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Abstract 

A wide spectrum of Random Function models, based on 
the theory of Random sets, are introduced to simulate single 
or multivariate signals as encountered in the common 
practice of electron probe microscopy. 

These models are built in three steps, combining the 
choice of a family of primary random functions and of 
Poisson varieties in the n -dimensional space for their 
implantation. For electron microscopy images, they can 
describe the following situations: 

- topography (as obtained from stereo pair images in 
fractography) simulated by Boolean and by alternate 
sequential random functions; 

- thick slices (as in the case of Transmission Electron 
Microscope (TEM) and Scanning Transmission Electron 
Microscope (STEM) specimens) for the dilution random 
functions; 

- perspective views (e.g. secondary electron images in 
the SEM from non planar samples, such as powder samples) 
for the Dead Leaves model; 

- multispectral mappings on polished sections. Their 
main strength is to enable the estimation of parameters 
(namely the statistical properties of the structural unit made 
of primary random functions, and the density of its 
implantation in space) from simple operations and 
measurements on grey level images based on Mathematical 
Morphology, without any segmentation of images. This 
purpose is illustrated by the main properties of the models 
with reference to electron microscopy and microprobe 
situations, and by simulations. 

Key Words : Random Image Modeling, Image simulation, 
Poisson process, Random Function models. 

121 

Introduction 

When working on electron probe imaging, various 
scales of the structure of specimens can be examined: high 
resolution images concern the atomic or the molecular 
scale, with the purpose to identify a lattice of atoms, an 
interface between two materials, or biological molecules; 
on a larger scale (or so called mesoscale), the arrangement 
of components of a structure is no more regular, and 
requires a different description. In this paper, we are 
concerned by modeling structures from this mesoscale up to 
a macroscopic scale. In fact the range of potential 
applications of this kind of approach is rather wide, since it 
can be used as well for chemical mappings obtained in an 
alloy from a microprobe, secondary electron fractographic 
images, porous media or natural textures simulation, 
remote sensing from satellite images, etc. 

The main purposes of random structure models are to 
sum up the microstructure in some parameters, to predict 
morphological properties that are not directly accessible, 
and to provide means of simulations. We developed a wide 
spectrum of Random Function (RF.) models based on the 
Random Sets theory [13, 15], that are of interest for 
microstructure modeling. 

They can be either scalar models (to simulate a single 
signal), or multivariate models (to simulate multispectral 
images such as color images, or encountered from Energy 
Dispersive Spectrometry (EDS), Wavelength Dispersive 
Spectrometry (WDS), or Electron Energy- Loss 
Spectrometry (EELS) spectra), where the correlations 
between components may be changed from a statistical 
independence to a functional dependence [9, 10, 11 ]. 

In this paper, we briefly review and illustrate the 
construction and some properties of the following models, 
inviting the interested reader to study the given references 
for more details and for the mathematical aspects: the 
Boolean random set model, the Boolean RF., the Dead 
Leaves R.F., the Alternate Sequential RF., some 
Diffusion - Reaction R.F., and the Dilution RF.. 

Probabilistic Properties of Random Structure Models 

We considered the following random structures: 
random closed sets (single or multi-components) and 
semi-continuous random functions (scalar or 
multivariate), with limitation to the stationary case. In the 
frame of the theory of random sets [13,15], these structures 
and their models are fully characterized by a functional 
called their capacity of CROQUET: - A closed random set 
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A (e.g. a two-phase medium like a porous medium) is 
known from the functional T(K) on the compact sets K: 

T(K) = P[K n A "' 0 J (1) 

In equation (1), K may be chosen as a single point {x}, 
a pair of points {x1, x2}, or even a non countable set of 
points, like a ball of radius r, B(r). With these choices, 
equation (1) represents for a stationary model the volume 
fraction, and the covariance of A; using B(r) enables to 
know the distribution of distances to A of a point in the 
complementary set of A, Ac. This distribution separates two 
sets A and P.: differing from a random point process, while 
the criteria involving a countable set of points are blind to 
this difference. 

If we consider now a family of components Ai (i = 1, 
2, ... ,m) and of compact sets Ki (i = 1, 2, ... ,m), the Ai are 
characterized by the multivariate CROQUET capacity 
T(K), defined as: 

1 - T(K)= Q(K) = 

P{x E ( (A 1 EB K 1) LJ (A 2 EB K2) LJ ... (Am EB Km))"} 

(2) 
In equation (2), K is a short notation for (K1, K2, ... ,Km), 

and the symbol EB stands for the Minkowski addition: 
A EB K = n {a+ k; a E A, k EK}. From this addition 
is derived the operation of dilation defined in Mathematical 
Morphology [ 6, 17] by: 

V 

A EB K = [x; Kx n A -;r. 0 j 
V 

with ~ = { - x; x E X} and Kx is obtained by translating K 
to point x. 

We consider now a random function Z (to describe a 
X-ray map or an electron image), or more generally a 
multivariate random function Z, with components z1, 
Zz, ... ,Zm. When each component is an upper semi 
continuous function (USC) with support in m.n, its subgraph 
rZ; (fZ;={ (x,z),x E IR, with z :5 Z/x)}), is a closed 
set in m.n x JR. . Z is characterized by means of lower semi 
continuous (LSC) test functions g1, gz, ... , gm with compact 
supports K1, Kz, ... , Km, defining the (multivariate) 
CROQUET Capacity T(g): 

1 - T(g)= 1 - T(g 1,g 2, ... ,gm) 

= Q(g1,g2,···,gm) = P(A1,A2,···,Am) (3) 

where 

Ai = [zi; Zi(x) < g/x), 'vx E KJ (4) 

T(g) is equivalent to the CROQUET Capacity defined in 
the frame of the random sets theory by G. Matheron [15]. 
If the functions gi with compact supports are translated to 
x E JR.n, we call D~(g) the set of points x for which (4) is 
satisfied. We have 

Dz(g)= U Dz(g), 
i ' 

where D 2 ;(gj)= U { Az;(z) EB Kg;(z); z E iR 1, 
Az;(z)= [x; Zi(x) 2: zj and Kg;(z) = [x; g/x1 :5 z]. 

122 

With these notations, T(g) = P[x E Dz(g) ]. As a 
particular case, consider for the scalar R.F. Z the following 
test functions g : 

* g(xi)=zi (i=l,2, ... ,n); 

we have T(g) = 1- P{Z(x1) <z1, ... ,Z(xn) <Zn} which is the 
multivariate distribution, namely the spatial law. When 
restricting it to the points x1 and x2, we get the bivariate 
distribution, from which is deduced the two-point 
correlation function, or covariance. 

* g(x) = z, 'v x E K; 

we have 1-T(g) = P{Zv(K)<z} 
with Zy(K) = V \Z(x); x E K] where v means the 
supremum value. For a given model, this enables to know 
the probabilistic law of the change of support of the data by 
this operator v . 

The functionals T(K) and T(g) are the connection 
between theory and experience: for appropriate models, T 
is calculated as a function of the parameters and of the 
construction of the model. From real data or from 
simulations, T is estimated, and it is therefore possible to 
test the validity of the model and to estimate its parameters. 

Most models introduced below are built in three steps: 
- we start from a family of primary random sets or random 
functions; 
- we use Poisson varieties in the n -dimensional space for 
their implantation. 
- a local rule of combination of the implanted random sets 
or random functions is applied in each point of the space. 

The Boolean Random Models 

The Bool_can random closed set [13, 15] was initially 
proposed to simulate complex porous media. In fact this is 
a prototype of binary model, from which others can be 
derived, as illustrated in the further sections. Many 
examples of applications are given in [3, 10, 17]. We recall 
here its construction and its main properties in the 
~ulticomponent case (imagine a set of several binary 
images for each examined field), as introduced in [9-11 ]. 
Its construction is as follows: we consider a Poisson point 
process in m.n with intensity (average number of points per 
unit of volume) 0. In each point of the process, an 
independent realization of a multicomponent random 

compact set { A'i,A' 2, ... , A' m} is implanted, each 
component of the multicomponent random set 

A= [A1,A 2, ... ,Am) being a Boolean random closed set. 
The CROQUET capacity of this model is (µ being the 
Lebesgue measure in JR.0 , i.e. the length for n=l, the area 
for n=2 and the volume for n=3): 

1 - T(K) = Q(K) = exp(- 0µ(A' EB K)] (5) 

with A' EB K = 

= (A' 1 EB K1) LJ (A' 2 EB Kz) LJ ··· LJ (A' m EB Km) 

Replacing the constant 0 by a space dependant intensity 
0(x) allows us to build non stationary Boolean random set. 
It is one of the numerous examples of random aggregates 
models developed in [10]. 

The Boolean scalar R.F. model was introduced to 
simulate rough surfaces [5, 17, 18]. Generalizations were 
proposed [9, 10]: sequential construction, use of Poisson 
varieties (see for instance Poisson lines in the plane shown 
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in Figure 1 b) instead of Poisson points, and multivariate 
version, as presented now. 

We consider on a time interval [O,t]: i) a Poisson point 
process ':P in JR" x JR with density measure 
µ(dx) 0 O(dt), 0 being a a finite measure in JR"; here a 
stationary process, resulting in a stationary R.F. is 
considered; ii) independent realizations of a family of 
Upper Semi-Continuous multivariate primary random 
functions with m components Z' ix), and with closed 
subgraphs rZ'; = A' i(t) having almost surely compact 
sections. 

Definition: a multivariate R.F. Z is a Boolean R.F. with 
primary function Z' and with intensity µ(dx) 0 0(dt) when 
its components are scalar Boolean random functions 
obtained by (Figure 2): 

Zix) = v [Z' h(x - xk), (tk, xk) E <:P) (6) 
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Figure 1. Simulation of Boolean R. F. in JR2 (512x512 
pixels); (a) primary function: distance function on disks with 
radius 45 pixels. (b) Boolean variety on Poisson lines in the 
plane; same primary function as in (a) with uniform radii 
between 15 and 25 pixels. 

11 < ... < /5 

Boolean Function 

X 
t 

X 

Dead Leaves: First value 

X 

Dead Leaves: last value 

X 

Figure 2. Construction of a Boolean R.F. and a Dead 
Leaves R.F. from the same sequence of primary functions. 

A dual version of this model is obtained from the /\ 
(infimum) operator instead of V and Lower Semi
Continuous primary random functions. 

Theorem: the CHOQUET Capacity of the multivariate 
Boolean random function Z is given by: 

I - T(g) = Q(g) = exp{-/ 6(du)µ(D 2,.(g))} (71 

where Dz, (g) = Dz, (g1) U Dz, (g2) U ... Dz, (gm)-
, tl t2 tm 

As a particular case, we get the spatial law of Z for gi(xi) = 
Zi, else 0: 

F(x,z)= P[Z 1(x1) < z1, ... ,Zm(Xm) < zm) 

= e,p{-( 0( d") jl(A', ( u),,,, LJ .. , LJ A' m(u),.,.)} 

(8) 

In equation 8 the set A'.(u) is cut at the level z and 
translated at the point x. The main properties of the 
multivariate Boolean R.F. are the following: in the case of 
a single primary random function for each Poisson point 



Figure 3. Simulation of Dead Leaves R.F. in IR2 (512x512 
pixels); (a) primary function: distance function on disks with 
a random radius. (b) Dead Leaves variety on Poisson lines 
in the plane; same primary function as in (a) with uniform 
radii between 16 and 36 pixels. 

( Z' k with probability Pk), the components are independent 
Boolean random functions. Otherwise, the components are 
correlated. As for the Boolean model in the binary case, this 
type of model is well suited for the simulation of 
interlocking media (Figure 1 ). In addition the two functions 
Z and -z are not equivalent, as for gaussian R.F. In an 
application to the roughness of steel plates, this was used to 
simulate the print of the roll mill on the steel [5]. 

Dead Leaves Random Functions 

This type of sequential Random Functions was 
introduced [7,8] in order to simulate either the evolution of 
a microstructure (such as a sequence of crystallization of 
components) or perspective views (as aggregates seen on 
the scanning electron microscope). It generalizes earlier 
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a) 

b) 

Figure 4. Construction of Alternate Sequential R. F. 
models. 

models: the Dead Leaves tessellation [14] and the 
multi-components models for multiphase media 
introduced in [3,4]. 

Starting as for the multivariate Boolean random 
functions, we can use the following constructions, illustrated 
in Figure 2, where a comparison to the Boolean R. F. is 
made: 

i) Zic(x) = { first observed value in x on a primary function 
Z'ix)} 

ii) Zi1(x) = { last observed value in x on a primary function 
Z' it(x)} 

Examples of simulations are provided in Figure 3, very 
similar to a spherical powder and to fiber aggregates seen 
in secondary electrons on the scanning electron microscope. 
The main known properties of these models are the 
following, and arc given in [7-11 ]: 

- multivariate distribution function at point x, for multiple 
primary functions Z'j 1 with a common support A'(t)); 

- the bivariate distributions in the general case. 

- for a particular class of Dead Leaves models, the 
probabilistic properties of the R.F. after a change of support 
by the infimum operator; this property is used for 
applications to the morphological analysis of powders by 
image analysis [12]: estimation, without any segmentation 
of images, of the composition of a mixture of components 
with a different morphology; estimation of the unbiased size 
distribution of the grains of a powder. 

Alternate Sequential Random Functions 

These models [10, 11] are intermediary between the 
Boolean and the Dead Leaves R.F. models. They may be 
useful for the simulation of processes appearing in 
tribology, as well as for geology (sequence of abrasions and 
of depositions on a relief). In particular the symmetry 
between summits and valleys, which is broken for the 
Boolean R. F., can be recovered for special versions of the 
model. We give now the construction of the multivariate 
case: one starts with two families of primary functions 
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Figure 5. Simulation of an Alternate Sequential R.F. in IR2 

(512x512 pixels); (a) primary function: distance function on 
disks with a random radius (uniform from 15 to 30 pixels). 
(b) binary image obtained by thresholding (a) between the 
grey levels 81 and 136 resulting into binary dead leaves with 
circular primary grains. 

(Z' i1t USC and Z' iZt LSC (i = 1, 2, ... , m)) with subgraph 

A'i1(t) and overgraph B' iz(t) = ( (x, z); z 2: Z' iz(x)). Each 
component of the multivariate A.S.R.F. is driven by the 
evolution equation (9) given below. We consider two 
Poisson point processes 'P1 and 'P2 in IRn x IR, with 
intensity measures ~t(dx) ® 0 1(dt) and µ(dx) ® 02(dt). 
From 'P1 and <P2 are built two infinitesimal Boolean R.F. 
Z;(dt) and Z~(dt) according to: 

zux,dt)= V [Z' 1c(x - x1k),x 1k E: 'P1(dt)j and 

Z~(x,dt)= /\ (Z' 2i(x - x2k),x 2k E 'P2(dt)), we have 
(Figure 4) : 

Zt+ct/x) = Z 1(x) v Z;(x,dt) /\ Z~(x,dt) (9) 
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Figure 6. Simulation of a Dilution R.F. in IR2 (512x512 
pixels): linear diffusion of a sequential input of random 
disks with a constant grey level (30) and random radii 
(uniform between 10 and 30 pixels)); (a) R.F. for a 
coefficient of diffusion D = 6. (b) binary image obtained by 
thresholding (a) between the levels 109 and 255. 

A simulation is given in Figure 5 a with a single primary 
function Z'1 1= Z'2r- In addition, the function Z' does not 
depend on the time t (homogeneous model). From equation 
9, the relationship with the Boolean R.F. is apparent, but 
here, there is a combination (in alternance) of the two 
operators /\ and v . By thresholding one component at the 
level z, one obtains a two component color Dead Leave 
model [3,4] with primary grains A'.1(t)2 and B'2(t) 2 , and 
intensity 01 ( dt) and 0z( dt) (Figure 5 b ). 

The main probabilistic properties of this model 
( univariate and bivariate distribution functions, distribution 
of apparent minima and maxima) are given in [10, 11]. 
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Reaction -Diffusion Random Functions 

This class of spatio-temporal models is rather wide, 
and still in development. We have introduced here some 
results given in [10]. Its main domains of potential 
applications are the following: to simulate microstructures 
obtained from chemical reactions between various species, 
chemical segregations occurring during a solidification 
process, competition between populations (such as in 
ecological models). Many complex microstructures studied 
in quantitative microscopy are relevant of such processes. 

The Reaction- Diffusion R. F. models are solution of 
stochastic evolution equations involving interactions 
between variables. In the general case, these equations are 
non-linear parabolic partial differential equations, such as 
studied in [1] for the deterministic case. For the random 
model, we introduced a random spatio-temporal source in 
the evolution equations. 

Linear Reaction - Diffusion R. F. models were studied 
in a particular case for two species [2], and generalized in 
[10]. They are solutions of stochastic linear parabolic partial 
differential equations with a random source. As a 
consequence, they involve a product of convolution by a 
gaussian kernel, resulting into very smooth functions for 
appropriate random sources. This is in particular, the case 
for the dilution random functions introduced in the next 
section, and illustrated in Figure 6. 

Dilution Random Functions 

In the construction of the multivariate Boolean R.F., we 
replace the operation V by the addition +, we define 
Dilution R.F. [16]. This kind of process simulates the 
observation of thick slices on the electron microscope, with 
addition of the mass of each component along the thickness. 
In [10], such processes were studied as particular (linear) 
Reaction - Diffusion R.F. models. An example of 
simulation is given in Figure 6. Thresholding such a function 
gives a random set, with very smooth boundaries (Figure 
6b ). The probabilistic properties of this model are derived 
from the characteristic function <Pt(ZU,X) of its 
multivariate distribution (spatial law). 

Theorem: using multiple primary functions Z'i with 
characteristic function ¢i(ZU,X)) and noting X = {x1,x2, ... , 

Xm} and ZU = L Uk Zk (xk), X-y = {x -y}, we have: 

.. ,ezu, X) = ,,p{I: 0(dv) L "(¢,(ZU, X - y) - J)dy} 

(10) 
The centered covariances are obtained by second order 

derivation of Log <I> at u = 0 in the case of a pair of points 
X = { x, x+h }: 

C/h)) = f 1 0(du)f E[Z'iu(x -y)Z'ju(x + h - y)]dy) 
0 JR n 

= ( 0(du)guiih) (11) 

The components ~ 1 are independent when the 
multivariate primary functions are single grains (Z'k with 
probability Pk), In addition, if Pi(x) is a family of weighting 

functions, and if Z(x) is a dilution R.F., Z* p with 
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V • 
components Zi * Pi (where * denotes the convolution 
product) is still a Dilution R.F., with primary functions 

Z' i * pi· This enables us to predict the probabilistic 
properties of the R.F. after a change of support by 
convolution, such as for unfocussed images. 

General Properties of the Models 

The introduced models share various interesting 
properties for the applications: they are defined in the 
Euclidean space lR 0 , and not on a discrete grid of points; 
they can depend on a low number of parameters, which are 
accessible from experimental data. Some theoretical 
calculations or their main probabilistic properties (the 
bivariate distributions, and in some cases the CROQUET 
capacity) arc available. Their estimation on data is obtained 
from elementary transformations ( erosions, dilations), 
without requiring complex segmentation procedures. In 
their sequential construction, they all make use of a 
primitive, namely a Primary function and of a local 
(punctual) rule of implantation and combination with 
already present data. They possess an interesting 
stereological invariance, due to the Poisson process: their 
lower dimension sections, or projections as obtained in 
transmission examination, are models of the same kind in a 
lower dimensional spaces, with primary functions and 
density induced by the model defined in lR 0 • From this 
property, it results that a stereological reconstruction of the 
model is made possible in many cases (such as for instance 
when operating on primary functions with a random 
spherical support). Replacing the Poisson point process by 
Poisson varieties gives the facility to introduce stratified and 
fibrous media in JR3. 

If we consider the case of electron microscopy images, 
the introduced models can describe the following practical 
situations: 
- topographic images simulations and description (as 
obtained from stereo pair images in fractography or on 
aggregates) by Boolean and by alternate sequential random 
functions; 
- thick slices (as in the case ofTEM and STEM specimens) 
for the dilution random functions; 

- perspective views ( e.g. secondary electron images in the 
SEM from non planar samples, such as powder samples) for 
the Dead Leaves model; 
- multispectral mappings (like multi-element X-ray 
maps obtained with the electron microprobe) on polished 
sections. 

Conclusion 

A large spectrum of random function models (scalar or 
multivariate) was introduced. They have potential 
applications in many fields, even outside the field of imaging 
and of microscopy: color images, random vectors or tensors 
(mainly for physical applications). They present a high 
versatility for the construction of textures, and can be easily 
simulated. They also can achieve various degrees of the 
correlation of the components: from the functional 
dependence to the probabilistic independence. 
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Discussion with Reviewers 

N Bonnet: Your paper really convinces the reader that many 
experimental images in the field of electron microscopy and 
microanalysis can be simlulated by random models. However, 
your method will be even more appreciated if you are able : 

a) to check the validity of the model to really describe the 
experimental situation (or to choose between several variants 
of a model) 
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b) to estimate some useful parameters of the model from 
experimental images. 

Could you give some indications concerning the 
parameters which can be attained and the practical procedures 
you can use in order to obtain these results ? 

Author : The estimation of the parameters of a model, and 
the tests to check its validity are very important topics, and 
too wide to be developed in this paper ( details are given for 
each model in the references). We can briefly illustrate 
these points for the Boolean models : a very practical test 
can be performed when the primary grains are convex sets 
since in that case, the expression µ(A' EB AK)in equation (5) 
is a polynomial of degree n in --1., if --1.K (with size --1.) and/\. 
are convex sets in IR" . If this assumption is accepted, we 
need to identify the model from the estimation of the 
intensity 0 and of the statistical properties of the primary 
grains /\.. Useful indications are often obtained from the 
geometrical covariogram of/\. (µ(A' n A' h)), which can be 
estimated from the covariance Q(h) of the random set Ac_ 
For instance, if /\. is a sphere, with a random radius R 
following the distribution f(r), it can be shown that 0 and f(r) 
can be, in principle, estimated from Q(h) alone. In practice, 
it is wise to use a priori models of distributions f(r), and to 
estimate its parameters. 

In applications, we generally use models with as few 
parameters as possible (from 2 to 4-5 at most). 

From these parameters and different compacts --1.K 
(segment, disc, couple of points etc.) in equations (1), (2) or 
function g in equation (3), we calculate the theoretical 
expressions corresponding to the possible models. For each 
kind of compact set, we get a full curve ( depending on size 
--1.) that can be calculated theoretically, and estimated on 
real images. The identification of the model is done by curve 
fitting (usually by means of a least square criterion) on part 
of the data. Separate estimations of the parameters can be 
done from different curves, to perform a cross-validation 
of the model. 

N Bonnet : You mention several times the possible application 
of this kind of method to multispectral imaging (like 
multi-element X-ray maps). Could you comment on the 
applications you have in mind in this specific case and the kind 
of models which could be used for this purpose ? 

Author : Multispectral images occur very often in 
microscopy, and help account for chemical information on 
a small scale. Our multivariate models can be used to solve 
the following problems, among others : 

- Combined morphological and chemical analysis of 
powders (nonplanar samples seen in the SEM), using the 
Dead Leaves models. 

- Use of chemical data for quantitative fractographic 
analysis, study of the deformations or wear of a rough 
surface (Boolean, an·d alternate sequential models) 

- Modeling microsegregations during the solidification of 
industrial metallic alloys (as for instance the images 
presented in the paper "Nonlinear statistical filtering and 
applications to segregations in steels from microprobe 
images" by C. Daly, D. Jeulin, and D. Benoit, in these 
Proceedings) by the Reaction- Diffusion models; 

- Modeling multiphase microstructures observed at a high 
magnification on bulk specimens with a microprobe, prior 
to improving their spatial resolution by an appropriate 
deconvolution filter. 



D. Jeulin 

- Outside the field of image analysis, such models 
(Boolean R.F.) are used to study the fracture statistics of 
materials when several fracture mechanisms are in 
competition (see text reference [10]) 

Reviewer: You write that one of the strong points of using 
Random Function models is the ability to estimate parameters 
describing the statistical properties of the structural unit under 
investigation from simple operations and measurements. Data 
obtained from an electron microscope is normally noisy and 
may also be nonstationa,y. Can the random function model 
approach be applied to noisy data, and if so, is it possible to 
derive by mathematics or simulations the relation between 
bias/precision as a function of the noise level ? 

Author : Nonstationary versions of the models presented 
are given in text reference [10). They are useful for the 
simulation and the description of structures such as random 
aggregates. For their implementation, images containing 
different realizations of full aggregates must be available. 

When working with noisy images, two types of problems 
can be solved : 
- estimation of the parameters of the underlying model ; 
- restoration of the images. 

They both require the use of a model (usually a 
probabilistic model) for the generation of the noise ( usually 
addition of an uncorrelated random function, or a 
randomization of the signal by a Poisson variable, etc.). In 
any case, the resulting images are still a realization of a 
Random Function model (built by the combination of the 
underlying structural model and of the random noise), and 
it is usually possible to estimate the parameters derived 
from the structure and from the noise separately, although 
it requires specific developments. For instance, the 
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covariance of a noisy image differs from the covariance of 
the pure signal by a discontinuity at the origin. It can be 
recovered from a cross-correlation between two separate 
acquisitions, or from the "noisy" covariance if the 
underlying structure is assumed to be mean square 
continuous. 

Similarly, the point distribution (or more generally a 
multivariate distribution) of a noisy image can be, in 
principle, recovered, but usually generates ill-posed 
problems (regularization techniques were developed by 
C. Daly (Thesis, Paris School of Mines, 1991) for the 
general estimation of the univariate distribution function 
from noisy images). Estimating an underlying model of 
histogram is much simpler, as few parameters are involved. 

Efficient filters can improve noisy images (see the 
references mentioned in the previous question and C. 
Daly's thesis). They require the estimation of the underlying 
covariance (Wiener type linear filters) or of the underlying 
bivariate distribution ( disjunctive kriging filters), accessible 
from the noisy images using appropriate assumptions. 

Further estimations of the data required for a full 
specification of the model (for instance T(K) in equation 
(1), or T(g) in equation (3) can be obtained on filtered 
images, if the final SNR is not too low. In any case, it is 
possible to give some interval of confidence of the estimated 
parameters and to select the most appropriate estimator 
from simulations of the full model (structure, and structure 
+ noise) to decide whether a model can be accepted, or 
even cannot be tested in the presence of a given noise level. 
This is a great advantage in using a model since such 
simulations are not available without modeling, so that it is 
often difficult to assess the validity of a filtering procedure 
when its use is limited to real data. 
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