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Abstract 

The aim of the present paper is the analysis 
of the backward secondary electron emission phe
nomenon, under electron bombardment, on the basis 
of experimental and theoretical results. Among 
the theoretical models, we will mention the phe
nomenological models, those which use a Monte
Carlo type simulation method, and those based on 
the numerically solved Boltzmann transport equa
tion. 

To correlate experimental and theoretical 
results on all the data characterizing this phe
nomenon, it is necessary to use an appropriate 
description for the excitation process of the in
ternal secondary electrons ; it also needs a com
plete description of the transport process for 
the excited electrons, which incorporates the 
elastic and inelastic interactions, as well as 
the energy and angular distribution of the inci
dent primary beam. 

From this, it follows that it will be neces
sary, either to use a "direct" Monte-Carlo simu
lation method, or, in the case of the transport 
model, to carry out a preliminary treatment of 
the primary electron dispersion ; this treatment 
is also based upon a Boltzmann equation resolu
tion. 

The results of such an analysis will be use
ful in electron microscopy and in quantitative 
Auger spectroscopy. 

Key Words: Secondary electron emission, seconda
ry yield, secondary electron distribution, back
scattered electrons, elastic scattering, inelas
tic scattering, transport equation, Monte-Carlo 
simulation. 
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Introduction 

When a solid is bombarded by an electron 
beam, the incident electrons diffuse in the solid 
as a result of elastic and inelastic collisions. 
In this process, energy losses occur which give 
rise to X rays and secondary electrons, as well 
as heat dissipation. For values of the primary 
energy lower than a few keV, the secondary elec
tron emission (SEE) is the dominant phenomenon. 

The excited electrons in the bulk of the ma
terial, produced by the incident primary elec
trons, are the internal secondary electrons which 
themselves produce on their path, other secondary 
electrons. A cascade process is the net result of 
these successive collisions. 

Then, the number, the energy and angular 
distributions of the secondary electrons reaching 
the surface with sufficient energy to overcome 
the potential barrier, are determined by the ex
citation process and by the diffusion mechanisms. 

We will devote our present paper to the ba
ckward SEE of polycrystalline metals bombarded by 
a monoenergetic electron beam with an energy less 
than 3 keV and under normal incidence. 

First, we will recall, the main data of this 
phenomenon, then we will describe, the most im
portant physical processes occurring in SEE. We 
will review the main theoretical models used in 
this field of research, indicating in particular 
the way the above mentioned processes are treated 
by each of these models. 

Characteristic data of the SEE 

Given the large number of review papers (24, 
32,49,57,58) on this subject, we will dwell only 
on the principal data of the phenomenon, under 
the previously mentioned conditions. 

Energy distributions of the secondary electrons 
A typical curve of the energy d1str1but1on 

of the emitted electrons is shown in fig. 1. 
Although it is common to call "secondary elec
trons" all the emitted electrons, one may distin
guish between three categories of electrons lea
ving the surface : 
- Elastically reflected primaries, characterized 
by a sharp peak at the primary energy (Region 3). 
The number of such electrons is very low. 
- Inelastically reflected primaries or backseat-
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tered electrons (Region 2). These electrons which 
lose a part of their energy by exciting lattice 
electrons, go back and escape from the surface as 
a result of scattering. 
- "True" secondaries. The majority of the emitted 
electrons have low energies, corresponding to the 
broad peak (Region 1). The maximum of this peak 
lies for most solids in the vicinity of a few eV. 
The electrons whose energy is lower than 50 eV 
are called "True secondary electrons". They are 
mainly electrons which originally occupied bounded 
states within the metal. The shape of the peak 
varies with the target material and, in many ca
ses, presents fine structures (56,95,112). Increa
sing the incident electron energy, the full width 
at half maximum decreases and, the peak position 
shifts towards lower energies, until a steady sta
te is reached ( 11, 38,105). 

JIE) 

3 

50 
E (eV) 

Figure 1. Energy spectra of secondary electrons 
- True secondary electrons 

2 - Backscattered electrons 
3 - Elastically reflected electrons. 

Secondary emission yield 
The total yield 6tot, may be defined as the 

ratio of the total number of emitted electrons to 
the number of primary electrons impinging on the 
solid. In this way, the total yield includes the 
three categories of emitted electrons previously 
mentioned. Neglecting the elastically reflected 
primary electrons, we can write 

6tot = 6true + 17 (1) 

where 6true is the ratio of the number of the true 
secondary electrons to the number of incident 
electrons and 11 is the ratio of the number of ba
ckscattered electrons, with energies higher than 
50 eV, to the number of incident electrons. 

One of the most important relationships in 
SEE is that which exists between the secondary 
yield 6true and the energy Ep0 of the incident 
primaries. For all materials, 6true increases with 
Ep

0 
then goes through a maximal value and finally 

decreases for high primary energies (11,16,18,19, 
20,105,123). 
Maximal true secondary electron escape depth 

This parameter is experimentally obtained by 
measuring the yield variations or energy distribu
tion shifts as a function of thin film thicknesses 
for a metal deposited on a substrate of another 
metal. During these experiments the energy of the 
primary beam is fixed. The values thus obtained 

jsee page 1485 for symbol table. J 
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are about 20 monolayers, viz, 5 nm (18,22,87,91). 
Effect of backscattered electrons on SEE 

For high enough primary energies one can con
sider that the 5 nm surface layer previously men
tioned is crossed by two flows of electrons : the 
forward primary beam and the backward inelasti
cally reflected electrons (backscattered elec
trons). If we denote by 60 the yield of secondary 
electrons produced directly by the primary beam, 
and by 61 the yield of these produced by back
scattered electrons, we can write 

(2) 

The measurements of these two contributions 
6

0 
and 61 are important, for example, in electron 

microscopy for the image quality determination. 
Experimentally 60 and 61 can be determined with 
the help of the method describe in (21,22) based 
on the use of the 6true(11) diagrams. These dia
grams are derived from 6true and 11 measurements 
on targets prepared as described in the previous 
section. For thicker targets, the yield 6true can 
be written in the form : 

6true = 60 + C 17 (3) 

where "C" is the mean backscattered electron ef
fectiveness for secondary electron production ; 
it is then given by the value of the slope of the 
6true(11) curve. C 

In Table 1 all the values of C and - (com
parative yield for the production of a 60 true 
SE between backscattered and primary electrons) 
are grouped as a function of the energy of the 
primary beam for Al and Au (17,18,79,116,123). 

Among the most important causes of eventual 
discrepancy between experimental values, one can 
mention : target pollution, conditions for the 
utilization of the analysis systems (70,76,93) 
and target nature (bulk or evaporated thick 
films). 
Table 1. Experimental values of the effective
ness C of backscattered electrons. a) Aluminium 
b) gold. 

(a) 

E (keV) 
Pa 

0.6 0.8 1 1. 5 2 Ref 

C 1. 8 1. 6 1. 45 1. 15 1 ( 79) 
1. 2 0.76 ( 18)(17) 

C/6 7 6.3 5.9 5.5 (79) 
0 5.85 ( 18) 

6.8 6.3 4.8 3.8 ( 123) 

(b) 

E (keV) 
Po 

1.85 2 2.2 2.4 2.6 Ref 

C 1 .62 1. 63 1. 36 1. 27 1. 16 (79) 

C/6 3.9 4.2 2.9 2.8 2.5 ( 17) 
0 



Secondary electron emission 

Angular distribution 
In polycrystalline targets, the external an

gular distribution of the true secondary elec
trons is very close to a cosine law (63,66) which 
is nothing else but a result of the complete dif
fusion state of internal electrons or, in other 
words, of an isotropic angular distribution of 
these electrons. 

The previously mentioned data are generally 
obtained directly from experiment. However, even 
more information concerning SEE, to the under
standing and to the analysis of the processes oc
curring in this phenomenon, can be provided by 
SEE measurements on thin films evaporated on bulk 
metal or self supporting. In his paper, Jahrreiss 
(62) collected all the data accessible by these 
methods such as, for example, the true secondary 
electron escape depth, and the effectiveness of 
backscattered electrons on true secondary elec
trons yield, the role of which has been emphasi
zed by Kanter (68) and Palmberg (92). 

Elementary processes in SEE 

Most important among the processes acting du
ring SEE, are the individual and collective ine
lastic interactions of an electron with the 
electron gas in the solid (the jell ium), the ine
lastic interactions with the inner shell electrons 
and the elastic interactions with the core ions 
(Randiu111). Touzillier (126) showed that the role 
of phonons in metals is negligible in SEE. 

Inelastic interactions lead to the creation 
of so called internal secondary electrons either 
directly, or as a consequence of the decay of 
plasmons generated by high-energy incident elec
trons. Interactions with inner shell electrons 
play an important role in the slowing down of 
primary electrons. Elastic interaction is promi
nent in the angular dispersion. 
Interaction 1,ith jell iu111 

In norma 1 meta 1 s.°lhey a re those such as A 1 , 
to whTcnthe quasT=Tree electron approximation ap
plies, 

a) Lincihard's dielectric function. The study 
of the inte,-action of an incident electron with 
the f1-ee electrons of a sol id, leading to a trans
fer of energy Mt0 and momentum ~q, is carried out 
by the use of the non-interacting infinite elec
tron gas model. The assumed linear interaction of 
such a medium to an external perturbation due to 
an electron having an energy above a certain level, 
leads in the random phase approximation (R P.A.) 
to the longitudinal dielectric function E(t,w) of 
the solid. The expression most currently used is 
the Lindhard's dielectric function (81). The lat
ter is a_,_complex function which, in fact, depends 
only on q's modulus and which can be separated in
to real and imaginary parts : 

E(q,w) = E1(q,w) + iE2 (q,w) (4) 

We recall (fig. 2) the properties of this 
function. The individual excitations lie in the 
interval where E2 is non zero. The limits of this 
interval are two parabola whose equations are de
rived from the law of energy and momentum conser
vation. 
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1.5 

0 1.5 

Figure 2. Energy of excitations shown as function 
of momentum from Lindilard's dielectric function 

Mw q Y = LIE: , z = '21< , zc cutoff value for plasmon 
F F 

excitation, Mq is the momentum transfer, Mw is the 
energy transfer, MkF and EF are the Fermi momentum 
and energy, respectively. 

For low values of z, and therefore of q, 
where E2 is zero, the E1 function becomes equal 
to zero for discrete values of the energy y. Then 
the loss function Im(-~) = Ez has a pole. 
This indicates the E E12+Ez2 existence 
of collective excitation. The z dependent y va
lues, for which E1 is zero give the typical dis
persion characteristic of the bulk plasmon. 

The general aspect of the loss function, for 
different values of z, is represented in fig. 3. 
In all cases, the arrow indicating the position 
of the bulk plasmon is seen to be well outside 
the range of the individual interactions. 

Im Iii 
z,0.33 

0.30 

r==---------=~~----\--__L__t_ 
,--==-----------::o-'----s:---------'~!~ 

15 nw (eV) 

Figure 3. L indhard loss function Im(- ::.S-) 
versus energy transfer. The arrows Eiw,q, are 
Dirac's functions and indicate the positions of 
the volume plasmons. 

b) Mermin's dielectric function. A number of 
corrections can be introduced in order to take 
into account, in an approximate v,ay, correlation 
and exchange effects like (5,23,34,50,119,120) 
and particularly the finite life time of the ele
mentary excitations (69). This leads to Mermin's 
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dielectric function (88). Thus, dissipative pro
cesses such as energy losses due to phonon scat
tering or diffusion by all kinds of defects found 
in real metals, may be taken into account, by 
means of a damping factor. 

This leads, in the case of collective inter
actions, to a broadening of the plasmon resonance 
line as well as a modification of the dispersion 
relation and of the m.f.p. (mean free path). 
Zacharias (134,135) and,Ashley and Ritchie (3), 
among others, analysed these phenomena. 

I~ Mermin's_d)electric function (fig. 4), 
there 1s no explicit separation between individual 
and collective processes. For low "z" values (lo,1 
q values), the pronounced sharpness of the loss 
function is assigned essentially to collective 
excitations, according to the experimental values 
of the characteristic energy losses. For higher 
"z" val~esi ~he plasmon peak is increasingly mas
ked by individual contributions. 

The infinite electron gas model is convenient 
in describing bulk processes which are dominant in 
SEE wh)le a semi-infinite electron gas model also 
takes into account surface excitations (44). 

Noble metals (Ag, Au, Cu). For these metals 
the "d" electrons can participate in conduction ' 
phenomena. The "jellium" must be redefined (27) 
The dielectric theory of electron gas cannot be

0 

z,0.1 

Figure 4. Mermin loss function. The arrows indi
cate the separation between individual and col
lective excitations according to Lindhard's die
lectric function. 

applied here. A complete theoretical calculation 
of the dielectric function does not exist. Hence, 
we used an experimental function deduced from 
transmission energy loss measurements. These mea
surements are carried out along the axis normal 
to the surface. Due corrections are made to eli
minate the effects of multiple losses and of sur
face interactions (40,101,131) and E(0,w) is thus 
obtained. Following the conclusions of Nagel and 
Witten (90), bearing on the weak q dependence of 
the loss function, Ganachaud (44) proposed a se
parable form for E(q,w) 

E(q,w) = (1 + aq).E(0,w) (5) 

where a is a constant. 
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In the limiting case, when q ~ 0, both lon
gitudinal and transverse dielectric constants can 
be considered to have the same value, thus justi
f~ing the use of the experimentally obtained op
tical constant for the dielectric constant (7,94). 

We can see on figure 5, in the case of Cu, 
that the Wehenkel's loss function (131) is very 
close to that of Feldkamp et al. (40). The most 
pronounced peak, corresponding to a 20 eV energy 
loss, can be assigned to collective excitations. 

However, collective excitation does not ap
pear clearly in the £ 1 and £ 2 curves calculated 
from the loss functions. 

Im[-!] 

0.5 

50 100 E(eV) 

Figure 5. Energy loss function of copper. Full 
l i ne ( 131 ) , dashed l i ne ( 40) • 

Physical data obtained from dielectric theory 
The knowledge of dielectric loss function per

mits one to obtain: a) the creation rate of internal 
secondary electrons due to individual interac-
tions or the plasmon decay by electron-hole pair 
creation, b) the differential cross section and 
the m.f.p. for interactions of an electron (ener-
gy E) yielding an amount of energy "wand momen-
tum "q to the electron gas. 

Under the restriction of energy and momentum 
conservation rules, these data are obtained from 
the expression 

W(q ,w) = 
8 e

2 
rm[--~-) (6) 

"q2 E(q,w) 
Here W(q,w) is the probability per unit time for 
an electron to yield an amount of energy "wand 
momentum "q to the solid. 
Interaction with inner shell electrons 

The excitation of the inner electronic le
vels of atoms is one of the main mechanisms res
ponsible for the energy losses of charged parti
cles. In spite of their low occurrence probabili
ty, these interactions are the most important in 
the slowing down of the primary beam. 

The theoretical and experimental data most 
frequently found in literature are related to the 
creation by electron bombardment of a vacancy, 
especially in the Kand L shells. An analysis of 
these data has been carried out by many authors 
such as Powell (96), Estrade (37) and Ganachaud 
(44). 

In the various treatments of the inner shell 
electron excitation only the direct transitions 
between a bound state and a state in the continu
um are considered. Tung and Ritchie (127) showed 
that transitions towards discrete energy states 
may be neglected. Furthermore the inner shell 
binding energies are assumed to be practically 
the same as those of the isolated atom. Finally, 



Secondary electron emission 

the creation of multiple vacancies during a sin
gle collision is not considered. In the SEE in
vestigations energy range, the role of the K 
shell can be neglected and no relativistic correc
tions are needed. Among the numerous descriptions 
of the ionization of an atom, one can mention : 
Bethe's expression, classical and quantum theo
ries, empirical formulas, and experimental values. 
Using the Born approximation, Bethe (9) obtained 
for the atomic ionization cross section, an ex
pression which contains several parameters the 
values of which are obtained by a comparison ei
ther with other calculations, or with experimen
tal data. This expression is suitable for high 
energy incident electrons. The cross section o 

1 is written : 4 n 

0 nl En/ = ~
11

~ znl bnl Ln [ cnl Unl) (7) 
E n 

with Unl = -
0
-, and where E is the incident 

electron Enl energy ; Enl 0 the binding energy 
for the nl shell ; Znl the number of electrons of 
the nl shell ; bnl and c 

1 
the unknown para-

meters previously mentioned.n 
In the quantum mechanical models (4,60) the 

cross sections are deduced from generalized oscil
lator strengths. Thus, Mac Guire (84) has calcu
lated L1, L23 and M ionization cross sections for 
low atomic number Z (< 18) materials. Manson (85) 
has calculated the L shell ionization cross sec
tion for Al, using the Hartree-Slater central 
field model. The better results are obtained for 
the higher values of the impinging particles 
energy. The accuracy is limited by the choice of 
the wave functions used for the initial and final 
states of the target-atom. Many computations are 
carried out using simple hydrogenic initial sta
tes. This approach is probably justified for the 
K shell, but it is not realistic for the L shell 
and definitely wrong for the higher shells. 

Among the classical formulations we can men
tion those of Burgess and Percival (25), Vriens 
(130) and especially those of Gryzinski (52,53, 
54) who uses the Coulomb collision model for two 
moving particles. The latter theory seems the 
most frequently used. In such a formulation, the 
differential cross section for an electron of 
energy E, yielding an energy 6E to an inner shell 
electron, is given by : 

o U. E 
) 0 (~ ) o(6E, E, U. = -- 3 g E 'E 

i ( 6E) o Ll 

(8) 

with o = 6.56 (eV)2 (nm)2 , energies expressed in 
eV, u.0 identified with the binding energy of an 
i shell e~ectron. E 6E 

Setting X = U and Y = U, g
0 

can be 
written i i 

Several semi-empirical formulae were also 
given by Drawin (36) and Lotz (82). 
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Three experimental methods are used for the 
ionization cross section measurements. One is 
based on the absolute yield measurement of cha
racteristic X-ray lines for a target bombarded 
by electrons. Another starts from the charac
teristic Auger electron yield. The third one is 
based on the characteristic energy losses. There 
are plenty of results for the K shell (31,114). 
They are rather rare for the L shell (114) and 
quite lacking for the M shell. 

Comparison between the various theoretical ap
proaches and experiment led Powell (96), Estrade 
(37) and Ganachaud (44) to the conclusion that 
a good agreement is obtained for the K shell io
nization cross sections, while a greater discre
pancy characterizes the L shell. Thus, as poin
ted out by Ganachaud (44) the values of the to
tal cross section given by Grysinski's approxi
mation are about 25 % lower than the experimen
tal results. Furthermore, the theoretical spec
trum of the energy losses, due to ionization of 
Lor higher inner shells, given by Grysinski 
decreases monotonously from the threshold value 
to the maximum loss value. In contrast, in the 
case of experimental results, the most probable 
energy loss is situated above the threshold va
lue. Manson's calculations give a better agree
ment for the energy loss spectra. 
Elastic collisions 

The elastic scattering process of incident 
electrons with the core-ion randomly distributed 
in the solid is the dominant process in the an
gular deviation of the electrons. One can show 
theoretically that, during the inelastic process, 
the probability of a large angle scattering is 
very low. On the other side, the backscattered 
electron energy spectra show energy lines cor
responding to characteristic energy losses due 
to plasmon creation. If such electrons suffering 
a single inelastic collision are, after a rever
sal of direction, reemitted outside the solid, 
one is compelled to accept that they also suffer 
one or more large angle elastic collisions. This 
points out the leading role of the elastic scat
tering on the angular deviation. Thus, it is 
necessary to define carefully the differential 
cross section related to this scattering process. 

Rutherford cross section. For metals with 
low Z atomic number, and for energies above 
1 keV, Rutherford's screened cross section is 
widely used to describe the elastic process 
we can write : 

( 10) 

where Eis the electron energy, Z the atomic num
ber, a the scattering angle, e the electron char
ge and~ a screening parameter. However, as poin
ted out by Krefting and Reimer (73), this cross 
section is only a very rough approximation, and 
therefore, not suitable in the case of heavy me
tals (61). 

Cross sections given by the partial wave me
thod. More realistic cross sections may be cal
culated by the partial wave method (74,128). 
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An elastic collision can be described as a scatte
ring of a reduced mass particle in the field U(r) 
of a fixed central force. The partial wave method 
is based on the comparison between the steady sta
tes, whose angular momentum is defined in the po
tential U(r) (partial waves), and the analogous 
steady states in the absence of potential (free 
spherical waves). 

The difference between a "partial wave" and 
the "free spherical wave" with an angular momen
tum "l" is characterized by a phase shift "01 ". 
In order to calculate the cross sections by means 
of the phase shifts, it is sufficent to know, how 
the "scattering steady states"can be built up with 
the aid of the partial waves. A comparison between 
these two types of differential cross sections, 
for several metals, was carried out by Ichimura et 
al (61) and Valkealahti and Nieminen (128). 

Theoretical models for SEE 

The greatest obstacle in a satisfactory des
cription by the theoretical models lies in the 
fact that they do not embrace simultaneously all 
the different elementary processes. Thus, most of 
the models treat only one special aspect of the 
phenomenon ; the proposed models could be classi
fied as follows : 
- phenomenological theories 
- quantum mechanical models for SE production 
- transport models 
- simulation models. 
Phenomenological theories 

These models 1n1t1ally developed by Baroody 
(6) and Jonker (67), were able to explain the ge
neral behaviour of the secondary emission yield 
curve as a function of the primary beam energy. 
In these theories, one makes the assumption that 
the number of created internal electrons is pro
portional to the energy loss per unit path length 
of the incident electron. The stopping power laws, 
used in this case, which takes into account all 
the inelastic processes experienced by the prima
ry electrons, are experimental laws deduced from 
range measurements (115,42). 

These laws are generally written in the form: 

dE n-1 mt = - A Ep ( x) ( 11) 

where Ep(x) is the primary electron energy at 
depth x, A, a constant, depending on the material, 
and 1.3 < n < 1.6. 

The diffusion and the escape into the vacuum 
of the secondary electrons generated at depth xis 
described by means of an exponential absorption 
law. The best results are obtained if a constant 
"energy loss" law of the primary electrons (83), 
and an isotropic angular distribution of the in
ternal secondary electrons is assumed (27,35). The 
assumption of a constant "energy loss" law is a 
way to taking into account the primary electrons 
dispersion (133), while the choice of an isotropic 
angular distribution is being accounted for by the 
influence of backscattered electrons. These simple 
theories give a universal yield curve. This theo
retical curve shows considerable deviation from 
the experimental one's at large values of primary 
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energies. Furthermore the distinction between to
tal yield otot and true secondary yield otrue is 
not well established and no information is given 
on energy and angular distribution of secondary 
electrons. 
Quantum mechanical theories of secondary electron 
creation 

In these models, an analysis is made of 
primary electron (assumed to be free) individual 
interactions with lattice electrons. From rela
tion (6), one can calculate the transition proba
bility of an inner lattice electron to an excited 
state (33,41,129). Thus, in the free electron ap
proximation, Streitwolf (122) calculated the 
energy and angular distributions of internal se
condary electrons ; the latter shows a strong 
anisotropy. Thus, the isotropic behaviour, expe
rimentally observed for the internal angular dis
tribution cannot be explained by this model. Fur
thermore, as shown by Cailler (27), the free 
electrons approximation fails when "d" electrons 
participate in the secondary emission process ; 
this is the case in the noble metals. The results 
given by these models are frequently used as a 
source term for the description of internal se
condary electrons diffusion. 

By the use of an exponential function, as 
in the phenomenological theories, and their as
sumptions therein, for the description of the in
ternal secondary electron scattering, Chung and 
Everhart (29,30) using free electron gas model, 
developed a theoretical calculation of the energy 
distribution taking or not taking into account 
the quantum reflection effect at the solid-vacuum 
interface (28). In this model : 
- the primary electron is assumed to travel along 
a straight line defined by its initial direction; 
this approximation is valid for high values of 
the primary beam energies ; 
- the excitation process is assumed to be isotro
pic ; this is justified by taking into account of 
the primary beam dispersion. 

In their treatment of the SE transport and 
escape problem, they only consider those SE's 
that do not suffer any scattering on their way to 
the surface, and those that scatter only once. 
The shape of the energy distribution thus obtai
ned does not depend on the energy of the primary 
beam. One of the important features of this model 
is the introduction in the absorption process of 
an energy dependent m.f.p. as brought out by the 
works of Quinn (100), and Ritchie and Ashley (104). 
Transport theories 

In these models, the SEE phenomenon can be 
separated into the following processes : 
- penetration and diffusion of the incident elec

trons within the material 
excitation of the target electrons by the pri
mary beam electrons 

- transport towards the surface of the internal 
secondary electrons 

- crossing of the potential barrier. 
Boltzmann's transport equation is applied to the 
scattering of the internal secondary electrons 
towards the surface. Wolff (132) was the first 
one to propose a model based on the equation used 
by Marshak (86) in neutron scattering. 
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In the steady state and in the absence of 
external forces, uhe equation can be written 

( 12) 

where N(1,p) is the electron density at the point r in the solid, p the momentum, v the electron 
velocity and Qi (r,p) the rate of variation of 
the density for a given process. 

For a target bombarded at normal incidence 
and under the assumption that the density of the 
internal secondary electrons depends only on the 
depth, each term of the equation is expressed as 
a function of the depth, of the angle 6 defining 
the propagation direction relative to the inward 
normal and of the electron energy E. The crossing 
of the potential barrier is generally treated by 
considering the exit cone and a specular reflec
tion outside the cone. 

The various models based on the use of the 
Boltzmann equation differ one from the other by 
the choice of : 
- the excitation function by primary electrons 

with or without the contribution of backscat
tered electrons 

- the inelastic collisions terms 
- the simplifying assumptions made according to 

the solving method, analytic or numerical. 
Attempts to find analytic solutions of the inte
gro-differential equation initially failed to en
compass and to correctly describe all the elemen
tary processes. Puff (97,98,99) developed a me
thod of analytic solution for the case of isotro
pic excitation and dispersion, assuming the exci
tation to occur either at the end of or along the 
path of the primary electrons. 

Streitwolf (122) treated the transport pro
cess by the partial wave method under both assump
tions : i) an anisotropic excitation, which is cha
racteristic of the individual interactions in the 
free electrons approximation and ii) an initial 
direction maintained for the primary beam. More
over, if the depth dependence is neglected, the 
splitting of the partial waves is obtained, thus 
making easier the mathematical solution. 

Amelio (1,2), extending Stolz's (121), Guba's 
(55) and Grinchak's (51) works, applied this me
thod by adding to the electron-electron scatte
ring, a contribution due to electron-plasmon in
teraction. Amelio used Streitwolf's source func
tion and a variation by steps of the ratio bet
ween the electron-plasmon and electron-electron 
m.f.p., as a function of energy. A certain number 
of corrections to Amelia's theoretical work have 
been introduced by Moulin et al. (89). 

An analysis of the results deduced from the 
above models, suggests the following remarks 
a) concerning the yield : 
The slowing down of the primary electron was ne
glected. The effect of their angular dispersion 
on the source function was only taken into account 
in a very approximate way, by the isotropy assump
tion of the excitation process. So, only the pri
mary electron action during the penetration was 
described. As a consequence, 80 is the only theo
retical parameter comparable to experiment. In the 
case of an individual excitation, obtained values 
of 80 are one order of magnitude too low for Al, 
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and two orders for Au (102,103). Therefore, in 
the excitation process of SEE, one has to consi
der the bulk plasmon damping in metals such as Al, 
and the "d" electrons contribution of the noble 
metals (26,27). 
b) concerning energy distributions 
- To obtain values of f.w.h.m., comparable to ex
perimental ones, one has to take into account the 
variation of the m.f.p. with energy. 
- The partial wave splitting does not describe 
perfectly the energy distribution variations with 
primary energy ; Puff's theory gives a better 
agreement. 
c) concerning angular distribution : 
The strong anisotropic character of the individu
al excitation process is not sufficiently reduced 
by the transport process. 

In conclusion, these models offer no satis
factory description of SEE. The poor results ob
tained are due to the numerous simplifying assump
tions made necessary by the mathematical complexi
ty of the equation used. 

The improvement of numerical treatment of 
integro-differential equations, following the 
quick growth of power in computers, made it possi
ble to reformulate and to solve, in a more satis
factory way, Boltzmann's equation applied to SEE. 
Bennett and Roth (8) have thus been able to intro
duce the influence of the primary beam dispersion 
into the source function. These authors adopted 
Wolff's (132) analysis for the SE transport pro
cess. 

Later, more complete theoretical models were 
developed by Bindi et al. (13,14) , Schou (113) 
and Rosler et al. (106,107). The models of Bindi 
et al. and Rosler et al. take into account all 
possible creation processes of SE resulting from 
the interaction of primary electrons with free as 
well as bound electrons (106,107) and from the 
bulk plasmon decay. In the description of the in
ner SE transport, elastic scattering is now in
troduced in addition to the inelastic one. The 
justification of the elastic process importance 
results from the comparison of the respective va
lues of the elastic and inelastic m.f.p. However, 
Rosler et al. neglect the depth dependence and so 
that the primary beam dispersion is not taken in
to account. Boltzmann's equation is numerically 
solved after its development in partial waves. 

In the model proposed by Bindi et al., the 
diffusion of the primary electrons inside the 
sample is investigated using a Boltzmann equation 
treatment in the continuous slowing-down approxi
mation for the energy loss. This treatment deve
loped by Lanteri (75,77,78) generalizes those 
presented by Bennett and Roth (8) and by Rostaing 
et al. (108,111). The theoretical results concer
ning the angular and the energy distribution of 
the primary electrons as a function of the depth 
are used for the calculations of the source func
tion. 

In all the presented models, the arbitrary 
distinction between primary and secondary 
electrons is maintained, the criterion for this 
being the energy. As commonly admitted, the energy 
of true SE does not exceed a few tens of electron
volts. It follows that the results are reliable as 
long as this energy is lower than that of the pri-
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mary electrons. Furthermore, excitation and decay 
of surface plasmon are neglected. The transport 
theory for kinetic emission of secondary elec
trons by electron and ion bombardment developed 
by Schou (113) is more phenomenological. In this 
model the secondary electron emission is related 
to the distribution of energy deposited in the 
target by the primary beam. 
Simulation models 

While elementary processes are well under
stood both theoretically and experimentally, an 
analytical treatment of the SEE phenomenon requi
res many simplifying assumptions. To overcome 
these difficulties, Bimshas (10) was the first to 
use a Monte-Carlo simulation method. Cailler and 
Ganachaud (26,45,46) developed this method in the 
case of Cu. The principle of this method is to 
follow the history of an incident electron from 
the moment it crosses the entrance surface of a 
solid until its escape back in the vacuum or, al
ternatively, its absorption in the solid. The si
m1Jlation consists in applying this principle to 
a great number of particles. 

The use of a uniform distribution of random 
numbers between O and 1 allows one to obtain 
- the path length of the electrons, 
- the type of collision whose probability is di-

rectly related to the inverse of the m.f.p., 
- the amounts of transferred energy and the angu

lar parameters relative to both exciting and 
excited electrons. 

The number of simulated primary electrons is 
generally taken between 500 and 10,000. The ener
gy distribution of secondary electrons is obtai
ned in the form of histograms, the width of the 
classes being generally 1 eV. The ratio of the 
number of emitted electrons to that of simulated 
primary electrons gives the yield. 

Ganachaud (44,47,48) extended this method to 
both normal and noble metals. Shimizu and Murata 
(118) also applied the Monte-Carlo method to some
what different models for the description of the 
interaction of primary electrons with solids, in 
the energy range generally used in electron mi
croscopy. Koshikawa and Shimizu (71), then applied 
it, in the case of Cu, to the diffusion of secon
dary electrons created by primary electrons as 
these penetrate into the solid. As a result, one 
can calculate 60 , an important parameter for the 
definition of the image contrast in scanning elec
tron microscopy. Koshikawa et al. (72) also used 
this method to simulate the shift of the peak and 
the variation of the f.w.h.m. of the energy dis
tribution curve as a function of the thickness of 
a layer of beryllium deposited upon a copper subs
trate. 

Comparison between theory and experiment 

Comparison between results obtained from the 
different models presented above and experiment is 
made on two classes of metal : one is aluminium 
for which the free electron approximation is jus
tified and which has received much attention ; 
the other is the class of the so-called noble me
tals (Au, Cu). 

We are only interested in those models which 
enable us to obtain at the same time, energy and 
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angular distributions, as well as yield. Moreove~ 
it is worth noting that, to our knowledge, only 
the simulation or the transport models, as deve
loped by Ganachaud (44) or Bindi et al. (13,14), 
permit one to obtain the true yield of SEE. Pre
vious analytical models and those developed later 
by Chung and Everhart (30) and Rosler and Brauer 
(106,107), treat only the primary electron con
tribution to SEE, during penetration into the so
lid, leading to the yield 60 • With the help of 
some simplifying assumptions, Bindi et al 's model 
(15) can also give some rough estimation of 60 • 

Results for Al 
Energy distribution. Experimentally, for 

primary energies in the range 0.6 keV - 2 keV, 
the main energy distribution features (peak posi
tion, f.w.h.m.) vary only slightly. Peak position 
is situated between 1.5 and 2 eV, and f.w.h.m. 
varies between 6 and 9 eV (12,38,105). 

All the energy distributions reveal the 
existence of a fine structure by the appearance 
of a shoulder around 10.5 eV. Another shoulder 
at 5.5 eV can only be seen for energies lower 
than about 300 eV. These structures are generally 
attributed to bulk and surface plasmon decay (56, 
59,64,65,105). 

Energy distribution curves given by the dif
ferent transport models are shown, as normalized 
in figure 6, and in real size in figure 7. One 
can see from these figures that, with the excep
tion of Amelia's analytical results, the theore
tical energy distribution curves are in good a
greement with experiment. 

On figure 8, we compare the energy distribu
tion given by our model, with that of Ganachaud's 
simulation model (44) with physical assumptions 
very close to ours. Peak positions being the same, 
differences in f.w.h.m. are attributed essential
ly to the surface plasmon decay, included in the 
simulation model. 

J E 
Jma 

0 5 10 E (eV) 

Figure 6. Comparison of theoretical and experi
mental normalized secondary electron energy dis
tribution curve of Al (EpQ = 1 keV). Theoretical 
spectra 1: our model (13J; 2: Chung and 
Everhart's results (30) ; 3 : Amelia's model with 
correction (2). Experimental spectra a : our 
results (12) ; b : Roptin (105). 
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Figure 7. Theoretical secondary electron energy 
distribution of Al (Ep0 = 2 keV). a : our model 
( 11 ) ; b : Chung and Everhart ( 30) ; c : Ros l er 
and Brauer (107). 
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Figure 8. Energy distribution of secondary elec
trons of Aluminium (Ep0 = 0.6 keV). Curve : our 
model (11) ; Histogram: Ganachaud (48). 

One can see, from the above comparisons, the 
fundamental importance of taking into account both 
the contribution of the plasmon decay in the sour
ce function (in addition to individual interac
tions) and the energy dependence of the m.f.p. 

Angular distributions of true SE. Ganachaud's 
simulation model (44), our model (13,14) and that 
of Rosler and Brauer (106,107), give results in 
very good agreement with the experimental distri
bution. The same good agreement is also obtained 
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when the internal secondary electron excitation 
presents a strong anisotropy (individual excita
tion). This is nothing else but an isotropic in
ternal distribution resulting essentially from 
elastic collisions. 

Yield. As previously mentioned, the true se
condary emission yield, can only be obtained by 
models taking into account the energy and angular 
dispersion of primary beams. 

In table 2, we present Ganachaud's (44) the
oretical values of otrue,those obtained by our 
model as well as the experimental values. In ta
ble 3, we present theoretical as well as experi
mental values of 60 • Generally, a good agreement 
is observed except for the Chung and Everhart's 
model which shows an important absorption proba
bly due to an oversimplified description of the 
internal secondary electrons transport process. 

Table 2. Secondary electron yield ot for Al rue 

E (keV) 
Po 

0.4 0.6 1 1. 2 2 Ref 

0. 77 0.62 0.38 0.32 0. 18 (11) 
Theory 0.83 0.68 (44) 

0. 77 0.72 0.57 0.52 0.39 (11) 
Experiment 0.66 0.59 0.45 0.41 0.23 ( 18) 

0.68 0. 61 0.48 0.46 ( 105) 

Table 3. Secondary yield 60 for Al produced by 
the incident primary electron. 

E (keV) 
Po 

0.6 1 1. 2 1. 5 2 Ref 

0.34 0. 21 0. 18 0. 14 ( 11) ( 15) 

0. 10 ( 107) 
Theory 

0.08 ( 107) 
0.051 0.038 (30) 

0. 15 0. 13 ( 18) 
Experiment 0.26 0.25 0.22 0.21 (79) 

Results for noble metals (Cu, Au) 
These metals have been investigated less 

than Al. Among the different theoretical models 
proposed for SEE in Cu and Au, we can mention : 
- Cailler's (27) transport model based on the 
works of Wolff and Puff. In this model, the sour
ce function takes into account the presence of 
"d" electrons in these metals ; the dielectric 
function is obtained from the optical spectra and 
an empirical m.f.p. is used in the transport of 
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excited electrons. 
- Amelia's transport model including corrections 
suggested by Moulin et al. (89). The source func
tion is that of Streitwolf restricted to indivi
dual interactions. 
- Bindi's et al. (14) transport model adopting the 
same source function as Cailler. 
- Koshikawa and Shimizu's simulation model (71) 
using Streitwolf's source function, and also expe
rimental m.f.p. for the cascade mechanism. Here, 
the primary beams dispersion is neglected. 
- Ganachaud's simulation model (44). 

Energy distributions. Normalized energy dis
tributions given by models of Cailler, Amelio and 
Koshikawa and Shimizu in the case of copper are 
shown in figure 9 for 0.2, 0.6 and 1 keV primary 
energies respectively. The normalized energy dis
tributions given by models of Ganachaud and Bindi 
et al. for the same metal, are shown in figure 10. 

Jill 
J max 

.'\ 

'\ 

0.5 

0 5 

'"' '"' ''-.... 
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10 

2 

-----~----
E (eV) 

Figure 9. Normalized secondary electron energy 
distribution for copper. 1 : Cailler (27) for 
Ep0 = 0.2 keV ; 2 : Amelia's model (2) with cor
rection for Ep0 = 0.6 ; 3 : Koshikawa and Shimizu 
(71) for Ep0 = 1 keV . 

..lID 
Jmax 

0 5 10 E(eV) 

Figure 10. Normalized secondary electron energy 
distribution for copper (Ep0 = 1 keV). 1 : our mo
del (14) ; histogram : Ganachaud (44). Experimen
tal curves : a : our results - b : Roptin quoted 
by Ganachaud (44). 
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In table 4, we grouped the experimental va
lues of the energy distribution features for the 
previously mentioned primary energies. The marked 
fine structure initially observed by Scheibner 
and Tharp (112) in the neighbourhood of 13 eV for 
Cu was not confirmed by the later measurements of 
Koshikawa and Shimizu (70), Pillon (93) and Bindi 
et al. ( 12). 

Table 4. Peak position (Emaxl and full width at 
half-maximum of the secondary electron energy 
distribution for copper at primary energy Ep= 0.2; 
0. 6 ; 1 keV. o 

E (keV) 0,2 0.6 1 Ref 
Pa 

·-------- ----- ---- ---------

1. 7 1. 6 1. 5 (11) 

Emax(eV) 2.3 2. 1 1. 9 (44) 

1. 4 ( 71) 

6.2 5.7 5.2 (11) 
f.w.h.m. 8.4 7. 1 6 (44) 

(eV) 
5.4 ( 71) 

In figure 11, we show, in a reduced form, 
the SE energy distributions for gold, given by 
the theoretical models of Ganachaud (44) and Bin
di et al. (13, 14) as well as the experimental re
sults of Bindi et al. (12) and of Pillon and Rop
tin, published in (44). The latter authors obser
ved a hump near about 10 eV. 

.Jfil 
Jmax 

0 5 10 E (eV) 

Figure 11. Normalized secondary electron energy 
distribution for gold (Ep0 = 0.6 keV). 1 : our 
model (12) ; Ganachaud (44) : histogram. Experi
mental curves : a : our results (12) - b : Pillon 
and Roptin quoted by Ganachaud (44). 

Examining figures 9, 10, 11 and table 4, one 
can see that the energy distribution features 
(f.w.h.m. and peak position) given by theoretical 
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models of Koshikawa and Shimizu (71), Ganachaud 
(44) and Bindi et al. (12) are in very good agre
ement with the experimental results. 

The fine structures found in some energy 
distributions are to be attributed to those in 
the loss functions if one takes into account the 
more or less important inelastic collision rates, 
which are connected to the m.f.p. values. 

SEE yield. The values of the contribution 60 
of the incoming primary electrons in the 1 - 2 keV 
energy range are about 0.25 for Cu and 0.4 for Au 
(79). Among the models previously mentioned, gi
ving 60 , only that of Cailler leads to a correct 
value, provided an empirical value of the m.f.p. 
is used ; this is particularly important for cop
per. The model of Koshikawa and Shimizu (71) 
using the Streitwolf's source function gives va
lues of 60 which are too low. Correct values of 
the true SE yield are only given by Ganachaud's 
theoretical model. For a primary energy Ep0 = 0.6 
keV, the values of 6true are situated between 
1.25 and 1.42 for gold, and between 0.9 and 1.1 
for Cu. Values of otrue given by the model of 
Bindi et al. (13,14) are five times too low for 
these metals. 

Conclusion 

From the above comparison between theory and 
experiments we can determine the specific condi
tions which will allow a theoretical model of SEE 
to give full account of the experimental data. 

First, concerning the energy and angular dis
tributions, inelastic and elastic interactions of 
internal SE must be correctly described, the ener
gy dependence of m.f.p. being an absolute pre-re
qui site. 

Second, concerning the true SE yield, reaso
nable values will be reached if we take into ac
count all the intrinsic properties of the inves
tigated material, which also give fine structures 
in the energy distribution curves and equally, 
the energy and angular dispersion of the incident 
beam, i.e., the influence of the backscattered 
electrons on SEE. This last point could explain 
the low values of the yield given by Bindi et al. 
transport model (13,14) in noble metals, and the 
existing discrepancy with Ganachaud's 6true va
lues (44). 

In fact, in Bindi's model, the energy and 
angular dispersion of the incident beam in the 
continuous slowing down approximation, does not 
permit one to find a correct value of the back
scattering coefficient in noble metals, while this 
approximation appears to be satisfactory for Al. 

This is why we have recently developed (80, 
109,110) a theoretical model, based on the trans
port equation, for the analysis of the different 
processes of electron diffusion, as well as 
for the analysis of backscattering and transmis
sion in metals. This model takes into account se
parately all the electron-solid scattering proces
ses and requires only a knowledge of the diffe
rential cross section related to these processes. 
The advantage in the development of such a model 
is not only restricted to the sole determination 
of the internal SE excitation, but extends equal-
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ly well to other fields such as electron microsco
py and Auger electron spectroscopy, as illustrated 
by the works of Father and Rez (39), Shimizu and 
Ichimura (117), Fitting and Reinhardt (43), Tof
terup (124), Tougart and Sigmund (125), with which 
our model should be compared. 
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Symbol Table 

Secondary electron emission 
Total SEE yield 
True SEE yield 
Backscattering coefficient of primary 
electrons 
Incident primary electrons energy (keV) 
Primary electrons energy (keV) 
SEE yield of forward primary electrons 
SEE yield of backward primary electrons 
Mean backscattered electrons effective
ness for SEE 
Transfer of energy (eV) 
Momentum transfer (N.s) 
Dielectric function 
Real part of s 
Imaginary part of s 
Reduced energy transfer 
Reduced Momentum transfer 
Cutoff value of z for plasmon excitation 
Fermi momentum (N.s) 
Fermi energy (eV) 
Electron energy (eV) 
Probability for an electron to yield an 
amount of energy ~wand momentum ~q to 
the sol id (s-1) 
Electronic charge (Coulombs) 
Inner-shells 
Inner-subshells 
Inner-shell subscript 2 Scattering cross section (cm) 
Number of electrons of the nl shell 
Parameters 
Binding Energy for the nl shell 
Reduced energy 
Atomic number 
Energy loss (eV) 
(eV)2 (nm)2 
Reduced Energy 
Reduced energy loss 
Elastic scattering angle 
Screenin~ parameter 
Depth ( nm) 
Electron velocity (nm s-1) 
Angle between the propagation direction 
and the inward normal 
Mean free path (nm) 
Full width at half maximum (eV) 
Differential normalized density of SEE 
current (keV-1) 
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Discussion with Reviewers 

K. Murata : What is the reason why your theoreti
cal values are too low for Cu and Au? Do you 
think the backscattering contribution which you 
neglected in your model is primarily responsible 
for the discrepancy? 
Authors : The backscattering contribution is not 
neglected in our model but we find· that the scat
tering and the energy loss of primary electrons in 
the continuous slowing down approximation give va
lues of n too low in the case of Cu and Au and 
consequently for the excitation function including 
this contribution. Furthermore, the excitation 
function for Cu and Au contains an impact parameter 
of which the value is of the order of the inter
atomic distance. Following Cailler we have used 
0.14 nm in our calculation but a value of 0.05 nm 
increases the yield by a factor of two. 

We think that these two reasons can explain 
the low values for Cu and Au. 

K. Murata : When you check the validity of the 
theoretical model, the accuracy of experimental 
data to compare with is important. However, as you 
can see, the experimental data deviate often from 
each other. Could you comment on the accuracy of 
the data and main factors which determine it? 
Authors : The discrepancy between experimental 
data results from : 
- the nature of the target, i.e, polycrystalline, 
or single crystal, bulk metal or evaporated layers; 
the nature of the target affect the work function. 
- the quality of vacuum. 
- the working conditions of the retarding field 
spectrometers used in measurements of secondary 
electrons energy distributions. Spurious peaks 
connected with secondary electron emission from 
the grids of the spectrometer can appear in the 
low energy range. 

K. Murata : Could you briefly describe your newly 
deve 1 oped model ? 
Authors : In our newly developed model, the scat
tering of primary electrons in metals is also des
cribed by Boltzmann's transport equation, but not 
by means of the continuous slowing down approxi
mation. The new formulation takes into account se
parately all the electron-solid scattering proces
ses. Application of the theoretical model to a gi
ven metal requires only a knowledge of the diffe
rential cross sections related to these processes. 
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K. Murata : What do you think of a contribution 
of fast secondary electrons to the generation of 
true secondary electrons, which has been investi
gated by D.C. Joy (J. Microscopy, 136-241 (1984))? 
Authors : The probability of exciting fast secon
dary electrons by individual interaction is weak. 
Furthermore, these electrons cannot be distingui
shed from backscattered primary electrons having 
lost much energy in the target. In our model 
the energy limit between fast internal secondary 
electrons and low primary electrons was fixed at 
100 eV. We have verified that greater values do 
not modify the results. 

J. Schou : Could the authors describe more detai
led how they include the contribution of the 
backscattered electrons to the total secondary 
electron yield in their model ? 
Authors : The scattering and the energy loss of 
primary electrons in the target is described by 
Boltzmann's equation in the continuous slowing 
down approximation. So, we obtain the primary 
electron density f(Ep,n1,x) as a function of 
depth x, energy Ep and direction Ql· The knowledge 
off allows us to obtain the source function: 

S(E,n,x,Epo) =ff JEpo S(E,Ep,n2) 
Ep(Min) 

(13) 
x f(Ep,n1 ,x) dEp dn1 

where S(E,Ep,n2) is the excitation source func
tion resulting from electron-electron scattering 
or volume plasmon decay. 
Eis the energy of internal secondary electron. 
n is the direction of internal secondary electron. 
Ep

0 
is the initial incident energy. 

The source function is used in the transport mo
del of secondary electrons. So, we obtain the 
true secondary electron yield a= o0 + 01. 
With the value off at x = 0, we can calculate 
the backscattering coefficient n and the total 
secondary yield oTot = o + n. 

Z. Radzimski : Have you tried to apply your theo
ry to describe SEE from insulators and semicon
ductor materials, including compounds. Which ele
ment of your theory would be responsible for the 
high yield of SEE in the case of insulators? 
Authors : We have not tried to apply our model 
for description of SEE from insulators or semi
conductor materials. For these materials, the in
ternal electrical field must be take into account 
in the transport equation, and another resolution 
method must be developed. We think that the in
ternal electrical field is partly responsible of 
the high yield of SEE, together with the high va
lues of m.f.p. in such materials. 

Z. Radzimski : Can you say something about the 
practical usefulness of the models mentioned in 
this paper? Which category of models is most fre
quently used and which in your opinion, are more 
valid and under what circumstances? 
Authors : Simulation's models and transport's mo
dels give approximately the same results when 
the elementary processes taken into account are 
described in a similar way. 
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However, the simulation's model seems more 
easy to carry out, but at the expense of computing 
time if the same precision is required such as for 
obtaining fine structures. 

P. Rez : Although this paper is concerned only 
Wlfhmetals would the authors be prepared to com
ment on both experiment and theory for secondary 
emission from oxides and semiconductors ? 
Authors : We have not investigated the secondary 
emission from oxides and semiconductors. As men
tioned previously,experiment and theory for the
se materials differ strongly from those concer
ning metals. 

P. Rez : Is it necessary to include exchange ter
iiislrlthe description of inelastic scattering for 
secondary emission? I note that most treatments 
neglect these effects. 
Authors : The most complete models presented in 
this paper show that it is possible to take into 
account simultaneously all the processes appea
ring in SEE. In a first step, particularly in 
transport theories, these processes were descri
bed in an oversimplified manner in view of an ea
sier numerical treatment ; that is why the exchan
ge term was neglected. 

We can now include this effect in a more rea
listic description of the inelastic scattering of 
internal secondary electrons ; Ganachaud (44) 
showed that the net result was an increase of the 
individual collisions rate correlated with a de
crease of the collective effects for these elec
trons. 

P. Rez : A transport equation approach is semi
classTcal and neglects the quantum mechanical 
"wave" nature of the electron which gives rise to 
diffraction. Is this a serious problem with cur
rent theories ? Is it possible for diffraction of 
low energy secondary electrons to influence any 
structures observed in the energy distribution? 
Authors : In the model the solid is considered as 
a set of ions randomly distributed in a free elec
tron gas. This concept precludes any coherent 
scattering description. 


	Secondary Electron Emission Induced by Electron Bombardment of Polycrystalline Metallic Targets
	Recommended Citation

	tmp.1608054508.pdf.DUac2

