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Abstract 

The pape r p r ese nt s a d eta il ed a naly ­
sis o f E l ectron Beam Induced Current 
(EB I C) d iffu sion -l e ngth and co ntr as t data 
f o r sa mpl es conta inin g defec t acc u mu l a ­
tions . The formulae given al l ow one to 
estimate to which extent the ave rag e 
diffu sio n l eng th is determined by recoffi­
b in ation - ac tiv e defects s h ow ing EBIC 
cont ra st . 

This anal y s i s may b e used to identi ­
fy esse nti al s ource s of bulk r ec ombina­
tion in an n ea l ed silico n. In the light o f 
our re sults stack in g f a ult s are a n esse n­
tia l so ur ce o f b ul k recombination in 
in tr i n sical l y get t e r ed p -t ype Cz si licon. 

KEY WORDS : Diffu sio n Length, Electron 
Beam Induc ed Cur r ent , Carrier Rec ombina ­
tion, C ry s tal De f ects, Intrin sic Ge tt e ­
ring, S ilic on , Se miconductor Characteri ­
za ti on . 

" Add r e ss fo r co rrespondence: 
Akademie der Wissenschaften der DOR 
Institut fQr Halbleiterphysik 
W.- Korsing - St r. 2, F r a n kfurt (Oder) 
DOR -1 20 0 P h o n e No: 3730 

7397 

Introduction 

Intrin s ic getteri n g (IG) p r ocedures 
in Cz s ilicon re s ult in th e formation of 
a depth - dependen t concentration of de ­
fe c t s characte rized by a l ow density o f 
crystal defects a t the s urfa ce (denuded 
zone) and a high defect density in the 
wafer b ul k . The r eby , the b ulk defects are 
import a nt as gettering si te s for 
und esi re d impurities /15/ . The p r ofi l e o f 
defect de n s ity lead s to a co rr espo nding 
profile of recombination properties 
(reco mbination lifetime 't'R respectively 
dif f usion lengt h L) , with low recombina­
tion in the denu ded zo n e and stro n g 
rec ombi n ation in th e bulk (Fig . 1) . 

Although devices a r e usually located 
in the highly pe rfect d e nud ed zone t he 
b ul k r egio n is not unimportant for device 
operation /16 ,1 0/ . Acco rd ingly, there is 
an intere s t in characterizing b ul k r eco m­
bination and it s sources . T hi s knowledge 
is a n ecessa ry pre requi si t e for lif etime 
engi n ee r ing. 

The EBIC me thod is well suited for 
inv es ti gat ing the sou r ces of bulk r eco m­
bination as it allows both t o i mage a nd 
inve s tig a te the recombin a ti o n-active 
crystal defects in a cert a in area o f a 
sample and t o dete rmin e th e average dif ­
fusion l e n g t h in the same sa mpl e area . 
An example for a n EBIC image of volume 
defects in an n ealed Cz s ili con i s g i ven 
by Fig . 2a . 

It i s obvious that s uch c r ystal de ­
fects sh owing dark EBIC con tr as t s reduce 
the ave r age dif f usion length in the mate ­
r ial beca u se da r k contrasts indicate 
add i tiona l r ecomb ination. Howev e r, 
c r ystal defects hav in g EBIC contrast a r e 
not the only causes of bulk recombina­
t ion . 

Other crysta l defec t s not re so lvable 
by EBIC due to their low recombinat i on 
activi t y and/or their h i gh de n s ity and 
po in t defec t s may also contribute to bulk 
re combinat i o n (F ig. 2b) . So , t o a first 
approximation the resulting average dif ­
fu s i on length in th e bulk of th e sample , 
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Fig. 1. EBIC micrograph of a bevelled 
sample ( ci.,!:!JI 3 .s 0 ) taken at E0 = 30 
and related depth profiles of 
charge collection efficiency '.'Z 
effective diffusion length L* (o) 
true diffusion length L (e), 
detailed information see /3/. 
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Fig. 3. Dark EBIC contras t s at stacking 
faults and bright EBIC halo around a 
point-like defect (p-type silicon, Al 
Scho ttky diode, E0 = 25 keV). 

Ls, is given by: 

with 
the 

-2. 
Le, (1) 

L[ describing the contribution of 
observed defects with EBIC contrasts 
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Fig. 2. Volume defects in anne a led Cz 
silicon, 
a) EBIC micrograph of an annealed sample 
(p-type silicon, Al Schottky contact, 
Eo = 30 keV). 
b) Sche matic illustration of the diffe­
rent defect types contained in a samp l e: 
Defects having EBIC contrast (full 
circles) define the diffusion-length 
component LE while point defects (points) 
and extended defects giving no EBIC 
contrast (open circles) determine the 
component LM· 

and LM the contribution of the sur roun­
ding material being due to point defects 
and crystal defects without contrast (re­
combination background). 

L& can be determined directly by 
energy-dependent charge collection 
measurements ~ (E 0 ) /17 ,9/. while LE 
could be estimated from contrast data 
/8 /: 

A is the 
contrasts, 

C:! 

½ 

( 
R frnct,c \ 2 

Cr,,a,c I ( 2.). 

average distance between EBIC 
cmQX the maximum EBIC contrast 
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in the sa mpl e area investigated, R the 
electron range /5/ at the beam energy E0 

u sed for imaging and frno.x a correction 
f actor to be calulated - for more detai ­
led information on c and f see below. 

Application of relation (2) to 
experimental data proved to yield quite 
sa tisf ac tory results . e . g .• LE> L B in 
all cases as required by (1) /8/ . 

The present paper proves relation 
(2) g iven for accumulations o f EBIC 
contrasts and discusses experimental in­
vestigations of closely neighboured 
crystal defects in annealed Cz s ilicon 
using r e lations (1) and (2). 

an 

Description of the EBIC contrast 
a t individual defects 

The EBIC co ntra s t function c( 1 ) 
isolated defec t is defined by : 

C (r) ::: 1 -
I (r') 
Io 

(3) . 

0 f 

I(1) and I
0 

a r e the beam - induced 
currents collec ted at arbitrary beam 
position ? and at beam positions s uffi­
ciently far from the defect. respective­
ly. Thereby. both positive (dark) and 
n ega tiv e (bright) contrasts may be 
found in practice - see Fig. 3 . 

Po sit iv e contrast caused by enhanced 
ca rri er recombination at defects is the 
most importa nt contrast type and can be 
well described by existing theoretical 
models /2 ,1 3/ . 

Such positive recom bi n ation con-
trasts only will be discussed below . 
According to Oo nolato /2/ the contrast 
function due to a point-like recombi­
nation-active defect in the neutral semi­
conductor may be written as /11/: 

c(r) =- 0 f Cr) (4-). 

0 i s the r ecombi nation strength of the 
defect (having dimension of a length in 
ou r notation) and is relat ed to the num­
ber of recombination centres, n, at the 
defect and their effective cap tur e cross 
section ,6'. by /11/: 

n6' ( 5) 

with D being the minority carrier diffu -
s i v i t y a n d V-th t h e i r t h e r m a 1 v e 1 o c i t y • 

f(1 ) is given in /2/ and represents 
a correction function depending on defect 
depth , diffusion length LM in the mate ­
rial sur roun din ,a the defect. e l ec tr on 
probe position r, a n d primary electron 
r ange R . When the elect r on beam is 

positioned 
correction 
value fd. 

just above a given defect the 
function is at its largest 

and the contrast is given by: 

1399 

C == ◊ fa ( 4'). 

R • 6f1m 

Q02 
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Fig. 4. 
defect. 
lated 
length 

Correction f actor of a point-like 
a,, versus defect depth, a, calcu­

for R = 6 ,µm. with the diffusion 
LM as parameter, see also /12/. 

Fig . 4 shows an example of a correction 
factor fcl of a point -li ke defect . for more 
detailed information see also /12/ . At 
su fii ciently large LM the correction fac ­
t o r fcl b e c o me s n e a r 1 y i n d e p e n d e n t o f L M 
and at R = 6 ,µm the maximum correc tion 
factor becomes f mo.x ~ 0 .0 27 ; .rnr 1 for a 
defect depth of a ~ 4 ,µm. Cor recti on fac­
tors f o r lin e - shaped defects. e . g .. dis­
loc atio n s , can be found in /4, 12/ . 

The EBIC collected near an isolated 
defect. I( 1 ) . may be written: 

S imilarly, the 
electron beam 
feet. I d is 

De s c ,- i p t i on 
contrasts 

0 f 
and 

bulk 

tf (r) J 
EBIC obtained 

positioned above 
given by: 

(6). 

with 
th e 

the 
de -

densely distributed EBIC 
their contribution to 

recombination 

If we have an accumulation of close­
ly neighbouring defects the resulting 
EBIC signal will be , of course, influ­
enced by all of them. So , the EBIC cur ­
rent around a defect o f strength 't' 
loc ated in a c lou d of N other defects 



M. Kitt l er an d W. Se i f e rt 
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defect 
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Fig. 5 . EBIC distribution around point-like recombination-active defects ; 
a) isolated defect 
b) defect with a close neighbour: ( - --), ( . .. ) EBIC profiles of the two contributing 

defects 

is given by: 

In Fig . 5 thi s influence i s illu­
strated schematically for two c l osely 
neighbouring defects. Due to th e super ­
position of the defect contrast functions 
the EBI~ s ignal at th e defect 
po s i t i on r = 1 is Id. • inst ea d o f I d. and 
the maximum EB I C appea ring between the 
de f e c t s i s I 0 • in s t ea d o f I

0 
• 

Nevertheless, it can be shown th at 
for defect distances well above the elec ­
tron range R and for not too large de f ect 
strengths the contrast of such defects , 
c• , is nearly equal to the contra st c of 
a n isolated defect (unpublished 
re su lt). i . e . . 

This relation 
contrasts as 
d efects in 
interest . 

entitles us 
contrasts 

many cases 

to 
0 f 

of 

(8). 

treat the 
i so lated 

practical 

The property c C::! c• will be used now 
to prove for mula (2) relating the diffu­
sion - length component due to EBIC co n ­
trasts, L E:, to EBIC contrast data ( maxi ­
mum contrast c mdx • average distance bet­
ween contra sts A ) . Assume a homogeneous 
defect density dep th - distribution F(a) 
(Fig . 6a). and a homogeneous de f ect­
strength dist r ibution P( 6 ) up to a 
certa i n maximum d e fect streng t h Qmax 
(Fig . 6b) . 

( - ) re su lting EBIC dist ri bu tion 
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In Fig . 7 th e contrasts of th ese 
defects as calculated from (4 ' ) are s hown 
in dependence on defect depth, a, with 
defect s tr eng th r as parameter. The 
lower curve i s the curve for th e minimum 
de f e ct st re n g th t'min st i 11 ab 1 e to p ro­
duce a visible contrast , the up pe r curve 
represents cont r ast versus depth for the 
maximum defect stre n gth ornox, a n d th e 
dashed curv e is for an intermediate 
de f e c t s t r· e n g t h o( a ) . T he r e b y , t h e f o 1 -
lowir•g r elations hold: 

(9). 

The shaded area in Fig. 7 defi n es 
the portion of defects hav in g visible 
EBIC contrast, i. e ., c min :£:. c :f Crno x 
Defects at depth between a u and a 1 only 
can be observed . The so defined inf orma ­
tion range ~ a ~ a 1 - a ~ depends o n Cm~ 
and cm~x • with ,:l.a < R for c rn;n /c m Q.x ➔ 1 
and ,6.a > R for c min /c rna x <<. 1 ( see 
Fig . 8) • 

To estimate the recombin a tion compo ­
nent due to visible defects we treat all 
the r eco mbination centres located a t the 
defects as being distributed homogeneous ­
ly in the depth interval b a in which 
contrasts can be obse rved . So we may 
write: 

(10) 

as for homogeneou s distributions of cen -
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tr es . (n 6' ) 1 i s the p rodu c t of cap tur e 
cross-section and number of centres at 
the i-th defect a n d the s um include s all 
vi s ible defects pe r unit area . As: 

the defect 
length LE 

with I: Oi 
le defects 

0 

1 

co mponent of th e 
i s s imply given by : 

==-1 - Lv--, 
t'.\Q i O l 

see ( 5) , 

diffusion 

(11) 

as s trength s s um of all visib ­
per unit area . 

a) 
a-

P(f)i-----,-,-...,.....,....,.....,._,....,_,....,....., 

'tmin b) 
0 

Fig . 6 . Ass umptions about defects ; 
a) depth di s tribution: con s t a nt defect 
density (defect number per unit area and 
pe r depth elements) F(a) versus depth a 
b) s tr ength d i s tribution: ex i s t e n ce of a 
ma x imum defect s tre ng t h omo.>< a nd equal 
pr ob a b i 1 i t y P ( 0 ) ;::: 0 ,.;;::.X f o r a 1 1 y; be tween 
0 and omo.>< . 
Th e sha d ed a rea s define t he r a ng e of de ­
f ec t depths and defect s tr eng th s , r espec ­
tivel y , where de f ec t s may be obse rv ed . 
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Fig . 7 . Schema tic drawing o f 
defect depth, a, ve r su s 

s tr ength 0 

contrast , c , 
with d e f ec t 

1 
6.a 
R 

2,0 

1.5 

1,0 

0,5 

0 

as parameter . 

0,5 

R =6µm 
Liv( 100µm 

Cmin 
Cmax 

1,0 

F i g . 8 . Normalized depth range whe r e 
defects rnaybeobserved ,L\.a/R = (l/R)(a 1 - a u ) . 
v e r s u s co n t r a s t r a t i o c r,,in / c ,-,,a.x f or 
R == 6 I' m and LM == 100 /Jm . 

Acco r d in g to t he assu med depth a nd 
s trengt h distributions (Figs . 6a and b) 
o f de f e ct s th e s u m ~ tli is n ow rep 1 aced 
by a double integrali o n.Thereby defect 
v i sibil it y r eq uires contrasts larg e r than 
c rni t\ and de f in es the in t e gr a t i o n 1 i mi t s 
( limit s se t on visibility by t he spat ial 
res o luti o n o f the EBIC method a re not 
taken into accoun t here) . We ob t a in: 
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wher e 0 (a) == Ctr,ji, / f (a) i s the mi nimum '!;' 
for a g i ven defect dep th a wh i ch s till 
produces a v i sible con tr as t a n d au a nd a 1 
d e fine th e depth r ange where contr as t can 
b e observed (comp a re Fig . 7) . 
Us ing (9), x :: l\ a/R, a n d the distribution 
functions P( 't ) and F(a) give n in Fig. 6 
integrati on leads t o t he following 
r esu lt: 

It i s , how eve r, useful to rewrit e thi s 
formula once more us ing in s tead of F(a) 
the mean distance betwee n contrasts, A, 
wh i c h is determined directly from EBIC 
inve s ti gat ion s. 

As t he squa r e of A i s de fine d as the 
inv e r se o f the number of v i sible defects 
per unit a re a we h ave: 

1 
/(" 

In ser ting (14) 
re su lt for th e 

(14-). 

into {13) we get th e final 
diffu s ion l e ngth co mponen t 

du e t o EBIC co ntr as t s: 

(15). 

The left part a t th e right s id e of (1 5 ) 
is identical with relation (2), but the 
additional term s under the root introduc e 
c o r rec t i on s de p e n d i n g on c l'nil"I / c ma>< • 

Thi s ef feet of the c m;n / cl'T1GIX rati o 
on the LE value to be determined i s illu­
st rate d be low f o r two extreme case s : 
( i ) Cmin / c l"\ll.>< = 0. 1 , i . e . , very sens i -
ti ve EBIC detection electronics or strong 
defects and 
(ii) c tnin /c rnQ.)( "' 0.9, i. e., po o r 
s ensitivity or weak defects. R := 6 )-lm a nd 
LM = 100 ,µm are assumed. 

1402 

On e ob t ains: 

(16). 

Look i ng at {16) one should not conclude 
that LE increases wi t h decreasing 
c rnin / c ma" because at the same ti me the 
mea n contrast distance A decreases ( see 
formula (14)). Us in g (13) o n e fin ds: 

(
Cmii, ) LE ~)(=0.C) 

LE( Cmin : 0.1) 
Crna>< 

N 2 

fo r R = 6 JJm a n d L M :a 100,,um . So we see 
t ha t LE depends weak l y on the se n s iti vi ty 
o f t he elect r on i cs u sed . 

The above r esul t s a llow o n e to con ­
clude that relation (2) may be used f o r a 
rough estimation of LE, especial ly for 
u s u a 1 c rni n / c max r a t i o s . I m p r o v em e n t s o f 
the estimat e a r e possib le when apply ing 
f o r mu l a (1 5) . 

Dependence o f bul k d iffu sio n length on 
mean d i s t a nc e between EBIC cont r asts 

Fig. 9 shows the ave r age bulk diffu ­
s i on l e ngth, LB versus mean d i stance 
between EB I C cont r as t s , A., as ca l culated 
f or an e l ectron range R = 6 )-lm from (1) 
and (2). The di ffu sion length, L M , a ri­
s ing from th e r eco mbi n at ion backg r ound 
a n d the maximum EBIC contrast, c max , are 
t ake n as pa r amete r s . If L M ➔ 00 

(background r ecomb inati o n missing) L5 
i s seen to in cre,ase linearly with A 
with a s l ope de t c rmi ~ed by tha va l~ e o f 
the EB I C contrast c max . For finit e LM 
(exist ing rec omb in a ti on background), on 

f o r t he o th e r hand , L s ➔ L M i s f ou n d 
l a r ge A 

Experiment a l 
distributed 

inv es tigations o n 
EBIC contrasts in 

silicon a nd discussion Cz 

de n sely 
a nne a led 

0 f 
Many differ e nt Cz si li con sa mp l es 

the following cha r ac teri s tic s were 
s tudied: 
p-type, bor on - dop ing, ~=1 0 ... 20 o hmx cm , 
76 mm or 1 0 0 mm in diameter, (100) o r 
(111) orientation, d iff e rent contents of 
metallic impuriti es like Fe, Cu , Au, 
di f f er e n t ox y gen con t e n t ( 5 ..• 1 0 x 1 017 

cm- 3 ) , different hea t treatment s f o r IG 
(mul ti step heat tr ea tm ents or ramping for 
nucleation, see e. g. / 15/). 
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Fig. 9 . Bulk diffusion l e ngth Ls ve rsus 
mean distance A between EBIC contrasts: 
Calculated c urves for R = 6 flm (i. e., 
E 0 ~ 2B . 5 ke V co r responding to /5/) with 
EBIC defe c t contrast . c m,o,, and diffu ­
sion-length component o f the recombina ­
tion background , LM, as parameters, t oge ­
ther with data measured at E

0 
= 30 keV (+) 

- for di s cussion see below. 

The EBIC inve s tigation s in the 
volume o f the sa mple were carried out 
either on beve ls or after s uffi c ient 
su rfac e remov a l by etching. Al Sc hottky 
co ntact s were u sed for charge co ll ec tion . 
A and C rrio.x were determined for a beam 
e nergy E

0 
= 30 keV thereby averaging over 

a s ufficiently large area. The measure­
ments were performed in bulk r eg ions of 
constant density of EBIC contrasts, as 
f or z ?'., 150 , um in Fig . 1. Thus , a homo ­
geneou s defec t- dens i ty depth-distribution 
F(a) could be assumed . 

The maximum contrast values Cmax 
were near 0 . 3 in many cases. The size of 
the defects show i ng EBIC contrast was 
de t ermined by TEM to be in the range of 
1 _,um or less so t ha t t hey could be cons i­
de r ed as being small compared to R a n d 
treated as point - like defects. The bu l k 
diffusion le n gth Le was determined from 
energy - dependent EB I C measurements /9/ . 

The measured data (crosses) a r e 
shown in Fig. 9 . For bo t h ca l cula t ed 
curve s and measured data Ls increa ­
ses with ii.. More de t ailed informat i on 
about two typica l samples denoted A 
and B is given in Tab l e 1 . 
(i) It i s found t hat the total defect 
density obtained by etching ( Nop + Ns, 
+ • •• ) is considerably larger than the 
density of defects giving EBIC cont r ast 
N E: . b u t N SF an d N E. a r e u s u a 1 1 y i n t h e 
same order o f magnitude . 
(ii) In sa mple A LE <. LM is obser­
ved , i. e., the dom i nant sou rce of bulk 
recombination are defects showing EBIC 
co nt rast, probably s t acki n g f aul t s (SF) . 
Samp l e B ha s LE 0! L M, again indicating a 
significant contribution to bulk recombi ­
nation by defects with EBIC contrast. 
(iii) The diffusion length betw een the 
contrast s ites, LM . i s es timat ed to be 
sma l ler than the diffu sio n length in the 
denuded zone L D2 for both samp le s . 

In the light o f o ur results de­
fects show ing EBIC contrasts, i. e. , 
mainly SF, are the e sse ntial so urces of 

Tab l e 1 Cha r acteris t ics of sa mples A a n d Bas obtained by etch i ng and EBI C 

s ample 

A 

B 

Wright EBIC calculated* 
et chin u s ing (l)and(2) 

Nop NSF N E cmo.x LB L l>2 LM 

( cm-3 ( cm- 3 ( cm- 3 ) (lum) (.,um) (c! m) 

10 
6xl O 9 3xl O 

9 
10 

1 o9 

0.3 5 . 5 30 11 

1 xl 0 8 2xl OB 0.3 14 30 20 

densit i es of oxygen prec i pi t a t es (OP} an d s t acking f au l ts (SF}. 
ve l y, de t erm i ned by Wr i g h t e t ch in g, 
de n si t y of EBIC cont r as t s a t E0 = 30 keV , 
d iff us i on length in the denuded zone o f t h e wa f e r de t e r mi ned 
method given i n /3/ . 

L E 

(t:':!m) 

6 . 3 

20 

respec ti -

by t he 

• LE was calcu l ated by relation (2) us i ng f mctx ( LM = 100 }-Jm, . . . ) ;::: 0 . 027 .,uni 1 for bo t h 
samples . LM = 20 .,um was f ound for sa mp l e B by inse rti ng LE= 20)-Jm and Ls= 14 )-J m in 
re l atio n (1) res u ltin g in a sl i ghtly r educed I ma~ value only, co mpa r e Fig . 4 . For 
s a m p 1 e A , h ow e v e r , w i t h L fl,1 = 1 1 JJ m t h e c o r r e s po n d i n g v a 1 u e f ma)( ( L M "" 11 )J m • . .• ) ~ 
0.025 _,um- 1 is smaller . Conseque ntl y a co rr ec t io n o f Im~>< wou l d res ul t i n a sma ll 
dec r ease of L~ bu t i n an i n crease o f LM. Fo r co n s i de r ably s ma ll e r LM val u es 
co rr ections cou l d be o f mo r e s i g ni f i ca n ce . 
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bul k r ecombina ti on in int r insically get­
t ered p-type Cz s ilicon. Poss i bly, recom­
bination activity of SF is caused by 
precip it ates decorat ing the Fra nk partial 
d islocations . In contrast to /6/ indivi ­
du al oxygen precipitates (OP) cannot be 
conside r ed to play the dominan t role in 
b ulk re comb in at i on although they might be 
responsi b le for the enhanced recombin a ­
tion background in the bulk as compared 
to the r ecombination in the den ud ed 
zone (L M < L Dz. ) . Dominant OP recombina ­
tion seems to be rather confined to 
sam pl es

1 
with very high OP densities 

Nop N 10 2. •.• 10 13 cm-3 /6/ produced by 
lon g -dura tion heat tr eatme nts not typical 
of normal IG procedures . 

Conclusions 

In conclusion we can state that a 
d e tail ed analysis of EBIC diffusion ­
l eng t h and contrast data allows one to 
estimate t o which extent the average 
di ffusion length i s determined by 
recombination-active defec t s showing EBIC 
contrast, and may be used to identify 
esse ntial sources of bulk recombination 
in annealed s ilicon . Investigations on 
the rel atio n ship between diffusion length 
and defect densities as found by EBIC 
have bee n ca rr ied out ear lier by various 
authors /1 , 7,14/ . but without considering 
the values of the EBIC co ntra s t s . 

Taking into account also the EBIC 
co ntra s t s of th e defects . i. e ., their 
r espective recombination s tr eng th, we 
were able to get an improved description 
of defect accumulations and their effect 
on recombination properties. 

Further improvements might be 
possible by utilizing the whole EBIC 
d istribution in the a rea where the 
diffu s ion length is measured, r e quiring 
additional ef f ort s for image anal y sis . 
h oweve r. 
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Di sc u ss ion with Reviewers 

c . Dimitri ad i s : You determined Ls from 
energy - d epe ndent charge collection me as u ­
r e m e n t s "Z ( E0 ) o f S c h o t t k y b a r r i e r s • I n 
t his met ho d vari o u s param e ter s a r e invol ­
ved. So me o f the parameter s of the me ­
th od , beam pene tr ation dep th ( "'%,) for 
insta nce , are not we 11 known . In a p ape r 
from Watanabe et al . (IEEE Tra n s . 
Electr. Dev . ED- 2 4 , 11 72 , 1 977) I cal -

w
chu el raet aes J5 ~ 2 . 9 / um a t E o = 35 keV • 

in a paper from Valkeala thi and 
Ni e mi nen (Appl. Phys . A 32 , 95 , 1983) two 
se t s o f para mete r s f o r th e equat ion ~ = 
oC (E 0 )t\ a re offe red , yie ldin g "'ff,= 3 . 9 /Jm 
and :S ==4 . 3 ~m at E 0 ::::- 35 keV , r espec ­
ti vely. How d o errors in th ese parameters 
affe c t t he values of L e, ob t ained from 
mea s ur e ment s by the me t hod a n d , a l so , th e 
co nclu si on s co n ce rn ing the id e ntifi ca tion 
of the essen ti al sou rc es of bulk r eco mbi­
n a ti on in the mate ri a l ? 
Author s : Some disc u ss i on conce rning the 
influ ence of e rror s in the collec ti on 
efficiency ~ a nd of e rr ors in ot her para­
me ter s on t he diffus i on l ength L ha s been 
published , see M. Kitt l e r, W. Se i ­
f e rt , 1(.- W. Sc hroder , E. S u s i in Crys t al 
Res . Technol. 20, 1435 (1985) . As to the 
p a rti cula r ef f eet of e rr ors i n beam pe n e ­
tr atio n, it is c1ear th a t l a r ger (smal ­
l e r) values f o r the electron rang e R 
wo uld r esul t in an ove r est im a t io n (und e r-
e s t i m a t i o ,1 ) o f L • 

In ou r a naly s is o f th e expe rimental 
"( (E 0 ) data (see text r efe r ence /9/) we 

d escri b e the beam penetration by exp r es­
sio n s publ i she d by E ver ha rt and H0 ff (see 
text r eference /5/) . At E

0
::::: 35 keV , for 

instanc e , one obtain;
15 R 0 . 01 7 1 x 35 1 )Jm ~ 8 . 6 ,.um. 

Thi s description coincides quite well 
with n e w re su lt s on beam penet r a tion 
in s ilicon , see U . We rn er , F. Koch, 
G . Oel gart in J . Phys. 0: Appl . Phys ic s 
Q. 116 ( 1 98 8) . 

Furthermore , a good correspondence 
is f o und between L value s ob t a ined fr om 
spatial decay meas urem ents I ESIC (x) and 
L v a 1 u es de t ermined by 'rz ( E0 ) measure -
ments (M . Ki ttl er , W. Seifert. H . Richter 
in I zv . AN SS R , Se ri a Fizicheskaya 5 1 , 
1 55 (1987)). Consequent l y the LB values 
given in t his paper seem to be reliable 
so th at no problem s conce rnin g 
i dentification o f the essent i al sou rces 
of bulk r ecombinat ion are expec t ed . 

J . Heyd en r e ich: The s u gges ti on o f the 
auth o r s to r ega rd the ave r age bulk diffu ­
sio~ lenqth (~ B ) to co n sist of a co ntri ­
bution 5y point de f ec t s a n d crysta l de -
fects without EBIC con tr as t s (L M) a n d a 
contribution by the observ ed defec t s with 
E8IC co ntra s t s (LE ) seems to b e a u se ful 
prop osa l of a class ifi cation . In prac ­
tice , howev e r, di ffi culti es may arise 
with the ques tion to what e xtent a defect 
(cr ys t a l defec t ) exhibit s a n EBIC con ­
tr ast , or n ot , depending bo t h o n the 
defec t type and o n the experimental mea ­
s u r e ,n e n t t e c h n i q u e use d . T o av o i d a r b i -
tr ariness in the classification , addi ti o ­
nal criteria sho uld be taken into ac ­
count. What are your suggestions with 
respect to thi s? 
Autho r·s : So me ar bitr a riness in de fect 
cla sGif i ca tion may be due to t he minimum 
cont r as t c m~ s till dete c table which is 
mainly determined by the sens itivity of 
the EBIC elec tr o ni cs used, see e. g ., 
text referenc e / 11 / . Howe ve r, c min has 
s ma l l influ ence to LE on ly, so that rela­
t i o n ( 2 ) ( n o t _ c o n t a i n i n g c min ) c a n b e 
used in practice for L E de t e rmination. 
Cons8quentl y no add iti ona l c rit e ri a are 
nee ded f o r sa mple s with contrast values 
we 11 ab o v e c max . 

D. Io an n ou: Th e a n alysis provided in thi s 
paper r es t s on the equality o f th e two 
contr3sts c and c " (eq. 8) . This equa li­
ty . h o weve r, i s not obviou s , and the 
autho r s are asked to ju s tify it at some 
length . 
Auth ors : The definition o f c " is 

(D1) 

where I• and I• ca n be written, s ee d 0 eq . 
( 7) . as : 

r* d. -= Io ( 1 - of:) (D2.) 

r* = 10 (1 --cf:) (D :>) 
0 

wi th 

(D4-). 

U s in g f J :::-f c:! + t,. fd. 
int o acco unt th a t 

for ( 02) , and t ak ing 

one o btains 

(D5). 
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Inserting 
gets 

r elation (D3) now in (D5) one 

From numeri ca l calculations M i s found to 
be close t o 1 at defect distances A > 2R 
a nd for small O values. (Fo r d efec t s ar ­
ranged as a cubic lattice. R = 6 )-Jm , 
and LM = 100 ,...um thi s i s true for de fect 
s tr e ngt hs O < 11 ,...um wh ich correspond to 
EBIC cont,-asts c < 0.3 . ) Using M ':::! 1 one 
obt ai n s fr o m (D6) afte r permutation 

1 
r! 
p 

0 

(D7). 

Finally, considering c =o fd. and (D1) we 
have as result c ':::! c * (8). 

C . Dim i triadi s: Based on the assumption 
of homogeneous defec t density dep th­
di st ributi on it is co ncluded that, for 
cl os el y neigboured defects and for usual 
c n, i i, / c rnax r a t i o s the r e 1 at i on ( 2 ) may be 
used for est im a tion o f L E. I s the a b ove 
c o nclu s ion st ill tru e if the defect den­
sity depth - di s tribution i s non - homoge­
n eo us? 
J . Heydenreich: The ass umption of the pa­
p e r that with r espect t o visible defects 
all re co mbination centres located a t the 
d efects are homogeneou s ly distributed w3s 
u se d as a sim p lifi ca ti o n f o r t he ca l cu ­
l a tion s . Did yo u a l so employ o t he r (more 
or l ess i dealized) assumptions of t his 
s implifi cat i o n on yo ur results? 
Au t ho r s : T he es timation of the LE compo­
nent is ba sed on th e important assumptio n 
that th e e ff ec t of recombination-activ e 
defects ca n be approxi mat ed by r ecomb in a ­
tion at hom o gen eo u sly distributed r eco m­
bin a t i on centres. Howeve r , thi s assu mp­
tion should become p r og r ess ivel y unre a l 
for increa s ing distances between the 
defects an d for p r o n o un ced de f ec t dep th­
pr~files. So it i s no~ possible to defi-· 
nite l y answer th e question about th e in ­
flu e nce of non-homo geneo u s depth di s tri­
b utio n s up to now. Th e r efo re, num e ri ca l 
calculati o n s s houl d be made, comparing 
t he mea n EBIC s ignal in a giv e n area 
obtai n ed f or centres co ncent r ated at 
ind i vidual def ec t s with the EBIC ca lcu ­
l ated for an identical number of centres 
bu t be ing homogeneously distributed und e r 
t h e rega r ded a r ea . 

C. Dim itriadis: The authors should di s ­
cu s s t he fol l owing point: According to 
the a n alysis the range of depth ( A a) 
whe r e defect s can be de t ected is r e l a ted 
to t he electron range R (see Fig . 8 ) . For 
defec t s of high contrast (c .,,;t'I /c mal<" << 1) 
t,. a > R, i. e . , by increasing the e lec­

t ron r ange R t he informat i on range A a 
i n c r eases . On the other hand , the EBIC 
resol ut ion is only determined by the 
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generation v o l ume (C . Donolato , Appl. 
Phys . Le t t ~. 80 , 1 979 ). Therefore , a n 
appropriate e l ec tr on beam energy s h o ul d 
be use d t o achieve g ood re so lution a nd 
obtai n large inf o rmation rang e A a. 
Autho r s : It i s true th at EBIC resolution 
and consequently sma ll es t measurable A 
values are determined b y the beam e n e r gy 
E

0 
or the e l ec t r on r a n ge R, re spect ivel y . 

For E 0 = 30 keV the smal l est A values 
measu red are in t he r ange o f R ':::! 6 ,,um, 
compare Fig. 9. Wnen dec rea si n g R , both 
~ and A a decrease and the information 

r a nge mov es t owa rd s the Scho tt ky deple -
tion - r egio n. With cont inu ous redu c ti on of 
R , information range and dep leti on r egion 
begin to overlap partially. Our es ti ma ­
tions ba sed on Do nolato ' s contrast model 
(see text ref e ren ce /2/) become wr o n g 
then, because t h i s model does not cons i ­
der defects in s i de t he dep l etio n-r eg i o n , 
where drift proces ses are dominant. 

In s ili co n hav in g a r esistivity of 
10 . .. 20 ohm x c m, as used in ou r expe ri­
ments, t h e depletion - l aye r width i s 
around 0 . 5 ~ m- Under these co n ditions, 
use o f at 1 east E0 = 3 0 k e V o ,· R r::! 6 }J m , 
r es pe ctive l y , for measurements permits to 
neglect depletion l aye r effects . La r ger 
beam ene rg ies co uld be used for sam ple s 
having suf ficien tly large ~ v al u es . 
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