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Abstract 

The conventional negative-stain preparation 
method for electron microscopy, in which biological 
macromolecules are contrasted using heavy metal 
salts (such as uranyl-acetate), is a simple and fast 
technique which has helped visualize hundreds of 
different molecular structures. Computer analysis 
of such negatively stained images of individual (i.e., 
non-crystalline) macromolecules using statistical 
pattern-recognition techniques has revealed con­
siderable new structural information. Negative 
staining, however, has some disadvantages: the 
specimens are often severely flattened (as much as 
25%-75%), they often exhibit strong preferential 
attachment of the molecules to the supporting car­
bon foil, and the molecular images may be difficult 
to interpret due to the relatively complex nature of 
the interaction between molecules and stain. Em­
bedding biological macromolecules in a layer of vit­
reous ice (actually: "vitreous water") represents an 
attractive alternative preparation method which 
mimics the natural environment of these molecules. 
The processing of ice-images often requires special 
computational approaches such as: multivariate 
statistical classification of aligned images or of 
"invariant functions" derived from the unaligned im­
ages; alignment of images belonging to a specific 
class of images, determination of the spatial orien­
tations of the projection images relative to each 
other ("angular reconstitution"). In this paper, we 
discuss our own overall single-particle structure 
analysis approach and highlight some new meth­
odological developments in this context. 

Key Words: Multivariate statistical analysis, corre­
lation functions, three-dimensional reconstruction, 
protein structure, vitreous-ice embedding. 
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Introduction 

Electron microscopy represents a very direct 
method for obtaining structural information on bio­
logical macromolecules. "Direct" here means that 
we can IMAGE the macromolecules in the micro­
scope and are not restricted to recording only dif­
fraction patterns of the object of interest, as is the 
case with X-ray crystallography (cf. [Blundell and 
Johnson, 19761). In other words, there is no "phase 
problem" in electron microscopy: by Fourier trans­
forming the electron image, we not only have the 
diffraction amplitudes available but we also have 
the corresponding phases which are lost in X-ray 
crystallography. In spite of the substantial number 
of other problems that exist in electron microscopy 
such as the strong radiation sensitivity of biological 
material, electron crystallography, based on images 
of two-dimensional protein crystals, has now ad­
vanced so far that its results slowly start to match 
the quasi-atomic resolution results of X-ray crystal­
lography (Henderson et al., 1986, 1990; Kuhlbrandt 
and Neng Wang, 1991; Jap et al., 1990; Sar.. et al., 
1989). 

In electron microscopy (EM), as in X-ray crystal­
lography, one attempts to extract structural infor­
mation from a very large number of copies of the 
biological macromolecule being studied, such that 
each individual molecule suffers minimally from the 
interaction with the hard radiation with which one 
probes the sample (principle of "shared suffering"). 
In EM we produce many (extremely) noisy images 
of different individual molecules and we then apply 
some form of averaging (c.f. [Misell, 19781) to ob­
tain results with good signal-to-noise ratio (SNR). 
This averaging principle is the basic idea behind 
both the electron crystallographic approach and the 
single-particle approach in electron microscopy. 
Molecules that are not crystallized in two dimen­
sions (2D) have, in principle, five degrees of free­
dom (translations in x and y directions, plus three 
Euler-angle rotations) more than molecules that are 
conforming to a given crystallographic environment. 
Consequently, sets of individual molecular images 
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("single particles") are more difficult to process than 
electron images of 2D-crystals of macromolecules. 

One of the major breakthroughs in the analysis 
of 2D crystals which made it possible to reach 
quasi-atomic resolution was undoubtedly the appli­
cation of correlation alignment (cf. [Henderson et 
al., 19861) techniques to overcome the imperfec­
tions that even the best images of 2D-crystals pos­
sess. These correlation alignment ("correlation av­
eraging") techniques had originally been developed 
( cf. [Saxton and Frank, 19771) for the analysis of 
individual molecular images where they were re­
quired to bring the different molecular images into 
(x-y) register prior to averaging ("building a crystal" 
in the computer). "Single-molecule electron crystal­
lography", however, is certainly not only justified by 
the spin-off it has generated to the more classical 
analysis of 2D protein crystals. Many macromole­
cules cannot be crystallized at all or only after in­
vesting a large and an unpredictable amount of time 
needed to convince the molecules to behave in an 
orderly way. Moreover, many interesting biological 
questions concern, for example, the interactions 
between molecules (e.g. monoclonal antibodies}, 
flexibilities within a molecule, dissociation and re­
association of oligomeric assemblies. For solving 
such problems, crystallization of the molecules may 
not even be desirable. The resolutions so far 
reached with the single particle approach certainly 
do not yet match those reached by the crystal­
lographic approach, but there actually is no specific 
reason why the single-particle approach should not 
also reach a resolution sufficiently high to follow the 
amino-acid chain in a protein. We may still be far 
from reaching such quasi-atomic resolution with 
single particles, but, on our way to this long-term 
goal, many important questions in structural biology 
on the 1-4 nm level are likely to be clarified. 

Single Particles in Vitreous Ice: Introduction 

The first two obvious problems related to the 
analysis of non-crystallized or individual macro­
molecules concern the orientation of the particles in 
the images relative to each other. First, let us as­
sume that two individual molecules have exactly the 
orientation relative to the support film, like two 
identical chairs standing upright on the floor of the 
same kitchen. The microscopical images of the 
molecules then correspond to projection images of 
the two molecules onto the plane of the supporting 
surface, which, translated to our kitchen-floor 
model, corresponds to "X-ray" projections of the 
chairs onto the kitchen floor. It is obvious that the 
two projections are identical (apart from noise), but 
that they are rotated (one angular degree of free­
dom) and shifted (two translational degrees of free-
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dom: x-y shifts) relative to each other. To average 
such "identical" projection images in a data set (for 
noise reduction) we must thus first align these im­
ages relative to each other within the projection 
plane. Bringing two such molecular images into 
register [Frank et al., 1978; Steinkilberg and 
Schramm, 1980; van Heel and Stoffler-Meilicke, 
1985] is an operation we refer to as "planar align­
ment" or just "alignment". 

The other type of orientational problem associ­
ated with the analysis of single molecules concerns 
the two remaining degrees of freedom of (Euler) 
rotation of the particle relative to the plane of the 
support film. In our kitchen-floor model, this corre­
sponds to the positions that the (identical) chairs 
can assume after a substantial family dispute. 
Chairs can lie on their sides, fronts, backs, i.e., in 
many orientations other than their "preferred" up­
right orientation. The different projections of the 
chairs in these different orientations onto the plane 
of the kitchen floor are fundamentally different and 
cannot be brought into register by simple planar 
alignment. Such different types of "molecular" pro­
jections ("views"), resulting from different rotational 
orientations of the molecules relative to the plane of 
the support film, make that such a mixed set of 
molecular images needs to be treated with care. 
Averaging of noisy molecular images for the pur­
pose of improving the SNR only makes sense if we 
know that the subpopulation of a (mixed) total 
population of images which we choose to average 
belong to the same group (cf. [van Heel, 1984, 
1989]) since we otherwise risk averaging "cows" 
and "horses". It was for sorting out such mixed 
populations of images that Multivariate Statistical 
Analysis ("MSA") techniques were first introduced 
to electron microscopy [van Heel and Frank, 1981]. 
After an initial collaboration on MSA matters be­
tween Frank and van Heel, the lines of research of 
the Albany and the Berlin group have diverged. 

The research of the Berlin group ("we") is di­
rected towards first carrying out exhaustive 
searches to find all the characteristic views in a 
data set, and then using these views to reconstruct 
the molecular structure in three dimensions. The 
basic idea is that one can exploit the natural 
"random tilt-series" formed by the different views of 
the molecule on the support film to reconstruct the 
molecule in three dimensions without actually tilting 
the specimen holder. The experimental and theo­
retical advantages of this approach are consider­
able: each individual molecule is illuminated only 
once, there are no problems with defocus differ­
ences within a single micrograph, flattening of the 
specimen onto the support film does not (to a first 
approximation) affect the results, and there is no 
"missing cone" if the molecules really exhibit almost 
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random orientations. The first priority was to de­
velop MSA eigenvector and classification algo­
rithms (van Heel 1984, 1989] that allowed the 
analysis of a very large number (of the order of ten 
of thousands of images) of molecular images simul­
taneously so as to be able to find even very rare 
views with sufficient statistical significance. Almost 
equally important for sorting out our complex mo­
lecular image sets are different improved alignment 
schemes such as our multi-reference alignment ap­
proach, our reference-free invariant classification 
scheme [Schatz and van Heel, 1990, 1992], and our 
new reference-free "alignment by classification" ap­
proach [Dube et al., 1993], which will all be dis­
cussed in more detail below. The mathematical 
basis of the correlation alignment approach, the 
cross-correlation function itself, was recently rein­
vestigated and improved. Having found the differ­
ent characteristic views of a molecule, a method 
was needed to find a-posteriori the relative orienta­
tions between the various molecular projections. 
This technique of "angular reconstitution" is, in part, 
a generalization of the earlier common-lines ap­
proach (Crowther, 1971 ]. Our recent improvements 
of the angular reconstitution approach are dis­
cussed below. The projection directions found with 
this technique can subsequently be used to recon­
struct the molecule in three dimensions from its 
projections using the exact filter algorithm (Harauz 
and van Heel, 1986; Radermacher et al., 1986]. 

The Albany group approach followed a different 
strategy, which is aimed at explicitly exploiting 
preferred orientations of the molecules on the sup­
port film. Their elegant technique of "random coni­
cal tilt" [Radermacher et al., 1987a; Radermacher, 
1988], in particular, exploits the random (planar) 
rotation orientation of molecules lying in one single 
preferred orientation relative to the support film. 
Upon tilting, the specimen holder, each of these 
different rotational orientations of the molecule con­
vert into really different projections through the 
structure which can subsequently be used to re­
construct the molecule in three dimensions. In 
terms of our kitchen-floor model, tilting the kitchen 
floor relative to the projecting X-ray beam will con­
vert the chair projections on the floor (originally all 
identical) into all kinds of different projections of the 
chairs, each of which carries different information 
about the projected object. This information can be 
used for reconstructing the original object in three 
dimensions. More recently, the Albany group has 
started to first perform an automatic search (by 
classification, see above) to find different predomi­
nant views in the data and then to use these sub­
groups of preferred orientations to perform inde­
pendent 30 reconstructions which can later be 
combined into a single merged 30 reconstruction 
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( cf. [Penczek et al., 1992]) (provided there is not too 
much flattening, see below). 

Both approaches have their strong and their 
weak points. Although we originally had hoped that 
molecules prepared in negative stain would show 
the molecules in a large number of different views, 
the more systems we (and other groups) analyzed, 
the clearer it became that the negative stain tech­
nique is associated with relatively stable preferred 
orientations (cf. (van Heel and Stoffler-Meilicke, 
1985]). A low number of different projections re­
stricts the resolution attainable in the subsequent 
three dimensional reconstruction [DeRosier and 
Klug, 1968; Harauz and van Heel, 1986] , and this 
was one of the reasons for us to concentrate our 
research on ice-embedded specimens [Adrian et 
al., 1984; Stewart and Vigers, 1986; Vogel et al., 
1986; Schatz et al., 1990a]. In particular, we nor­
mally use specimens without a supporting carbon 
film to avoid preferential attachment of the mole­
cules onto the carbon surface. Preferred orienta­
tions of the macromolecules with respect to the ice 
surface, however, remain a concern, and we envis­
age imaging some of our ice embedded specimens 
using small tilts of only 20°-30° to surmount this 
problem (without ever taking a second "0°" micro­
graph). Our progress with the analysis of ice-em­
bedded specimens was also somewhat stalled due 
to some remaining methodological problems, which 
we discuss in this paper. 

The Albany approach is based on the analysis 
of one strictly preferential orientation of the speci­
men on the support film. Two electron images are 
made (which can already be too destructive for ice­
embedded specimens), one with, say 50° tilt, and 
one without any tilt, i.e., 0° tilt. The rotation orien­
tations of the different molecules (all identical 
views) in the 0° tilt are used to calculate the Euler 
projection angles from which each molecule is seen 
in the 50° tilted image; these Euler angles are sub­
sequently used for the 30 reconstruction. The ap­
proach was already applied successfully to a num­
ber of structures including the 50S E.coli ribosomal 
subunit [Radermacher et al., 1987a, 1987b] and the 
70S E.coli ribosome (Wagenknecht et al., 1989]. 
The first problem is that not all molecules show a 
single preferred orientation or that some perceived 
characteristic view such as· the E.coli 50S ribo­
somal subunit can actually consist of two closely 
related views [Harauz et al.,1988; van Heel, 1989] 
which cannot be distinguished visually [Raderma­
cher et al., 1986, 1987a, 1987b]. A practical prob­
lem with the approach is that only a narrow band of 
images around the tilt axis (homogeneous defocus 
conditions) can be used such that one is limited to 
using only a relatively small number of molecular 
images (see, however, [Zemlin, 1989; De Jong and 
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Typke, 1990]. One of the most serious problems 
with the negative stain preparation technique 
seems to be the extreme amount of flattening (up to 
even around 75%, cf. Kellenberger et al., 1982]) 
onto the support film that the molecules appear to 
suffer, making such reconstructions often unnatu­
rally flat. Thus reconstructions based on one spe­
cific view of the molecule can often not be related to 
a reconstruction based on a different view of the 
same molecule [Carazo and Frank, 1989]. A com­
parative study of this effect, based on different re­
constructions of the giant hemoglobin of the com­
mon earthworm, is forthcoming [Z. Cejka, personal 
communication]. 

Other approaches to the analysis of single par­
ticles have been published. The mathematically 
elaborate techniques of Kam [Kam, 1980], and of 
Vogel and Provencher [Vogel et al., 1986; 
Provencher and Vogel, 1988) are ·not discussed 
here since there have been no further develop­
ments with these approaches. One of the first ap­
proaches to 3D-reconstructions of single particle, 
conventional tomography applied to a single mole­
cule (cf. [Ottl et al., 1983]), is not applicable to ice­
embedded specimens because of the high electron 
dose needed to register the many different projec­
tion images of the same individual molecule. The 
two main approaches discussed in this section are 
applicable to ice and require only one image 
(Berlin) or only two images (Albany) of the same 
specimen area. The single-particle approach that 
actually led to the first publication of a 30 recon­
struction of ice-embedded single molecules was 
that of Vogel and Provencher [Vogel et al., 1986] 
exploiting the 60-fold symmetry of the icosahedral 
virus. All other ice-embedded viral reconstructions 
were done using the common-lines approach 
[Crowther, 1971 ], the first of which was published 
by Fuller [Fuller, 1987]. With the common-lines 
technique one explicitly exploits the 60-fold symme­
try of the icosahedral viruses to find the 3D orienta­
tion of each individual virus image prior to any fur­
ther analysis. For lower molecular symmetries 
there is usually too little information in a single mo­
lecular image of the ice-embedded molecule to find 
the orientation of the noisy particle. In the Berlin 
group approach the averaging is performed over all 
projections belonging to one view prior to any 3D 
reconstruction; the 3D reconstruction is thus per­
formed using largely noise-free projections. In the 
Albany-group approach, averaging takes place 
when all individual noisy projections are inserted 
into the 3D reconstruction volume. 
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Microscopy. Densitometry 
and Computing Environment 

With the currently successful technique of 2D 
electron crystallography, the structural information 
is extracted from tens of thousands of unit cells for 
each of the different tilted views processed (cf. 
[Henderson et al., 1990]). Since we cannot expect 
ever to get anything for nothing, we will ultimately 
need about the same total number of molecular im­
ages for non-crystallized specimens to achieve 
comparable results. Current microscopical and im­
age processing technology, however, restricts the 
resolution attainable with single particles so that we 
aim at collecting data sets containing 5,000-10,000 
molecular images, distributed over all possile ran­
dom tilt angles. Assuming that each micrograph 
contains about 100 usable molecular images 
(images not overlapping with those of neighboring 
molecules), this implies that typically about 100 
good micrographs are needed for one data set. 

We do not want to go into the details of the art 
of sample preparation and cryo-microscopy with vit­
reous-ice embedded specimens (cf. [Adrian et al., 
1984; Dubochet et al., 1988]). What we want to 
emphasize is that computer-controlled microscopy 
will represent an important improvement over the 
techniques that are currently in routine use for col­
lecting the microscopical data. Low-dose tech­
niques used for minimizing specimen irradiation can 
best be implemented on a computer controlled mi­
croscope. Reproducibility optimizing the instrumen­
tal parameters (defocus, astigmatism, instrument 
alignment) can also best be done on such systems 
(see the papers in this issue that specifically deal 
with computer-controlled microscopes). Also, com­
puter-driven spot-scan illumination [Downing, 1991) 
will be imperative in achieving high-resolution re­
sults with ice-embedded single molecules in the 
way these techniques are essential for electron 
crystallography. Automatic photography of the full 
surface of a good area of the specimen over many 
plates will facilitate the data collection. If low-tilt 
images (20°-30°) are necessary, dynamic focussing 
[Zemlin, 1989; De Jong and Typke, 1990] will sub­
stantially enlarge the areas in the micrographs that 
can be used for further processing. 

Densitometry of hundreds of micrographs is ob­
viously a laborious task. Conventional flat-bed 
densitometers are high-precision instruments which 
move mechanically to each point of the negative so 
as to digitize the micrographs point-by-point, and 
they are thus too slow to routinely digitize large 
numbers of images to a resolution of around 
2400x3600 pixels per micrograph resulting in some 
10 Mbyte of data each. CCD (charged coupled 
device) densitometers which (electronically) scan 
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one image line at a time and then (mechanically) 
move to the next line are much faster and thus 
much more appropriate for this large task. Our 
CCD line scanner (produced in 1984 by Datacopy 
Corporation, Mountain View, California, controlled 
by an IBM personal computer coupled to our work­
station computers through ethernet) is slowly aging 
and, with its resolution of 1728 pixels per line, no 
longer capable of matching our higher-resolution 
requirements (the device is also no longer in pro­
duction). Although this type of CCD line densitome­
ter is still commercially available with a resolution 
of 4096 pixels per line, we have decided to build a 
new densitometer based on a standard video cam­
era with a 512x512 pixels CCD chip. The camera 
digitizes a small area of the negative at a time and 
the micrograph is subsequently mechanically 
moved (an x-y stepper-motor controlled microscope 
table) to the next part of the negative. The many 
512x512 subfields are subsequently computation­
ally inserted into a large (say, 8000x8000) image 
on the workstation computer which controls the 
whole set-up. With this approach, we expect to 
obtain a moderately priced, fast, and high-resolu­
tion microdensitometer. 

For the analysis of such large microscopical 
data sets, the computer system to be used for the 
data-processing has to fulfill a number of require­
ments. For example, a raw data set of 100 nega­
tives requires about 1 Gigabyte of data storage, 
hence mass-storage devices are of primary impor­
tance. One or two erasable optical disks as well as 
various Gigabytes of conventional magnetic disk 
are a prerequisite for handling such data sets. Our 
current computer system consists of a cluster of 
some 5-7 MicroVAX 3100 (Digital Equipment Cor­
poration; running under the VMS operating system) 
and a FORCE SPARC-1 station (under SUN-OS, a 
UNIX V-4 operating system) which will drive our 
new densitometer. A total of about 8 Gigabytes of 
magnetic diskspace is available in the net. 

All image processing, including the densitome­
try, is performed in the context of the IMAGIC-5 im­
age processing system [van Heel and Keegstra, 
1981 ). This general-purpose software package, 
which was developed in an electron microscopical 
research environment, was, after being upgraded to 
function in an X Windows environment, com­
mercialized in 1990 by the Image Science Software 
company in Berlin [Image Science, 1991 ]. The 
properties of the IMAGIC-5 image processing sys­
tem are important for the type of processing of very 
large numbers of individual images we are describ­
ing. For example, without explicitly formulating a 
"DO" loop by the user, all programs will automati­
cally process all images present in a data-set (a 
multi-image IMAGIC file) unless the program is told 
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otherwise. Some other image-processing systems 
maintain one file per image in the data-set which 
can lead to substantial organizational and speed 
problems if 10,000 files or more are required to re­
side in a given directory. It is not our intention to 
compare the properties of the different available 
image processing systems in detail here, although 
the issue is of primary importance. 

All distinct particles that are not overlapping or 
in close contact with other particles are selected 
interactively from the digitized micrographs using 
the mouse to point at the particles in the digitized 
images as displayed in an "X" window of a worksta­
tion-type computer. This system of selecting the 
thousands of individual molecular images normally 
takes a few days. Only the coordinates of the 
molecules within the raw images are stored which 
are subsequently used to extract the desired par­
ticles into small nxn images; n ranges typically from 
48 to 100 pixels, depending on the size of the ob­
ject and the desired resolution. Automatic particle 
selection algorithms have been proposed [van 
Heel, 1982; Frank and Wagenknecht, 1984], but 
these have not yet been put into routine use. 

The many single molecular images selected are 
stored in a single !MAGIC file and then pretreated 
by band-pass filtering to suppress the very low and 
very high spatial frequencies (high-frequency 
noise). In particular, the very low spatial frequen­
cies (often associated with unwanted information 
such as a density-gradient running over the image) 
have considerable power and are thus often very 
disturbing for subsequent alignments and multi­
variate statistical analysis. The frequency limits of 
band-pass filtering vary somewhat from experiment 
to experiment but they are normally coupled to the 
size of the molecule (low-frequency) and expected 
resolution (high-frequency). Moreover, while down­
weighting the low-frequency components, these are 
not completely removed but, rather, set to a fraction 
of their original values (typically around 0.1 %) so 
that they can be restored at a later stage by inverse 
filtering. After filtering, the particles are surrounded 
by a circular mask to cut away unnecessary back­
ground; within this mask the image statistics are 
standardized to zero average density and to a stan­
dard deviation ( arbitrary) of 10 [van Heel and Stoff­
ler-Meilicke, 1985; Harauz et al., 1988]. 

Planar Alignment 

Planar alignment (see above) of individual mo­
lecular images is a prerequisite whenever the sin­
gle particles need to be averaged to improve the 
SNR. The issue has been important since the very 
beginning of single particle analysis [Crowther and 
Amos, 1971; Frank et al., 1978). Even if in a 
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specimen the individual molecules exhibit just one 
single preferred orientation relative to the support 
film, we still need to compensate for the rotational 
and the two translational degrees of freedom that 
the molecules have. To achieve planar alignment, 
we use alignment algorithms based on the use of 
correlation functions [Frank et al., 1978; Saxton and 
Frank, 1977; Steinkilberg and Schramm, 1980; van 
Heel et al., 1992], to bring all images in a data set 
into optimal register with a carefully chosen (see 
below) reference image. 

Correlation functions are relatively simple func­
tions which measure how well two images match 
when we overlap them; the correlation alignment 
procedure is (largely) equivalent to manually over­
lapping two negatives of the same object over a 
light box. The computationally cheapest known 
way to calculate exhaustive (=testing all possible 
relative shifts) correlation functions is through 
Fourier space thanks to the efficiency of the Fast 
Fourier Transform (FFT, cf. [Cooley and Tuckey, 
1965; Singleton, 1969]). The cross-correlation 
function (CCF) between two images is calculated 
as follows: both the reference image and the image 
to be aligned are Fourier-transformed, then these 
transforms are (complex conjugate) multiplied point 
by point, and the inverse Fourier transform of the 
resulting function is the desired CCF. The rota­
tional correlation function (RCF) between image 
and reference image is calculated similarly after 
first converting both images to a polar coordinate 
system. 

The most commonly used alignment algorithm 
[Steinkilberg and Schramm, 1980] is based on it­
eratively repeating translational and rotational cor­
relation alignments. The technique is very sensitive 
and can cope with very noisy images; we have suc­
cessfully performed millions of alignments using 
this procedure. In this alignment procedure, one 
implicitly assumes that the molecules to be aligned 
belong to the same view, i.e. are in the same pre­
ferred orientation relative to the support film. Al­
though this assumption may be justified in some 
cases, such as with the rather flat and symmetric 
(622 pointgroup) glutamine synthetase [Frank et al., 
1978; Kunath et al., 1984], it is normally not justified 
even with flat structures like the giant hemoglobin of 
the common earthworm (another 622 pointgroup 
structure) [Boekema and van Heel, 1989]. The 
most important factor affecting the results of this 
and of other correlation-alignment approaches is 
the choice of the reference image. 

For a data set from a macromolecule of initially 
unknown structure, it is not clear which projection 
view is most suitable as an initial reference image, 
and we are faced with a bootstrapping problem: we 
need the end result of the analysis, i.e. the noise-
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free characteristic views, before we even start the 
procedure. This bootstrapping problem can be 
solved iteratively with a multi-reference alignment 
procedure [van Heel and Stoffler-Meilicke, 1985]. 
In this approach, we first choose a set of "n" refer­
ence images from the raw data set. Then, each 
molecular image is aligned "n" times with respect to 
the "n" references (and normally also another "n" 
times relative to the mirror versions of the reference 
images). From these "2n" alignment parameters, 
those associated with highest normalized CCC 
(cross-correlation coefficient, i.e., the best fit) are 
the ones finally used to rotate and shift each par­
ticular image. The reference images are them­
selves treated as part of the data set and are 
therefore also aligned relative to each other. In the 
multi-reference approach, one iterates between 
rounds of alignments and MSA classifications (see 
below) which provide new classes to be used as 
reference images for the iteration of the procedures. 
This overall approach can be seen as an algorithm 
aimed at reaching an optimal global alignment for 
an entire heterogeneous data set [van Heel et al., 
1982]. 

However, the very use of one or more reference 
images to align a data set is associated with the 
danger of biasing the entire data set towards the 
properties of the reference(s) [Boekema et al., 
1986]. In a simple computer experiment we once 
have aligned a set of 256 computer-generated ran­
dom noise images to an image of Einstein [Schatz, 
1992]. The total sum of the aligned random-noise 
images unmistakably showed the face of this fa­
mous scientist. Alignment thus can pull an entire 
data set towards the reference, a bias problem 
which can become serious when the molecules to 
be investigated are small or when the images are 
very noisy (ice-embedded macromolecules). We 
have thus initiated a search for new "reference-free" 
analysis procedures which will be discussed below. 

MSA Techniques 

Multivariate statistical analysis (MSA) tech­
niques can be seen as perfect averaging tools in 
electron microscopy (and in most other field of re­
search where one deals with complex and noisy 
data sets). In spite of the fact that the interesting 
information is often entirely buried in noise, we can, 
using such techniques, reproducibly discriminate 
between subsets of images differing in astonish­
ingly subtle details. MSA techniques were first in­
troduced to electron microscopy in 1980/1981 [van 
Heel and Frank, 1980; van Heel and Frank 1981] 
and have since been used in hundreds of investiga­
tions. The MSA approach can be subdivided into 
two major sections: first, the eigenvector eigen-
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value data-compression, and second an automatic 
unsupervised classification operating on the com­
pressed data set (cf. [Lebart et al., 1977, 1984]). 

Eigenvector Data Compression: Conceptually, 
in the MSA approach we first picture each of our 
measurements as a point in a multidimensional 
space with as many dimensions as there are data 
points in the measurements. Each image of, say, 
64x64 pixels can thus be represented as a point in 
an 64x64=4096 dimensional ("hyper") space, and 
the entire set of images thus converts to a "cloud" 
of points in this space. Similarities between images 
translate to proximities between the corresponding 
points in the data cloud. The basic idea behind the 
data-reduction procedure is to then rotate the coor­
dinate system of the multidimensional space such 
that the new coordinate system follows the shape of 
the data cloud as closely as possible. Systematic 
inter-image differences translate in the hyper-space 
representation into an elongation of the data cloud 
in a given hyper-space direction. In the rotated co­
ordinate system, one tries to optimally (in a least­
squares sense) place the unit vectors in the differ­
ent elongation directions of the data cloud. The unit 
vectors of the rotated coordinate system (deter­
mined through an "eigenvector eigenvalue" algo­
rithm) are themselves points in the hyperspace and 
hence have the character of images like all the 
points in the data cloud. The unit vectors (eigen­
vectors) of the rotated coordinate system are thus 
often called eigenimages ( cf. [van Heel, 1989]). 

The first eigenimage represents the direction of 
greatest variance in the data set. This direction 
(depending on the metric used, see below) often 
corresponds to the direction from the origin of the 
coordinate system to the center of the cloud. The 
second eigenimage ("orthogonal" to the first) is ac­
tually the first direction describing important differ­
ences between images. The third eigenimage de­
scribes the direction of the largest remaining differ­
ences between the images (orthogonal to eigenvec­
tor #1 and #2), etc. The cloud of images can now 
be described with respect to this new coordinate 
system. One then normally works with the coordi­
nates of each image with respect to only the most 
significant ("principal") data cloud components 
(typically 12 to 24). By disregarding the higher-or­
der components, the images can be considered as 
points in a much lower-dimensional (for example 12 
to 24, rather than 4096) space. One thus achieves 
a large reduction in the amount of data to be ana­
lyzed as well as a very significant reduction of the 
effects of random noise which are typically more 
associated with the higher eigenvectors of the sys­
tem. The data reduction is very important for the 
subsequent "exhaustive" comparison of all images 
with each other for the purpose of classification, 
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which can be computationally very intensive. 
Moreover, the availability of the eigenimages allows 
for an often very illustrative visual inspection by the 
investigator of the main trends or "principal compo­
nents" of the data set. 

The choice the metric or the distance measure: 
Principal components analysis (PCA: see any book 
on multivariate statistics, for example, [Lebart et al., 
1977, 1984]) is undoubtedly the best known and 
most proliferate MSA technique. There are, how­
ever, some problems associated with PCA and the 
conventional Euclidian distances on which it is 
based. If signal (measurement, image) "B" is equal 
to two times signal "A", then signal B will lie on the 
hyper-space line connecting the origin "O" to point 
A, at twice the distance OA. Although the two sig­
nals differ only in a multiplicative factor (and are 
thus essentially identical) they are located far from 
each in the cloud (and will thus be classified differ­
ently), and, due to the least-squares principle be­
hind the MSA techniques, signal B will contribute 
four times more to the determination of the eigen­
vectors than will signal A. 

Correspondence analysis ("CA") stemming from 
or at least made popular by the French school of 
statistician around Prof. Benzecri [Benzecri, 1977, 
1980a,b], was designed to circumvent this problem 
of heterogeneous statistics of the measurements in 
the data set. By using chi-square distances, in 
which the measurements are divided by the total 
sums of each measurement (like the total density in 
an image), signal A is made to coincide with signal 
B in hyper-space. Moreover, since in CA the signal 
B will have twice the "mass" of signal A associated 
with it, signal B will also ONLY contribute twice as 
much (in terms of variance) to the determination of 
the eigenvectors as will signal A. During the first 
years of the application of MSA in electron micro­
scopy, CA was the dominating technique. 

The correspondence analysis Chi-square met­
ric, however, when applied to signal-processing is 
also associated with a fundamental problem. The 
technique of dividing by the total sum of a meas­
urement is designed for the analysis of (positive) 
histogram data. In contrast to the rule in the social 
sciences, in signal and image-processing the 
measurements need not be positive. Signals often 
have, or are normalized to, zero average density. 
We thus have introduced a new MSA variant based 
on "modulation distances", a distance measure in 
which the signals are divided by the standard de­
viation of each signal [Borland and van Heel, 1990]. 
The MSA variant with modulation distances we call 
"modulation analysis", and this MSA technique 
shares the generally favorable properties of CA, 
yet, as is the case in PCA, allows for the processing 
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of zero-average-density signals. This MSA tech­
nique has already been in routine use for a number 
of years and has, in our research, entirely super­
seded the CA approach. The practice of threshold­
ing image data to positive values only, as is neces­
sary for applying CA to signals that are not positive 
everywhere, is not always justifiable and - at the 
very least - leads to wasting of half of the signal for 
zero-average-density measurements. Another 
practice, in which the negative values are rendered 
positive by adding a constant to the data also has 
far-reaching consequences. The strong negative 
densities will end up as small positive densities and 
will have very little contribution to the total variance 
of the data set, whereas the large positive values 
will become very large positive values with dispro­
portionallly strong contribution to the total variance. 
Although there are thus significant theoretical and 
practical differences between MSA analyses using 
different metrics, the differences between these ap­
proaches are miniscule compared to the difference 
between using MSA techniques or not using them 
at all. 

Classification: The data compression achieved 
by projecting the data into the space spanned by 
the predominant eigenimages facilitates the group­
ing (classification) of images. In the early days of 
MSA in EM, the classification of the images was 
performed visually on "MSA-maps" or scatter dia­
grams showing the data-cloud projected onto two 
eigenvectors at a time. We now use automatic 
(unsupervised) classification schemes which are 
indispensable, particularly, when the relevant image 
information is spread over more than just two pre­
dominant eigenimages. Our best experience has 
been with hierarchical ascendant classification 
based (HAC) schemes ( cf. [Lebart et al., 1984; van 
Heel, 1984; van Heel 1989; Borland and van Heel, 
1990]. In this approach each class is first filled with 
one individual image, and then similar classes are 
merged together to form larger and larger classes 
until finally one class containing all the images is 
obtained; the history of the classification is stored in 
a "tree". As merging criterion, we use the Ward 
criterion [Ward, 1982], which is variance-oriented. 
Two classes are merged if the associated "added 
intra-class variance" of the particular merging op­
eration is the lowest possible one at the given level 
of the HAC procedure. 

The actual partitioning of the data set is per­
fanned after the decision to cut the classification 
tree at a given level (associated with a predeter­
mined number of classes or "branches" of the tree). 
The number of desired classes depends entirely on 
the problem to be solved, and can range from just a 
few, for a data set of molecular images exhibiting 
just a few preferred orientations, up to a few hun-
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dred for a data set of ice-embedded molecules ex­
pected to show a full scale of random orientations. 
The goal of the classification process is to reach the 
optimal partition defined as that partition (for a 
given number of classes) for which the sum of all 
internal variances of the classes (intra-class vari­
ances) is minimal (cf. [Lebart et al., 1984; van Heel, 
1984, 1989]). 

The partitions obtained through the HAC proce­
dure are, however, necessarily suboptimal. The 
fact that we take two classes (or images) together 
at a certain level of the HAC procedure binds the 
members of the two classes together forever. After 
the initial partitioning with the HAC scheme we 
therefore allow the individual members of the 
classes to migrate to neighboring classes using an 
iterative migration post-processor. If a particular 
image is found to fit better (in terms of its variance 
contribution to the class) in a different class after 
all, it is allowed to migrate to that class and the in­
tra-class variances of the original and the new class 
are recalculated. The procedure is iterated until no 
further inter-class migrations take place and the 
procedure has thus stabilized. For further technical 
details about our preferred classification ap­
proaches, see [van Heel, 1989]. The aligned im­
ages in each of the classes obtained are summed 
together to give class-averages with an enhanced 
SNR, and which represent the desired "views" pre­
sent in the data-set (if all has gone well). While 
summing the images belonging to one class, one 
has a last chance to reject outliers which contribute 
too much to the internal variance of the class 
[Unser et al., 1989; van Heel, 1989]. By the way, 
classifications can also be performed in the 
"conjugate" space [Borland and van Heel, 1990] in 
which every "pixel-vector" is depicted as a point in a 
conjugate hyper-space. The classification results 
here tell us which areas of the images behave 
similarly throughout the data set, or equivalently, 
which specific areas of the images are responsible 
for the inter-image differences. 

Invariant Classification 

As was discussed above, the choice of the ref­
erence image(s) to be used for alignment of the im­
ages in the data set can substantially influence, or 
even bias, the final results. This finding has trig­
gered a search for analysis procedures which do 
not depend on the choice of individual references 
("reference-free" procedures). The ultimate goal of 
the whole analysis is to obtain aligned sets of im­
ages from raw data. In our first reference-free ex­
periments, however, our aim was first to find 
classes of similar images without having ever 
aligned the images of the raw data set. If we know 



Figure 1. Align­
ment by classifi­
cation. A set of 
333 band-pass fil­
tered molecular 
images (all crown 
views of 50S E. 
coli ribosomal 
subunits, only 10 
shown in Fig. 1a) 
are used as input 
to this feasibility 
study. After con­
version to the 
translational-in­
variant SCF form 
(Fig. 1 b), the data 
set is compressed 
by eigenvector 
analysis (the first 
10 "eigen-images" 
are shown in Fig. 
1 c) and then par­
titioned into 1 0 
classes by means 
of automatic clas­
sification. The 
resulting 10 SCF 
class averages, 
shown in Figure 
1 d, are sorted by 
their different 
rotational orien­
tations. The ex­
periment demon­
strates that an 
a I ignment-by-clas­
s if icat ion using 
real microscopical 
data is possible. 
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that given subset of our full population of image 
belongs to one single characteristic view, this 
knowledge can be exploited in subsequent intra­
class alignment procedures [Schatz and van Heel, 
1990, 1992]. For this purpose, we derive "invariant 
functions" from the raw images, and apply MSA to 
these secondary functions rather than to the images 
themselves. Depending on the given problem, the 
invariant functions can be chosen such that they are 
invariant to translational shifts and/or to rotations of 
the molecular images within their frames. 

Invariant functions have played a significant role 
in EM for some time. The power spectrum, and its 
real-space equivalent the autocorrelation function 
(ACF), are both functions which are invariant to a 
lateral shift of the input image yet convey informa­
tion about the image and its focus and astigmatism­
correction conditions. One of the very first single­
particle alignment algorithms ("ACF alignment", cf. 
[Frank et al., 1978, 1981; Frank, 1980]) exploits the 
translational invariance of the ACF by first perform­
ing a rotational alignment between the ACFs of two 
molecular images, and only then performing trans­
lational alignment between the rotated originals. 
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Figure 2. CCF 
versus MCF. The 
cross correlation 
function (Fig. 2c) 
between two 
shifted images 
(Figures 2a, 2b) is 
dominated by the 
strong frequency 
components in the 
images, typically 
the low-frequency 
ones. This prob-
lem is circum-
vented in the 
"Mutual correla­
tion function" 
(MCF). For details 
see text. 

In our reference-free double correlation classifi­
cation scheme [Schatz and van Heel, 1990), a 
(mixed) set of input images is first converted to a 
corresponding set of autocorrelation functions. The 
ACFs are then subjected to a second autocorrela­
tion operation along rings (i.e. in the tangential di­
rection in polar coordinates), resulting in a double 
autocorrelation function (DACF). The only time we 
ever applied the DACF approach was to model 
data, since we immediately realized there was a 
serious problem with ACFs in general, which be­
came much more serious when cascading ACFs for 
the purpose of calculating the DACF. The problem 
is that for calculating the ACF, we square the 
Fourier components of the image prior to calculat­
ing the inverse transform (the ACF is thus a 
"squared correlation function"). As a consequence, 
the strong Fourier components (typically low-fre­
quency ones) tend to entirely overwhelm the 
weaker components, often the fine high-frequency 
details we are really interested in. Instead of 
working with the ACFs and DACFs of the input im­
ages we thus work with the self-correlation function 
(SCF) which we define as being the inverse Fourier 
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Figure 3. Angular reconstitution. A 3D model 
object (Fig. 3a) is projected into a large number of 
different Euler directions leading to a set of 2D 
projections, of which 12 (numbered, from left to 
right, 1-4, 5-8, and 9-12, respectively, in top, 
middle, and bottom rows) are depicted in Fig. Jb. 

transform of the amplitude spectrum of the image; 
the DSCF (double SCF) is defined analogously to 
the DACF yet replacing the ACF calculations by a 
corresponding SCF one [Schatz and van Heel, 
1992]. 

Once a set of molecular images is converted 
into a set of DSCFs, we can apply data-compres­
sion and classifications to these secondary invari­
ant functions rather than to the images themselves. 
Compact classes of DSCFs found in the procedure 
contain mainly DSCFs derived from original images 
which belong to one given type of projection 
through the molecule (one characteristic view). 
Theoretically, an infinite number of different input 
images may lead to identical output DSCFs due to 
the throwing away of the phase information in the 
SCF calculations (in the DSCF calculation one 
throws away phases even twice). In practice one 
must really resort to mathematical tricks to achieve 
identical DSCFs starting from different (artificial) 
images, and the non-uniqueness of the DSCF is 
thus not a real problem. A relatively conventional 
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Figure 4. The sinecorr function. Each 2D projec­
tion image (Fig. 3b) is projected onto a single line 
(1 D projection). The 1 D projections in possible 
directions are mounted into a "sinogram". Two 
sinograms, calculated from projections #1 and #4, 
are shown in Figure 4a. The search for the com­
mon line projection (common tilt-axis) between 
two 2D projections can best be performed by cor­
relating all lines of the two corresponding sino­
gram images with each other in the sine-correla­
tion function ("sinecorr", Fig. 4b). A planar rota­
tion (the a-angle) of one of the input images corre­
sponds to a cyclical shift of the corresponding 
sinogram in the vertical direction. As a conse­
quence, all sinecorr functions calculated from the 
rotated input image will be cyclically shifted (Fig. 
4c) in the horizontal or in the vertical direction. 

intra-class alignment procedure is then applied to 
the images associated with each DSCF class (the 
image closest to the center of the DSCF class is 
used as reference). This DSCF approach was suc­
cessfully applied to images of ice-embedded he­
moglobins of the common earthworm [Schatz et al., 
1990b; Schatz and van Heel, 1992] to presort the 
different view present in the data set. 

Alignment By Classification 

A new idea, expressed in a recent paper [Dube 
et al., 1993], is to avoid the use of references by 
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performing "alignments by classification" rather 
than by correlation techniques. Within a classifica­
tion one compares everything with everything and 
thus there cannot be a bias relative to any one par­
ticular image in the data set. In that work, a set of 
about 800 top-views of the oligomeric portal protein 
of bacteriophage SPP1 was first centered relative 
to a rotationally symmetric mask. The images were 
then subjected to MSA/classification without having 
undergone any rotational alignment relative to each 
other. The class averages resulting from the pro­
cedures clearly showed the different rotational ori­
entations the molecules happen to have on the 
support film. The purpose of the SPP1 portal-pro­
tein study was primarily to find the symmetry of the 
structure by integrating information from a large 
number of molecular images simultaneously. Ear­
lier symmetry analysis procedures [Crowther and 
Amos, 1971] operated on only one single molecular 
image at a time. The SPP1 averages showed an 
unexpected 13-fold rotational symmetry; portal 
proteins were thought to generically possess 12-
fold symmetry. A reanalysis of the well-studied 
portal-protein assembly of <l>-29 bacteriophage 
[Carrascosa et al., 1982] using these new refer­
ence-free techniques again revealed a 13-fold 
symmetric structure [Dube et al., 1993] without any 
explicit rotational alignment of the images relative 
to each other. 

We here want to emphasize that the alignment­
by-classification approach can generally be used in 
microscopy, provided that a sufficient number of 
molecular images of a given view (in all possible 
planar rotational orientations) are present in the 
data set. The images used for our demonstration 
stem from an earlier study [Harauz et al., 1988], 
and are 333 original images belonging to one type 
of crown view of the E.coli 50S ribosomal subunit 
[Harauz et al., 1988] (two different types of crown 
views were found). Some of these original (band­
pass filtered) images are shown in Fig. 1a. The 
images are then converted to SCF format (Fig. 1 b) 
and subsequently subjected to eigenvector data­
compression and automatic classification. The 
eigenimages of the analysis (Fig. 1 c) are all cen­
trosymmetric since the SCFs input-images are 
centrosymmetric. We have here requested 10 
classes, and shown in Fig. 1d are all these SCF 
class-averages sorted by their rotational orienta­
tions. This simple experiment demonstrates that 
the technique is capable of automatically finding the 
different rotational orientations in this homogeneous 
data-set. 

In the DSCF classification (see above) we lose 
the important information contained in the phases of 
the images twice. With the rotational alignment 
scheme described above, we avoid the information 
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loss in the second rotational SCF calculation of the 
DSCF procedure. Having found the rotational ori­
entation of the particles (however, with 180° ambi­
guity (cf. [Frank, 1980; Schatz and van Heel, 1990] 
due to the properties of the ACF/SCF), we can pro­
ceed with the rotationally aligned input images and 
then again apply classification to find the transla­
tional alignment differences between the images 
and to resolve the 180° ambiguity. This transla­
tional alignment by classification is expected to 
work best if the molecules have already been cen­
tered roughly using other techniques. Both phase 
losses occurring in the calculation of the transla­
tional and rotational invariant DSCFs can thus be 
regained provided that a sufficient number of mo­
lecular images is available for each of the charac­
teristic views present in the data-set. 

Mutual Correlation Functions 

We have seen above that the ACF is a squared 
correlation function which can suffer severely from 
overweighting of strong frequency components in 
the data. The ACF of an image is the cross-corre­
lation function (CCF) of the image with respect to it­
self. This fact already indicates that the CCF, 
which lies at the basis of all correlation align­
menUaveraging procedures, may itself suffer from 
the same type of shortcoming. Again, the problem 
is expected to be more serious when squared 
correlation functions are cascaded, such as is the 
case with the ACF alignment procedure (cf. [Frank 
et al., 1981 ]), in which one calculates the CCF 
along corresponding rings of ACFs derived from the 
images to be aligned. 

There is more than one possible solution to the 
problem of finding a correlation function which re­
lates to the SCF the way the CCF relates to the 
ACF. We have found it advantageous to use the 
Mutual Correlation Function (MCF) [van Heel et al., 
1992], which is calculated very much the same way 
the CCF is calculated by complex-conjugate multi­
plication of the Fourier transform (FT) of the two 
images to be correlated. In the MCF calculation, 
however, the complex Fourier components of the 
images involved are downweighted by division by 
the square-root of the amplitude of the component, 
prior to the final reverse Fourier transform calcula­
tion. The difference between CCF and MCF, as 
important work-horse tools in alignment proce­
dures, is demonstrated by a model experiment illus­
trated in Fig. 2. An image of Max Planck (Fig. 2a) 
is shifted translationally to produce Fig. 2b. In Fig. 
2c, the CCF between original and shifted "Max 
Planck" is depicted. This image is obviously domi­
nated by the low-frequency components in the input 
(unfiltered) images, although one can obtain the 
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correct shift parameters from the rather blurred 
highest peak in the CCF of these two noise-free in­
put images. The MCF (Fig. 2d) between the input 
images, in contrast, shows a strong and well-de­
fined peak at the position of perfect overlap be­
tween the images. It is obvious that if one uses the 
peak height of the CCF as a similarity measure 
between images, this similarity measure (cross cor­
relation coefficient CCC) will also be largely domi­
nated by the strong image frequency components 
(typically the low-frequency ones). The (normal­
ized) peak-height of the MCF is generally a better 
inter-image similarity measure than the CCC [van 
Heel et al., 1992]. 

We have converted many of our alignment al­
gorithms to function with the MCF instead of the 
CCF. The new algorithms, as expected, behave 
generally better than their predecessor [van Heel et 
al., 1992]. We thus expect the MCF to supersede 
the CCF for virtually all its applications in electron 
microscopy including correlation-averaging of 2D 
crystals. The MCF based algorithms do, however, 
exhibit a different frequency behavior than their 
predecessors, a fact which needs to be considered 
carefully. Whereas for CCF-based alignment al­
gorithms the suppressing of low-frequency images 
components was often essential (cf. [van Heel and 
Stoffler-Meilicke, 1985]), this side of the spectrum 
has become much less bothersome with MCF 
alignments. At the same time, the high-spatial-fre­
quency side of the image data (often consisting of 
mainly noise) which was of no real practical con­
cern in CCF alignments, now sometimes really 
needs to be suppressed by low-pass filtering to 
obtain the best alignment results. 

Angular Reconstitution 

The class sums or characteristic views obtained 
by the alignmenUMSA techniques discussed above 
provide us with distinct projections of the macro­
molecular complex under study, and the logical next 
step is to combine these into a 3D reconstruction. 
In most problems of 3D reconstruction from projec­
tions, e.g., computerized medical tomography, one 
knows from the experimental set-up the angular 
relationships between the projections from which 
the reconstruction is to be calculated. Here, how­
ever, we obtain the characteristic views of mole­
cules without a-priori knowing how the different 
projection directions of the different views relate to 
each other. The method of "angular reconstitution" 
[van Heel, 1987; Vainshtein and Goncharov, 1986 
(in russian)] allows for the a-posteriori determina­
tion of the relative angular orientations of the pro­
jections. 

When a 3D object, like the test object depicted 
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in Fig. 3a (a 3D "general phantom" with predeter­
mined power-spectrum properties [Harauz and van 
Heel, 1986]), is projected into different directions, a 
number of 2D projections are generated (Fig. 3b) 
which correspond to the different views of a mole­
cule obtained in the EM. Although two different 2D 
projections of such a 3D object may look very dif­
ferent, they always have at least (for asymmetric 
objects) one line projection in common. This com­
mon line projection corresponds to the direction of 
the tilt-axis along which we need to tilt the original 
3D object to convert one of the 2D projection direc­
tions into the other. A line projection of a 2D view 
is calculated by projecting all density values in the 
2D image onto a line in a given direction. One 
normally calculates all possible line-projections in 
all possible directions and mounts all these line­
projections on top of each other in a "sinogram" 
[van Heel, 1987]. The sinograms for projections #1 
and #4 (Fig. 3b) have been calculated as examples 
(Fig. 4a). The statement that two 2D projections 
have one of their line-projections in common im­
plies that one of the lines in sinogram #1 is identical 
to one of the lines in sinogram #4. The search for 
the correct line-pair is performed by calculating the 
CCC between all lines of sinogram #1 and si­
nogram #4 and storing all the CCC-values in a two­
dimensional images called a sinogram correlation 
function ("sinecorr", see Fig. 4b). (Our earlier 
negative comments about CCCs apply here too, 
and consequently we are modifying our SINECORR 
program to operate instead with new correlation 
coefficients.) The highest peak in the sinecorr 
function tells us in which direction in image #1 lies 
the common tilt-axis shared with image #4 and 
vice-versa. The orientation of the common tilt-axis 
(common line-projection) between images #1 and 
#4 fix the relative orientation of these two views in 
3D space. With three different 2D projections (not 
related by a tilt around a single rotation axis) the 
relative Eulerian orientation of all three projection is 
fixed, and can be determined analytically [van Heel, 
1987]. Note that the concept of the common line­
projection or the common tilt-axis is the real-space 
equivalent of the concept of the common line 
[Crowther, 1971] shared by two central sections in 
3D Fourier space. For highly symmetric objects 
(like icosahedral viruses), the angular reconstitution 
approach becomes the real-space equivalent of the 
earlier common-lines approach by Crowther 
[Crowther, 1971 ]. 

A problem occurs in the angular reconstitution 
approach when the fourth (and higher) projections 
are to be included in the solution. Ambiguities are 
introduced since the problem becomes overdeter­
mined and the new projection can give different an­
gular reconstitution solutions relative to each group 
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of two other projections. Overdetermination is no 
real problem in noise-free computer simulations, 
but becomes serious with real experimental data. 
Least-squares solutions are not the correct ap­
proach since errors do not manifest themselves as 
small deviations from the correct solution but rather 
lead to entirely erroneous angular directions. What 
is needed is rather an approach leading to the best 
solution relative to all earlier projections for each 
new projection introduced into the set. Since, once 
such a technique is available, one can always ex­
tract any projection from the set and reintroduce it 
as a "new" projection, such an approach can be it­
erated to give a best solution for all available pro­
jections as a whole. We introduce a brute-force, 
yet efficient, approach to the problem of introducing 
a new projection into a set of already "angled" ear­
lier projections. The idea is to simply try all Euler­
angle combinations for the new projection, and to 
see how well the different assumed projection di­
rections perform relative to the orientations of ear­
lier projections. To define the Euler angles: a is a 
rotation in the plane of the projection, [3 the angle 
the projection direction makes relative to the north­
pole direction of the 3D reconstruction space, and y 
the angle of the projection direction measured 
along the equator relative to an arbitrary zero 
meridian. To search for the best (a,S,y) we first 
need to search for the best (P,y) combination; the 
best a-value can be determined last. The influence 
of rotating a projection image in the plane of the 
projection (changing a) is to cause a cyclical shift of 
the sinecorr function (Fig. 4c) of the current projec­
tion image relative to an earlier projection. 

For each (P,y) combination attempted, we can 
predict where in the sinecorr function of the new 
projection relative to each of the old projections we 
expect the maximum peak, assuming that the cor­
rect a angle was zero. These predicted peaks are 
thus all systematically misplaced (in the horizontal 
direction, for example) by a distance corresponding 
to the correct a value. To find the best a value for a 
given ([3,y) combination, we extract all the predicted 
rows from the different sinecorr function, and cycli­
cally shift each of them such that they all have the 
predicted (a=O) peak at the origin. After summing 
all these 1 D curves, we can search for the maxi­
mum along the sum curve. The position of the peak 
gives us the best a value for the given (P,y) choice; 
the peak-height tells us how good this (P,y) combi­
nation is relative to all other possible ones. Since 
we simultaneously look at all sinecorr functions as­
sociated with the new projection, we will only find 
the best overall orientation for the new projection, 
and will not be distracted by spurious local maxima 
in one of the sinecorr functions studied. This ap-
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proach was applied to a set of 50 projections (of 
which the first 12 are shown in Fig. 3b) calculated 
from the general (128x128x128 pixels) phantom 
shown in Fig. 3a. The algorithm was capable of re­
producing the Euler angles used to generate the 
projections within a mean error of about 1 .5°. 

Some further complications and corresponding 
methodological refinements exist with the angular 
reconstitution approach which we intend to discuss 
in more detail in a future publication. The first 
complication is that of centering of the projections 
and the corresponding 3D reconstruction. With the 
3D reconstruction methodology described here one 
assumes that all projections are translationally 
aligned relative to a common origin. This is not al­
ways simple to achieve with (for example) the cen­
ter-of-mass technique, so we have experimented 
with reconstruction schemes in which we first re­
construct the 3D SCF of the object based on the 2D 
SCFs of the various projections. This procedure 
exploits the translational invariance of the 2D/3D 
SCFs, and thus allows us to first determine the 
Euler orientations (a,S,y) of the projections (albeit 
with a "180°" ambiguity due to the centrosymmetry 
of the 2D/3D SCF) and only then to determine the 
x-y shifts needed to bring each of the 2D projec­
tions to a common origin. 

Refinements of the approach are also needed 
for reconstructing symmetric objects: each new 
projection has common projection directions not 
only with respect to the earlier projections but also 
relative to itself due to the symmetry of the molecu­
lar structure. In the sinecorr function of the new 
projection relative to itself, the a angle orientation of 
the projection causes a cyclical shift in both the di­
rections of the rows and of the columns, i.e., causes 
a net cyclical shift along the diagonal direction of 
the sinecorr function. These effects, which need to 
be taken into account when analyzing symmetric 
oligomeric molecules, correspond to the common­
lines and cross-common lines in the analysis of 
icosahedral structures [Crowther, 1971 ]. 

Discussion and Concluding Remarks 

A set of micrographs taken from a preparation of 
randomly oriented biological macromolecules can 
contain thousands of molecular images from which 
much information about the 3D structure of the 
molecule can be revealed by advanced image 
processing techniques. The key techniques are 
MSA techniques capable of finding similarities and 
dissimilarities existing within the large and hetero­
geneous set of molecular images. Invariant func­
tions and correlation functions are important tools 
for retrieving the noise-free characteristic views of 
molecules being studied. Our recent developments 
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with these techniques will facilitate the routine 
analysis of individual (randomly oriented) biological 
macromolecules in electron microscopy, particularly 
for specimens embedded in vitreous-ice. 

It has long been the consensus that the single­
particle approach was limited fundamentally by the 
need to start the procedure by aligning two noisy 
molecular images relative to each other by means 
of correlation alignment. Such alignments break 
down at relatively low noise levels [Saxton and 
Frank, 1977; van Heel, 1982]. We have shown 
here that alignment can be seen ("alignment by 
classification") as an overall statistical property of a 
full set of images; increasing the size of the set will 
automatically improve the quality of the alignments. 
Alignments between two noisy individual images 
play no role in this approach, and certainly repre­
sent no fundamental lower limit. Counting entirely 
on MSA techniques to find both the elifferent views 
and the planar rotational/translational alignment 
differences for each view in a data set, however, 
may require one or two orders of magnitude more 
molecular images than our current average of 5000 
images per data-set, and may thus exceed what we 
currently consider to be manageable numbers. In­
variant-function classifications can be used to pre­
sort sets of images into sub-groups containing 
mainly one characteristic molecular view. The 
problem of aligning the molecular images belonging 
to one more or less homogeneous sub-population 
of images can be solved with relative ease, as was 
demonstrated above in our example of the 50S ri­
bosomal subunit. 

The combination of techniques discussed in this 
paper form a complete and self-contained method­
ology for molecular structure analysis based on 
randomly oriented single particles embedded in vit­
reous-ice. However, our first analyses of such 
specimens (unsupported vitreous-ice over holes) 
have shown a significant amount of preferred orien­
tation relative to the ice/air surface. To further 
"randomize" the different views available, in spite of 
preferred orientations, we envisage imaging these 
specimens using small tilts of only about 20°-30° 
using dynamic focussing [Zemlin, 1989] to obtain 
constant focus over the full area of the micrographs. 
By introducing a tilt into our experiments (one still 
just takes one image per object area), the methodo­
logical differences from the approach of the Albany 
group are somewhat reduced. However, a tilt in our 
approach is introduced to enhance the randomness 
of the molecular orientations in the preparation, 
whereas in the Albany school tilt is introduced to tilt 
a given set of molecules known (from the 0° image) 
or assumed to belong to a single pure preferred 
orientation. 

We expect that the importance of finding the 
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domain or quaternary structure of large biological 
molecules will grow in the future. With better 
schemes to predict the secondary/tertiary structure 
of a protein from the primary sequence alone (cf. 
[Kolata, 1986; Blundell et al., 1987; van Heel, 
1991 ], the boundary conditions imposed by a 
measured low-resolution (say, 2nm) 3D structure 
obtained with EM techniques may be sufficient to 
start building an atomic-resolution model of the 
protein under investigation. In this context, we wish 
to draw attention to a multivariate statistical se­
quence analysis and structure prediction approach 
which was an immediate consequence of our meth­
odological studies in electron microscopy [van 
Heel, 1991]. 
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Discussion with Reviewers 

J. Frank: The advantages of the "Berlin" approach 
cannot be discussed without spelling out with 
what it is being compared to; upon closer inspec­
tion, and naming the competing technique, none of 
these advantages hold up: 

(i) "each of the molecules is illuminated only 
once" is equally true for the random-conical ap­
proach where only the first, tilted image is used 
for reconstruction; 

(ii) "no problems with defocus differences" -
- no problems either in the random-conical ap­
proach, since the elimination of the micrograph 
margins can hardly be considered a problem; 

(iii) flattening affects each view differently, 
and is actually one of the sorest points of the 
authors' favorite technique, hardly an "advantage" 
over a technique that combines only particles 
exhibiting the same view; and 

(iv) "there is no missing cone" if indeed, if 
the molecules "really" exhibit "almost" random ori­
entations. The reality of experiments has never 
produced such conditions. Specifically the greater 
propensity of ice-embedded molecules to exhibit 
more randomness in orientation than air-dried 
stained samples has been largely a conjecture (of 
many people pursuing single particle studies, 
including us), which is not borne out by experi­
ments. With negative staining, on the other hand, 
it has proved impossible to merge data from differ­
ent views without degrading the 3D results, 
according to Carazo and Frank (1989). 
Authors: (i) In contrast to the statement above, 
the random conical tilt approach (now renamed to 
the SECReT approach) requires two exposures of 
the specimen. 

(ii) In contrast to the statement above, the 
defocus differences within one image tilted over, 
say 45 °, for use with the SECReT approach leads 
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to very considerable defocus differences within 
the data set. 

(iii) Flattening occurs to a large extent ("first 
approximation") in the direction perpendicular to 
the support film in negative stain preparations 
which does not affect the '0°' 2D projection of 
the structure which is the only projection used in 
our method. In contrast, the SECReT approach re­
constructs the actual flattened 3D structure and 
they, thus, very often look like pancakes. 

(iv) Indeed, even in ice one often encounters 
some very preferred orientations. However, with 
relatively thick ice layers and a large number of 
molecular images in the data set, we manage to 
bring even the rare views to statistical signifi­
cance. 

J. Frank: The usage of small tilt of 20-30 degrees 
is suggested as a remedy for the possible scarcity 
of views; This brings the whole idea of using only 
one picture into question. Since in this new sce­
nario, a tilted picture is used anyway, why not use 
the 0 degree view to collect useful information 
about orientation? This would, of course, intro­
duce a random-conical data collection through the 
back door, to the detriment of the "we" versus 
Albany world view. 

Regarding the destructiveness of the second 
image in the random conical approach, this con­
cern surfaces immediately after the paragraph in 
which the use of a second (less destructive?) 
image is proposed as part of the "Berlin" ap­
proach. If there is such a concern, then it should 
be expressed in each context where more than one 
image are needed. Fortunately, however, the con­
cern is misplaced for at least two reasons: (i) It is 
obviously possible to divide the maximum tolerable 
dose between the two exposures; and (ii) only 
tilted projections enter the reconstruction, and the 
practical requirement of rotation search and MSA 
in the 0-degree view can be met with the second 
image even if this shows the particles slightly 
damaged. What is called "the first problem" is not 
a problem at all: it is not necessary for the mole­
cule to show a single preferred orientation; it 
could show several, to the benefit of better data 
coverage. Among numerous particles investi­
gated, the 30S and 60S subunits were the only 
ones, presumably due to their shapes, that exhib­
ited a continuum of barely distinguishable views. 
Another part of the "first problem" cited is not a 
problem either, according to the work the authors 
cite themselves: if a "view" can be shown to be 
actually two closely related views, as in Harauz et 
al. (1988), then it is possible, by the same meth­
od, to separate these and proceed with independ­
ent reconstructions. This is actually our working 
method. The fact that Radermacher et al. ( 1 986, 
1987a, bl did not find this data division by using 
MSA is not a "problem" of the random-conical 
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method, but presumably due to the fact that 
Harauz et al. investigated 50S particles prepared 
with the single-layer method, while Radermacher 
et al. reconstructed particles prepared with the 
double-layer method. There is the implied mes­
sage in this paragraph of the review ("some per­
ceived characteristic view") that the random-coni­
cal method relied on the use of visual criteria only. 
This is neither an intrinsic characteristic of the 
method (this should be obvious), nor is it the 
working praxis: as was elaborated as part of an 
unfortunate exchange with Van Heel [Frank et al., 
J. Microscopy 159, 117-122 (1990)] we use two 
stages of screening for economic reasons, the 
main idea being that we want to get 3D recon­
structions done: only the first stage is the visual 
selection of a view or view range, the second is 
the use of MSA and classification to narrow down 
this range by using objective methods. 

The next problem on this discouraging list is 
the fact that only a "small band of images" can be 
used due to the change of defocus. If one aims at 
3 nm resolution, then the entire micrograph (at 
36,000x mag) can in fact be used. Also, the au­
thors themselves point to the complete solution of 
the problem: dynamic focusing. Next, "One of the 
most serious problems with the negative stain 
preparation technique" is not a problem specific to 
the random-conical method, but should give the 
authors pause to wonder how on earth their ap­
proach to 3D reconstruction could have worked at 
all for negatively stained molecules -- an aim they 
have pursued for years. In fact, of all techniques 
in which projections of different particles are com­
bined, the random-conical technique works best in 
these circumstances, because it combines only 
particles sitting in the same orientation. 
Authors: The referee has misunderstood our ap­
proach with a 20-30° tilt. We use that image as 
the only image without an additional 0° image (the 
SECReT approach). There is no "second (less de­
structive) image" and no random-conical data col­
lection "introduced through the back door, to the 
detriment of the 'we' versus the Albany world 
view". Sorry. 

Yes, we agree with the referee that defocus 
variations over a tilted specimen can be corrected 
using dynamic focussing. Actually, we state this 
fact in the next sentence in the paper. 

J. Frank: The normalization of all the images in 
the same way (adjusting, averages and variances 
to chosen values) should be justified: is this a 
good idea? Could different views in the data set 
not have different statistics? 
Authors: The normalization of the statistics of the 
individual molecular images (after band-pass filter­
ing) is important, but not as important as the 
band-pass filtering itself. 
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J. Frank: The "practice of thresholding image data 
to positive values only" is rightly dismissed, but 
without any reference to an actual usage of this 
strange idea. Did anybody really use this nonsen­
sical idea? 
Authors: The idea is not "nonsensical" and is nec­
essary if negative values occur in the data. In EM, 
with phase-contrast as the main contrast mecha­
nism, one essentially has zero average density 
data and thus has to think seriously about this 
problem. It is an equally "strange" (disastrous?) 
idea to add an arbitrary constant to the data to 
avoid negative values (the routine procedure in 
SPIDER, we were told) since the strong negative 
densities will end up as small positive densities 
and will have very little variance contribution 
whereas the positive values will become very large 
positive values with a very strong contribution to 
the total variance of the data set. We have been 
aware of these fundamental problems with Corre­
spondence Analysis for many years and have intro­
duced a better technique already many years ago 
and published the new approach [Borland and Van 
Heel, 1990]. 

J. Frank: The approach to the classification de­
scribed is strange. It consists of two steps: during 
the first one the hierarchical classification (HAC) 
is applied, during the second one the post process­
ing is applied to minimize the intra-class variance. 
From the description included, we find that the 
second step is simply the k-means procedure with 
the initial partition incorporated from the result of 
HAC. Since HAC does not attempt to minimize 
the intra-class variances, why use it as the pre­
processor in the first place? The k-means proce­
dure converges only to the local minimum of the 
variance criterion, thus to use the partition result­
ing from a procedure·that is not aimed at this goal 
can result in a bias and unnecessary long calcula­
tions. 
Authors: The issue of the HAC and our moving 
elements post-processor was discussed in extenso 
in earlier publications and we do not think this is 
the place to repeat that discussion. It is very dif­
ferent from a k-means post-processor as was dis­
cussed previously [Van Heel, 1989). 

J. Frank: ACF alignment was first used in this 
context by Frank et al. ( 1978). The whole reason­
ing behind the introduction of the "self-correlation 
function" (an unfortunate term, by the way, be­
cause "auto" and "self" are the same) is dubious. 
It is not true that "for calculating the ACF', we 
square the Fourier components ... ". The auto-cor­
relation function is defined in real space for infinite 
functions and the Fourier operation mentioned is 
only one possible way to calculate it. Since for 
the finite signals the correspondence between real 
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and Fourier space operations is not obvious, some 
care should be taken to calculate a meaningful 
ACF using FFT. The problems of padding, average 
adjusting and normalization are not mentioned, yet 
incorrect application of any of this operations can 
result in the problems described in the text, or can 
aggravate such problems. 

Even if we agree with the argumentation 
that the "proper" ACF is not what we want to use, 
the authors should discuss the meaning of the sug­
gested modification in terms of SNR, optimality, 
and so on ... 
Authors: We have meanwhile published a number 
of papers of the SCF and MCF methods alone in 
which the issues mentioned by the referee were 
discussed. It does not make much sense to repeat 
those discussions here. Although there are other 
equivalent ways of defining and calculating the 
ACF, the real-space path suffers from exactly the 
same problem and this criticism (?) thus seems 
futile and "dubious". 
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