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A ROBUST SOLUTION TO THE SUPER-RESOLUTION PHASE PROBLEM IN 
SCANNING TRANSMISSION ELECTRON MICROSCOPY 
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Cambridge CB3 0HE, U.K. 

Abstract 

From a set of images, each of poor resolution, recorded in 
a transmission microscope under many different incident 
angles of coherent illumination, it is possible to obtain 
wavelength-limited resolution even if there is a narrow 
ap~rt~re I:r:ing in the back-focal plane of the imaging lens. 
This 1s achieved by a deconvolution algorithm which retrieves 
the phase of the Fourier transform of the specimen. The 
method accounts for complex components in the transfer 
function of the lens, is not very sensitive to defocus and is 
remarkably resilient to noise. It may have important 
applications in overcoming the resolution limit in the scanning 
transmission electron microscope (STEM), where such data 
are readily available. 
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Introduction 

We are concerned here with overcoming the conventional 
coherent Rayleigh resolution limit in any circumstance where it 
is possible only to manufacture a poor quality lens of small 
useful numerical aperture. The limitations on the lens may 
either be physical (as in the case of an objective aperture 
inserted in the back-focal plane of an image-forming lens) or 
may be associated with instability or incoherence of one form 
or another which restricts the useful region of the back-focal 
plane - for example the instrument function which attenuates 
the contrast transfer function in the transmiss·ion electron 
microscope (TEM) (Frank, 1973). The Abbe theory of light 
suggests that under these circumstances, resolution is 
unavoidably limited because a low-pass filtering process 
o~curs in the reciprocal space of the image. However, this 
view neglects a large number of other experiments we could 
perform on the same apparatus. We also have the opportunity 
to record bright and dark-field images from all possible angles 
of incidence of the illuminating radiation. What we wish to 
show here is that this four-dimensional set of data, even when 
it can only be recorded in intensity, provides unlimited access 
to super-resolution information in a way which is relatively 
easy to implement and which is surprisingly robust. In 
practice, the necessary data set is most easily recorded in the 
scanning transmission electron microscope (STEM), although 
the technique could also be used in a conventional TEM. 

Theory 

Let us first consider the simplest example of the Fourier 
phase-retrieval method proposed by Bates and Rodenburg 
(1989), and described in detail by Rodenburg and Bates 
(1992). Suppose we have an unknown, one-dimensional 
function, f(r), which we wish to image by scanning across it 
an aperture, a(r), filled with constant-phase coherent 
illumination. Rather than simply measuring the total 
transmitted intensity, suppose we can record the intensity of 
the far-field Fraunhofer diffraction pattern which arises from 
a(r-p).f(r), where pis the displacement of the aperture relative 

to f(r). That is to say we can measure I M(r',p) I 2, where: 

M(r',p)= J a(r-p)f(r) exp(i2nr.r') dr, (1) 

and where r' is a reciprocal space coordinate in the Fraunhofer 
dif~raction plane. This could be very easily realized on the 
opucal bench by employing the configuration shown in Figure 
1. 
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Illumination 

Moveable 
Aperture r Fraunhofer 

diffraction plane 
recorded in intensity 

Fi (Ture I. The simplest optical configuration which would 

allow measurement of the I M(r',p) 12 data set. An aperture 
scans across the specimen while the intensity of the 
Fraunhofer diffraction plane is recorded in the far-field. 

Now consider the nature of the function I M(r' ,p) 1
2 in the 

very simplest case of a square ('top hat') aperture function and 
a specimen consisting of two real delta functions (see Figure 
2). Although this example is somewhat artificial, it is useful 
for understanding how direct phase-retrieval is possible from 

an intensity function such as I M(r' ,p) 1
2 composed of both 

real-space and reciprocal-space coordinates. At the values of p 
where the aperture function overlaps both delta functions, we 
will measure in the far-field a set of Young's slits interference 
fringes. At positions either side of this, we see either constant 
intensity (as a function of r') or no intensity at all, depending 
on whether the aperture overlaps either one or none of the delta 

functions. Taking the back Fourier transform of I M(r',p) 1 2 

with respect tor' will yield a function of real-space coordinates 

which we will call L(r,p), and which is illustrated in Fig 2c. 

For each value of p, a one-dimensional horizontal strip across 
the function (as drawn in Fig 2c) is simply the autocorrelation 
of the region of specimen illuminated by the aperture when it 

was positioned at p. We have obtained the autocorrelation (or 
'Patterson function', Patterson, 1934) because only intensity 
was measured in the far-field and so any one such strip of data 
presents us with the usual ambiguities of the classic phase 
problem (see, for example, Bates and McDonnell, 1986). 

Now let us consider the information in L(r,p) resolved as a 

function of p. Along r=0, this is simply the intensity 
transmission of the specimen convolved with the intensity of 
the aperture function. Except for those frequencies where 
zeros occur in the Fourier transform of the aperture function, 
this line of data can in principle be deconvolved to arbitarily 
good resolution (because in this example the aperture has 
sharp edges), giving an accurate representation of the intensity 
of the specimen function. Furthermore, we have the 

opportunity to deconvolve along other strips in L(r,p) where 
r;i:0. The deconvolution may be represented as a filtering 

process in H(r,p'), which we define as the Fourier transform 

of L(r,p) with respect to p: in other words, H(r,p ') is the 

Fourier transform of I M(r',p) 12 with respect to both r' and p. 
We may write this as: 

H(r,p') = ffff a(b-p)a*(c-p) f(b)f'(c) 

exp( i2n: [b.r' -c.r' -r.r' +p. p ']) 

db de dr' dp, 
(2) 
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Figure 2. An illustration of how the deconvolution process 
retrieves phase. a) The function f(r), consisting of two real
valued delta functions. b) The aperture function a(r). c) The 

two-dimensional function L(r,p). Heavy lines represent areas 
of large magnitude. d) The two-dimensional function 

Lctecon(r,p). Crosses represent the position of delta functions. 
These may have complex amplitude if f(r) is complex. e) The 

function a(p )a(p+r) plotted as a function of p along r=ro, 
where ro is the separation of the delta functions. The nature of 
the offset narrow aperture breaks the symmetry about r=0 in 

Lctecon(r,p ). 

where b and c have been introduced as dummy variables and * 
denotes the complex conjugate. After some elementary 
manipulation, it can be shown that: 

H(r,p') = Xa(r,-p') Xr (r,p') (3) 

where for any general function q, we define: 

Xq(r,p') = f q*(c)q(c+r) exp(i2n:c.p') de. (4) 

For the purely real aperture function illustrated in Fig 2b, 
equations 3 and 4 indicate that each one-dimensional strip in 

L(r,p), taken as a function of p along any value of r, is simply 

f*(p)f(p+r) convolved with an aperture function a*(p)a(p+r). 
Of course along r=0, this reduces to the convolution of 
intensity described above. By performing a deconvolution in 

the p-direction, a little thought will show that horizontal strips 
across the resulting deconvolved data set, which we will 

denote as Lctecon(r,p) and which is illustrated in Fig 2d, are no 
longer symmetric autocorrelation functions. This is because 

the function a(p)a(p+r) along p at points r=±ro, where ro is 
the separation of the delta functions, has the form of a narrow 
aperture function displaced with respect to the origin (Figure 
2e). In other words we have resolved the usual ambiguity in 
the diffraction phase problem by utilizing, via the 
deconvolution, our knowledge of the absolute position of the 
aperture. This process is very closely related to Hoppe's idea 
(1969a, 1969b; Hoppe and Strube, 1969) of generalized 
diffraction (later referred to as "ptychography", Hoppe and 
Heger!, 1980), though here all possible aperture positions are 
processed simultaneously (instead of the two positions used in 
the Hoppe construction). 
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In summary, if we record \ M(r' ,p) \ 2, Fourier transform 
with respect to its two coordinates (which lie in both 
diffraction space and real space), divide (or preferable Wiener 

filter) by a function Xa(r,-p') appropriate to the aperture 
function described by equation 4, and finally transform back 
with respect to the aperture position coordinate, we obtain: 

Lctecon(r,p )= fl'(p )f(p+r). (5) 

Lctecon(r,p) is complex and can be used to phase the whole 
specimen function relative to some arbitary point. For 
example, if we were to decide that f(O) had zero phase and a 
modulus of the square root of Lctecon(0,0), then we could 
write: 

f(r) = Lctecon(r,0)/f(O) (6) 

Unfortunately, this equation is only useful up to values of Ir\ 
which are less than the width of the aperture function. (In r, 
L(r,p) is only as wide as the autocorrelation function of the 
aperture). However, having determined the phase of some 
point in f(r) within this distance, it is possible to re-use 

equation 5 along a value of p corresponding to the position of 
this new point, thus allowing us to phase a more extensive 
domain of f(r). Indeed, provided there are no regions of zero 
value wider than the aperture, the phase of the whole of f(r) 
can be determined by a series of similar steps. We refer to this 

process of phase assignment as "stepping out in p". In fact, in 
the reciprocal space version of the formulation applicable to 
microscopy (next section), we step out in r', but the principle 
is the same. 

The origin of the phase infonnation can be thought of as 
follows. If the delta functions in the above example had 
complex amplitudes of different phase, then the Young's slit 
diffraction fringes would be shifted laterally in the far-field, 
and hence their autocorrelation functions would also be 
complex. Indeed, the above analysis holds true even if both 
the aperture and the specimen functions are complex, implying 
that it represents a comprehensive direct solution to the phase 
problem. The only qualifications are that the zeros 
encountered in the deconvolution do not introduce too much 
error (see section on "Test Calculations") and that the 
specimen function does not have large zero regions wider than 
the aperture function. 

The above analysis amounts to a more general statement 
that if we can record the intensity of spatially-resolved 
frequency distribution at appropriate sampling, such as that 
represented by, for example, a Gabor lattice (] 950), then we 
can recover directly the complex amplitude of the original 
function. 

Application to Transmission Microscopy 

An immediate problem we encounter when applying 
the above method to transmission microscopy is that it is hard 
to manufacture a small, sharp aperture function which can be 
made to run across the specimen. However, we do normally 
have a sharp aperture lying in the back-focal plane of the 
objective lens. The trick, therefore, is to aim to solve for the 
Fourier transform of the specimen function, F(r'). Writing 
\M(r',p)\2 as: 

I M(r',p) I 2 = If a(b-p)a*(c-p) f(b)f*(c) exp(i2n:[b.r'-c.r']) 
db de, (7) 
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b) 

Lens 

Microdiffraction 
Plane 

Specimen 

Specimen~ 

Tilted illumination 

Figure 3. Two possible optical geometries for recording 
\ M(r',p)\ 2 in an aperture-limited microscope. a) By 
recording the microdiffraction pattern in a s_canning 
transmission microscope for all beam-crossover poswon. b) 
By recording images in a conventional microscope for each 
possible angle of illumination. 

p' 

* Figure 4. Schemetic diagram of of zeros in XA (p',r). 
Shaded regions lie beyond the autocorrelation of the aperture 
function. For a real-valued aperture function, zeros also occur 
on the lines shown. 

where band care dummy variables, and substituting for A(r') 
and F(r'), the Fourier transforms of a(r) and f(r) respectively, 
gives: 

\ M(r' ,p) \ 2 = ff A(b')A *(c') F(r'-b')F* (r'-c') 

exp[i2n:p.(b'-c')] db' de', (8) 

Except for the exchange of p and r', and the fact that we now 
scan our unknown function F(r') relative to a fixed sharp 
aperture A(r'), equations 7 and 8 are of identical form. We 
may realize this arrangement optically by Figures 3a or 3b. 
Figure 3a shows a scanning transmission microscope in which 
a sharp aperture lying in the back focal plane of a lens is used 
to focus a beam cross-over through a specimen. In the far
field, or 'microdiffraction' plane (Cowley, 1978) lying in r', 
we record the intensity of the complex convolution of the 
aperture function with the reciprocal space of the specimen 
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Figure 5. The function xl (p',r) calculated on a 64 pixel side 
hypercube. To accommodate the dynamic range of the 
function, in b,c and d we plot the square root of magnitude. a) 
Shows the two-dimensional aperture function plotted in phase 
(darker pixels are for positive phase, mid-grey is zero) 
calculated for the instrument characteristics described in the 

text. b) A 2D slice through xl (p',r) at r=0. c) A 2D slice 

through xl (p',r) with one component of r and p' held at 

zero. r is plotted horizonatally. Note that the p' cut-off is 
visible. d) A slice parallel to that shown in (c) but with the 

constant component of p' at 8 pixels from the origin. (c) and 
(d) both intersect (b) along vertical lines. 
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5b 

5d 

Figure 6. Reconstruction of a real-valued specimen of delta 
functions with noise. Sampling in real space (i.e. the pixel 
size) is 0.5 A. a) The specimen function (dark represents 
high value data). b) Magnitude of the probe function 
(calculated according the instrument parameters in text). c) 
Bright-field image (auto-scaled to full scale) with 10% noise. 
Light pixels represent high values of intensity. d) As (c) with 
100% noise. e) Reconstruction with 100% noise, using only 
r'=0 data (resolution doubled). f) Reconstruction with 10% 

noise up to twice the p' cut-off. 

function, for all cross-over positions p. Alternatively, by 
invoking the principle of reciprocity (Cowley, 1969), this is 
the same as illuminating a specimen in a conventional 
microscope from a range of different angles r' (Figure 3b) and 
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Figure 7. Reconstruction of a weak phase object. The 
specimen is the same as in Figure 6 except each delta function 

now only introduces a rt/20 phase change on a unity 
magnitude transmission specimen. (a) and (b) are bright-field 
images with zero and 4% noise added respectively (light 
represents high intensity: autoscaled to full scale). (c) The 
phase (dark represents positive) of the specimen with its 
Fourier space limited to the p' cut-off (i.e. this is the best we 
could hope for with the reconstruction). d) Calculated 
reconstruction with 4% noise added to the measured data set. 

recording the image as a function of p. Those familiar with 
electron microscopy will know that in selected area diffraction 
mode, tilting the illumination has the effect of scanning the 
diffraction plane of the specimen with respect to the objective 
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aperture. Furthermore, for each such illumination angle, one 
can obtain the intensity of the Fourier transform of the 
resulting function: namely the conventional image. So for the 
simple case of a series of delta functions in F(r') (ie for a 
crystalline specimen) we could apply the analysis developed in 
the previous section to obtain the complex value of all the 
reciprocal lattice points. For a given angle of tilt, the position 
of the interference fringes which occur in the image would 
indicate the relative phase of the beams falling within the 
objective aperture. It follows that any general specimen 
function may be solved in the same way, even when the 
aperture function is complex. 

From equation 7 we progress, as before, by forming the 

quantity H(r,p'). We then divide by XaCr,-p'), prescribed by 
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equation 4, which may be written in terms of the function 
A(r') as: 

Xa(r,-p')= J A(c')A*(c'+p') exp(-i2nc'.r) de', (9) 

where it is useful to note that according to the definition in 
equaticn 4, the relationship between the real- and reciprocal-

space versions of the X function is: 

X . x* . a(r,-p) = A (p ,r). (10) 

With reference to the schematic diagram shown in Figure 4, 
and by examining equation (9), it is clear that for a sharp 
aperture with no phase changes, zeros occur at all values of 
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Figure 8. Effect of a wrongly-estimated value of defocus in 
. * the probe/aperture function XA (p ',r). The forward 

calcul;tion to generate I M(r',p) 12 was performed on a weak 
phase object (as in Figure 7) with defocus of -700A and 4% 
noise was added. Reconstructions were performed using only 
r'=0 with a) defocus = -700A, b) defocus= -400 A, c) 
defocus= -200 A d) defocus= zero. 

Ip' I greater than the aperture width and on the loci of points 
represented by the curved lines. It is therefore advantageous 
to perform the final Fourier transform with respect to r, to 

avoid problems with the Ip' I cut-off, and thus form the 
quantity: 

Dctecon(r', p') = F*(r'-p')F(r') (11) 
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which is the reciprocal-space version of the analagous quantity 

L(r,p ). Phase retrieval may proceed as before, except now we 
"step out" in r' as far as we wish, giving us unlimited access 
to high-resolution information, provided F(r') does not have 
large regions which are empty. A final Fourier transform 
gives the super-resolution reconstruction of f(r). 

The cut-off in p'can be thought of as the usual information 

limit of the microscope - remember that p is equivalent to a 
coordinate in the conventional image plane, which of course 
has a maximum frequency component dictated by the size of 
the objective aperture. Because the image is recorded in 
intensity, the maximum spatial freqµency is twice that of the 
underlying complex component, which implies that if after 
performing the phase-retrieving deconvolution we do not step 

out at all in r' but merely use the r'=0 strip in D(r' ,p') up to 

the p' cut-off (using an equation similar to equation 6 - see 
equation 13), then the final reconstruction will have twice the 
resolution of the conventional image. Although we use this 
effect in some of the examples below, it should be 
remembered that the extra information does not magically arise 
from nowhere. To perform the deconvolution in r' accurately, 
we must process at least an aperture's width of r' data from 

I M(r' ,p) 1
2. In other words, we must process at least the 

whole undiffracted beam in the microdiffraction data set, and 
not merely the central pixel which is where we find the 
conventional bright-field image intensity. 

Another significant property of H(r,p') is that it can also be 
used to deconvolve directly partial coherence which exists in 
the illuminating beam. For the electron microscope, this is a 
crucially important result: it could be argued that the most 
severe difficulty impeding higher resolution is magnetic 
interference and power-supply instability which pose an 
absolute limit to resolution in reference-beam imaging 
(including deconvolution of the bright-field image and 
holographic techniques). In the case of a finite source in 
STEM (ie incoherence in the wavefield which illuminates the 
back-focal plane of the lens), we can employ the van Cittert-
Zemike theorem (Born and Wolf, 1964) to calculate r(r'), the 
coherence function, from the normalized Fourier transform of 
the intensity distribution of the source. This may be accounted 
for in equation 8 by including a term l(b'-c') under the 
integral signs, which serves to moderate the degree to which 
beams lying in the back-focal plane can interfere with one 
another in the microdiffraction plane. Surprisingly, however, 

the effect on H(r,p') is to introduce only another multiplicative 

term as a function of p', such that: 

(12) 

We can therefore also deconvolve r, and even if it does have a 
definite cut-off, it will not catastrophically compromise our 
reconstruction algorithm because, like the cut-off caused by 

the objective aperture, in Dctecon(r',p') we can simply take 

small steps in p' when stepping out to high-resolution data at 
large r'. 

Test Calculations 

The above method has very recently been shown to work 
on the optical bench in one-dimension (Friedman and 
Rodenburg, 1992). Here we will concentrate on presenting 
results from computer simulations we have performed on two
dimensional images. These have proved to be astonishingly 

230 

robust to noise on the measured data and errors in xl. One 
reason must be the fact that the measured data set is 
enormously redundant; remember that in order to solve for a 
two-dimensional (2D) image, we record a four dimensional 

data set (both p and r' become 2D vectors). What we gain in 
redundancy, though, results in a requirement for large 
computer resources. Essentially we have replaced a faulty 
p~allel proc~ssor (an electron lens) with a digital computer. 
Simply keeping track of the data arrays is non-trivial. We 
have therefore implemented a four-dimensional version of the 
image-processing package IMPROC, developed by Dr. R. 
Lane at the University of Canterbury, New Zealand, which we 
run on a SUN 4/370 SPARC station with 40 Mbyte of on-line 
memory. * 

Figure 5 shows an amplitude plot of the XA function. 
Note that one can observe the lines of zeros represented in the 
schematic diagram Figure 4, though here they occupy 
assymmetric positions because we have included a phase 
changes across A(r') determined by defocus and spherical 
aberration (Scherzer, 1949). All calculations have been 
performed assuming the optical characteristics of a VG 
Microscopes' HB501 STEM with standard resolution pole
piece: namely a spherical aberration constant of 3.1 mm, an 
objective aperture semi-angle of convergence of 8 mrad, and a 
wavelength of 0.0037 nm. We were somewhat concerned that 

* the zeros in XA would seriously compromise the fidelity of 
the reconstruction, but this does not seem to be the case in 

practice. The deconvolution is performed on H(r,p') using a 
Wiener filter such that: 

Xr(r,p') 
XA(P',r) H(r,p') 

I XA(P',r) 1
2 + € 

(13) 

where € is varied to obtain the best reconstruction, but is 

typically about 10·2 of the maximum modulus of XA(P',r). 

Note that in the D(r',p'), different spatial frequencies are 

absent at different values of p', so presumably this offers 
enough redundancy to allow a good estimate of F(r'), though 
this will have to be the subject of further work. 

Various examples of reconstructions are shown in Figures 
6, 7 and 8. The calculations were performed over a hypercube 

of side 32 pixels, thus complex data sets such as xl (p' ,r) 
occupy 8 Mbyte double-precision arrays. Those labelled as 
"reconstructed from only r'=0", mean that we have not 

attempted any "stepping out" beyond the p' cut-off in 

D(r',p'). That is to say we have estimated F(r') from: 

Dctecon *(0,-p') 
F(r') = F(p') = ✓ Dctccon(0,0) (13) 

In fact, exploiting all the phase information in Dctecon(r,p') is 
not straightforward, because for two-dimensional images there 

are many different routes through Dctecon(r',p') to reach any 
given point in F(r') and choosing a measure for an optimal 
path is not obvious. Figure 6f shows reconstructions of a real 
delta function specimen where we have stepped out to four 
times the objective aperture radius. However, the phase
assignment routine we employ at present is rather elementary, 
only using a small number of r'=constant planes in Dctecon(r', 
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p'). In the case of a thin phase object, assigning phase 

beyorid the p' cut-off becomes hazardous because any 
inaccuracies in the deconvolution corrupt significant regions of 
Dctecon(r', p'). (Under these circumstances, the central disc in 
the microdiffraction plane is extremely bright.) However, 
using only r'=0 data (equation 13) still doubles the resolution 
relative to the conventional image (see section on "Applications 
to Transmission Microscopy"), and this appears to be 
exceptionally robust to noise. We have added random noise 
uniformly distributed with a range in proportion (measured as 
a percentage) of the largest intensity measurement in 

IM(r',p)l 2. The reconstruction is good for real delta 
functions (Figure 6) with up to 100% noise if we only phase 
over r'=0, or up to 10% when stepping up to twice the p' cut
off (four times the aperture radius). For a weak phase object 
(a unity modulus specimen with rr./20 phase changes 
introduced at points corresponding to the delta functions in the 
earlier example), the reconstruction is good from r'=0 with up 
to 4% noise (see Figure 7). The reconstructions are also 
remarkably robust to having the wrong estimate of defocus in 

* the aperture function used to generate XA(P',r) (up to 70 nm 
in the example shown in Figure 8). Of course, it should be 
remembered that because we are using a narrow objective 
aperture, the beam cross-over in the specimen plane does not 
change appreciably with this amount of defocus. The result is 
important, though, because defocus is hard to estimate and 
control accurately in the electron microscope. 

Conclusion 

The phase-retrieval deconvolution technique presented here 
is applicable to any form of transmission microscopy where a 
coherent source is available but where it is not possible to use 
a good quality lens of large numerical aperture. We have 
assumed that the specimen scatters multiplicatively and can be 
regarded as a 2D projection, which, for electron scattering 
from all but the thinnest specimens, will often not be the case. 
However, the robustness of the method, which arises because 
we collect such a comprehensive and redundant data set, 
suggests that this may prove to be a valuable processing 
technique. We are presently developing a suitable detector to 
collect the necessary data from the HB501 STEM in this 
laboratory, with the hope of achieving routinely sub-Angstrom 
resolution. Undoubtedly, many problems will arise - for 
example, specimen drift and contamination, breakdown of the 
projection approximation and effects due to multiple scattering. 
The results shown here, though, give us some hope of 
success. 
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Discussion with Reviewers 

D. Van Dyke: The calculation time can increase prohibitively 
with increasing number of sampling points in real and recipro
cal space. Is it not possible to find a shortcut or to restrict the 
operation to a small area? 
Authors: Yes. Firstly, it is possible to tile together small 
areas to make a large image, which works out to be much 
cheaper computationally. Secondly, if one makes certain 
assumptions about the specimen or transfer function (e.g., the 
former is a weak phase object or that the latter is accurately 
known or has large regions of constant phase), then many 
numerical shortcuts become possible. In this respect, there is 
a pay-off between the generality of the calculation and its size. 



J. M. Rodenburg and B. C. McCallum 

D. Van Dyke: Can the robustness of the procedure be 
enhanced by changing the order of the operations? 
Authors: The exact details of the most robust use of the data 
is certainly open to speculation. We have found that iterative 
solution methods can be more robust, but at the expense of 
longer calculation times. 

D. Van Dyke: In principle, the resolution obtained after de
convolution is limited by the statistics of the probe (width 
versus signal to noise). For a STEM, these statistics are 
comparable to those of the point-spread function in TEM, in 
which the information limit is mainly determined by spatial 
and temporal coherence. Is it therefore too optimistic to 
speak about super-resolution? 
Authors: We regard the crucial advantage of the method is 
that it is not limited by the coherence widths. We have 
modelled contributions from source size and defocus wobble 
and find their effects are small, or can be taken out by the 
deconvolution. 

D. Van Dyke: The shape of the probe is determined by the 
focus. How can the focus itself be measured with sufficient 
accuracy to make the method work? 
Authors: As the calculations demonstrate, the method is not 
very sensitive to errors in defocus. There are also many ways 
of estimating the defocus from the data set itself, such as the 
one proposed by Friedman and Rodenburg (1992) or by blind 
deconvolution methods. 

D. Van Dyke: Does reciprocity lead to an equivalent 
procedure for TEM (e.g., beam rocking)? 
Authors: Yes. The difficulty with TEM is that to perform the 
deconvolution satisfactorily for strong phase objects, many 
samples in r' (the equivalent of the beam-tilt coordinate) are 
required. This may cause the experiment to be prohibitively 
long with regard to specimen drift etc. The degree of beam 
deflection required (relative to the modest shifts needed in the 
STEM probe) may also create complications with hysteresis. 
Also, in processing the dark-field conditions, TEM would still 
be fully illuminating the specimen, thus leading to heavier 
specimen damage. 
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