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Abstract 

Crye-electron microscopy of single biological 
particles poses new challenges to digital image 
processing due to the low signal-to-noise ratio of 
the data. New tools have been devised to deal with 
important aspects of 3-D reconstruction following 
the random-conical data collection scheme: (a) a 
new shift-invariant function has been derived, 
which promises to facilitate alignment and clas­
sification of single particle projections; (b) a 
new method of orientation search is proposed, 
which makes it possible to relate random-conical 
data sets to one another prior to reconstruction; 
and (c) the foundation is laid for a 3-D variance 
estimation which utilizes the oversampling of 3-D 
angular space by projections in the random-conical 
reconstruction scheme. 

Key Vords: Crye-electron microscopy, single par­
ticles, ribosomes, 3-D reconstruction, random­
conical data collection, weighted back-projection, 
classification using invariants, orientation 
search, 3-D variance distribution, significance of 
structural differences. 
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Introduction 

The random-conical reconstruction scheme 
(Frank et al., 1978; Radermacher et al., 1987; 
Radermacher, 1988), which allows 3-D images of 
macromolecular assemblies to be reconstructed from 
single-exposure electron micrographs, is now in 
routine use in a number of laboratories (Boisset 
et al., 1990; Typke et al., 1991; Carazo et al., 
1988; Schroeter et al., 1991; J. Hinshaw and R. 
Milligan, personal communication). In contrast to 
other techniques proposed (e.g., Van Heel, 1987), 
this scheme requires no assignment of projection 
angles based on common lines or information of 
symmetries, as it is based on the more robust 
determination of rotation angles among comparable 

o0 -views. The progress in applying this t~chnique 
to ice-embedded particles has been nevertheless 
slow because of obstacles that are either techni­
cal (the difficulty in obtaining micrographs of 

sufficient quality for highly (SOO or above] 
tilted specimen grids) or intrinsic to unstained 
specimens (low signal-to-noise ratio [SNR)). It 
has become clear that new image processing tools 
must be developed to deal with these problems. To 
this end we have worked in three areas of process­
ing associated with 3-D reconstruction: in the 
development of algorithms for reference-free 
alignment, in designing a means to orient entire 
random-conical projection sets with respect to 
each other, and in devising a general method for 
3-D variance estimation. In each of these areas we 
are able to present some preliminary results which 
allow the potential of the new method to be as­
sessed. 

A New Class of Invariants Allowing Information to 
be Fully Recovered 

In processing electron micrographs of single 
particles, we are often faced with several rather 
dissimilar views. Some of these views may addi­
tionally vary due to some type of rocking of the 
molecule (e.g., Van Heel and Frank, 1981). In this 
situation, the alignment of the untilted projec­
tions (a prerequisite of the random-conical 
reconstruction) becomes a complex task. Vhen the 
SNR is low, the reference image can no longer be 
used because of a 'bias' effect: features of the 
reference tend to dominate the final average, a 
fact that was already observed with negatively 
stained specimens (Boekema et al., 1986). In addi-
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tion, those views which are not sufficiently 
similar to the reference image chosen may be left 
in random orientations and cannot be correctly 
identified. Yet another approach has been recently 
suggested in the general literature which takes 
advantage of shift-invariant properties of the 
bispectrum (triple correlation) (Sadler and 
Giannakis, 1992). Unfortunately, this method 
results in a rather complex algorithm and its ap­
plicability to the very noisy EM data has yet to 
be proven. 

Recently, two methods have been proposed to 
solve this problem. One of these (Penczek et al., 
1992) is based on a powerful reference-free align­
ment algorithm applied to the whole data set prior 
to the classification. This method performed 
remarkably well for the 70S ribosome particles em­
bedded in ice. It is likely that its application 
can be extended to many other kinds of particles 
which have projections with similar overall shape. 
However, it is not clear how this method would 
perform for distinctly different views, for ex­
ample, a mixture of round and rectangular shapes, 
particularly in the presence of high noise. The 
other method (Schatz and van Heel, 1990), takes 
advantage of translation- and rotation-invariant 
functions (so-called double auto-correlation 
functions) derived from the raw images. These in­
variants can be subjected to multivariate 
statistical analysis (MSA) and classification 
prior to the alignment. The particular advantage 
of invariants is that a large set of images can be 
split into more homogenous groups, thereby 
simplifying the subsequent alignment. The main 
problem associated with the particular choice of 
the invariant functions suggested by these authors 
is the double elimination of the phase informa­
tion. This part of the Fourier representation of 
an image is largely responsible for the shape and 
interior structure of a particle image, and its 
loss may degrade the classification, lumping en­
tirely different particles into the same class. 

In the following we will derive new shift­
invariant functions that do preserve the non­
trivial part of the Fourier phase information, and 
we will discuss some results obtained from simu­
lated data. Ye will also discuss the possibility 
of extending the method proposed to obtain func­
tions that are both translation- and rotation­
invariant yet still preserve the full Fourier 
information. 

The circular shift of a discrete series f is 
n 

defined by 

f' 
n f(n+m)(mod N) , n=0,1, ... ,N-1 (1) 

where m is the shift and N is the length of the 
series. The same shift can be applied in Fourier 
space by: 

(2) 

where complex numbers Fk represent the discrete 

Fourier transform of fn. If we define the phase 

corresponding to the shift by 

m 
2n N = n (3) 
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and use the modulus-phase representation of com­
plex numbers Fk: 

(4) 

where pk=IFkl is the modulus and cf>k=arg(Fk) is the 

argument (phase), we see that the shift given by 
(1) is defined in Fourier space by 

(5) 

which means that the moduli of Fourier repre­
sentation are not affected by the shift and that 
the phases of the shifted image are modified ac­
cording to 

k=l, ... , N/2 (6) 

(for a real-valued series fn the zero-term phase 

cf>o is equal to zero). 

Ye define a set of 1-D shift-invariants as 
follows: 

(7) 

k= 3, ... ,N/2 

It can be verified that the terms vk do not depend 

on the shift applied to the series. The phases cj>k 

can be easily retrieved from the invariants vk by 

choosing a value for the first phase cj>l and in­

verting equation (7). This corresponds to a choice 
of initial shift of the entire series and means 
that no information about the "shape" of the func­
tion is lost . 

A similar reasoning can be applied to the 2D 
case. The 2D circular shift is described by the 
following modification of the phases of the 
Fourier representation: 

(8) 
k= 0,1, ... , N/2; l= 0,1, ... , L/2 

The shift-invariants in the 2-D case are 
defined by: 

(9) 
k= 1, ... , N/2; l= 1, ... , L/2 

It can be easily verified that the terms vkl do 

not depend on shift. To code all the phase infor­
mation eq. (7) should be applied to phases cf>k,O 

and cf>o,l· Similarly, as in the 1-D case, the num­

ber of coefficients is reduced: two phases are now 
redundant (cf>l,O and cf>o,l) since they describe the 

initial shift of the discrete image in two perpen­
dicular directions. 

To test the proposed shift-invariant repre­
sentation we created a test image of size 64x64 
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(Fig. la). The second test image (Fig. lb) was 
created from the first one by scrambling the 
phases and preserving the moduli of its Fourier 
transform. Thus, both images have exactly the same 
power spectrum and differ by the phase information 
only. Figs. le and ld show phase-invariants (left 
half of each square) and power spectra (right half 
of each square) for both test images. (For the 
purpose of the display the logarithms of the power 
spectra are shown). Each test image was randomly 
shifted by non-integer circular shifts (using 
Fourier interpolation) ranging from 0.0 to 64.0 
and Gaussian noise with average zero and standard 
deviation one was added. Thus, from each test 
image we obtained 100 randomly shifted copies with 
SNR ranging between 1 and 3. In the next step the 
power spectra and phase-invariants were calculated 
for each image. The averages of both sets are 
shown in Figs. le and lf. Ye note that within the 
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Fig. 1. Test of shift-invariant representation of 
2D images. 
(a) Test image of size 64x64. 
(b) Second test image created from the first in 
(a) by scrambling the phases and preserving the 
moduli of its Fourier transform. 
(c) Phase-invariants (left half of the image) and 
logarithm of power spectrum (right half of the 
image) of test image (a). 
(d) Phase-invariants (left half of the image) and 
logarithm of power spectrum (right half of the 
image) of test image (b). 
(e) Average of 100 shift-invariants obtained from 
test image (a) by applying random shifts and ad­
ding Gaussian noise (SNR ranging between 1 and 3). 
(f) Average of 100 shift-invariants obtained from 
second test image in (b) by applying random shifts 
and adding Gaussian noise (SNR ranging between 1 
and 3). 
(g) First eigen-image obtained by applying MSA to 
the 200 shift- invariant images. 
(h) Second eigen-image obtained by MSA above. 

central region where the power spectrum has ap­
preciable values, the averaged phase-invariant 
function has a distinct pattern. 

The 200 images were subjected to MSA. The 
first two eigen-images obtained are shown in Figs. 
lg and lh. None of them contains any information 
in the right half corresponding to the power 
spectra this is understandable since the power 
spectra were identical for all the images 
processed. The left half of the first eigenimage 
(Fig. lg) contains close to the center recog­
nizable pattern similar to the pattern observed in 
the averages (Figs. le and lf). Thus, this first 
factor was used in a hierarchical clustering 
program with complete linkage as merging 
criterion. The two classes obtained agree in 85% 
of all cases with the known origin of the images. 

To obtain a rotation-invariant representation 
of the image, we can express the image in polar 
coordinates and calculate the Fourier transforms 
along circles. These 1-D Fourier transforms can be 
represented by their moduli and, using eq. (7), by 
their 1-D phase-invariants. It is still an open 
question how the two approaches (i.e., for obtain­
ing a translational-invariant and rotation­
invariant representation) can be combined to 
create a fully invariant representation of an 
image. 

Global Orientation Search Among Projection Data 
Sets 

The problem of determining the relative 
orientations of three-dimensional structures from 
their two-dimensional projections has two known 
solutions: the so-called common lines approach and 
the method of moments. The first, originally 
proposed by Crowther et al. (1970), is routinely 
used in the 3D reconstruction of virus structures 
with high symmetry and was later extended to 
general non-symmetrical structures (Goncharov, 
1986; Van Heel, 1987). The second method 
(Goncharov, 1986; Salzman, 1990), with its high 
sensitivity to errors in the data, is of rather 
academic interest. 

In the framework of the random-conical 3D 
reconstruction of non-symmetrical particles 
(Radermacher et al., 1987; Radermacher, 1988) the 
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problem of orientation determination is automati­
cally solved: the random-conical scheme of data 
collection provides all the Eulerian angles re­
quired for the 3D reconstruction. Two of these 
angles are determined with high accuracy from the 
tilt geometry and the third one is found through 
the alignment of particles from the untilted­
specimen micrograph. Provided that the structure 
occurs on the specimen grid in a preferred orien­
tation, its 0-degree projections differ only by a 
rotation in the plane of the grid, and the cor­
responding angles can be found using the alignment 
procedure. The important advantage of this ap­
proach is that only the presumably identical 
projections are compared and the resulting average 
has high SNR, which facilitates the determination 
of the missing third Eulerian angle with high ac­
curacy. Reconstructions obtained in this way are 
however limited by the missing angular region, and 
efforts must be made to fill this region using 
more than one preferred orientation. Therefore the 
problem of orientation determination resurfaces, 
but this time it can be solved by relating entire 
data sets to one another. ---

In our recent reconstruction of the 70S 
Escherichia coli ribosome (Frank et al., 1991; 
Penczek et al., 1992) we took advantage of a num­
ber of preferred orientations in which this 
particle can be found. After calculating separate 
3D reconstructions for three different SO-degree 
tilt data sets, we applied a search in real space 
directly to the reconstructed volumes in order to 
determine the relative orientations of the struc­
tures. This approach proved to be successful and 
we were able to calculate a "merged 
reconstruction" combining all three data sets. Due 
to the span of the particular orientations used, 
the angular coverage of this merged reconstruction 
was virtually complete. However, this method 
relies on the availability of high-tilt data, and 
special care must be taken to at least partially 
recover the missing cone information in each in­
dividual reconstruction, so as to minimize bias in 
the orientation search. 

To overcome these problems, we would like to 
put forward another method of determining the 
orientation between the tilted data. Instead of 
finding the orientation between two reconstruc­
tions, we find the best match between the two 
corresponding sets of input projections, assuming 
the geometry within each set (in terms of Eulerian 
angles of each projection) is known. (There is 
certain analogy between our method and Crowther's 
(1971) use of multiple common line that occur when 
comparing arbitrary projections of two highly sym­
metric virus particle. However, the differences 
between the two methods are obvious: we compare 
entire sets of particles with each other, and the 
projections within each set are tied together not 
by symmetry but by a common reference system, 
which is established by the alignment of the 0-
degree views.) 

Since our projection data are collected 
within the framework of the random-conical scheme, 
the Fourier transforms of the projections form a 
set of planes in Fourier space tangential to the 
cone. Thus, the problem of finding the orientation 
between two 3D structures can be formulated as the 
problem of finding the best matching orientations 
between two such sets of Fourier planes tangential 
to their respective cones. 

Any two planes intersect in 3D along a single 
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line (except in the degenerated case in which they 
coincide), the common line. Along this line we 
wish to calculateiliediscrepancy l-p 12 , where p

12 
is the correlation coefficient calculated along 
this line. To find the direction of the common 
line with respect to the two planes, we proceed as 
follows: we assume that the orientations of the 
planes in the coordinate systems associated with 
their cones are given by rotation matrices R

1 
and 

. 1 1 respective y . ~e further assume that the 

relative orientation between the two sets of 
planes (or two cones) is given by the rotation 
matrix RT. The directions of the intersection line 

are given by the solution to the following set of 
equations: 

-1 -1 -1 
Rl nl RT R2 (10) 

where 

[ ''.' °k 
nk = sin °k k=l,2 

0 

( 11) 

are the unitary vectors defining the orientation 
of the line on corresponding planes. To solve the 
system of equation (10) for two unknown angles a1 
and a

2 
we have to replace the product of three 

' rotation matrices R2 RT R~L by the new rotation 

matrix Rand solve the simpler problem 

The solution is given by 

a1 90 + ,j, 

(12) 

( 13) 

The angles ,j, and~ are functions of the Eulerian 
angles describing the orientation of both planes 
in their own system of coordinates as well as the 
parameter angles describing the relative orienta­
tion between the two structures. The explicit 
equations are not needed since these angles can be 
easily retrieved from the elements of the rotation 
matrix R. 

1. Our convention in the use of Eulerian 
is according to the following definition 
rotation matrix 

0 
1 
0 

-sine] [ cos,j, 
0 -sin,j, 

cose O 

angles 
of the 

sin,j, 
cos</> 
0 
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Table 1. Eulerian angles (</>, 0, if;) describing the 3D orientation found between three pairs of 70S ribosomes data sets. 

Rotated 
structure 

II 

Ill 

</> 91. 7 

</> 93.0 

</> 90.6 

</> 90.0 

0 67.4 Vi 
e 71.4 Vi 
0 75.5 Vi 
0 79.8 Vi 

Reference structure 
II 

-41.5a 

-39.6b 

-35.9a </> 235.9 0 -12.8 Vi 119.5a 

-34.3b </> 235.7 0 -10.5 Vi 120.8b 

acalculated be the orientation search in the space of Fourier planes directly from the projection data; 

bcalculated in the real space by the maximization of correlation coefficient between reconstructed 3D volumes. 

We defined the global discrepancy between two 
sets of planes in the following way: 

Ml 

D( I, II; RT)= E 
m1=1 

M2 
E ( 1 - p(m1, m2)) (14) 

m2=1 

where M1 and M2 are the numbers of projections (or 

Fourier planes) in structures I 
tively, and p(m1, m2) is 

and 
the 

II, respec­
correla t ion 

coefficient calculated along the intersecting line 
between planes belonging to the first and second 
structure. The directions of the line are given by 
equation (13). 

The best matching orientation is defined by 
the rotation matrix RT for which the global dis-

crepancy in equation (14) is minimized. To find 
this minimum, one of the standard procedures may 
be used such as the minimization procedure imple­
mented in the IMSL package (IMSL, 1987), which is 
based on a quasi-Newton method using finite­
difference gradient. 

To test the method described, we used the al­
ready reconstructed 70S Escherichia coli (E. coli) 
ribosome structure (Penczek et al., 1992) filtered 

to 1/40 i-l as noise-free model. From this model, 
we created 36 projections in 10 degrees steps at 
50 degrees tilt. The second set of 36 projections 
was created after arbitrary rotation of the struc­
ture by the three Eulerian angles. Using the new 
orientation program described, we were able to 
calculate the correct angles from the projection 
data within one degree accuracy. In the second 
test, we created the same number of projections, 
but at 30 degrees tilt. Again, there was no dif­
ficulty in finding the correct angles. 

In a third test, ~e applied the new procedure 
to an experimental set of projections. We used the 
three sets of SO-degree tilt data of the 70S E. 
coli ribosome belonging to different zero-degree 
views, as described in (Penczek et al., 1992). The 
number of projections in the respective sets were 
69, 93, and 66. Using the global orientation 
search, we calculated the Eulerian angles between 
each pair of projection sets. The results are 
listed in Table 1. For comparison, we also listed 
the Eulerian angles resulting from the previous 
calculations done in real space by maximization of 
the correlation coefficient between two 
reconstructed 3D volumes (for details see Penczek 
et al., 1992). 
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Both sets of results agree to a large extent. 
The solutions differ mostly in the values of 0 
angles. This discrepancy can be explained by the 
bias of the search in real space (results denoted 
by (b)) caused by the missing cone. 

The proposed method of determination of the 
relative orientations of three-dimensional struc­
tures by a search directly in the space of 
projection data has numerous advantages. The 
determination of Eulerian angles can be done priof 
to the actual 3D reconstruction. The collection o 
well-behaved high-tilt data (at 50 degrees or 
above), which is extremely time-consuming and ap­
pears to be a major technical obstacle in the 
attempts to reconstruct single particles embedded 
in ice, is no longer required. Our experiments 
showed that tilts as low as 30 degrees should be 
sufficient. Such lower tilt of the specimen means 
that the defocus spread across the micrograph is 
reduced, which in turn increases the size of the 
useful image field. And finally, provided that the 
particle occurs on the specimen grid in a suffi­
cient number of preferred orientations to cover 
the entire angular range, the resulting merged 
reconstruction will be free of the missing-cone 
problem, which causes distortions in any in­
dividual reconstruction. 

Currently we are working on an application of 
the method described to improve the resolution of 
the reconstruction of ice-embedded 70S E. coli 
ribosome. Our previous work (Frank et al., 1991) 
has shown that at least seven different orienta­
tions are assumed by this particle. 

The 3-D Variance of Veighted Back-Projection 
Principle of Variance Estimation 

When two independent reconstructions of re­
lated particles (e.g. labeled vs. unlabeled) are 
compared, the following questions are raised: 
could they have arisen from the same structure?; 
where are the feature differences located?; how 
reliable are the conclusions? These questions can 
be answered by estimating the variances of the 3-D 
reconstructions. Earlier controversies in the 
literature (Heger! and Hoppe, 1976; Saxberg and 
Saxton, 1981; Hoppe and Heger!, 1981; Van Heel, 
1986) about the effect of quantum noise on the 
reconstruction can also be solved on the basis of 
our variance estimate. 

To establish the definition of 3-D variance 
and the theoretical relationship between the 3-D 
variance and the projection noise, a 
"gedankenexperiment" is designed: for a given set 
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of N view angles, we get a set of N projections, 
and from this the corresponding 3-D weighted back­
projection reconstruction is computed. Suppose we 
can get many such sets of projections independ­
ently for the same set of view angles, and compute 
their reconstructions. Then, because of the 
propagation of projection noise, these reconstruc­
tions will be different due to their noise 
components. The variation of the noise components 
among the "gedanken" reconstructions gives the 
definition of variance of the 3-D reconstruction. 

Based on this definition of 3-D variance, 
starting from the same sampled and aligned projec­
tion set for 3-D reconstruction and tracing along 
the route of reconstruction, a theoretical 
relationship between the 2-D variances of the 
projections and the 3-D variance of the 
reconstruction is first established. From noise 
information hidden in the "surplus" number of 
projections (relative to Shannon's sampling re­
quirement applied to the sampling of the 3-D 
Fourier transform), noise levels of each projec­
tion are estimated by comparing it with neighbor 
projections. The 3-D variance estimate is sub­
sequently calculated from the projection noise 
estimates. It is important to note that it is the 
linear and shift-invariant property of the 
weighted back-projection algorithm that makes such 
tracing of noise propagation possible. A prelimi­
nary report of this work has been given by Liu 
(1991). 
The 3-D Variance Estimation Algorithm 

In the analysis below, we made use of the 
following definitions: 

rel): projection interpolation function. 

P(i)(k,l): digitized and centered projection num­
ber i. 

W(i)(l): inverse FT of the weighting function of 
projection i. 
(The weighting functions for a projection set with 
arbitrary projection orientations can be found in 
Radermacher et al., 1986 and Harauz and Van Heel, 
1986.) 

F(R): inverse FT of 3-D resolution filtration 

function; its projections: F(i)(i). 
Convolution of a sampled function, for example 

P(i)(k,l), with a continuous function is under­
stood to mean: 

E p(i)(k,l) o(r-(k,l)). 
k,l 

The weighted back-projection reconstruction algo­
rithm can be expressed as: 

B(R) -

N 
E BP I P(i)(k,l) o I(i) o w<i)(i)ll o F(R) 

i;l 

(15) 
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where the weighted projection is defined as: 

(16) 

with: 

Now we define the projection noise: 

(18) 

(upper bar here and in the following denotes en­
semble average). So the weighted projection noise 
is: 

(19) 

Since different projections come from different 

particles on the grid, the noise N~if)(i) is un-1w 
correlated between projections, and the variance 
of the 3-D reconstruction as a function of the 
projection noise level is: 

V(R) - I B(R)-B(R) 12 

(20) 

where BP means back-projection operation. 
The neighbor projections (i-o to i+o) are 

used for the noise estimation of projection 
1 3 (o; 2, 1, 2, 2, ... ; round-off of i-o and i+o is im-

plied when o is a half-integer), 

f2hl 
~2T [ P(i)(k, 1) - 1 i+o (j) 

2o+l. ~ P (k, 1)] (21) 
J;l-0 

(22) 

The 3-D variance estimation is thus established by 

(23) 
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Since 

functions, 

the computer cannot process continuous 

[N~if)(i)] 2 is computed at discrete 
HI 

pixels, and interpolation has to be used in its 
back-projection operation. Practically, the sam-

pling rate of (k,l) is 5 2, while N(i)(k,l) is 

low-pass filtered by F(i)(i) to around 30 to 40 2, 
which is the resolution of a typical reconstruc­
tion, so even without padding, the error caused by 
this interpolation procedure can still be small. 
Hence the practical 3-D variance estimate is: 

N 
V(R) = E BP { [N~~)(k,1)) 2 o I(i) } (24) 

i=l 

where 

N(i)(k 1) 
wf ' (25) 

with: 

(26) 

Estimation of Error Due to Signal Variation 
In attributing all variations among neighbor 

projections to noise, we are neglecting the varia­
tions due to the signal component. In the 
following, an upper bound for the resulting error 
in the 3D variance estimate is given. 

The main difference among neighbor signal 
components arises from the peripheral part of the 
object's structure. The most drastic change is ob­
served when we regard a point at distance D/2 from 
the center of the object, where Dis the object's 
diameter. Let us assume that there is an m-fold 
over-sampling at the cut-off frequency in 3-D 
Fourier space, which corresponds to an m-fold 
"surplus" of projections. For such a model, the 
ratio of the signal component difference to the 
noise component difference can be derived as: 

VAR 
~ 41. 6 * ( SNR) / m' 

4 

VAR 

for m' » 1 (27) 

with SNR being the signal-to-noise ratio of 
projections after resolution filtration to the 
same level as used for the variance estimates, and 
m' being the fold of over-sampling when neighbor 
projections are only counted. It can be shown that 
m=2m' on the average for the conical tilt series. 

Practically, to minimize the error caused by 
such signal component differences, immediate 
neighbor projections (o=l/2 or 1) are used for 
comparison. 
Significance Assessment of Structural Differences 
of Related Reconstructions 

independent 

reconstructions. The noise components of the two 

reconstructions at any R are roughly Gaussian­
distributed. This assumption is justified because 

the reconstruction noise component at R is the 
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summation of a large number of independent projec­
tion noise components. If we assume their variance 

estimates v1(R) and v2(R) to have x2-distributions 

with Nel and Nez degrees of freedom, respectively, 

that is: 

(28) 

The condition of equal variances (Dudewicz and 
Mishra, 1988) is in this case equivalent to: 

(29) 

Then for such a comparison of two empirical means 
from equivalent population sizes of (Ne1+1) and 

(Ne2+1), provided that 

(30) 

(which holds when the neighbor projections are 
compared in the same way for the two 3-D variance 
estimates), the test statistic becomes (Dudewicz 
and Mishra, 1988): 

(31) 

Nl~ N2~ 
Nvl (R)+Nv2<R 

2 1 

If ~(R) > tN N , B1(R) t B2(R) is significant 
el+ e2'cx 

at the l00o:% level. 

In practical 3-D reconstructions, the numbers 
of projections Ni are >30, and from the analysis 

of variance of the variance estimate, it can be 
shown that Nei=Ni/2, so Ne1+ Ne2>30. The t-

distribution t is therefore approximately equal v, ex 
to the standard normal distribution no: (Sachs, 

1984), so no: can be used for tv,cx in 

tical test, which avoids having to 

and Nez· 

above statis-

estimate 

Implicitly, the application of the resolution 
filtration to the projections (see Section on 3-D 
Variance Estimation Algorithm) produces a variance 
estimate relating to a local average over a sphere 

* * * of diameter l/(2rfc) if rf = rfc is the resolution 

cutoff according to Crowther et al. (1971). The 
test in eq. (31) therefore relates to the 
reproducibility of averaged features within such a 
sphere. 

It is immediately clear that the variance 
contributions are strongly spatial frequency de­
pendent, due to the different sampling densities 
in different spatial frequency bands, with the 
sampling getting finer as we decrease the cutoff 
frequency. As a result of this geometrical condi­
tion, different choices of cutoff frequency in the 
filtration function (i.e., values smaller than 
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2 oHi) N(l)(k 1) 
wf ' BP[) 
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Fig. 2. Flow diagram of 3-D variance estimation algorithm. 

* rfc) produce somewhat different (although largely 

consistent) answers in the t-test (31): not only 
does the pattern of highly significant differences 
change, but the significance level also increases 

* as the filtration radius rf is being decreased. 

It is therefore useful to apply the t-test to a 
number of different variance estimates obtained by 

* using different rf's, to "tune in" on the 

variability of features in different size ranges. 
[Note that this is not equivalent to the result of 
a low-pass filtration of the 3D variance map, 
which does not have a meaning in the framework of 
this analysis.) 
Practical Procedure of Structural Comparisons 

The results from the theoretical analysis of 
3D variance estimation suggests the following pro­
cedure in assessing the significance of 3D 
structural differences: Suppose we have projection 
sets A and B. They can be (a) from particles in 
different conformational states, separated by MSA 

and classification of o0 projections, (b) from two 
different preparation techniques of the same par­
ticle, or (c) from an experiment in which the the 
particle-ligand complex is compared with the par­
ticle itself. The important feature these 
experiments have in common is that they lead to 
two classes representing structurally similar par­
ticles, so that they can be meaningfully aligned 
according to their common features. 

We first compute the 3-D reconstructions of A 
and B, and then follow the back-projection pathway 
(Fig. 2) to compute the 3-D variances of A, B and 

* the mixed set (A+B) for different rf. 

There are two ways in which we can use this 
information: 

(a) we can study the difference map of the 
two reconstructions, in combination with the quan­
titative significance assessment of such 
differences from their 3-D variances. 

(b) as a complementary way, which is qualita-
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tive and visually more comprehensible, we can 
compare the 3-D variance map of the mixed set with 
that of each set. If a highlight is shown in the 
3D variance of (A+B) but not in those of either A 
or B, we can say that at this spot the structural 
difference of A and Bis significant. 

As a first test of this variance estimation 
scheme (Liu, 1991), we have analyzed the data set 
of Carazo et al. (1988) which comprises 946 
projections of the SOS ribosomal subunit depleted 
of proteins 17/112 (Fig. 3). Although this 
specimen was prepared by using negative staining, 
it nevertheless illustrates the potential of 3-D 
variance estimation in assessing significance of 
structural differences. 

Conclusions 

New tools have been described which promise 
to facilitate the 3-D reconstruction of ice­
embedded single biological particles. While these 
tools have been designed as part of a continuing 
strife to extend the application field of the 
random-conical reconstruction scheme, both the new 
shift invariant and the mechanism of 3-D variance 
estimation potentially have a much wider field of 
application. 

The list of problems requiring attention is 
of course much longer. Among the unsolved problems 
are (a) a way of quantitatively refining the angle 
assignments to account for particle rocking; (b) a 
satisfactory approach toward transfer function 
correction and disentanglement of elastic and in­
elastic signal; and (c), closely connected to the 
latter point, the use of differently defocused 
micrographs to obtain higher resolution (in the 
10-15 g-range). Finally, thinking about the ex­
tended automation and control capabilities of the 
new generation of electron microscopes, we could 
pose the question to what extent the instrument 
can be employed to perform some of the complex 
tasks of data collection, prescreening, and win­
dowing of particles (see first efforts in this 
area and the related area of electron tomography 
by Typke et al., 1990; 1991). 
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Fig. 3. Significance assessment of differences 
between two reconstructions. The data from E. coli 
SOS ribosomal subunits depleted selectively of 
proteins L7/Ll2 (Carazo et al., 1988) were used. 
The two projection sets were obtained by classify­
ing the projections via MSA. 

All calculations were duplicated with different 
* o-1 * o-1 frequency cutoffs rf=l/45 A and rf=l/30 A • 

(a) Central section of the weighted back­
projection reconstruction of Class I. Number of 
projections N1=196. 

(b) Variance estimation map of the reconstruction 
of Class I as shown in (a). 
(c) Central section of the reconstruction of Class 
II. N2=225. 

(d) Variance estimation map of the reconstruction 
of Class II as shown in (c). 
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(e) Difference map from the reconstructions of 
Class I and II as shown in (a) and (c). 
(f) Significance map of the differences as shown 
in (e). Bright areas correspond to the level of 

significance cx.=99% where ~(R)>n 0 _01 , while bright 

and grey areas correspond to cx.=95% where 

~(R)>no.os· 
(g) Central section of the reconstruction of the 
mixed Class (I+II). 
(h) Variance estimate of the reconstruction of 
Class (1+2) as shown in (g). The granularity of 
the map is due to the statistical behavior of the 
3-D variance estimate. The two maxima in the Ll 
region stand out from the granular background, 
reflecting the structural difference between the 
two classes which is due to the "waving" of the Ll 
shoulder of the particle. 
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Discussion with Reviewers 

R. Hegerl: In the context of the scheme of 
alignment-free classification, each original image 
is replaced by a half-image containing the 
amplitudes of the corresponding structure factors 
and another half-image where a set of invariant 
phase differences is coded in the form of pixels. 
To what extent does this non-linear manipulation 
of images influence the result of classification? 
Could an adequate weighting of the phase in­
variants reduce this effect? 
Authors: The problem mentioned is very serious and 
well known in pattern recognition. It can be for­
mulated in the following way: how one can mix, in 
one classification scheme, those features that 
have different physical units or are measured in 
arbitrary units? In our case we have two such sub­
sets of features: power spectrum and phases. 
Unfortunately, this problem does not have a 
general solution. Rescaling one set of features 
(parameters) or application of weights changes the 
result of classification, and thus it has to ap-
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plied with caution. Since in our case we subject 
to classification not the original parameters, but 
rather factors obtained from the correspondence 
(principal component) analysis, it means that in­
itially all the parameters are treated as equally 
important, independently of their scaling. 

J.M.Carazo: Do you apply some form of phase un­
wrapping to the proposed phase invariants? 
Authors: The discussion of the phase unwrapping 
problem was deliberately omitted from the text. As 
stated in the text, there are many possibilities 
to define the phase invariant in a similar 
fashion. Most of these definitions suffer from the 
the problem that the phases (and operations on 
them) are defined mod(2n) and the inversion of the 
parameters derived is not unique. As can be easily 
verified, the invariants proposed in our paper are 
uniquely invertible, thus the problem of phase un­
wrapping does not arise in this context. 

J.M.Carazo: Please comment on the possible 
degradations induced by the fact that terms •<0,1) 
and •<1,0) are not retrieved in image synthesis 
from phase invariants. 
Authors: The Fourier transform of the image con­
tains not only the information about the "shape" 
of the object, but also about its original posi­
tion in the picture frame. From the point of view 
of invariant classification, this information is 
superfluous. In general, the loss of the first 
phase is equivalent to the loss of information 
about the original position of the object and does 
not cause any degradation in the image synthesis. 
During the image synthesis step, the choice of the 
first phase will "fix" the position of the 
retrieved image. In practice, however, the phases 
•<O,l) and •<1,0) usually correspond to a "non­
integer" shift, i.e., a shift by a fraction of the 
pixel. This means that during the retrieval step 
an interpolation is implicitly assumed, and this 
interpolation can cause certain distortions 
(usually negligible, since much lower than noise). 

J.M.Carazo: With respect to the fitting of the 
cones, which I find extremely interesting, could 
you please comment if the tilt requirement of only 

30° comes out from real data testing or from cal­
culations 
Authors: We have looked for a scheme that would 

allow the use of data with tilts as low as 30° be­
cause of the difficulties we encountered in trying 
to obtain high-tilt EM pictures of ice-embedded 
specimen. Our experience shows that it is rela­
tively easy to obtain good pictures with a tilt 

lower than 40°. The lower the tilt the lower the 
defocus spread across the micrograph and, 
presumably, the better the quality of the 
reconstruction. At the same time low tilt data 
supplies a rather limited amount of information 
(in terms of filling the Fourier space). Thus, a 
certain balance has to be struck between the 
feasibility to obtain the pictures at a given 
tilt, the number of particles which can be col­
lected, the number of preferred orientations in 
which the particle can be found, and the overall 
noise level in the data. Thus far we have not been 

able to test the alignment of experimental 30°­
projection sets, because the data sets available 
were too small and of insufficient quality. 
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However, we were able to align one of these 30° 

data sets with the existing 50° data sets (Frank 
et al., 1991) without difficulty. 

M. van Heel: SNR's between 1 and 3 were used in 
the model experiment. With which SNR value is the 
85% agreement "with the known origin of the 
images" associated? Since the method is 
translationally invariant, I really do not under­
stand what such an 85% agreement means. 
Authors: Since the model used is a 2-D step func­
tion, the SNR of the test images (measured as the 
ratio of amplitudes) is locally strongly varying, 
namely between 1 and 3. The overall SNR of the 
test images (expressed in terms of the signal to 
noise variance) is 1.5. -- With "origin of the 
images" we mean their "source" or "nature", namely 
either with or without phase scrambling. We don't 
refer to the origin of their coordinate system. 
The experiment described in the text is the clas­
sical experiment to verify the "classification 
power" of the parameters derived from the data (in 
our case the shift invariants derived from the 2D 
images). We know that the images belong to two 
classes and we know the correct classification. 
Then we apply cluster analysis (HAC) to the whole 
data set using factors from the correspondence 
analysis as parameters. Assuming the existence of 
two classes we check to which extent the clas­
sification obtained agrees with the initial, known 
classification. The 50% agreement would mean that 
classification was in fact random and 100% would 
mean perfect agreement. 85% agreement means that 
in 85 cases out of 100 the image was assigned to 
the correct group. 

M. van Heel: In your "random-conical tilt" tech­
nique two images are needed to determine the Euler 
angles of your 3D reconstruction problem. However, 
the transfer of the rotational and translational 

parameters from the 0° image to the tilted one is 
associated with experimental errors which could be 
particularly tricky for ice-embedded specimens 
since the ice-layer and the molecules may change 
during the exposures. To what extent do these ex­
perimental errors affect the reconstruction 
results? 
Authors: It is certainly true that the Euler 
angles of the tilted images are known only in-

directly - through the alignment of the o0 images. 
Any errors made during the alignment of untilted 
data will be eventually transferred to the 
reconstructed object. However, the "quality" of 
the 3D structure obtained can be estimated by the 
phase-residual consistency test between the 
average of untilted images (not used in the 3D 
reconstruction) and the projection of the struc­
ture in the corresponding direction. Our recent 
results of the ice-embedded data show that it is 
possible to obtain a resolution of the 3D object 
(at least in the direction perpendicular to the 
direction of the missing cone) that matches the 
resolution of the untilted-particle average 
which currently lies in the range of 1/30 to 1/35 

g-1. This resolution is limited by a number of 
factors not all related to the alignment accuracy; 
among these the high defocus setting and the 
variations in orientation, see below. 
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M. van Heel: Along the same line of reasoning: 
your 3D reconstruction method is based strictly on 
preferred orientations which probably never really 
exist (due to the variations in the support film 

for example). An angular spread of some 8-10° 
within each "preferred" orientation may be a 
reasonable estimate. Will this type of error 
hinder the possibility of reaching high resolution 
(better than 1nm) with this approach? 

Authors: An angular spread of 8-10° within each 
"preferred" orientation (described as "rocking"), 
an assumption which we agree seems reasonable, 
would cause degradation of the resolution of the 

corresponding o0 average. If we assume the radius 

of the particle to be 125 R (e.g., corresponding 
to the size of the 70S E.coli ribosome), then a 

rotation of the particle by 10° would change the 

radius of the o0 projection to 123 R. For a pixel 
size of 0.2 nm (i.e., about half the size we cur-

rently use) an angular spread oJ 10° in the 
"preferred" orientation would be at the limit of 
possible detection: such an error in the Euler 
angle in the projection data would be reflected in 
a rotation of the particle's periphery by .21 nm, 
and thus this seems to be the limit of possible 
resolution for the current data collection scheme 
and image processing methods. A substantial im­
provement in resolution can be achieved through 
improvements in EM data collection (e.g., energy 
filtration, spot scanning, use of images with dif­
ferent defocus, and collection of larger numbers 
of particles) that reduce instabilities and im­
prove the signal to noise ratio. Higher-quality 
data will allow a cyclic refinement of the orien­
tation for individual projections against the 
entire projection set. Ultimately, a resolution 
of 1 nm appears feasible. 

M. van Heel: I agree with the authors that a 
cross-common-line approach is a more sensible ap­
proach than the alignment between 3D 
reconstructions, each of which associated with a 
different missing cone area. However, I object to 
the claims of novelty issued by these authors 
since the cross-common lines alignment between two 
sets of projections was already discussed in the 
very first papers by Crowther et al. in the early 
seventies. The problem described in those early 
papers was the relative alignment of two sets of 
symmetry related projections relative to each 
other. A new implementation of this idea remains 
interesting since it may differ in ·details (the 
matter is indeed complex) from the earlier ones, 
yet the claim of novelty is not justified and 
should be removed from the paper. 
Authors: Crowther clearly conceived the use of 
multiple common lines in finding the orientation 
between two spherical virus particles seen 1n 
projection. An appropriate reference to Crowther 
et al. (1971) has now been added to the fundamen­
tal (1970) reference. The analogy between this 
method of "cross common lines" and the method we 
put forth is rather abstract but nevertheless il­
luminating. In Crowther's application, the "set 
of projections" is intrinsically fixed to a single 
virus particle, and the members of that set are 
related by symmetry. (Incidentally, Crowther et 
al. (1971) did in fact not use the cross common 
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lines method to find the orientation, but rather 
to refine the scaling between the two particles.) 
In our case, the set of projections corresponds to 
a set of as many unrelated particles which are 
deliberately (by inference from an alignment of 0-
degree companion projections) brought into a 
common coordinate system. Thus the two ideas have 
a rather complex relationship, and ours is cer­
tainly not just a derivative of the other. The 
wording "put forward" is appropriate, and makes no 
claim of extraordinary novelty. 

M. van Heel: Why is the first factor "responsible 
for the differences between the two classes", and 
why is only this factor used for the hierarchical 
clustering program? (A subjective choice?) 
Moreover, why is the first eigen-image not similar 
to the input images, or is this actually the 
second CORAN eigen-image? 
Authors: In our counting, the 
associated with the average 
eigen-image is in fact similar 
one of the sets of invariants, 
similarity we used the first 
for classification. 

zero-th factor is 
image. The first 

to the average of 
and because of this 
factor exclusively 

M. Van Heel: Goncharov, 1986 is a "preprint"? 
Either refer to published work, to work submitted 
for publication, or to private communication 
whichever is appropriate. 
Authors: This is the only complete version of 
Goncharov's work on common lines and moments. It 
was published in Russian by offset printing in an 
edition of 200. The cover page identifies this 
brochure with a (printed!) Russian word that 
renders the English word "preprint" in a phonetic 
form. Thus the precise nature of this manifesta­
tion of Goncharov's work cannot be captured by any 
known bibliographic term, because it involves a 
contradiction of terms. The only precedent for a 
similar (albeit deliberate) conceptual confusion 
we are aware of occurs in the realm of Art: Rene 
Magritte's painting "Ce n'est pas une pipe". In 
order to convey some of this uncertainty, we have 
now surrounded the term "preprint" by quotation 
marks. 
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