hamming window, with 50% overlap transformed using a 256-point FFT.

The K = 128 positive frequency elements were used as the feature vector.

3.2.3 Pitch Information

Air from our lungs causes the vocal cords to vibrate. These vibrations acts as an
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excitation source, which is controlled by the mass and tension of the vocal cords [3]. The

vibrations make the cords to open and close, which breaks the air-stream up into pulses.

The repetition rate of the pulses is known as pitch. Generally speaking, pitch in speech

is the “highness” or “lowness” of a tone as perceived by the ear, which depends on the

number of vibrations per second produced by the air passing through the vocal cords. Pitch

is the perceptual correlate of tone and intonation. There are many algorithms for pitch

estimation [40]. In this work matlab pitch command was used to find the pitch information

for each phrase.

3.3 Method

A clinical test was performed on the speech data to determine if the speech feature

vectors and dynamic warping (DW ) are able to distinguish between healthy subjects reading

a phrase in their ”own voice” and healthy subjects imitating that same phrase produced by

a speaker with dysarthria.

3.3.1 Participants

Thirty two young, healthy adults (23 women and 9 men) participated in the experiment.

All participants were native speakers of American English. Per self-report, participants

had no history of speech, language, or cognitive disorders and no prior experience with

individuals with dysarthria. Participants were recruited from undergraduate classes at Utah

State University. Institutional review board consent was obtained before the start of the

experiment.

3.3.2 Speech Stimuli

The speech stimuli consisted of 40 semantically plausible phrases ranging in length from

four to eight words, containing between four and 12 syllables per phrase. Phrases elicited from

a 26-year-old male native speaker of American English with dysarthria secondary to traumatic

brain injury. The speaker who provided the speech stimuli presented with a moderate spastic

dysarthria, as diagnosed by three independent speech-language pathologists with expertise in
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assessment and diagnosis of motor speech disorders. Speech was characterized perceptually

by monopitch, slow speaking rate, imprecise articulation, and a strained–strangled vocal

quality. As reported in [12], acoustic analysis of the dysarthric phrases, relative to the

same phrases produced by an age and gender-matched healthy control, confirmed that the

dysarthric phrases were characterized by reduced F0 variation (manifested perceptually as

reduced pitch variation or monotone) and slow speaking rate.

3.3.3 Procedure

The experiment was conducted in three phases. All participants (32 subjects) were

involved in the three phases of the experiment identically. Each participant took the whole

experiment session (three phases), at one sitting time, in a quiet lab at Utah State University.

Upon obtaining permission, each participant was seated in front of computer preloaded with

the experimental computer application, designed using matlab Graphical user interfaces

(GUIs). Each participant was informed that the whole experiment would be delivered via

the computer program. All participant were fitted with sound-attenuating headphones. The

participant were informed that they would be listen a short phrases produced by a speaker

with dysarthria, they were told that the phrases contained real English words (e.g., “The

bread is stale”). The experiment was started first by filling a questionnaire page, Figure

3.3. In the page, each participant is asked to answer all the questions and not skip anyone

otherwise the program return an error with the personal information of the participant. The

program saves all the questionnaire information for all participants into one Excel file.

• Phase 1 : The actual experiment begins with this phase for one participant at a time.

During this phase, each participant is first instructed to read aloud each of the 40

phrases of the speech stimuli using his or her own voice and recording the spoken

phrase. The phrases were presented one at a time. (As shown in Figure 3.4, all the

instructions regarding phase 1 were written on this computer designed page.) After

the participant had finished recording the 40 phrases of the speech stimuli using his or

her normal voice, he or she was prompted to move on to the next phase, Figure 3.5.
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Fig. 3.3: Questionnaire page of the clinical test

• Phase 2 : Each participant hears a single phrase once, one phrase at a time, spoken by

a speaker with dysarthria. The participant is instructed to imitate the phrase as best

as possible and recording his or her imitation attempt. As shown in Figure 3.5, all the

instructions for this phase were written down in the designed page. The participant

repeats the recording procedure for phase 2 for the 40 phrases of the speech stimuli.

When the participant records his or her 40 imitation attempts, he or she can press the

button “Continue to next prompt” to move to the next phrase, Figure 3.6. In the

below discussion, this phase referred to as the “one time ” attempt.

• Phase 3 : This phase consider the last technical part of this experiment. In phase

3, instead of hearing the spoken prompt once, the participant is instructed to play

the prompt as often as desired, providing opportunity to practice imitating before

recording his or her imitation attempt. As shown in Figure 3.6, all the instructions

were written down in the designed page for this specific phase. The participant can

play the dysarthric speech as often as they choose and practice as much as can but

the participant can record once his or her imitation attempt. Again, each participant
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Fig. 3.4: Own voice recording phase of the clinical test

Fig. 3.5: First attempt imitation phase of the clinical test
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Fig. 3.6: Multi attempts imitation phase of the clinical test

should go with the recording. This is referred to as the “multi” attempt .

3.4 Analysis

The total data set consisted of 1280 recorded phrases (.wav) for each phase. After

identifying the starting and ending points of each speech signal for the three phases, spectral

feature vectors are extracted for each 25 ms segment of speech, with 50% overlap, using either

LPC magnitude spectrum or FFT-based features. Distance and path distortion measures

dT (S1, S2) and DT (S1, S2) are computed for each segment, comparing the subject recording

against the target (dysarthric speech) recording. The participant recordings of “one-time

attempt” and “multi attempt” were compared against the “own voice” attempt. Here S1 is

the target speech, and S2 is one of the participant speech attempts.

It is known that speakers with dysarthria tend to have lower variance in their pitch

production [12]. For an alternative comparison, the pitch variance was also computed to see

if the participants were matching pitch variance in their attempt to imitate. The Matlab
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pitch command was applied to 52 ms speech segments with 41 ms overlap. The resulting

pitch estimates were smoothed using bidirectional median filtering to remove meaningless

pitch estimates for unvoiced speech, then further smoothed using the Matlab smooth

command. The variance of the resulting pitch estimates was computed as a scalar measure,

denotes as PV(S), where S denotes either target, own voice, one-time, or multi speech signals.

The method for doing this whole clinical test is given in Algorithm 3.2

3.4.1 Results

Figure 3.7 shows the histogram of distortion measure DT comparing the target voice

with the own voice, one-time, and multi attempts. Also indicated is the mean value of the

information. It is apparent that DT (target,one-time) is typically less than DT (target,own-

voice), indicating that the participants are better matched to the target when they attempt

to imitate than when they read in their own voice. The feature vector used in all of these

is the LPC feature because the LPC-based feature vector performed significantly better

in the classifier than the FFT-based feature vector. Figure 3.8 shows the histogram of dT

comparing the target with the own voice, one-time, and multi attempts These measures are

not as effective at distinguishing between own voice and imitation attempts.

Figure 3.9 shows the histogram of the pitch variance (PV) for the target, across all

phrases. Figure 3.9(b,c,d) shows the histogram of the PV for own-voice, one-time, and multi,

across all phrases and all participants. From the mean values, it is apparent that the pitch

variation does decrease with imitation, with the multi attempt being close to the target.

These features were used in simple classifiers to determine the overall performance. For

DT scores, the classifier is defined follows:

if DT (target,one-time) ≤ DT (target,own-voice) then success

Success for the DT score classifier means that the participants are better matched to the

target when they attempt to imitate than when they read in their own voice, similarly for

the dT scores classifier and for the multi data. The probability of success is tabulated in
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Algorithm 3.2 Whole clinical test using two-level DW

Input:
Dysarthric speech information, target speech(n), n: number of phrases
Own voice recording information, own speech(m), m: number of phrases
One attempt imitation recording information, one speech(m), m: number of phrases
Multi attempt imitation recording information, multi speech(m), m: number of phrases
p: number of participant

Output:
Histogram
Classification probability

Begin
For i = 1 to n

For j = 1 to p
Function: Identifying Starting and ending points

target clip(i) = identify start end function(target speech(i))
own clip(i, j) = identify start end function(own speech(i, j))
one clip(i, j) = identify start end function(one speech(i, j))
multi clip(i, j) = identify start end function(multi speech(i, j))

Function: LPC magnitude spectrum features
target lpc(i) = lpc mag function(target clip(i))
own lpc(i, j) = lpc mag function(own clip(i, j))
one lpc(i, j) = lpc mag function(one clip(i, j))
multi lpc(i, j) = lpc mag function(multi clip(i, j))

Function: Spectrogram features
target spect(i) = spect function(target clip(i))
own spect(i, j) = spect function(own clip(i, j))
one spect(i, j) = spect function(one clip(i, j))
multi spect(i, j) = spect function(multi clip(i, j))

Function: Algorithm 3.1
[dT,lpc, DT,lpc](target,own) = dtw algorithm(S1 = target lpc(i), S2 = own lpc(i, j))

[dT,lpc, DT,lpc](target,one) = dtw algorithm(S1 = target lpc(i), S2 = one lpc(i, j))

[dT,lpc, DT,lpc](target,multi) = dtw algorithm(S1 = target lpc(i), S2 = multi lpc(i, j))

Function: Algorithm 3.1
[dT,spec, DT,spec](target,own) = dtw algorithm(S1 = target spect(i), S2 = own spect(i, j))

[dT,spec, DT,spec](target,one) = dtw algorithm(S1 = target spect(i), S2 = one spect(i, j))

[dT,spec, DT,spec](target,multi) = dtw algorithm(S1 = target spect(i), S2 = multi spect(i, j))

Function: Pitch variation
PV (target) = pitch function(target clip(i, j))
PV (own) = pitch function(own clip(i, j))
PV (one) = pitch function(one clip(i, j))
PV (multi) = pitch function(multi clip(i, j))

End For jT
End For iT
Plot Histogram
Find classification portability



32

(a) Histograms of DT (target,own voice) (b) Histograms of DT (target,one-time)

(c) Histograms of DT (target,multi)

Fig. 3.7: Histograms of DT across all participants (males and females) and all phrases
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(a) Histograms of DT (target,own voice) (b) Histograms of DT (target,one-time)

(c) Histograms of DT (target,multi)

Fig. 3.8: Histograms of dT across all participants (males and females) and all phrases



34

(a) Pitch variance for target sound (b) Pitch variance for own sound

(c) Pitch variance for one time attempt sound (d) Pitch variance for multi attempt sound

Fig. 3.9: Histograms of pitch variance



35

table 3.1, where the testing is done over all phrases for all participants.

The classifier for the PV is

if PV(one-time) < PV(own voice) then success

Also, success means that the pitch variance for the participants are better matched to the

pitch variance of the target when they attempt to imitate than when they read in their own

voice (and similarly for the multi data). The probability of success for this classifier is also

shown in table 3.1.

Test Classification Probability

DT own vs. DT one-time 87.5%

DT own vs. DT multi 90.1%

dT own vs. dT one-time 87.8%

dT own vs. dT multi 90.6%

dret own vs. dret one-time 91.8%

dret own vs. dret multi 89%

PV(own) vs. PV(one-time) 67.0%

PV(own) vs. PV(multi) 64.5%

Table 3.1: Comparison Results

Classification performance is summarized in Table 3.1. As shown, the distortion score

alone DT achieved 87% correct classifying between “own voice” and “one-time”. This

raises slightly for classifying with the “multi” speech. This provides some indication that

practice may produce an improvement, but that the attempts to imitate produces such a

dramatic difference that the difference is barely distinguishable (using this tool). Table 3.1

also shows the performance when the distance and distortion are combined according to

dret = dT + βDT (where β = 0.1). Slight improvements are observed.

Table 3.1 also shows the results of using the pitch variance to distinguish between “own

voice” and imitation attempts. Pitch variation on its own does not perform as well as the

DW methods.
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3.5 Summary

The method of two-level dynamic warping, described in Chapter 2, was applied to

dysarthric speech to help train listeners to learn to imitate dysarthric speech. This chapter

presents a computer-based training tool that could eventually be used to provide care givers

with feedback about the accuracy of their imitation attempts during training. The key to

the learning tool is a means of comparing the productions of a speaker with dysarthria

with the imitation attempts of someone without dysarthria (healthy subject), in a way

that accounts for both spectral and temporal variations. This is achieved using a two-level

dynamic warping algorithm. Clinical test was performed on the speech data to determine if

the speech feature vectors and the two-level DW are able to distinguish between healthy

subjects reading a phrase in their ”own voice” and healthy subjects imitating that same

phrase produced by a speaker with dysarthria. The results presented in Table 1 based

on this clinical study indicate that the analysis performed on the speech signals is able to

distinguish between own voice and imitation attempts with high probability.



CHAPTER 4

TRAINING SPEECH IMITATION ACCURACY USING DYNAMIC WARPING

Voice transformation, for example, from a male speaker to a female speaker, is achieved

here using a two-level dynamic warping algorithm. An outer warping process, which

temporally aligns blocks of speech (dynamic time warp, DTW ), invokes an inner warping

process, which spectrally aligns based on magnitude spectra (dynamic frequency warp,

DFW ). The mapping function produced by the dynamic frequency warp is used to move

spectral information from a source speaker to a target speaker. This warping mapping

process involves only spectral magnitudes, and has been found to introduce significant

deleterious signal processing artifacts. It has been found that reconstruction of phase

information significantly improves the quality of transformed speech. Information obtained

by this process is used to train an artificial neural network to produce spectral warping

output information based on spectral input data. Objective evaluation measure of spectral

features and warping paths was applied.

4.1 Introduction

Speech is an important and essential oral human communication tool. Speech processing

and synthesis is an important and interesting subject today. One example of speech processing

is the modification of speech of a person as if it is spoken by another person. This is called

voice transformation.

Voice transformation (V T ) refers to the process of changing the parameters of the

speech or changing voice personality, to convert the speech uttered by one speaker (source

speaker) to sound as if other speaker (target speaker) had spoken it, for example, from

a male speaker to a female speaker [15]. Voice transformation has applications such as

text-to-speech synthesis (TTS), international dubbing, health-care, multi-media, language

education, music, security-related usage, vocal restoration, speech-to-speech translation, and
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preprocessing for speech recognition, etc. [41–43]. A perfect voice transformation system

should convert the following characteristics from a speaker:

• Vocal Tract Characteristics

• Prosody Characteristics

• Glottal Excitation

These characteristics are very important and related to speaker identification and that

eventually affect the VT process.

4.2 Voice Transformation Background

The most common case of VT is done when the source speaker and target speaker are

speaking the same language, that means no need to change the language content from the

original speech signal. Cross lingual VT (which means when the source speaker and the

target speaker are spoke different languages) has also been achieved [44]. Cross lingual VT

is not within the scope of this work.

Figure 4.1 shows typical framework for VT system. VT, usually, can be achieved in two

stages.

• Training Stage: which is offline voice transformation stage.

• Online Voice Transformation− Synthsis Stage: a real-time process.

The inputs for the training stage are the source speech signal and target speech signal.

Both signals pass through a speech analysis model to extract the information of acoustic

feature parameters, like pitch and formant information. After this analysis, an appropriate

mapping function is devised to perform voice transformation by mapping the acoustic

features of the source speaker into the acoustic features of the target speaker.

In the transformation stage, the input to this stage is the source speech signal only.

This signal passes through speech analysis module to extract the suitable features. Once

these features information are computed, they pass through the transformation function



39

Target Speech

Source Speech

Source Speech

Converted Speech

Speech Analysis/
Feature Extractions

Feature Extractions
Speech Analysis/

Speech Analysis/
Feature Extractions Conversion Rules

Conversion Rules

Speech Reconstruction Transformation
Online Voice

Transformation
Offline Voice

Fig. 4.1: Typical Speech Transformation System

model, obtained from training stage, to perform the mapping and produce a new vectors of

feature information. The transformed features are passed through a speech synthesis step

(speech reconstruction module) to produce the transformed speech signal.

The speech analysis model represents the speech signal as vectors of feature information

that have enough represent the whole speech signal, while the reconstruction model is

responsible to reconstruct or recreate the speech signal from the transformed acoustic feature

vectors. Generally speaking, the speech signal does not enter the transformation model

directly. As shown in Figure 4.1, transformation is done on the feature information.

4.3 Voice Transformation’s Related Works

Many techniques have been proposed by researchers for the voice transformation

especially for the mapping function. In this section, we will discuss some of these important

techniques.
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4.3.1 Codebook Mapping Method

Codebook method, [45], is considered as an early work on voice transformation. The

authors in [45] proposed a way of using vector quantization (V Q) with codebook and

spectrum mapping to do the transformation. Other work, [46,47], show that the acoustic

features data, like pitch information, formant frequencies and bandwidth, spectral tilt, etc,

are crucial features that relate to speech individuality. While it is difficult to control the

speech individuality by modifying all acoustic feature parameters independently, generating

codebooks can be used with vector quantization to represent all these features. This work

include two steps: first, learning step; and second, conversion-synthesis step. These steps are

similar to the model portrayed by Figure 4.1. In the first step, codebooks were generated for

both source speakers and target speaker. After that, the speech generated by speakers were

vectors quantized using speaker’s codebook. Dynamic time warping was used to find the

correspondence between these vectors. These correspondences are then accumulated to find

a histogram, which is used as a weighting function to compute the mapping codebook from

source speaker to a target speaker. In the real time step, the speech was quantized using

speaker’s codebook, then all feature parameters are transformed with the mapping codebook

form training step, and finally the speech was synthesized with LPC vocoder. Figure 4.2

illustrates the block diagram of the procedure for generating a mapping codebook and the

conversion-synthesis step.

4.3.2 Dynamic Frequency Warping

The converted speech using mapping codebooks method has a voice quality turned out

to be poor. [48] propose a method of doing voice transformation based on PSOLA technique

(PSOLA stands for Pitch Synchronous Overlap and Add) to improve the quality of the

converted speech signal. In this work, the authors introduced dynamic frequency warping to

the voice transformation. Dynamic frequency warping (DFW ) attempts to compensate for

the differences between acoustic features spectral information of the source speaker and the

acoustic features of the target speaker by finding an optimal non-linear warping function [49].

While the changing in the vocal tract length produces a non-linear transformation of acoustic
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Fig. 4.2: Block Diagram for Mapping Codebooks Method
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parameters, DFW is closely related to the acoustic theory of speech production. They

extracted cepstral information form both source and target speakers to do frequency warping.

In [50, 51] and [52, 53], the authors proposed using DFW and bilinear frequency warping

(BLFW ), respectively. Because of the frequency warping method does not modify the

relative amplitude of the meaningful parts of the spectrum information, the accuracy and

quality of the converted speech signal is moderate.

The work in [51–53] achieved voice transformation in which frequency warping is

complemented with some type of amplitude scaling (AS) to compensate for the spectral

conversion inaccuracy and improve the spectral modification. AS modifies the vertical axis

of the frequency-warped spectra by means of corrective filters

4.3.3 Gaussian Mixture Model

Gaussian mixture model (GMM) is a model used in many pattern recognition techniques

[54], whose efficiency for text-independent speaker recognition and has been illustrated

by many studies [55, 56]. GMM may be the most popular method proposed for speech

conversion [57–61]. GMM is used in speech transformation because of its ability to model

the acoustic parameters of a speaker as a combination of several components [55].

Speech conversion is performed by computing a linear transformation function. While

using a general linear transformation limits the performance of the conversion process [62],

GMM is considered a practical solution by modeling the source data and the target data

with a Gaussian mixture model to produce transformation functions for each Gaussian.

Two approaches are mainly used for GMM-based speech transformation techniques:

first modeling the source information with a GMM [57,58] and second modeling the joint

density GMM (JDGMM) between the feature of the source speaker and the feature of the

target speaker [59–61]. The distribution of the source speaker’s spectral space is modeled

with a GMM to estimate the parameters (mean vectors and the covariance matrices). The

conversion function is typically assumed to be probabilistic piece-wise linear mapping function

for each Gaussian. The unknown parameters are calculated by solving the normal linear

conversion equations for a least squares solution [57,58].
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JDGMM is the most popular approach. The transformation function can be optimized

by using different objective function. The most popular functions are the Mean Square

Error (MSE) and the Maximum Likelihood Estimation (MLE). The combination of

the spectral source aligned vectors and the corresponding target aligned spectral vectors

is used to estimate GMM parameters for the joint density model by using Expectation

Maximization (EM) algorithm [62]. Both approaches need two separate stages (training

and online transformation stages) to do the transformation process. The computation of the

Gaussian distribution parameters is part of the training stage.

4.3.4 Neural Network Methods

Many researchers tried to apply neural network techniques to achieve speech transfor-

mation problem because of the general success of neural network (NN) technique in the

field of machine learning analyses and applications. While vocal tract shape between two

speakers is nonlinear and the neural networks are exceptionally good at learning nonlinear

models, NN was employed in mapping the source speech feature vectors into the feature

vectors of the target speaker [63].

An artificial neural network (ANN) form family of models inspired by biological neural

networks [64]. An ANN model organized as a set of layers that contains interconnected

nodes, where each node represents an artificial neuron, with weight associated with each

interconnection between two nodes [63]. The network is initialized with initial weights, then

the network adjusts its weights to establish a relationship between the input data and the

output data that comprise the training data. The network learn to estimate, classify, and

make predictions from new data based by training the network to find relationships between

input data and output data.

Work by M. Narendranath, [65], was considered as one of the first attempts of using

ANN to transform the source speaker formants to target speaker formants. In [66], the

authors proposed a method for voice conversion using NN with three layers. This method

based on LPC spectral features using radial basis function neural network (RBF ). However,

both techniques in [65,66], used carefully prepared trained data which prepared carefully.
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Also, for both the source and target speakers, they manually select the regions of vowels or

syllable. This is an inconvenient way to align correctly the source and target features for

real-world application scenarios.

In [67], the authors compare between using an ANN to achieve the voice conversion and

the state-of-the-art GMM. GMMs capture the joint distribution of the source features and

the target feature, while the work in [67] directly maps the spectral source feature information

onto the spectral target feature information. Also, with GMM they use Maximum likelihood

parameters generation (MLPG) to obtain a smooth trajectory of spectral features, while

the mapping with ANN provide best transformation results without using MLPG. Two

stages, training and online transformation, are used for the ANN to achieve the speech

transformation. During the training stage of the work in [67], 25 Mel-cepstral coefficients

are extracted from the recording source and target speakers, the back-propagation is used to

adjust the weights of the NN. At the online transformation, the features to be transformed

are propagated from input, first layer, until last layer. The new transformed features are

used to recreate the new converted speech.

In contrast to the traditional way of using GMM method, using restricted Boltzmann

machines (RBMs) was proposed in [68] as a probability density model to model the joint

distributions of the source spectral feature information and target spectral feature information,

where they replaced the RBM. The aim behind this step of replacing is to achieve better

capturing for the correlations between the joint spectral features of the source and target

speakers. After this work of using RBM, Nakashima et al. proposed using of two Deep

Belief Network (DBF ) networks connected by a simple feed-forward NN to build high-order

eigen spaces of the source/target speakers to achieve a high-order feature space that can be

converted [69].

4.4 Voice Transformation Process

4.4.1 Two-Level Dynamic Warping for the Transformation

Voice transformation is a topic that still has a lot to be explored. The approach taken
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here avoids the need to find acoustic parameters, such us pitch or formant model, or to

model the joint density between the feature of the source speaker and the feature of the

target speaker, instead deals directly with spectral information. The transformation is

accomplished using a two-level dynamic warp (DW ). Based on the two-level DW it is

straightforward to map the source speech to target speech when both are available.

It is obvious from the name “dynamic time warping” that DTW, or outer dynamic

warping, temporally aligns block of features to compensate for different speech rates. For

example, temporal alignment between male speech segments and female speech segments

by comparing certain features occurring as a function of time. Dynamic frequency warping

(DFW) or “inner dynamic warping” can also be used to perform spectral alignment based

on spectral magnitudes of blocks of speech data, such as aligning spectral features of male

speaker to spectral features of female speaker. In this work, the combination of inner

and outer warping, simply referred to “dynamic warping” or DW, is used to achieve the

transformation.

Our speech transformation process starts with a two speakers, source speaker and target

speaker. Following (2.6), let S2 be the sequence of target speech feature vectors and S1 be the

sequence of source speech feature vectors. The minimum cost, (2.8), between sequences S1

and S2 is recursively computed, allowing some alignment motion between blocks of the two

different users in both the time and frequency domains. At the end of that specific portion

of speech sequences, time warping produces an overall warped metric distance dT (T1, T2),

(2.6), between the sequences S1 and S2, which may be denoted as dT (S1, S2), where the

subscript T emphasizes that this is warping in time. This is suggested in Figure 4.3. This

DTW accounts for temporal shifts due to the rate of speaking differences between the two

speakers. The output of this DTW is the temporal alignment of the source signal with

respect to the target signal.

The dist(s1(k1), s2(k2)) in (2.9) represents the metric distance between elements of the

frequency feature vectors. In this work, we use spectral feature vectors computed as the

positive frequency components of FFT of windowed data. The metric distance used looks
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Fig. 4.3: Distnce Measure for Outer Dynamic Warping for VT

only at the magnitude of the spectral information, so

dist(s1(k1), s2(k2)) = | |s1(k1)| − |s2(k2)| |. (4.1)

At the end of frequency warping process, the returned metric distance between spectral

vectors to be used in (2.8) is computed as

d(s1(k1, :), s2(k2, :))
4
= dF (K,K), (4.2)

where K is the number of elements in each spectral feature vector.

At the end of the temporal alignment process, DTW produces a sequence of indices

aT = (aT (1), aT (2), . . . , aT (N)) and bT = (bT (1), bT (2), . . . , bT (N)), which are called the

temporal warping function paths. Also, DFW produces another sequence of indices aF =

(aF (1), aF (2), . . . , aF (M)) and bF = (bF (1), bF (2), . . . , bF (M)), which are called the spectral

warping function paths. The method for doing two-level dynamic warping to achieve voice

transformation is given in Algorithm 4.1. The difference between this one and Algorithm

2.1, Chapter 2, was highlighted in blue color.
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Algorithm 4.1 Dynamic Wrapping (DW ) for Voice Transformation

Input:
First spectral sequence, S1 = {s1(1, 1 : nT ), s1(2, 1 : nT ), . . . , s1(nF , 1 : nT )}
Second spectral sequence, S2 = {s2(1, 1 : mT ), s1(2, 1 : mT ), . . . , s1(mF , 1 : mT )}
window size wT for DTW process
window size wF for DFW process

Output:
Distance between S1 and S2
Indices a(N) and b(N) for Temporal alignment
Indices b(M) and b(M) for spectral alignment

Begin
Initialize DTW array, DTW = array[0 . . . nT , 0 . . .mT ]
Initialize DFW array, DFW = array[0 . . . nS , 0 . . .mF ]
Adapt window size, wT = max(wT , abs(nT −mT ))
For iT = 1 to nT

For jT = 1 to mT

DTW [iT , jT ] =∞
End For jT

End For iT
Set DTW [0, 0] = 0
For iF = 1 to nF

For jF = 1 to mF

DTW [iF , jF ] =∞
End For jF

End For iF
Set DFW [0, 0] = 0
For iT = 1 to nT

For jT = max(1, iT − wT ) to min(mT , iT + wT )
Adapt window size, wF = max(wF , abs(nS −mF ))
For iF = 1 to nF

For jF = max(1, iF − wF ) to min(mF , iF + wF )
cost = abs(abs(S1(iT , iF )))− (abs(S2(jT , jF )))
DFW [iF , jF ] := cost+minimum(DTW [iF − 1, jF ],

DFW [iF , jF − 1],
DFW [iF − 1, jF − 1])

End For jF
End For iF
Searching minimum path through DFW [iF , jF ], save aF , bF
costnew = DFW [nF ,mF ]
DTW [iT , jT ] := costnew +minimum(DTW [iT − 1, jT ],

DTW [iT , jT − 1],
DTW [iT − 1, jT − 1])

End For jT
End For iT
Searching minimum path through DTW [iT , jT ], save aT , bT
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4.4.2 Speech Database

Current voice conversion techniques need a parallel database [59,70] in which the source

and target speakers record the same set of utterances. In this work, the speech data was

carried out on CMU ARCTIC database. The CMU ARCTIC databases were constructed at

the Language Technologies Institute at Carnegie Mellon University as phonetically balanced,

designed for the purpose of speech synthesis research [71]. The ARCTIC database consists

of seven primary sets of recordings, recorded by two US males, one Canadian male with

English accent, one Scottish male with English accent, one Indian male, and two US females.

Each speaker recorded a set of 1132 English utterances, most being between one and four

seconds long. In experiments presented here one US male and one US female are chosen to

do the voice transformation from male to female and to apply phase reconstruction on the

output transformed voice.

4.4.3 Spectral Feature Extraction

In order to perform spectral mapping, the network must be fed with spectra from source

and target speakers utterances or some representation of it. To extract features for this

experiment, speech data was sampled at 16000 samples/sec. These feature vectors that were

used in the two-level DW were considered to be the positive-frequency spectral information

in the frequency domain, calculated using the FFT. Each sentence was temporally segmented

into 32-ms segments, using a Hamming window with 16-ms overlapping, zero-padded, then

transformed using a 512-point FFT. The K = 256 positive frequency spectral elements in

the frequency domain were used as a feature vector.

4.4.4 Analysis

Two-level DW was applied on the spectral magnitudes feature vectors that are extracted

from the FFT for each 32-ms segment of a phrase with 50% overlap windowed using a

Hamming window. When the temporal alignment reaches the end of the specific speech

segment, DTW produces a sequence of indices (aT and bT ). These indices describe the
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temporal alignment for source speech signal as

s1TA(:, aT (i)) = s1(:, bT (i))), i = 1, 2, . . . , N. (4.3)

such that the new temporal aligned spectral information s1TA(t1, :) and s2(t2, :) are as similar

as possible (e.g., peaks and valleys of s1 align with peaks and valleys, respectively, of s2.)

At every stage of the temporal alignment, DFW was applied to do the spectral alignment

and to find the sequence of path indices (aF and bF ). The temporally aligned source spectrum

vector information of speaker s1TA is transformed to spectrally match the target spectrum

information of speaker s2 by creating a modified source spectrum information of speaker ŝ1

according to

ŝ1TF (aF (i)) = s1TA(bF (i)), i = 1, 2, . . . ,M. (4.4)

This spectral alignment map drags spectral components of source blocks to produce trans-

formed speech in the frequency domain. This data is inverse Fourier transformed and added

in sequence to produce the transformed signal (ŝ1warped
). After warping, filtering is performed

to mitigate signal processing artifacts.

4.4.5 Results

Figure 4.4(a) shows a typical spectrogram for male speaker using the phrase “Author

of the danger trail, Philip Steels, etc.” from the CMU ARCTIC database (Press ”Play” box

to play the male sound Play ). Figure 4.4(b) shows the spectrogram for female speaker

for the same phrase mentioned above (Press ”Play” box to play the female sound Play ).

Figure 4.4(c) shows the voice transformation from male speaker to female speaker using

same phrase (Press ”Play” box to play the transformed voice form male to female sounds

Play ). From Figure 4.4(a) and (b), we can see on a large scale we have some big motion,

and on a fine scale we have small motion lines. These small lines are due to pitch and they

are well defined lines but the warped signal in Figure 4.4(c) generally shows the distribution

male.wav
female.wav
phase0no.wav

null

3.0824523


null

3.2914329


null

3.2653103
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of the energy about right but the pitch lines are not that sharp and it is fazeier than the

signals in Figure 4.4(a) and (b).

Figure 4.5(a) shows the spectral feature information for one segment of speech for female

speaker. Figure 4.5(b) shows the spectral feature information for one time aligned segment

(aligned with the segment shown in Figure 4.5(a)) of speech for male speaker. By applying

the DFW, the peaks and valleys of the male spectrum are aligned to the locations of the

peaks and valleys of the female spectrum, this process portrayed by Figure 4.5(c), which

shows clearly the time aligned spectral segment for male speaker be spectrally aligned with

the corresponding spectral segment shown in Figure 4.5(a). Figure 4.5(c) shows the way

that the bins were connected within one segment (small green circles on the graph), and this

may contribute to the distortion in the warped signal. Acoustically, the transformed signal,

Figure 4.4(c), looks like female signal but the final sound has significant signal processing

artifacts. Press ”Play” box to play the transformed sound Play .

4.5 Effectiveness of Phase Reconstruction on Warped Speech

The method described above for achieving speech transformation from one speaker’s

voice to another, which operates by moving speech magnitude information from a source

speaker to a target speaker using a process involving dynamic warping in both the time

domain and the frequency domain, involves only spectral magnitudes. This has been found

to introduce significant deleterious signal processing artifacts. These are greatly ameliorated

when phase information is reconstructed from the magnitude-only signals and improves

the quality of the transformed speech. This process demonstrates the importance of phase

in some speech processing tasks. This improvment flies in the face of convention, since

conventional knowledge was considered phase information in speech is not significant to

speech intelligibility.

Phase information in speech signal has usually been neglected in speech synthesis [72].

But with the increasing requirements of speech signal quality [73], phase effects should be

considered [74,75], as we have done here.

Many phase reconstruction algorithms have been proposed [76]. Those algorithms

waled.mp3

null

3.2914329
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(a) Male Spectrogram Information
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(c) Warped Male to Female

Fig. 4.4: Spectrogram for Male, Female and Warped Male to Female
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basically can be divided into two groups. The first group of algorithms processes the entire

signal offline. The second group works in (near) real-time [77]. In this work, the Griffin-Lim

algorithm (GLA), [76], was applied to do phase reconstruction on an entire signal because it

is based only on the consistency and does not take any prior knowledge about the target

signal into account. This is described below.

4.5.1 Phase Reconstruction Process

GLA is arguably the most generic algorithm for phase reconstruction [77]. GLA phase

reconstruction is computationally simple and is based on minimizing the squared error

between STFT magnitude of |Ŝ1warped
(w)| and |Ŝ1TF (w)| in each iteration.

Let ŝi1warped
refers to the estimated warped transformed signal ŝ1warped

after ith iteration.

The new estimate of ŝi+1
1warped

at iteration (i+ 1) is computed as follows:

• Find the STFT of the ŝi1warped
at iteration i, (Ŝ1warped

(w)i).

• Find the magnitudes of Ŝ1warped
(w)i and Ŝ1TF (w).

• Replace the magnitude of the Ŝ1warped
(w)i by the magnitude of the modified source

spectrum Ŝ1TF (w).

• Compute the new value of Ŝ1warped
(w)i as

Ŝi1warped
(w)new = |Ŝ1TF (w)| × exp(j]Ŝi1warped

(w)). (4.5)

• The updated signal is

ŝi+1
1warped

=
Hw ×F−1(Ŝi1warped

(w)new)

H2
w

(4.6)

where Hw is the length of Hamming analysis window used in the STFT.

The algorithm is portrayed in Figure 4.6. It can be shown [76] that the algorithm in

Figure 4.6 decreases the following distance measure between |Ŝ1warped
(w)| and |Ŝ1TF (w)|.
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dist[ŝ1warped
, |Ŝ1TF (w)|] =

1

2π

∫ π

w=−π
[|Ŝ1warped

(w)| − |Ŝ1TF (w)|]2dw. (4.7)

4.5.2 Experiment

The phase reconstruction experiment was carried out on CMU ARCTIC database. From

that database, for test purposes we chose the following phrase: “Author of the danger trail,

Philip Steels, etc.”, which is spoken by a US male and a US female.

Figure 4.7 shows a typical spectrogram for a male speaker (part (a)), also a typical

spectrogram for a female speaker (part (b)). Figure 4.7(c) shows a typical spectrogram

for a warped male speaker using magnitude only information without applying phase

reconstruction, also Figure 4.7(d) shows the spectrogram for the warped speech with the

GLA phase reconstruction (Press ”Play” box to play the transformed voice form male to

female sounds using phase reconstruction algorithm Play ). The pitch lines are somewhat

stronger in the GLA phase reconstruction.

Figure 4.8(a) shows the spectral feature information for one time aligned segment of

speech for a male speaker, and Figure 4.8(b) also shows the spectral feature information

for one segment of speech for a female speaker. Figure 4.8(c), shows that the locations of

peaks and valleys of male spectrum for that specific segment are aligned to the locations of

the peaks and valleys of the female spectrum due to using DFW process of the two-level

dynamic warping (inner process) without and with using phase reconstruction algorithm,

respectively. The effects of using the phase reconstruction algorithm or not. Figure 4.8(c)

shows the way that the bins were connected within one segment (small green circles on the

graph). It is very clear that there is phase mismatch, and that phase mismatch contribute

to the distortion in the warped signal. Figure 4.8(d) shows how the phase reconstruction

algorithm takes care of the phase between bins within that specific segment (small green

circles on the graph). The final sound of this transformation using GLA phase reconstruction

is much better than if not using phase reconstruction algorithm. The whole process for the

phase0yes.wav

null

3.2914329
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ŝi+1
1warped

=
Hw×F−1(Ŝi

1warped
(w)new)
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w

Ŝi
1warped

(w)new = |Ŝ1TF
(w)| × exp(]Ŝi

1warped
(w))

ŝi1warped

ŝi+1
1warped

Replacing Magnitude Step

Signal Estimation Step

Initial estimate of ŝ1warped

Given: |Ŝ1TF
(w)|

Initialization Step

Fig. 4.6: Griffin-Lim (GLA) Algorithm
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(a) Male Spectrogram Information

0.5 1 1.5 2 2.5 3

Time (s)

0

1

2

3

4

5

6

7

8

F
re

q
u
e
n
c
y
 (

k
H

z
)

-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/H
z
)

(b) Female Spectrogram Information
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(c) Warped Male to Female no GLA
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Fig. 4.7: Spectrogram Information for Male, Female and Warped Male to Female with and
without GLA
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Fig. 4.8: One Spectral Segment Feature for Male, Female and Warped Male to Female with
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speech transformation using two-level DW with the phase reconstruction is shown in Figure

4.9 and Algorithm 4.2.

4.6 Spectral Warping using ANN

Speech conversion has become an area of high interest in speech signal processing. Most

of the traditional voice conversion techniques assume availability of parallel training data. In

other words, the mapping function is computed on paired utterances of the same linguistic

content spoken by source and target speaker [78]. The speech transformation approach

described above is accomplished using a two-level dynamic warp (DW) when source speaker

and target speaker are available which avoids the need to find acoustic parameters. But if

the target speech is already available saying the desired target sentence, why bother with the

transformation? A more challenging, but realistic, setting is when the target is not available

saying the desired statement. Thus, a second phase of this transformation approach is to

train an Artificial Neural Network (ANN ) to produce the spectral warping function from

only the source speaker information, based upon which the source speech may be warped to

the target speech.

Machine learning (ML) is the technique of using statistical models for computers to

learn certain tasks without explicitly giving the computer instructions on how to perform

the task. Because of the success of the neural techniques in the field of machine learning

and it is a fast growing research area, many researchers tried to apply and used some of the

techniques to the speech transformation application, these networks are exceptionally good

at learning of non-linear models [67,79].

4.7 Artificial Neural Network

An Artificial neural network (ANN) is a model that tries to mimic the behavior of the

human brain. The term neural network originates from as far back as the 1940’s and was a

first attempt to describe the human brain in a mathematical way [80, 81]. An ANN consists

of many interconnected processing nodes that computes responses based on inputs. Each

node represents the model of an artificial neuron, and there is an associated weight for each
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Fig. 4.9: Block Diagram of Voice Transformation using two level DW

Algorithm 4.2 Whole Voice Transformation Process using two-level DW

Input:
Male speech information, source speech
Female speech information, target speech

Output:
Warped speech

Begin
Function: Identifying Starting and ending points

source speech clip = identify start end function(source speech)
target speech clip = identify start end function(target speech)

Function: Spectral feature extraction
S1 = spect function(source speech clip)
S2 = spect function(target speech clip)

Function: Algorithm 4.1
[(aT ,bT ), (aF ,bF )] = dtw algorithm(S2 = target spect, S=source spect)

Function: Time Alignment step
S1TA(:,aT ) = S1(:,bT )

Function: Spectral Alignment step
For iF = 1 to size((S1TA), 2)

S1TF (i,aF ) = S1TA(i,bF )
End iF

Function: Phase Reconstruction Step
warped speech = phase algorithm(S1TF )

Play warped speech
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interconnection between the neuron.

In the last few years, ANN models with different topologies and architectures have been

used to solve a variety of tasks, like in language modeling, text-to-speech synthesis, also

have perform different pattern recognition tasks.

4.8 Proposed Method of Spectral Transformation using ANN

In this work, a multi-layer feedforward neural network is used to obtain the mapping

function between the input and the output vectors. The two-level dynamic warping procedure

described above was used to obtain training data to train an artificial neural network. The

ANN input data was spectral feature vectors from the source speaker. The ANN output data

was spectral warping path information aF and bF , which can be used to do the spectral

warping function.

This experiment was carried out on CMU-ARCTIC database, the first (600 − 1000)

phrases recorded by a US male and the corresponding (600− 1000) phrases recorded by a

US female are chosen to achieve the voice transformation form male (source) speaker to

female (target) speaker and to train the ANN network. Speech data was sampled at 16000

samples/sec. These feature vectors that were used in the two-level DW were considered to be

the positive-frequency spectral information in the frequency domain that are extracted using

the FFT. Each sentence was temporally segmented into 32-ms segments, using a Hamming

window with 16-ms overlapping, zero-padded, then transformed using a 512-point FFT. The

K = 256 positive frequency spectral elements in the frequency domain were used as a feature

vector.

Training data is obtained as portrayed in Figure 4.10, as follows: Source and target

spectral information are temporally aligned using DTW. The source spectral features are

temporally aligned with respect to the target spectral features, these time aligned spectral

features are used as an input to the ANN. The warping paths aF and bF computed by

the two-level DW when it calls the inner spectral warping are saved as training data, this

procedure produces a pool of training data as shown in 4.10. The ANN is trained to map a

sequence of time aligned source speaker’s spectral feature information to the spectral warping
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(c) Training a neural network-Three input spectral vectors

Fig. 4.10: Making DFW training data, and using this to train a neural network
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path information (Once the training is complete, we get a weight matrix that represents the

mapping function between the source and the target speaker spectral). A generalized back

propagation learning is applied to adjust the weights matrix of the desired network such

as to minimize the mean square error between the calculated and actual spectral warping

paths (aF and bF ).

4.8.1 Interpolating the data to achieve constant length

Given a magnitude spectrum as the input (as discussed above), the length of the warping

paths aF and bF may be different from one segment of speech to another. Since the length of

the warping paths aF and bF may vary form phrase to phrase, this poses a problem for the

neural network. In order to have the neural network be able to have a constant output length

(without zero-padding the output data, which would introduce neural network artifacts) the

aF and bF information are interpolated to produce a modified aF and bF which is the same

(maximum) length for all segments of the speech vector. In our experiments the maximum

length of the warping paths was 482. This interpolation is computed as described here using

an example, which employs Matlab-liked notation and functions.

• Let a = (1, 2, 3, 4, 4, 5) (length of a is 6), which has the indices of [1, 2, 3, 4, 5, 6]. (That

is, 1-based indexing.) Let the new length is maxindex = 10. (maxindex is the maximum

length of vector a in the training data set.)

• Create a new set of interpolated indices (generally with non-integer values) as

ñ = [1 : (max
index

)]× length(a)

maxindex

In the example, the new indices are ñ = [1, 1.2, 1.8, 2.4, 3, 3.6, 4.2, 4.8, 5.4, 6]. The new

indices still fall within the range of 1 to 6, but there are now maxindex index values.

• Interpolate the a values using the interpolated indices as

ã = interpolate(a, [1 : length(a)], ñ)
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In this example the new ã values are ã = (1, 1.5556, 2.1111, 2.6667, 3.2222, 3.7778,

4.000, 4.000, 4.4444, 5).

The above process can be repeated for function path b to find b̃. Figure 4.11 illustrates

normal function paths for a and b with interpolated paths. (ã and b̃ respectively.)

In order to get the original length of the warping paths a and b, reverse interpolation

was applied to the estimated â and b̂. This reversing was applied as described here using an

example.

• Let ã = (1, 1.5556, 2.1111, 2.6667, 3.2222, 3.7778, 4.000, 4.000, 4.4444, 5) (length of ã is

10). Suppose the original length of a is length(a) = 6 (as in the previous example).

• Create a new set of reverse interpolated indices as

ñrevs = [1 : length(a)]× length(ã)

length(a)

In the example, the new reversing indices are ñrevs = [1, 3.3333, 5, 6.6667, 8.3333, 10].

• Reverse interpolation of the ã values using reverse interpolated indices are

ãrevs = interpolate(ã, [1 : length(ã)], ñrevs)

In this example the new ãrevs values are ãrevs = (1, 2, 3, 3.8667, 4.1333, 5).

The above process can be repeated for function path b̃ to find b̃revs. The non integer index

values of ãrevs and b̃revs are rounding to get integer values.

4.9 Mel-Cepstral Distortion as an Objective Measure

In this work, we use MCD to evaluate the quality of the transformed speech, and to be

able to compare our work to other work in the literature. Mel-Cepstral Distortion (MCD)

has been used as an objective error measure for evaluating the quality of synthetic voice [59].

It is a measure of the difference between two sequences of mel-cepstra. MCD is related

to filter characteristics and hence is an important measure to check the performance of
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mapping obtained by ANN network. MCD is essentially a weighted Euclidean distance, that

is defined by:

MCD = (10/ln10)

√√√√2
25∑
i=1

(mc
(t)
i −mc

(w)
i )2 (4.8)

where mc
(t)
i is the ith mel-cepstral of the a frame of target speech,and mc

(w)
i is the ith

mel-cepstral of the corresponding frame in the warped speech signal.

4.10 ANN Architecture and Experiment

The experiment, of training the ANN to estimate the warping paths aF and bF , was

conducted in four phases. Phase one was conducted to validate the general question, can

a neural network learn the transformation from the speaker warping paths. It is thus

a general proof of concept. Phase two was conducted on a big data to achieve voice

transformation. Phase three was conducted using clustering method to improve the quality

of the transformation. Phase four was conducted to see who the convolutional neural network

works with this application. The important task in building the ANN based voice conversion

system is to find an optimal architecture for ANN. To experiment with different ANN

architectures we considered, as mentioned in section 4.6.2, the source male time aligned

spectral features are used as an input to the ANN and the warping paths aF and bF are

used as an output to the ANN in two main architectures:

• First Architecture: One-Input/One-Output (1/IP − 1/OP ). As shown in Figure

4.12(a), we considered one source time aligned spectral features vector (s1TA(:, i),

i = 1, . . . , number of all source time aligned vectors) of length 256 as an input and

the corresponding warping paths (aF(i),bF(i))actual as a training data to the ANN

at each iteration of training. Each warping path has length equal to 482, where the

total length of the output vector used in this experiment is 964. The length 482 was

calculated using the interpolation way as shown in section 6.4.2. This ANN (1/IP-

1/OP) architecture shown in Figure 4.12(a) was used to capture the transformation
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Fig. 4.12: Block diagram of ANN of 1/IP − 1/OP architecture

function for mapping the source time aligned vectors onto the corresponding warping

paths. Once the training is complete, we get a weight matrix which can be used to

estimate the corresponding wrapping paths (aF(i),bF(i))estimated.

• Second Architecture: Three-Input/One-Output (3/IP − 1/OP ). As shown in

Figure 4.13(b), instead of using one one source time aligned spectral features vector

of length 256 as an input to the ANN, we considered three consecutive time aligned

spectral vectors (s1TA(:, i), s1TA(:, i+ 1), and s1TA(:, i+ 2), where i = 1, . . . , number

of all source time aligned vectors) of the source information of length 768. Also,

the warping paths corresponding with (i+ 1)th source time aligned spectral features

vector. This ANN 3/IP-1/OP architecture shown in Figure 4.13(b) used to capture the

transformation function for mapping the source time aligned vectors onto corresponding

warping paths. Once the training is complete, we get a weight matrix which can be

used to estimate the corresponding wrapping paths (aF(i+ 1),bF(i+ 1))estimated. The

reason behind choosing this kind of architecture is that having more contexts helps

understand how it can warp, and then explore the evidence that we have got to support

our hypothesis.
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Fig. 4.13: Block diagram of ANN of 3/IP − 1/OP architecture

4.10.1 Phase One

In this phase, only one phrase was selected to be trained using the two architectures

mentioned above to achieve voice transformation. This phase was contacted to decide which

architecture for ANN that achieve good quality for the process of voice transformation to

continue with it to the next phases. It also validates the general question, can a neural

network learn the transformation from the speaker warping paths. It is thus a general proof

of concept.

The selected phrase, “Author of the danger trail, Philip Steels, etc.” was selected for

the CMU-ARCTIC database. After identifying the starting point and ending point of the

selected phrase, feature information are extracted first from the FFT for each 32-ms segment

of speech with 50% overlap windowed using a Hamming window. Temporal alignment

(DTW) was done on the source spectral feature vectors with respect to the target female

signals. DFW was applied to do the spectral alignment and to find the sequence of path

indices (aF and bF ), the process of doing two-level DW was done using Matlab program.

After that the spectral data was arranged in a suitable shape using Matlab, training was

performed by Tensorflow and Keras using the Python language to estimate the warping

paths aF and bF .

To get an optimal architecture, we have experimented both architectures on 5-layer,

6-layer, 7-layer, 8-layer, 9-layer, 10-layer, 20-layer and 21-layer networks. The architectures
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are provided with number of nodes in each layer and the output function used for that

layer in Table 4.1. For instance, 256L 500N 900N 1000N 964L means that it’s a 5-layer

network with 256 inputs, 964 output nodes with 500, 900, and 1000 nodes in the hidden

layers. L represents “linear” output function and N represents “ReLU” output function

(activation function). From the fields of phase one in table 4.1, we see that the nineteen

layers 3/IP-1/OP architecture provides better MCD results when compared with others.

Hence, for all the remaining voice transformation experiments reported in the next phases,

the nineteen layers 3/IP-1/OP architecture.

Figure 4.14 shows a typical spectrogram information for a male speaker (part (a)),

a typical spectrogram information for a female speaker (part (b)), a typical spectrogram

information for a warped male speaker using ANN of nineteen layers and 1/Ip-1/OP

architecture with a phase reconstruction algorithm (part (c)), and a typical spectrogram

information for a warped male speaker using ANN of the selected number of layers and

3/IP-1/OP architecture with a phase reconstruction algorithm (part (d)). Acoustically, the

warped signal in part (d) is clearly looks like the female signal more than the result in part

(c) and looks like the result in Figure 4.7(d). Also, the pitch lines in part (d) is stronger

than the pitch lines in part (c). The final sound of that transformation in part (d) ( Play )

is much better than the sound in part (c) ( Play ).

Figures 4.15 and 4.16 show how the ANN has learned a warping path (the a warping

data) at various segments of the selected speech signal for different training iterations. Figure

4.15(b), which produced using the nineteen layers of the ANN 3/IP-1/OP architecture,

shows more matching between the DW path and the NN-learned path than Figure 4.15(a)

which produced using the nineteen layers of the ANN 1/IP-1/OP architecture. The DW

path is shown in blue and the NN-learned path is in orange. As Figure 4.15(b) shows the

network has learned the data so well that the training data (blue) is indistinguishable form

the NN-learned data. Figures 4.16 shows how the ANN has learned a b warping path at

various segments of the selected speech signal after 5000 training iterations. Again excellent

match is achieved with NN-3/IP-1/Op architecture (Figure 4.15(b)). As before, the DW

phase0yes.wav
phrase1phase1.wav

null

3.2914329


null

3.2914329
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path is shown in blue and the NN-learned path is in orange. Figure 4.17 shows the mean

square error between the true values of the warping paths (aF and bF ), obtained form

inner DFW, and the estimated warping paths (ãF,estimated,revs and b̃F,estimated,revs) obtained

form training the ANN for the selected architecture (3/IP-1/OP). The training takes 5000

training iterations to achieve this performance.

According to the result shown in Figures 4.14(d), 4.15(d) and 4.16(d). we decide that

the voice transformation reported in the next phases of this experiment should be based on

the nineteen layers 3/IP-1/OP architecture.

Phase
No. Architecture ANN Architecture MCD[dB]

No. of Layers Type

P
h

a
se

O
n

e

5 1/IP-1/OP 256L 500N 900N 1000N
20.2

964L

5 1/IP-1/OP 256L 600N 1200N 1000N
20.5

964L

6 1/IP-1/OP 256L 600N 1000N 1500N 1000N
18.01

964L

7 1/IP-1/OP 256L 600N 1000N 1500N 2000N 18.002

1500N 964L

19

1/IP-1/OP 500L 1500N 2500N 3500N

3.3

4500N 5040N 6459N 7459N

8459N 9459N 10459N 8459N

7939N 6939N 5500N 4500N

3500N 2500N 964L

20

1/IP-1/OP 500L 1500N 2500N 3500N 4500N

5.5

5040N 6459N 7459N 8459N

9459N 10459N 9459N 8459N

7939N 6939N 5500N 4500N

Continued on next page
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Phase
No. Architecture ANN Architecture MCD[dB]

No. of Layers Type

3500N 2500N 964L

5 3/IP-1/OP 768L 4500N 6500N 6939N 964L 16.85

P
h

a
se

O
n

e

6
3/IP-1/OP 768L 4500N 6500N 7040N

15.3
6939N 964L

7
3/IP-1/OP 768L 4500N 6500N 8040N 8939N

12.92
6939N 964L

8
3/IP-1/OP 768L 3500N 4500N 5040N

8.8
6459N 5939N 4939N 964L

8
3/IP-1/OP 768L 4500N 5500N 6040N

9.2
7459N 6939N 4939N 964L

8 3/IP-1/OP 768L 4500N 6500N 7040N 7

9459N 7939N 6939N 964L

8
3/IP-1/OP 768L 3000N 5500N 6040N

6.8
7459N 6939N 5939N 964L

9
3/IP-1/OP 768L 4500N 6500N 7040N

7.5
9459N 8939N 7939N 6939N 964L

10
3/IP-1/OP 768L 4500N 6500N 7040N 9459N

4.7
10459N 8939N 7939N 6939N 964L

3/IP-1/OP 1500L 2500N 3500N 4500N

19 6500N 7040N 8459N 9459N 2.55

10459N 10459N 9459N 8459N

7939N 6939N 5500N 4500N

3500N 2500N 964L

20

3/IP-1/OP 1500L 2500N 3500N 4500N

3.56500N 7040N 8459N 9459N

Continued on next page
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Phase
No. Architecture ANN Architecture MCD[dB]

No. of Layers Type

10459N 11459N 10459N 9459N

8459N 7939N 6939N 5500N

4500N 3500N 2500N 964L

P
h

a
se

T
w

o

19

1/IP-1/OP 500L 1500N 2500N 3500N

5.4

4500N 5040N 6459N 7459N

8459N 9459N 10459N 8459N

7939N 6939N 5500N 4500N

3500N 2500N 964L

19 3/IP-1/OP 1500L 2500N 3500N 4500N 4.8

6500N 7040N 8459N 9459N

10459N 10459N 9459N 8459N

7939N 6939N 5500N 4500N

3500N 2500N 964L

P
h

a
se

T
h

re
e

S
ix
-C

lu
ste

r
s.E

a
c
h

C
lu

ste
r
tr
a
in

e
d

fo
r
1
9

la
y
e
r
s

1/IP-1/OP 500L 1500N 2500N 3500N

3.3

4500N 5040N 6459N 7459N

8459N 9459N 10459N 8459N

7939N 6939N 5500N 4500N

3500N 2500N 964L

3/IP-1/OP 1500L 2500N 3500N 4500N

2.8

6500N 7040N 8459N 9459N

10459N 10459N 9459N 8459N

7939N 6939N 5500N 4500N

3500N 2500N 964L

P
h

a
se

F
o
u

r 7

1/IP-1/OP 256L 64N(k=3) 100N(k=3)

13.33150N(k=3) 100N(k=3) FL D100N

Continued on next page
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Phase
No. Architecture ANN Architecture MCD[dB]

No. of Layers Type

964L

5 3/IP-1/OP 768L 64N(k=3) 100N(k=3) FL 13.5

D100N 964L

Table 4.1: MCD’s Obtained for Different Architectures using on

4.10.2 Phase Two:

In this phase, we considered 600 phrases for training and a separate set of 120 for

testing to train the selected NN architecture to achieve general voice transformation, that is

not learning and achieving voice conversion on one selected phrase as we did in phase one.

As described in Section 4.6.2, the selected 600 phrases for each speaker were recorded by a

US male and US Female and they are selected form the CMU-ARCTIC database. After

identifying the starting point and ending point of the selected phrases, feature information are

extracted first from the FFT for each 32-ms segment of speech with 50% overlap windowed

using a Hamming window. Temporal alignment (DTW) was done on the source spectral

feature vectors with respect to the target female signals. DFW was applied to do the spectral

alignment and to find the sequence of path indices (aF and bF ) for each segment, the

process of doing two-level DW was done using Matlab program. After that the data was

arranged in a suitable shape, using Matlab, and trained with the selected NN architecture

for 10000 iterations with Tensorflow and Keras using Python language and tested for the

phrase chosen in phase one (this phrase was excluded form the training set and testing set).

Figure 4.18 shows the spectrogram information for a male speaker (part (a)), a typical

spectrogram information for a female speaker (part (b)), a typical spectrogram information

for a warped male speaker using ANN of the selected architecture (nineteen layers and

3/IP-1/OP architecture) for the same phrase used in phase one after the network reached

the 5000 iterations with a phase reconstruction algorithm (part (c)), and the spectrogram
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(a) Male Spectrogram Information
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(b) Female Spectrogram Information
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(c) Warped Male Spectrogram Information, Architecture 1
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(d) Warped Male Spectrogram Information, Architecture 2

Fig. 4.14: Spectrogram Information for Warped Male Speaker, Phase One
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(a) Warping Path a Produced using 1/IP-1/OP Architecture

(b) Warping Path a Produced using 3/IP-1/OP Architecture

Fig. 4.15: Learned Warping Path a, Phase One
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(a) Warping Path b Produced using 1/IP-1/OP Architecture

(b) Warping Path b Produced using 3/IP-1/OP Architecture

Fig. 4.16: Learned Warping Path b, Phase One
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Fig. 4.17: Mean Squared Error (Learning Curve), Phase One

information for a warped male speaker using ANN of the selected number of layers and

architecture with a phase reconstruction algorithm for the same phrase used in phase one

after the network reached 10000 iterations (part (d)). Acoustically, the warped signal in

part (d) is clearly looks like the female signal more than the result in part (c). The final

sound of that transformation in part (d) ( Play ) is much better than the sound in part (c)

( Play ) but with some signal processing artifacts. Also the pitch lines in part (d) is not that

sharp.

Figures 4.19 shows how the ANN has learned a warping path (the a warping data) at

various segments of the selected speech signal at various points along the 10000 training

iterations. Figure 4.19(a) was produced using the selected layers and architecture at 500

training iterations. Figure 4.19(b) produced using the selected network at 2500 training

iterations. Figure 4.19(c) produced using the same selected layers and same architecture at

5000 training iterations. Finally, figure 4.19(d) produced by trained the selected network at

10000 training iterations. Figure 4.19(d) shows more matching between the DW path and

the learned path than Figure 4.19(a),(b) and (c). The DW path is shown in blue and the

learned path is in orange. By this point, many of the warping functions have been learned

well, but there are still a significant number that have not been learned well.

phase2.wav
phrase1phase2.wav

null

3.343678


null

3.2914329
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(a) Male Spectrogram Information
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(b) Female Spectrogram Information
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(c) Warped Male Spectrogram Information, 5000 iterations
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(d) Warped Male Spectrogram Information, 10000 iterations

Fig. 4.18: Spectrogram Information for Warped Male Speaker, Phase Two
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(a) Warping Path a, 500 iterations

(b) Warping Path a, 2500 iterations
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(c) Warping Path a, 5000 iterations

(d) Warping Path a, 10000 iterations

Fig. 4.19: Learned Warping Path a, Phase Two
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Figures 4.20 shows how the ANN has learned a b warping path at various segments

of the selected speech signal at different training iterations. Figure 4.20(a) produced at

500 training iterations, Figure 4.20(b) generated at 2500 training iterations, Figure 4.20(c)

produced at 5000 training iterations and Figure 4.20(d) produced by trained the selected

network for 10000 training iterations. Again, more learning matching with NN-3/IP-1/Op

architecture (Figure 4.20(d)) for 10000 iterations than other NN-learned paths generated for

different training iterations. The DW path is shown in blue and the NN-learned path is in

orange. Figure 4.21 shows the mean square error between the true values of the warping

paths (a and b) and the estimated one. The MCD values for this phase were reported in

the fields of phase two in Table 4.1.

4.10.3 Phase Three

While the results of phase two were promising, there was still enough error on enough

warping path estimates that it was determined to direct the neural network more by

presenting data that has been clustered. Several neural networks were trained each to be

responsive to data pertaining to a particular cluster.

Cluster analysis, or clustering, is an unsupervised machine learning task that involves

the grouping of data points. Given a set of data points, clustering algorithm can be used to

classify each data point into a specific group. Many clustering algorithms follow a different

set of rules for defining the similarity or distance among data points in an effort to discover

the dense regions of the data. K-Means, which is probably the most well-known clustering

algorithm, was chosen in this work to cluster the spectral information. Figure 4.22 shows

the clusters for the selected 600 phrases spectral data with k = 6 clusters. Data from each

of the k clusters was used to train an ANN from phase two for 1000 training iterations

to predict the warping paths. The concept is shown in Figure 4.23, the six trained NN

models were used to test the selected phrase, “Author of the danger trail, Philip Steels,

etc.”, Figure 4.24(a). As shown in Figure 4.24(b), the partitioned spectral features for

the testing phrase, s1:6, were combined together (si means the spectral features of the ith

cluster), and the partitioned estimated warping paths, (aF ,bF )(1:6),estimated, were combined
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(a) Warping Path b, 500 iterations

(b) Warping Path b, 2500 iterations
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(c) Warping Path b, 5000 iterations

(d) Warping Path b, 10000 iterations

Fig. 4.20: Learned Warping Path b, Phase Two



83

Fig. 4.21: Mean Squared Error (Learning Curve), Phase Two

Fig. 4.22: Clustering Analysis for the Spectral Information (k = 6)
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(aF ,bF )600 phrases

(aF ,bF )6

(a) Cluster training Step

Fig. 4.23: Cluster Training Method

together ((aF ,bF )i,,estimated mean the estimated warping paths of the ith cluster associated

with si). The combined features and estimated paths were passed through warping and

phase reconstruction step to produce the transformed signal.

Figure 4.25 shows an example spectrogram information for a male speaker (part (a)), a

spectrogram information for a female speaker (part (b)), a spectrogram for a warped male

speaker using the selected clustering architecture ANN for the same phrase used in phase

one after the network reached the 10000 iterations with a phase reconstruction algorithm

(part (c)), and a spectrogram for a warped male speaker using the same clustering ANN with

a phase reconstruction algorithm at 10000 training iterations (part (d)) (Press ”Play” box

to play the transformed voice form male to female sounds using clustering method ( Play )).

The pitch lines in part (d) are stronger than the pitch lines in Figure 4.18 (part d).

Figure 4.26 shows how the clustering ANN has learned the warping paths a and b at

various segments of the selected speech signal after different number of training iterations.

Figure 4.26(a),(b) and (c) show how the clustering ANN learned the warping path a at

phase3.wav

null

3.2653103
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(a) Male Spectrogram Information
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(b) Female Spectrogram Information
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(c) Warped Male Spectrogram Information, 5000 iterations
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(d) Warped Male Spectrogram Information, 10000 iterations

Fig. 4.25: Spectrogram Information for Warped Male Speaker, Phase Three
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1000, 2500 and 5000 training iterations, respectively. Figure 4.26(d), (e) and (f) show the

learned warping path b at 1000, 2500 and 5000 training iterations, respectively. Also, the

DW path is shown in blue and the NN-learned path is in orange. The final sound at the

10000 training iterations is much better than the final sound produced from phase two and

with little signal processing artifacts. Figure 4.27 shows the mean square error between the

true values of the warping paths (a and b) and the estimated one for the six clusters. The

MCD values for this phase were reported in the fields of phase three in Table 4.1.

4.10.4 Phase Four

Convolutional neural networks (CNN) have been very successfully applied to image

processing analysis. It was suggested to see how they would works at estimating warping

function. In phase four, we implemented a 1-D convolutional neural network (1−DCNN)

to attempt to achieve voice transformation. Convolutional neural network models were

developed to operate exclusively on 2D data such as images and videos, in which the model

learns an internal representation of a two-dimensional input, in a process referred to as

feature learning. This same process can be applied to one-dimensional sequences of data,

such as time series data.

The first task in building 1-D CNN based voice transformation system is to find an

optimal architecture for 1-D CNN. To experiment with different CNN architectures we

considered, the source male time aligned spectral features are used as an input to the

CNN and the warping paths aF and aF are used as an output to the CNN in two main

architectures (1/IP − 1/OP and 3/IP − 1/OP ). The source male time aligned spectral

features were computed by first computing the spectral feature information for the selected

first 600 phrases form the CMU-ARCTIC database and then applying the two-level DW

to achieve the time alignment and saving warping paths (aF and aF ) to be used in the

training process. After a lot of experiments on different number of layers (four, five, six,

seven,eight and more layers) with different number of neurons for each layer and according

to the mean square values, MCD values, quality of the final sound and the spectrogram

figures, the selected 1-D CNN for the 1/IP − 1/OP architecture is seven layer network and
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(a) Warping Path a, 1000 iterations

(b) Warping Path a, 2500 iterations
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(c) Warping Path a, 5000 iterations

(d) Warping Path b, 1000 iterations
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(e) Warping Path b, 2500 iterations

(f) Warping Path b, 5000 iterations

Fig. 4.26: Learned Warping Paths a and b, Phase Three
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(a) Learning curve, Cluster 1
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(f) Learning curve, Cluster 6

Fig. 4.27: Mean Squared Error (Learning Curve) using Cluster Method
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five layer for the architecture of 3/IP − 1/OP as shown in the fields of phase four in Table

4.1. For instance, 256L F46N(k=3) F100N(k=3) FL D100N 964L means that it’s a five-layer

network, where the first layer of F64N(k=3) represents the number of output filters used in

the convolution operation for this layer (46 filter) with the size of the convolutional window

equal to 3 (kernel size), after CNN the learned features are flattened to one long vector (FL)

and pass through a fully connected layer of size 100 neuron before the output layer (946L)

used to make a prediction. L represents ”linear” output function and N represents “ReLU”

output function (activation function).

Figure 4.28 shows a typical spectrogram information for a male speaker (part (a)),

a typical spectrogram information for a female speaker (part (b)), a typical spectrogram

information for a warped male speaker using 1/IP − 1/OP architecture of CNN at 2500

training iterations with a phase reconstruction algorithm (part (c)), a typical spectrogram

information for a warped male speaker using 1/IP − 1/OP architecture of CNN at 5000

training iterations with a phase reconstruction algorithm for the same phrase used in

phase one (part (d)), a typical spectrogram information for a warped male speaker using

3/IP − 1/OP architecture of CNN at 2500 training iterations with a phase reconstruction

algorithm (part (e)), a typical spectrogram information for a warped male speaker using

3/IP − 1/OP architecture of CNN at 5000 training iterations with a phase reconstruction

algorithm for the same phrase used in phase one (part (f)). Acoustically, the warped signal

in part (f) is clearly looks like the male signal not the female signal, also the final warped

sound is more close to the male sound than female sound and with a lot of signal processing

artifacts (Press ”Play” box to play the transformed voice form male to female sounds using

convolutional method ( Play )).

Figure 4.29 shows how the convolutional ANN has learned the warping paths a and b

at various segments of the selected speech signal after different number of training iterations.

Figure 4.29(a),(b) and (c) show how the clustering ANN learned the warping path a at 1000,

2500 and 5000 training iterations, respectively. Figure 4.29(d), (e) and (f) show the learned

warping path b at 1000, 2500 and 5000 training iterations, respectively. Also, the DW path

conv.wav

null

3.2653103
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is shown in blue and the NN-learned path is in orange. Figure 4.30(a) shows the mean

square error between the true values of the warping paths (a and b) and the estimated one

for the CNN of 1/IP − 1/OP4 architecture and Figure 4.30(b) show the learning curve for

the CNN of the architecture of 3/IP − 1/OP . The MCD values for this phase were reported

in phase four field in table 4.1.

From Figure 4.30, the value of the mean square error (MSE) at 5000 training iteration is

around 5.4 for 1/Ip−1/OP architecture and its fixed at this value, while for the 3/IP−1/OP

the MSE is around 2.3 and its fixed at this value. On the other side, MSE values for the

clustering method are much lower than these values for the CNN. Also by looking through

table 4.1, the best MCD values is the one coming form the clustering method. Table 4.2 show

the MCD values for the sound produced by using two-level dynamic warping (direct method)

with and without using phase reconstruction. The MCD value for the direct method with

phase reconstruction algorithm is lower than the MCD value of the direct method without

phase reconstruction, this support our hypothesis of using phase reconstruction algorithm.

From table 4.1 and table 4.2, we can see MCD value of the clustering method is the closet

one to the MCD value of the direct method with phase reconstruction. According to these

results, our experiments showing that unfortunately the work of CNN and the work in phase

two are not suited to this particular problem and the work in phase three is the best work

for this problem.

In order to show that if our clustering method of ANN based transformation can be

considered as a good method to voice transformation, we have provided comparison between

the result of our clustering method with the results in the literature as follows: From table

4.1, it is possible to observe that the values of distortion (MCD=2.8 dB) for the clustering

method is lower than the ones presented in [82], which reported MCD of around 5.5 dB, the

result from [82] is relatively to a male to female conversion. The performance of our method

is better than the performance of the work reported in [44], the reported value of MCD is

around 6.55 dB, the result form [44] is based on voice transformation using NN. The work

of voice transformation using ANN in [67] reported MCD value of around 6.1 dB, which is
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higher than our value. The process of VT using ANN is shown in Algorithm 4.3. Table 4.3

shows different phrases as examples for our method of voice transformation form male to

female speakers with the MCD values.

No. Two-level DW method MCD[db]

1 DW, with phase reconstruction 2.4

2 DW, without phase reconstruction 6.3

Table 4.2: MCD’s Obtained for Two-Level DW with and without Phase Reconstruction

No. Phrase
Male Female Transformed

MCD[dB]
sound sound sound

1
Not at this particular case, Play Play Play 2.6006

Tom, apologized Whittemore

2
For the twentieth time that Play Play Play 2.64

evening the two men shook hands

3
Lord, but I’m glad to see you Play Play Play 2.57

again, Phil

4
Will we ever forget it Play Play Play 2.44

5
God bless ’em, I hope Play Play Play 2.59

I’ll go on seeing them forever

6
And you always want to Play Play Play 2.601

evening the two men shook hands

Table 4.3: Examples of different voice transformation sounds

male_a0002.wav
female_a0002.wav
phrase2.wav
male_a0003.wav
female_a0003.wav
phrase3.wav
male_a0004.wav
female_a0004.wav
phrase4.wav
male_a0005.wav
female_a0005.wav
phrase5.wav
male_a0006.wav
female_a0006.wav
phrase6.wav
male_a0007.wav
female_a0007.wav
phrase7.wav

null

3.4481683


null

3.9444969


null

3.343678


null

3.4220457


null

3.7877614


null

3.343678


null

2.6383688


null

2.9779623


null

2.4816337


null

1.3583668


null

1.8808155


null

1.4367341


null

3.1085749


null

3.5526586


null

3.0563297


null

3.0824523


null

3.4481683


null

2.9779623
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(a) Male Spectrogram Information
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(b) Female Spectrogram Information
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(c) Warped Male Spectrogram Information,
2500 iterations, 1/IP − 1/OP Arcthiture
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(d) Warped Male Spectrogram Information,
5000 iterations, 1/IP − 1/OP Arcthiture
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(e) Warped Male Spectrogram Information,
2500 iterations, 3/IP − 1/OP Arcthiture
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(f) Warped Male Spectrogram Information,
5000 iterations, 3/IP − 1/OP Arcthiture

Fig. 4.28: Spectrogram Information for Warped Male Speaker, Phase Four
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(a) Warping Path a, 1000 iterations

(b) Warping Path a, 2500 iterations
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(c) Warping Path a, 5000 iterations

(d) Warping Path b, 1000 iterations
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(e) Warping Path b, 2500 iterations

(f) Warping Path b, 5000 iterations

Fig. 4.29: Learned Warping Paths a and b, Phase Four
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(b) Learning Curve, CNN of 3/IP − 1/OP Architecture

Fig. 4.30: Mean Squared Error (Learning Curve), Phase Four
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Algorithm 4.3 Whole Voice Transformation Process using Artificial Neural Network
(ANN)

Input:
Male speech information, source speech, n = 600 phrases
Female speech information, target speech, n = 600 phrases

Output:
Warped speech

Begin
For i = 1 to n

Function: Identifying Starting and ending points
source speech clip(i) = identify start end function(source speech(i))
target speech clip(i) = identify start end function(target speech(i))

Function: Spectral feature extraction
S1(i) = spect function(source speech clip(i))
S2(i) = spect function(target speech clip(i))

Function: Algorithm 4.1
[(aT ,bT ), (aF ,bF )](i) = dtw algorithm(S2(i) = target spect, S1(i) = source spect)

Function: Time Alignment step
S1T (:,aT )(i) = S1(:,bT )(i)

end
Finding: maxindex in whole aF and bF
Interpolation Step: ã and b̃
Neural Net Step:

ANN Input: S1T
ANN Output: ãF and b̃F
ANN training Output: predict ãF,estimated and b̃F,estimated for one phrase

Re-interpolation step: ãF,estimated,revs and b̃F,estimated,revs
Function: Spectral Alignment step

For iF = 1 to size((S1T ), 2)

S1TF,ANN (i, ãF,estimated,revs) = S1T (i, b̃F,estimated,revs)
End iF

Function: Phase Reconstruction Step
warped speech = phase algorithm(S1TF,ANN )

Play warped speech



CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this Dissertation, a new two-level dynamic warping algorithm is presented, where

an outer-level warping process does temporal alignment (Dynamic Time Warping, DTW ),

which temporally aligns block of features to compensate for tempo differences such as

different speech rate. This outer-level warping process invokes an inner-level warping process

(Dynamic Frequency Warping, DFW ) to achieve spectral alignment based on spectral

information of block of features to reduce or eliminate the spectral variations of the speech

and to compensate for speaker differences in the spectral domain. After careful examination

of the literature, it is clear that this DW has not been previously developed. This two level

dynamic warping is applied in this dissertation to two applications. In the first application,

we applied this algorithm to a dysarthric speech. The two-level DW algorithm used in a

training tool to compare the production of a dysarthric speech with the imitation attempt

of a healthy speaker that eventually be used to provide the learner with real-time feedback

regarding the accuracy of their imitation attempts during training. The second application is

voice transformation. Voice transformation is achieved using this algorithm, where the outer

level temporally align blocks of speech invokes an inner warping process, which spectrally

aligns based on magnitude spectra. This process of voice transformation involves only

spectral magnitudes information, and has been found to introduce significant deleterious

signal processing artifacts. To avoid this issue, phase reconstruction a;algorithm was used

to improve the quality of the transformed speech. In summary, the following is a list of

contributions of each chapter in this dissertation.

• Chapter 2
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– A new two-level dynamic warping algorithm was proposed to achieve warping

process on both temporal domain and spectral domain.

• Chapter 3

– The warping algorithm was used as a training tool that eventually be used to

provide real time feedback regarding the accuracy of the imitation process.

– A clinical experiment was performed on the speech data to determine if the speech

feature vectors and dynamic warping (DW ) are able to distinguish between healthy

subjects reading a phrase in their ”own voice” and healthy subjects imitating

that same phrase produced by a speaker with dysarthria.

• Chapter 4

– The warping algorithm was used to a achieve voice transformation.

– Applying phase reconstruction algorithm to the transformed voice to improve the

quality of the voice.

– Artificial neural network was applied to train the spectral information obtained

from dynamic warping algorithm to assist in voice transformation.

5.2 Future Work

5.2.1 Dysarthric Imitation Application

The clinical test performed in chapter 2 was consider as an initial step in the development

and evaluation of the proposed learning tool. This study is preparatory to the longer-term

objectives of this research, which is to determine if training with a tool which provides visual

feedback about the accuracy of an imitation attempt is able to improve a listeners ability to

understand dysarthric speech. In other words, does this tool assist with imitation accuracy

and does this tool elevate intelligibility improvements relative to imitation only?. Successful

demonstration of intelligibility may lead to clinical tools that may find widespread use.
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5.2.2 Voice Transformation Application

The voice transformation achieved in this dissertation focus on finding a mapping

function form the spectral information of the source and target speakers. Future work will

focus on how to improve the mapping by exploring and eliminating the causes of the signal

processing artifacts.

This specific transformation done here is the most traditional case of voice transformation

when the source speaker and target speaker are speaking the same language. Another item

of interest as a future work is whether this warping method can be used to produce different

language accents or if this method can be able to do cross lingual voice transformation,

which means when the source speaker and the target speaker are spoke different languages.
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