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ABSTRACT 

 

The Effects of Trace Mineral Supplementation on Performance, and Carcass Quality of 

At-Risk Mineral Deficient Feedlot Cattle 

by 

Tevan J. Brady, Master of Science 

Utah State University, 2021 

   

Major Professor: Kara Thornton-Kurth, Ph.D. 

Department: Animal, Dairy, & Veterinary Sciences 

 

Disease is the main cause of morbidity and mortality in feedlot cattle. Trace 

minerals are crucial in the immune response to disease and are important to the health 

and performance of stressed feedlot cattle. As such, mineral deficient cattle that enter a 

feedlot have higher morbidity and mortality rates and lower feedlot performance. The 

objective of this research was to determine best practices that feedlot producers can 

employ when receiving mineral deficient cattle. Forty steers were stratified by initial 

body weight and mineral status then assigned to one of four treatment groups: no mineral 

supplementation (CON; n = 10), oral supplementation of minerals provided at levels 

similar to NRC requirements (AM; n = 10), oral supplementation of minerals provided at 

levels above NRC requirements (HM; n = 10), or a MultiMin® injection at labeled dose 

(MM; n = 10). All steers received the same ration in pens equipped with GrowSafe® 

bunks. Standing liver biopsies were collected on d 0, 5, 10, 20, 30 and 40 and analyzed 

for mineral content. Cortisol levels were measured to determine the animal’s level of 

stress. Average daily gain (ADG), dry matter intake (DMI) and feed efficiency (FE) were 

recorded. After the trial, steers were harvested at a commercial facility and carcass data 
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was obtained. There were no differences (P > 0.05) between treatments in weight or 

overall ADG. When analyzed over time, the HM treatment had an effect (P < 0.001) on 

liver copper and selenium concentrations, but not on liver manganese and zinc 

concentrations. Additionally, when DMI was analyzed over time, effects (P < 0.05) of 

time, treatment, and treatment*time were observed, and effects (P < 0.05) of time and 

treatment*time were observed on FE. Treatment had no effect (P > 0.05) on carcass or 

ultrasound data. No effects (P > 0.05) were seen on BHV or BPIV3 antibody titers. Steers 

in the HM treatment had an increased (P < 0.05) number of bunk visits/feed bouts, and 

time duration at each bunk visit/feed bout, and had decreased (P < 0.05) consumption per 

bunk visit/feed bout, and time with their head down per bunk visit/feed bout when 

compared to steers receiving the other three treatments. These data indicate that feeding 

varying mineral levels can alter performance and health of an animal, but more research 

is needed to determine the effects of specific minerals on an animal’s performance and 

health. 

(99 Pages) 
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PUBLIC ABSTRACT 

 

The Effects of Trace Mineral Supplementation on Performance, and Carcass 

 

 Quality of At-Risk Mineral Deficient Feedlot Cattle 

 

 

Tevan J. Brady 

 

 

 Morbidity in feedlot cattle due to disease is a common economical loss for feedlot 

producers. Utah is not typically considered a ‘feedlot state’, but there are several 

producers in the southern part of the state that specialize in receiving at-risk cattle. These 

cattle are at-risk because they are coming from areas known to be mineral deficient. 

Areas such as the western US, are known to be deficient in several trace minerals 

important in immune response. Therefore, it is critical that producers have an adequate 

plan to decrease the negative effects that this has on economic viability of their beef 

operations, especially for those feedlots specializing in receiving at-risk cattle. In this 

study yearling Black Angus steers received one of four treatments: no mineral 

supplementation, oral supplementation of minerals provided at levels similar to NRC 

requirements, oral supplementation of minerals provided at levels above NRC 

requirements, or a MultiMin® injection at labeled dose. Liver and blood samples were 

collected to measure mineral status and cortisol levels. Backfat and ribeye area 

measurements were also recorded. Weight of the steers were recorded every two weeks to 

determine average daily gain and feed:gain ratio. At the end of the study, steers were 

harvested at a local harvesting plant and carcass traits were obtained and recorded. There 

were no differences in weight gain, overall average daily gain, dry matter intake, or 

feed:gain ratio between the different treatment groups. Steers that were fed the HM had 
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increased liver copper and selenium concentrations, but there was no effect observed on 

liver manganese and zinc concentrations. Carcass quality and antibody titers did not 

differ between the different treatments. These data indicate that different mineral 

supplementation strategies have a diverse effect on feedlot performance and liver mineral 

concentrations over time, and additional research is needed to better understand these 

differences. 
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CHAPTER I 

INTRODUCTION 

 The main source of morbidity (sickness) and mortality (death loss) of feedlot 

cattle is disease (Smith, 1998). It has been estimated that feedlots naturally incur 

anywhere between 5 and 15% morbidity (Edward, 1996). However, as high as 44% 

morbidity have been reported by some operations (Snowder, 2006). Management of 

morbidity and mortality is critical to maintaining productivity of a feedlot operation. 

Although mortality is a main concern for producers, morbidity can have a greater 

economic impact than mortality. When all costs that are associated with morbidity, such 

as medication, labor, premature culling, and reduced performance of the animal are 

considered it results in less of an economic return for producers (Smith, 1998).  

Bovine respiratory disease (BRD) is a common and costly disease of feedlot cattle 

(NAHMS, 2000a). Majority of all deaths caused by BRD happen briefly after arriving at 

a feedlot, normally within the first 45 d (Loneragan et al., 2001). In order to treat BRD in 

at-risk, stressed newly received feedlot cattle the use of prophylactic antibiotics is the 

most common practice. The use of these antibiotics helps producers ameliorate the effects 

of morbidity and mortality (Duff and Galyean, 2007). However, with the increase in 

antibiotic resistant bacteria, this has led to social and scientific concern that the overuse 

and misuse of human prescribed antibiotics in conjunction with the increased and wide-

spread use of sub-therapeutic doses of antibiotic in agriculture may play a role in this 

trend (Sarmah et al., 2006, Smith et al., 2002). The three main concerns that consumers 

have with modern food production systems are food safety, protection of the environment 

and animal welfare (de Passillé and Rushen, 2005). To many consumers, these three 
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aspects are linked; it is believed that improved methods to raise animals will 

simultaneously result in better and safer food, reduced environmental concern and 

improved animal welfare (Fraser, 2001).  

On January 1, 2017 the Veterinary Feed Directive (VFD) was implemented to 

help reduce the use of antibiotics in agriculture. The VFD was developed by the Food and 

Drug Administration (FDA) to help with three criteria which include: lower antibiotic 

resistance, reduce over used antibiotics and control antibiotics in the human food supply 

(Griffin, 2016a). In order for a producer to feed certain antibiotics, a VFD must be 

obtained from a veterinarian. A VFD can be used for three different things: prevention of 

disease, treatment of disease, and control of disease (Griffin, 2016a). However, the VFD 

only applies to antibiotics that are used in feed, it does not affect all feed additives such 

as ionophores, coccidia and other parasitic/insect control drugs (Griffin, 2016b). The 

VFD does not apply to antibiotics used by injection, tablet, bolus or water (Griffin 

2016b). Prior to implementation of the VFD, provision of sub-clinical levels of 

antibiotics in the feed was commonly used for at-risk feedlot cattle as a prophylactic 

prevention. However, with the implementation of the VFD, it is more difficult for 

producers to utilize this tool and new avenues must be discovered to mitigate the effects 

of feeding at-risk feedlot cattle, which will allow us to improve animal welfare and health 

of feedlot animals. 

Trace minerals are vital in immune response and are particularly important to both 

the performance and health of stressed feeder cattle (Underwood and Suttle, 1999). Trace 

mineral deficiencies can result in a reduction in forage intake, decreased reproductive 

efficiency, decreased immune function, limited daily gains and feed conversion and can 
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also compromise enzyme function (Paterson and Engle, 2005). The western US is known 

to be deficient in several trace minerals, especially in copper (Cu), zinc (Zn), selenium 

(Se), and manganese (Mn).  

Although the western US is not your typical feedlot state, there are many smaller 

feedlots in the area that specialize in receiving at-risk cattle. As of March 1, 2020, at-risk 

cattle contributed to 20% of the 1.65 million head in feedlots across the US (USDA 

NASS, 2020). In the state of Utah producers report that the percent of at-risk cattle is 

higher than the national average due to having feedlots that specialize in at-risk cattle. 

Animals considered at-risk have an increase susceptibility to disease. Some of these 

feedlot cattle are at-risk because they have: 1) a poor mineral status, 2) recently been 

weaned with no vaccine history, 3) comingled with other animals from different sale 

barns or ranches, 4) been transported for an extended period of time or 5) come from a 

ranch with poor management practices.  

 Common practices in the Intermountain West include ranging cattle on often 

unfarmable land for long periods of time. This makes it difficult or impossible in some 

scenarios, to provide mineral supplementation. This makes it very important for 

producers to know and understand the limitations of the feedstuffs in this area and what 

they can do to mitigate negative side-effects that may be associated with grazing cattle in 

mineral deficient areas.  

Another factor that is causing the nutrient composition of feeds to become more 

variable is the changing climate (Cohn et al., 2017). Cattle that graze on pastures 

typically don’t receive their mineral requirements based on a diet composed of primarily 

forages (Underwood, 1981; McDowell, 1992). Cattle on pastures can receive a certain 
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level of minerals from water and soil ingestion; however, forage consumption is the main 

dietary source of minerals. Of the mineral elements in soils, only a fraction is taken up by 

plants (McDowell, 1996). Although the quantity of minerals that is consumed from these 

sources might not supply an adequate amount to the animal unless some type of 

supplementation is added (McDowell, 1996). There are many factors that can contribute 

to the uptake of trace minerals in plants such as pH of soil, maturity, yield, species, 

management, and climate (Reid and Horvath, 1980; McDowell, 1985). The levels of Cu, 

Iron (Fe), Se, Cobalt (Co), Zn, and Molybdenum (Mo) have a tendency to decline as a 

plant matures (Reid and Horvath, 1980). 

 Therefore, it’s vital that managerial practices be implemented to address the 

seasonal and regional changes in forages, allowing ranchers to produce healthy, 

profitable cattle (Duff and Galyean, 2007). Receiving cattle that have a negative mineral 

status will not be as responsive to vaccinations as cattle that have an adequate mineral 

status. Thus, they have an increased risk of morbidity/mortality which will result in an 

economic loss for the producers. The objective of this research was to determine the 

effects of providing natural, trace mineral supplementation to increase cattle health and 

possibly eliminate the need to use prophylactic antibiotics and develop safe receiving 

protocols that can be followed to improve welfare, health, and performance of feedlot 

animals.  
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CHAPTER II 

LITERATURE REVIEW 

Feedlot Performance 

 Lightweight stressed calves will have a reduction in feed intake in the first two 

weeks after arrival to a feed yard (Hutcheson and Cole, 1986). Bovine respiratory disease 

(BRD) has been known to decrease feed intake and efficiency of animals (Hutcheson and 

Cole, 1986). One way that BRD can reduce feed intake is by creating an inflammatory 

response, which causes proinflammatory cytokines to be released and can decrease feed 

intake by more than 50% (Bosi and Trevisi, 2006). It has been reported that as much as 

$750 million annually has been lost in the industry due to BRD (Chirase and Greene, 

2001). Feedlot cattle that have been treated once for BRD have an economic return of 

$40.64 less, those that receive treatments twice bring $58.35 less, and those feedlot cattle 

treated three or more times return $291.93 less than cattle that are not treated for BRD 

(Fulton et al., 2002). Steers that have received treatment have been reported to have a 4% 

decrease in average daily gain (ADG), 2.6% loss in hot carcass weight (HCW) and a 

1.7% reduction in body weight (BW) (Gardner et al., 1999). Bateman et al. (1990) 

conveyed in a study that calves who had been treated for BRD had a 0.6 kg lower ADG 

than those not treated.  

Holland et al. (2010) examined the effects of BRD during a 63 d preconditioning 

period using 360 heifers. During the preconditioning period there was a decrease in ADG 

as the number of vaccinations increased (Holland, et al., 2010). However, in the finishing 

phase there was not a difference in ADG between the different treatments (Holland et al., 

2010). Dry matter intake (DMI) also was decreased as the number of vaccinations during 
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the preconditioning phase increased (Holland et al., 2010). When the cattle were fed to 

the same endpoint, cattle that were treated for BRD were able to regain what they had 

lost in the preconditioning phase, except those that were labeled as chronically ill 

(Holland et al., 2010).  

Schneider et al., (2009) examined the effects of BRD on 5,976 animals located in 

multiple Midwest feedlots (Schneider et al., 2009). Schneider reported that BRD when 

recorded on treatment record or had pulmonary lesions at slaughter resulted in a 

reduction of ADG, lighter HCW, less internal fat, and had a decrease in marbling score 

than steers that remained healthy through the feedlot (Schneider et al., 2009). Hot carcass 

weight and marbling score of individuals showed a significant effect with reductions of 

8.16 kg and 0.13, respectively, in treated cattle (Schneider et al., 2009). It is clear that 

there is a decrease in performance from calves that are treated for BRD. In addition to 

decreased performance, BRD can also have a negative effect on carcass quality and retail 

yield (Gifford et al., 2012).  

Carcass Quality 

Current research shows that even though some diseased animals can be fed 

similarly to healthy animals, carcass weights and marbling scores are still reduced when 

compared to their healthy counter-parts (Maxwell et al., 2018). There is evidence that 

respiratory disease can influence multiple carcass traits such as carcass weight, marbling 

and subcutaneous fat cover (McNeil et al., 1996). In a study by Gardner et al. (1999) it 

was found that 33% of the steers in the study had lung lesions symptomatic of BRD. 

These steers with lung lesions had a lighter HCW, lower dressing percent, less internal fat 

and received a lower marbling score (Gardner et al., 1999). They also reported that they 
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had smaller rib eye area and not as much external fat than those steers that did not have 

lung lesions (Gardner et al., 1999). Even though research shows that diseased animals can 

be fed similarly, they will not have the same carcass quality when compared to those 

animals that are healthy.  

Roeber et al., 2001 researched the variation in economic returns from calves that 

were purchased from producers that took part in some type of  a “preconditioning 

program.” Preconditioning programs serve to help animals go from a range setting to a 

feedlot setting. They accomplish this by introducing a bunk were the animals eat and feed 

small amounts of concentrates, so they are accustomed to eating grains. It was found that 

those producers whose cattle came from a preconditioning program had significantly 

improved feedlot performance than those that did not come from a preconditioning 

program. Cattle that were preconditioned had significantly higher ADG, had lower 

mortality and morbidity rates, and were more efficient in the feedlot setting (Roeber et 

al., 2001). By preconditioning cattle this allows them to be located in a more accessible 

area, making it easier for producers to deliver trace minerals to them. Supplementing 

trace minerals results in animals with an improved mineral status, which results in 

improved immune responses and performance in the feedlot.  

Garcia et al., 2010 looked at the effects of BRD on carcass quality and meat 

quality traits in two different herds. This group saw cattle that demonstrated signs of 

BRD had a 5 kg lighter HCW and had between 10 – 15% less 12th rib fat thickness, 

which in turn resulted in a decrease in USDA yield grade (Garcia et al., 2010). Schneider 

et al., 2009 reported that as the number of treatments for BRD increased, there was more 

variation of HCW, subcutaneous fat cover, and marbling score (Schneider et al., 2009). 
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This same group found that cattle treated for BRD had a reduction of 0.58 cm2 for 

longissimus muscle area, and a 0.76 mm reduction in fat cover (Schneider et al., 2009). 

Results from this study also showed that greater than 71% that were never treated graded 

choice or higher whereas cattle that were treated once, twice, or three times graded choice 

or better 57%, 55% and 52% respectively of the time (Schneider et al., 2009). This 

research provides further evidence that feedlot cattle that have suffered from disease 

produce a less than desirable quality grade than those that are healthy.  

Respiratory morbidity reduces performance of beef steers which effects their 

ability to deposit fat and effects their carcass weight and longissimus muscle area 

(Gardner et al., 1999). Research shows that fat deposition by cattle is mostly affected, yet 

there is still a decrease in growth and reduced DMI that can occur as demonstrated by a 

low HCW (Gardner et al., 1999). It is apparent that BRD can have negative effects on 

carcass quality. McNeill et al. (1996) detected that in his evaluation of more than 7,000 

cattle, 39% were never treated for BRD and they graded USDA Choice or better while 

only 27% of those treated for BRD were graded USDA choice or better. The results from 

several different studies demonstrate that cattle affected by BRD will have a decrease in 

multiple carcass traits such as: smaller ribeye area, lighter HCW and a lower marbling 

score. Implementation of a preconditioning program allows producers to supplement 

minerals to the animals prior to the feedlot, which has been found to increase immune 

system response, feedlot performance and carcass quality (Garcia et al., 2010).  

Immunity to Potential Virus 

Bovine respiratory disease (BRD) is a common issue affecting health of cattle 

herds (Gulliksen et al., 2009). It has been estimated that feedlots can naturally incur 
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anywhere between 5 and 15% morbidity. However, as high as 44% morbidity have been 

reported in some operations (Snowder, 2006). The spread of BRD infections among 

young animals is extremely quick. About 91% of calves will be infected with BRD 

within the first 27 d after arrival to a feedlot (Buhman et al., 2000). Bovine respiratory 

disease is a complex of diseases which are categorized by different types of infections. 

Each type has its different causes, signs and implications. Viral causes for BRD include: 

Bovine Herpes Virus 1 (BHV-1), Bovine Parainfluenza Virus 3 (BPIV3), Bovine Viral 

Syncytial Virus (BRSV), Bovine Viral Diarrhea Virus (BVDV), and Bovine Coronavirus 

(BCV). Bacterial causes for BRD include Mannheimia haemolytica, Pasturella multocida, 

Haemophilus somnus and mycoplasma (Ellis, 2001). Shipping and processing calves at 

feedlots can increase the cause of stress. This can have a major impact on immune 

function, predisposing them to developing BRD. Preparing an animal’s immune system 

before experiencing stressful events with vaccines against viral and bacterial agents 

involved in BRD is a critical piece to maintaining an animal’s health for cow-calf, 

stocker, and feedlot operators (Taylor et al., 2010). The immune system can be divided 

into two parts, innate and acquired immunity. Special sensors that can recognize self and 

non-self factors that are expressed during infection are used to induce an immune 

response. Components that contribute to the innate and adaptive immune response will 

act together in mediating a defense against infections (Biron, 2016). The innate system is 

the first line of defense against pathogens and therefore plays a critical role in the early 

recognition and triggering of a proinflammatory response to the invading pathogens 

(Meylan, 2006).  
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Sentinel cells such as macrophages, dendritic cells and mast cells come equipped 

with a diverse number of pattern recognizing receptors that will recognize pattern 

associated molecular patterns (PAMP’s) located on invading pathogens (Marshall et al., 

2018). Once a sentinel cell has recognized a PAMP, this will trigger a cascade eventually 

resulting in the release of cytokines such as: tumour necrosis factor alpha, interleukin-1, 

and interleukin 6 (Mogensen, 2009). Cytokines are short lived proteins that are critical to 

cell recruitment and to local inflammation which is essential for the clearance of many 

pathogens (Biron, 2016). Other characteristics of cytokines include pleotropism, the 

ability to act on multiple cells types, and they can not only function locally but also can 

act systemically (McDonald and Levy, 2013). These cytokines recruit neutrophils which 

are the first cell type to arrive at the site of damaged tissue. Activation of neutrophils 

leads to a respiratory burst and the release of granules to control bacterial growth (Biron, 

2016). Neutrophilic granules contain certain enzyme pathways that assist in the 

elimination of pathogenic microbes (Marshall et al., 2018). Macrophages are long-lived 

cells that have phagocytic properties and can sustain prolonged phagocytic activity. They 

are also involved in antigen presentation to T cells (Marshall et al., 2018). Macrophages 

and other antigen-presenting cells (APC) such as dendritic cells also display antigens to T 

cells in order to activate them (Ott, 2019). 

 The adaptive immune system is responsible for the elimination of pathogens 

several days after exposure to a pathogen and in the generation of immunological 

memory (Mogensen, 2009). Adaptive immunity is a group of specific second-line 

defense responses that occur days to weeks after exposure to microbial antigens during 

the innate immune response (Snyder, 2017). Lymphocytes are the cells responsible for 
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mounting an adaptive immune response. Adaptive immunity can be broken down into 

two subgroups, humoral and cell-mediated immunity (Abbas et al., 1991). B lymphocytes 

are what mediate the humoral system. These B cells turn into anti-body producing cells 

such as plasma and memory cells in order to provide protection against extracellular 

microbial infections by responding to antigens (Johnson et al., 1998). B cells contain B 

cell receptors (BCR) which can be membrane bound immunoglobulins or soluble 

immunoglobulins (antibodies) that bind to foreign pathogens. B cell receptors are formed 

through somatic recombination which creates a vast selection of sequences therefore 

increasing an individual’s ability to recognize and respond to a wide range of antigens 

giving the animal more protection (Hoehn et al., 2016). B cell receptors consist of two 

large heavy chains and two smaller light chain molecules. These heavy and light chains 

are held together by di-sulfide bonds. One result of diversity in the BCR is a result of the 

random arrangements of heavy chain V, D, and J genes, and light chain V and J genes. 

Light chains can also be classified as either kappa or lambda light chains; this is known 

as combinational diversity (Collins and Watson, 2018). Another result of diversity of B 

cells is due to junctional diversity. This is accomplished by the extent of which random 

nucleotides are either inserted or deleted between joining genes (Jackson et al., 2013).  

In the cell-mediated system, T cells are responsible for providing a defense 

against intracellular pathogens (Johnson et al., 1998). T cells can take many forms. Two 

forms are T helper cells (TH1, TH2) or Cytotoxic T Lymphocytes (CTL). T cells have 

two basic methods for protecting an individual from pathogens: 1) Cytotoxic T cells, 2) T 

cells that secrete cytokines (Roth and Perino, 1998). Cytotoxic T Lymphocytes can 

recognize antigens that are presented on MHC-I proteins on APC’s. When activated, 
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CTL’s will kill virally infected cells (Andersen et al., 2006). Cytotoxic T Lymphocytes 

(CTL’s) can either bind to a target cell and release cytotoxic granules (perforin and 

granzymes) to kill the target cell or the CTL activates death receptors (CD95 and CD95L) 

which bind to the cell and trigger apoptosis through the caspase cascade (Tizard, 2012). T 

cells that can secrete cytokines are TH1 and TH2 cells. T helper 1 cells secrete cytokines 

such as interferon 2 and interferon alpha which help to increase cytolytic activity of 

CTL’s, macrophages, neutrophils, and natural killer cells. T cells are also important in the 

activation of antibody producing B cells (Roth and Perino, 1998). T helper 2 cells are 

responsible for secreting cytokines like interleukin 4 and interleukin 10 and help 

stimulate B cells to produce certain antibodies (Tizard, 2012). Therefore, the production 

of normal antibody response involves the help of T lymphocytes (Roth and Perino, 1998). 

For years it has been known that stress can have negative impacts on the health of 

an individual (Webster, 2008). There is an abundance of research that explains that there 

is an increase in disease susceptibility when immunity has been impaired due to 

environmental, physiological, or physical stress (Kelly, 1985; Kelly, 1980). A normal 

reaction the body has against stress is to release the hormone adrenocorticotropic 

(ACTH) from the pituitary gland. This hormone acts on the adrenal cortex to synthesize 

and release cortisol (Roth, 1985). Increased levels of cortisol in the blood due to an 

animal experiencing some type of stress has been shown to have negative effects on the 

immune system (Webster et al, 2008). Some of these effects include decreased 

lymphocyte proliferation, reduction in number and activity of NK cells, decreased 

antibody response from B cells to viral infection, and reactivation of prior viral pathogens 

an animal was exposed to (Webster et al, 2008).  
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Stress can be placed into two categories depending on the duration that the stress 

is applied. Acute stress comes from exposure to stress for a short amount of time. This 

type of stress is thought to actually act as a priming mechanism helping the body prepare 

for a possible invasion of pathogens (Hughes et al., 2014). The second category is 

chronic stress. This results from an animal being exposed to stress for long periods of 

time. When this occurs, it switches the body from preparing to suppressing the immune 

system (Carroll and Forsberg, 2007). One way the immune system gets suppressed is by 

the continual release of glucocorticoids. Effector cells (such as B and T cells) can be 

stimulated by glucocorticoids, but with chronic stress they are constantly being prepared 

for an invasion by pathogens (Carroll and Forsberg, 2007). With the constant stimulation 

these effector cells can become desensitized and lose the ability to respond to invading 

pathogens. Also, with increased concentrations of glucocorticoids pre B and pre T cells 

can increase participation in cell death through apoptosis (Fraker and King, 2004).  

Cattle going to feedlots experience a number of stressful events such as 

vaccinations, weaning, social mixing, shipping, and long periods without feed or water. 

Past studies have shown that stress-induced glucocorticoid concentrations due to 

transportation to feedlots result in an increase in the number of animals with shipping 

fever (Mormede et al., 1982; Mackenzie et al., 1997). With stress causing a suppression 

in the immune system, this doesn’t allow the body to maintain a homeostatic balance 

which is needed for maximum livestock production, where growth is a priority (Hughes 

et al., 2014). This can result in large economical losses to the producers, it has been 

estimated that $750 million have been lost due to BRD (Chirase and Greene, 2001). One 
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way that an animal can overcome infection may be influenced by the animal’s mineral 

nutrition (Orr et al., 1990). 

Minerals 

 It is well established that both vitamin and mineral deficiencies can have a severe 

impact on productivity of livestock animals (Galyean et al., 1999). The general 

physiological functions of trace minerals are to promote normal tissue growth, 

homeostasis, enzyme function, and cell regulation. Paterson and Engle (2005) and 

Mcdowell (1996) have suggested that there are five factors that have an impact on the 

amount of trace minerals required by cattle, and include: animal age, stage of production 

(growth, lactation or gestation), breed, stress and other mineral antagonists. It is 

imperative that trace elements are maintained within a small concentration in the body. If 

proper trace mineral homeostasis is maintained, optimum growth, health, and 

productivity of domestic livestock can be ensured (Underwood and Suttle, 1999). 

Immune cells require an adequate supply of trace elements to support their function and 

structure of metalloproteins that participate in processes such as energy production and 

protection against reactive oxygen compounds (Failla, 2003).  

The western US is known to be deficient in many minerals that are essential for 

the immune system. Several trace minerals, such as Zn, Cu, and Se, are known to have 

positive effects on the immune system when provided at adequate levels (Galyean et al., 

1999). Fletcher et al. (1988) found that Zn, Fe, Cu, Mn and Se are important trace 

minerals for normal immune function and disease resistance. If one or more of these trace 

minerals is deficient in the animal’s diet, the immune status of the animal could be 

compromised (Suttle and Jones, 1989; Spears, 1991). Therefore, it is of utmost 
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importance that the mineral status be maintained to ensure that there are enough mineral 

stores available to maximize animal production and health when they are exposed to 

disease or become stressed (Tomlinson et al., 2008).  

Copper 

The recommended concentration of Cu by NRC for beef cattle is 10 mg/kg 

(National Academies of Sciences, 2016). However, industry professionals have reported 

feeding on average 20 mg/kg of Cu in receiving/finishing diets of feedlot cattle 

(Samuelson et al., 2016). Copper is present in and essential for the activity of multiple 

enzymes (tyrosinase, converts tyrosine to melanin for hair pigmentation), cofactors and 

reactive proteins (Suttle, 2010). Sulfur (S) and Mo can interact and bind with Cu and 

form a copper thiomolybdate complex (Cu-TM). This suggests that when Cu is combined 

in a thiomolybdate complex, it becomes unavailable for absorption and the Cu that is not 

bound to these complexes is readily available to be absorbed into the blood stream, which 

increases blood Cu values (Dick et al., 1975). Copper is also active in the production of 

neutrophils and affects phagocyte killing ability (Linder and Hazegh-Azam, 1996). 

Animals have important biological functions that depend on Cu such as erythropoiesis, 

protection from oxidants, heart development, and development of the central nervous 

system (CNS) (Underwood and Suttle, 1999).  

The immune system can also be greatly impacted by Cu status of an animal. The 

concentration of Cu is decreased in the spleen, liver, thymus and lung by Cu deficiency, 

and this suggests that Cu-deficient animals carry a higher risk for infection than non-

deficient animals (Stabel et al., 1993). Copper helps give energy to the immune system 
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by activating cytochrome-c-oxidase which is found in the mitochondrial electron-

transport chain (Failla, 2003). 

The enzyme ceruloplasmin is the major Cu carrying protein in the blood and has 

been shown to demonstrate anti-inflammatory activity (Healy and Tipton, 2007). 

Ceruloplasmin is an α-glycoprotein that is composed of a single polypeptide chain of 

1046 amino acids and can bind up to 95% of Cu circulating in the body (Healy and 

Tipton, 2007). Cattle have the highest risk for developing Cu poisoning prior to weaning 

(Shand and Lewis, 1957). Cattle can also surrender to acute copper poisoning when they 

are given an excess amount of Cu through injections (Mylrea and Byrne, 1974). A few 

clinical signs that occur with Cu deprivation are anemia, neonatal ataxia, loss of 

hair/fleece color and skeletal abnormalities such as osteoporosis and widening of 

epuphyses (Underwood and Suttle, 1999). These studies clearly demonstrate that Cu is 

involved in the immune system, which impacts performance and health of feedlot cattle, 

making it imperative that supplementation practices are determined in order to ensure that 

the cattle are healthy and have the best performance possible. 

Manganese 

The Mn requirement for growing cattle is listed at 20 mg/kg by the NRC 

(National Academies of Sciences, 2016). It’s not uncommon for industry professionals to 

add 50 mg/kg of Mn in receiving/finishing diets of feedlot cattle (Samuelson et al., 2016). 

Research has shown that inadequate amounts of Mn in the body can impair immunity and 

CNS function (Hurley, 1981). It can also cause decreased skeletal and soft tissue growth, 

weak and abnormally shaped bones, and reproductive disorders (Suttle, 2010). Similarly, 

Cu, Zn, and Mn play a role in the removal of superoxide radicals (Tomlinson et al., 
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2008). Manganese also plays a role in other cellular pathways such as lipid and 

carbohydrate metabolism (Underwood and Suttle, 1999).  

Manganese is required for the function of glycosyltransferases, which synthesizes 

mucopolysaccharides in cartilage, to allow for proper bone formation (Suttle, 2010). 

Much like other trace minerals, Mn functions as an enzyme activator and also helps form 

enzymes (McDowell, 2003). Manganese can also activate multiple hydrolases, kinases, 

transferases and decarboxylases (McDowell, 2003). It has also been hypothesized that 

Mn is involved in cholesterol synthesis (Davis et al., 1990), CNS function (Hurley and 

Keen, 1987), and steroid hormone production and carbohydrate metabolism (McDowell, 

1992).  

 When looking at Mn status in beef cattle, it’s often difficult and requires more 

than one criterion to diagnose a deficiency in Mn (McDowell, 2003). In beef production, 

Mn has more influence than what was previously realized (Corah and Arthington, 1993). 

The liver can effectively remove Mn from blood serum, then it gets excreted from the 

liver through the bile (Kincaid, 1999). This research demonstrates that Mn is important 

for many biological functions in the body. These functions can help an animal perform 

better in the feedlot setting and also help improve the health of the animal during 

exposure to stress. 

Zinc 

The Zn requirement for growing cattle is listed at 30 mg/kg by the NRC (National 

Academies of Sciences, 2016). Feedlot consultants have been known to add on average 

100 mg/kg of Zn in diets of feedlot cattle (Samuelson et al., 2016). Zinc has been found 

to be vital for growth and development of all organisms (Cousins and King, 2004). It has 
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a role in catalytic, structural, and regulatory functions (Cousins and King, 2004). There 

are over one thousand known proteins that are associated with Zn (Maret, 2002). Animals 

have a limited capacity for storing Zn in a form that is readily available; typically, Zn 

stores are quite small (Underwood and Suttle, 1999).  

Zinc deficiencies in the early stages in ruminants leads to a reduction of feed 

intake, growth rate and feed efficiency (McDowell, 2003). As the deficiency goes longer 

and worsens, the signs include listlessness, excessive salivation, swollen feet with 

lesions, parakeratotic lesions on the legs, neck, head and around the nostrils, failure of 

wounds to heal and alopecia (NRC, 1996). Zinc retention becomes negative when an 

animal experiences stress caused by either feed or water deprivation and ACTH 

injections (Galyean et al., 1999). Zinc is also important for normal growth rates, water 

and cation balance, skin and wound healing and vitamin A metabolism (McDowell, 

2003)  

 The immune system is a highly proliferating cell system and relies heavily on the 

availability of Zn (McDowell, 2003). Zinc can influence T cell development and 

function, modulation of cellular functions and cytokine production from B and T cells. It 

also has large effects on the thymus, lymph nodes and tonsils. Zinc is a part of 

antioxidant defense, where it functions both extracellularly and intracellularly (Suttle, 

2010). Research has shown that Zn plays a large role in the immune system, it is a part of 

nearly one thousand proteins and impacts feed intake and growth rate, making it an 

important mineral for cattle to receive to optimize health and performance.  

Selenium 
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The Se requirement for growing cattle is listed at 0.1 mg/kg by the NRC (National 

Academies of Sciences, 2016). Feedlots have recently reported adding Se at a level of  

0.3 mg/kg to their feedlot diets (Samuelson et al., 2016). The role of Se in the immune 

system remains largely based around the selenoprotein glutathione peroxidase. 

Glutathione peroxidase is an enzyme that inactivates oxygen radicals such as hydrogen 

peroxide (Tomlinson et al., 2008). These peroxides could injure the cell where they are 

produced (Hoekstra, 1975). Reffett et al. (1988) reported calves with Se deficiency had 

lower serum IgM concentrations and anti-Infectious Bovine Rhinotracheitis Virus 

(IBVR) titers when they were challenged with IBRV.  

Selenium also helps with the formation and the activity of NK, helper T and 

cytotoxic T cells (Petrie et al., 1989). Vitamin E is a factor that can influence the 

consumption of dietary Se. However, the antioxidant functions of Se and Vitamin E are 

interdependent from each other (NRC, 1996). Selenium is involved in the metabolism of 

thyroid hormones. Therefore, selenium deficient diet causes triodothyronine (T3) to 

decrease and tetraiodothyronine (T4) to increase (Thompson et al., 1995). This effects 

growths rates since T3 is an active form of T4, which is involved in growth mechanisms 

(Beckett et al., 1989).  

With cattle not receiving sufficient Se, immune responsiveness can be reduced 

before the appearance of any clinical signs (Boyne and Arthur, 1979). A deficiency in Se 

has been shown to change the immune response to various infectious agents (Reffett et 

al., 1988). Deficiencies in Se may result in malfunction of thyroid metabolism, which can 

cause a drop in disease resistance, reduce growth rate, and change phagocytic response 

(Zust et al., 1996). With these affects cause by a deficiency in Se, it is important that 
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cattle receive an adequate amount to ensure that they are growing and have their immune 

system ready to fight off any pathogens that they might encounter leading up to entering 

the feedlot.  

These data demonstrate that minerals can alter many biological functions such as: 

immune system, growth, and development. Feedlot cattle experience two stressful events 

at the same time: weaning and transportation. With these added measures of stress, cattle 

are more susceptible to morbidity and/or mortality caused by diseases such as BRD. With 

BRD causing large economical losses, and decreased performance in the feedlot setting it 

is important that we minimize the stress seen by the animals beforehand and prepare the 

body to help fight off any pathogens causing BRD. Literature indicates that provision of 

minerals that are essential for the immune system, such as Cu, Se, Zn, and Mn, will 

improve the animal’s ability to stimulate an immune response and help fight off 

pathogens that can result in increases occurrences of morbidity and/or mortality. 

However, there are currently no best practices to alleviate the health concerns associated 

with receiving at-risk cattle into a feedlot. As such, more research is needed to determine 

which mineral supplementation practices can impact performance and health of mineral 

deficient cattle (Galyean et al., 1999).  

Hypothesis 

Providing either a multi-min injection or oral mineral supplementation at higher 

levels than NRC requires will result in improved cattle health, feedlot performance and 

carcass quality of at-risk mineral deficient calves. 

Objectives 
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The objectives of this study are to determine how different mineral supplementation 

strategies impact feedlot performance, concentration of minerals in the liver, immunity to 

potential virus exposure and carcass quality in mineral deficient receiving cattle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

   

 

CHAPTER III 

MATERIALS & METHODS 

Animals 

All animal experiments were conducted following procedures approved by 

IACUC protocol #10045 at Utah State University. A total of 40 yearling angus influenced 

steers from the Utah State University herd were used over the 110 d trial period. Steers 

were stratified by initial body weight and liver mineral concentration and then placed in 

one of four treatments. The treatments in this study included: no mineral supplementation 

(Con, n=10), one injection with Multimin® 90 (Multimin USA, Fort Colins CO) (MM, 

n=10), oral supplementation of minerals provided at levels similar to NRC requirements 

(AM; n = 10), oral supplementation of minerals provided at levels above NRC 

requirements (HM; n = 10). Upon commencement of the project, steers were loaded into 

a semi stock trailer and transported locally for five hours to emulate travel stress. After 

arriving back at the Utah State University feedlot, the steers were then processed and 

inoculated with a Merck Vision 8 vaccine (Merck, Kenilworth, NJ). They were fed a 

typical background ration, followed by a series of step up rations until the final feedlot 

ration was reached. Steers were housed under a 200 ft x 75 ft covered, open-sided shed 

and were fed twice a day at 0600 hours and 1600 hours. The pens were equipped with 

two GrowSafe bunks per pen and steers were housed in four different pens, one per 

treatment. The mineral supplement used in the current study was obtained from a local 

producer who served as a producer cooperator in this project. We chose to use this 

mineral to ensure that we were using a mineral supplement that was used by local 

producers. Animals received each treatment and were provided the same basic feedlot 
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ration in addition to their respective treatments for the first 40-d of the trial. After that 

period, they continued to receive the same basic feedlot ration but all animals received 

the adequate mineral treatment (AM). Steers were then treated this way through the 

remainder of the feedlot trial.  

Feedlot Performance 

Steer weights were obtained using a scale (True-Test GR3000, College Station, 

Texas) on d 0, 14, 28, 41, 56, 70, 84, and 110 of the trial. Body weights were recorded 

along with daily intake (DI) obtained from the GrowSafe system. These were used to 

calculate average daily gain (ADG) and feed efficiency (FE). Ultrasound measurements 

were also taken by the same trained ultrasound technician using an Exago Portable 

ultrasound (Exago, Bedford Hills, New York) Backfat thickness, and ribeye area were 

collected on d 5, 20, and 40, and every 28 d after the initial 40 d treatment period using 

an ExaGo 1509EX25 Version 1.12 portable ultrasound machine. Backfat was measured 

using ImageJ software using images in eFilm 4.0.3. Ribeye area was measured using a 

GTCO CalComp Peripherals DrawingBoard VI 12” x 12” Digitizer Model DB6 1212. 

Feeding Behavior 

Feeding behaviors were analyzed based on data that was collected from the 

GrowSafe units and following previously described procedures (McGee et al., 2014). 

Behaviors that were analyzed were categorized by bunk visit (BV) data and feed bout 

(FB) data. Parameters for bunk visit data will be: bunk visit (BV: reading of a single 

animal eid tag when entering at a bunk whether it consumed feed or not), average bunk 

visit duration (AVEBVDUR: average length of time that an animal had its head in a feed 

bunk consuming feed or not), average bunk visit consumption (AVEBVCONS: average 



24 

 

   

 

amount that was consumed every BV), average bunk visit head down (AVEBVHD: 

average time an animal spent with its head down in the bunk for each BV). Feed bout 

data parameters that were analyzed were: feed bouts (FB: reading of a single animal eid 

tag when entering a bunk and consumed at least 10 g of feed), average feed bout duration 

(AVEFBDUR: average amount of time animal was present with its head in a bunk while 

consuming more than 10 g of feed), average feed bout consumption (AVEFBCONS: 

measurement of the average amount of feed consumed during each FB), and average feed 

bout head down (AVEFBHD: average time that an animal’s head was down while it 

consumed feed during a BV). 

Collection of Carcass Data 

Once all animals reached an average of 7 mm of backfat as measured by 

ultrasound (ExaGo), they were then harvested at a commercial processing facility 

(Hyrum, UT). Commercial carcass data was obtained from the harvesting facility and 

included: hot carcass weight, marbling score, ribeye area, ribeye fat thickness, USDA 

yield grade, and USDA quality grade. 

Blood Collection and Analysis 

Blood samples from the steers was collected on d 0, 5, 10, 20, 30, and 40 after 

initiation of the trial via jugular venipuncture using red top tubes. Blood samples were 

then placed into portable coolers and transported back to the laboratory where they were 

centrifuged at 1,000 x g for 15 mins. Serum was also collected, aliquoted and stored at -

20°C for further analysis. 

 Serum Cortisol  
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Serum was used to evaluate cortisol by ELISA assay MBS2557040 

(MyBioSource, San Diego, CA) to determine the level of stress that the animals 

experienced during transportation. Serum was diluted 10-fold using distilled water. A 

Standard working solution was added to the first two columns of a 96-well plate. Samples 

were then loaded into 2 other wells side by side on the plate. After all cells were loaded 

50 µL of biotinylated detection Ab working solution was added then covered with a plate 

covered and placed in an incubator for 45 min at 37°C. Then each well was decanted and 

washed with 350 µL of wash solution. Each plate was washed three times. Then 100 µL 

of HRP conjugate was added to each well and placed back in the incubator for 30 min at 

37°C. After incubation the plate was washed 5 times with 350 µL of wash solution. Next 

90 µL of substrate reagent was placed in each well and covered and placed back in the 

incubator for 15 min at 37°C. After final incubation 50 µL of stop solution was added to 

each well and were then placed into a Biotek all-in-one microplate reader using Gen 5 2.0 

software (Biotek Instruments, Winooski, VT) set to 450 nm to determine optical density. 

An average of the duplicate readings was then taken and plotted on a four-parameter 

logistic curve. Then the numbers plotted on the curve were then multiplied by 10 and 

reported as ng/mL of cortisol in the blood. 

Immunity to Potential Virus 

Serum was also used to evaluate virus-specific antibody titers by virus 

neutralization assays to determine: onset of immunity, duration of immunity, and max 

antibody response. Viruses that were used to test the blood serum were: BHV, and 

BPIV3, (Tuncer and Yeşilbağ, 2015). Fifteen µl of serum was added to 225 µl of media 

and loaded into the top row of a 96 well plate. 120 µl of media was then be added to the 
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other seven rows. Then, an eight series dilution happened by taking 120 µl from the first 

row and adding it to the second row. Then, 120 µl from the second row was added to the 

third row until all eight rows contained 120 µl of diluted serum. 120 µl from the final row 

was taken out and disregarded. Finally, 120 µl of a pre-dilution of the interested virus 

was added to all eight rows in the 96 well plate except for in the control column. One row 

is used for the control to make sure the cells are growing properly in the plate. Four wells 

in one column are used as a virus control to make sure that the virus is affecting the cells 

correctly. The other four wells in the same column are used for the back-titer which 

checked the dilutions.  The plates were then placed into an incubator on a shaker where 

5% CO2 at 37 °C is applied and set for an hour (Tuncer and Yeşilbağ, 2015). For each 

serum sample, two-parallel columns and 5 rows in a 96-well plate that contained Madin 

Darby Bovine Kidney (MDBK) cells were used (Tuncer and Yeşilbağ, 2015). Each row 

received 100 µl of the mixture of antibody, virus, and media. One column also consisted 

of a back titer, virus control, and also has a control column. The test results were then 

scored with an inverted light microscope after five d of incubation. The highest serum 

dilution with a positive result was recorded as the antibody titer for the tested virus 

(Tuncer and Yeşilbağ, 2015). The log2 of each antibody titer was then calculated and 

reported as the titer response to the vaccine.  

Mineral Liver Analysis 

Liver samples were taken at the same time points as the blood. Liver samples 

were collected with a liver biopsy kit performed by USUs clinical veterinarians. After the 

six collections have been completed, liver samples were then sent to the Iowa State 

University Veterinary Diagnostic Lab and analyzed for Calcium (Ca), Cadmium (Cd), 
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Co, Chromium (Cr), Cu, Fe, Magnesium (Mg), Mn, Mo, Sodium (Na), Phosphorous (P), 

Potassium (K), Se, and Zn using Inductively coupled plasma mass spectrometry (ICP-

MS, Analytik Jena Inc. Woburn, MA, USA) in CRI mode with hydrogen as the skimmer 

gas. Standards for elemental analyses were obtained from Inorganic Ventures 

(Christiansburg, VA) while digestion vessels, trace mineral grade nitric acid and 

hydrochloric acid were obtained from Fisher Scientific (Pittsburgh, PA). Following 

thawing at room temperature, samples were then processed and analyzed following the 

established SOP on a wet weight basis. Briefly, samples were digested in 70% nitric acid 

using a microwave digestor. 0.5 g samples were weighed into a 50 mL digestion tubes 

and 10 mL of 70% nitric acid was added. After digestion, all samples were diluted to 25 

mL using 1% nitric acid with 0.5% hydrochloric acid. An additional 1:10 dilution using 

1% nitric acid is made and then analyzed by ICP-MS. For quality control, Bismuth, 

Scandium, Indium, Lithium, Yttrium, and Terbium were used as internal standards for the 

ICP-MS. 

Statistical Analysis 

The PROC MIXED procedure of SAS version 9.4 (SAS Institute, Inc., Cary, NC) 

was used to estimate the main effects of treatment on feedlot performance, animal 

behavior, carcass data, immunity to a potential virus, and mineral liver status. Steers were 

blocked by initial body weight and initial liver mineral status of Cu, Zn, Se and Mn as 

determined by analysis of a liver biopsy. The pen and individual steer were used as 

random effects in the model. Repeated measures analyses were used to determine the 

effects of treatment, time, and treatment*time for body weight, DI, FE, mineral status, 
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and immune response. A P < 0.05 was considered statistically significant and a P < 0.10 

was considered a trend in the data. 
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CHAPTER IV 

RESULTS 

Serum Cortisol 

After a 5 h transit, cortisol was measured in the serum of all animals. As expected, 

there was no difference (P > 0.05) in cortisol levels assessed on d 0 of the trial between 

animals that received different mineral treatments, table 4. This data indicates even 

though there was no difference between the treatments the steers utilized in this study did 

experience a moderate amount of stress following 5 h of travel. 

Feedlot Performance 

Weight gain over the 110 d feeding period was not altered by treatment (P = 0.12) 

or treatment*time (P = 0.99), Figure 1. However, there was an effect of time (P < 0.0001) 

on weight gain demonstrating that weights increased over time, Figure 1. These data 

indicate that the weight of the steers increased over the 110 d finishing period, but there 

was no effect of treatment or treatment*time, indicating that the different mineral 

supplementation strategies implemented at receiving had no effect of weight gain. 

Average daily gain over the 110 d feeding period was not altered by treatment (P > 0.05), 

treatment*time (P > 0.05), or time (P > 0.05), Table 4. Steers that received the HM 

treatment had an increased (P < 0.05) ADG compared to those receiving the MM 

treatments during d 56 - 69 of the feed trial. These data indicate that different mineral 

supplementation strategies at receiving does not have an effect on overall ADG during 

the finishing period, but ADG was increased in animals receiving the HM treatment 

during specific period of the feedlot phase. Dry matter intake over the 110 d feeding 
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period was affected by treatment (P = 0.03), treatment*time (P < 0.0001), and time (P = 

0.05), Figure 2. Steers receiving the HM treatment had increased (P < 0.05) DMI 

compared to those receiving the Con and AM treatments when analyzed with repeated 

measures. These data indicate that different mineral supplementation strategies at 

receiving impacts DMI during the finishing period. Feed efficiency over the 110 d 

feeding period was not affected by treatment (P > 0.05), Figure 3. However, there was an 

effect of time (P < 0.0001), and treatment*time (P = 0.01) on gain:feed. These data 

indicate that the gain:feed of the steers changes over time while steers are in the feedlot.  

Ultrasound Measurements During the Feedlot Period 
 

There was an effect of treatment (P = 0.0001) and time (P < 0.0001) on backfat 

thickness when assessed by ultrasound during the feedlot period, Figure 4A. However, 

there was no difference in treatment*time (P = 0.99), Figure 4A. Animals receiving the 

HM and Con treatments had increased (P < 0.05) backfat thickness when compared to 

those animals receiving the AM and MM treatments, Figure 4A. Additionally, in the 

initial backfat thickness measurement on d 5, steers receiving the Con treatment had a 

larger (P < 0.05) backfat thickness when compared to animals receiving the MM 

treatment, Figure 4A. There were no differences between steers receiving different in 

another of the other time points analyzed. These data indicate that the backfat thickness 

of the steers increased over the 68 d finishing period and animals receiving the HM and 

Con treatments had increased accretion of backfat when compared to the other two 

treatments. There was an effect of treatment (P = 0.0003) and time (P < 0.0001) on ribeye 

area measured via ultrasound during the feedlot period, Figure 4B. However, there was 

no effect (P > 0.05) of treatment*time, Figure 4B. Steers that received the MM treatment 
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had a decreased (P < 0.05) ribeye size compared to the other three treatments, Figure 4B. 

However, the initial ribeye area measurements on d 5 indicated that MM had the smallest 

ribeye area, Figure 4B. These data indicate that the ribeye area of the steers increased 

over the finishing period and that steers receiving the MM treatment had the smallest 

ribeye size when compared to steers receiving the other treatments, but it is important to 

note that there was a difference from the initial measurement. Carcass data was collected 

by a commercial facility at the time of harvest. There was no difference (P > 0.05) in 

marbling score, ribeye area, backfat thickness, yield grade, or marbling:backfat ratio 

between steers receiving the different mineral treatments, Table 6. There was a tendency 

(P = 0.08) for steers receiving the HM treatment to have an increased hot carcass weight 

when compared to steers receiving the MM treatment, Table 6. These data indicate that 

different mineral supplementation strategies at receiving does not have an effect on 

carcass characteristics of the steers at time of harvest. 

Hepatic Mineral Concentrations 
 

There was an effect of treatment (P < 0.0001), time (P < 0.0001), and 

treatment*time (P < 0.0023) on hepatic Co concentration, Figure 5. Steers that received 

either the AM or HM treatment had increased (P < 0.05) liver Co when compared to the 

Con and MM treated steers, Figure 5. These data indicate that providing oral mineral 

supplementation is the best way to maintain liver Co concentrations in steers.   

Hepatic Cu concentrations were affected by treatment (P < 0.0001), time (P < 

0.0001), and treatment*time (P < 0.0001) Figure 6. Steers that received the HM treatment 

had increased (P < 0.05) liver Cu when compared to animals receiving the other three 

treatments, Figure 6. Furthermore, animals receiving AM and MM treatments had 



32 

 

   

 

increased (P < 0.05) liver Cu when compared to those receiving the Con treatments. 

These data indicate that providing HM levels of mineral supplementation results in the 

largest increase in liver Cu status, but animals receiving AM levels or MM also increase 

liver Cu status when compared to animals not receiving any mineral supplementation. 

There was not an effect of treatment (P = 0.31) or treatment*time (P = 0.56) on hepatic 

Mn concentrations, Figure 7. However, there was an effect of time (P = 0.01), Figure 7. 

These data indicate that even though steers received different mineral supplementation 

strategies, there was a decrease in liver Mn status from the initial sampling time, but 

treatment had no effect on this change. Hepatic Se concentrations were affected by 

treatment (P < 0.001) and treatment*time (P < 0.001), but there was no effect of time (P 

> 0.05), Figure 8. Steers that received the MM treatment had Se levels that were 

increased (P < 0.05) when compared to the other treatments at 5 and 10 d after initiation 

of treatment, Figure 8. At 20 d after treatment, there was no difference (P > 0.05) 

between steers receiving the MM and HM treatments, but animals receiving these 

treatments were increased (P < 0.05) when compared to those receiving the Con 

treatment, Figure 8. At 30 and 40 d post initiation of treatment, steers that received the 

HM treatment had increased (P < 0.05) liver Se when compared to the other three 

treatments, Figure 8. However, during this time frame, steers that received the MM or 

AM treatment still had increased (P < 0.05) liver Se compared to those receiving the Con 

treatment. These data indicate that providing MM at receiving results in a large initial 

increase in liver Se at 5 and 10 d after treatment when compared to the other treatments, 

but provision of oral minerals at HM levels results in increased liver Se at 30 and 40 d 

after initiation of the treatments when compared to steers receiving the other treatments. 
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There was not an effect of treatment (P = 0.14) or treatment*time (P = 0.82) on hepatic 

Zn concentrations, Figure 9. However, there was an effect of time (P = 0.0001), Figure 9. 

These data indicate that over time hepatic Zn increases 5 and 10 d after entering the 

feedlot and then it decreased on d 20, 30 and 40. However, levels of Zn in the liver were 

not altered by treatment.  

Feeding Behavior 
 

The number of bunk visits and feed bouts was affected by treatment (P < 0.0001), 

time (P < 0.0001), and treatment*time (P < 0.0001), Figure 10. As the feedlot trial 

progressed, the number of bunk visits and feed bouts decreased (P < 0.05), Figure 10. 

Steers that received the HM mineral treatment had an increase (P < 0.05) in number of 

bunk visits and feed bouts when compared to steers receiving the other three treatments, 

Figure 10. Specifically, steers receiving the HM treatment had significantly higher 

number of (P < 0.05) bunk visits and feed bouts from d 14-28 and d 29-41 of the feedlot 

trial. However, after this time, there was no difference (P > 0.05) in bunk visits between 

animals receiving the different treatments. These data indicate that providing oral mineral 

supplementation at HM increases the number of bunk visits and feed bouts early in the 

feedlot period, but there is no difference in bunk visits or feed bouts between the different 

treatments after 41 d in the feedlot. Average consumption at each bunk visit and feed 

bout were both affected by treatment (P < 0.05) and time (P < 0.001), but there was no 

effect of treatment*time (P > 0.05), Figure 11. As the feedlot trial progresses, animals 

consumed  more (P < 0.05) during each feed bout and bunk visit, Figure 11. Steers that 

received the HM mineral treatment had decreased (P < 0.05) consumption at each bunk 

visit and feed bout when compared to steers receiving the other three treatments, Figure 
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11. These data indicate that mineral supplementation strategy at receiving has an effect 

on the amount consumed at each bunk visit and feed bout such that steers receiving HM 

consume less than the other three treatments at each bunk visit or feed bout. The average 

time that animals spent with their head down at each bunk visit and feed bout was 

affected by treatment (P = 0.002) and time (P < 0.001), however there was no effect of 

treatment*time (P > 0.05), Figure 12. Steers that received the HM treatment spent less (P 

< 0.05) time with their head during both bunk visits and feed bouts when compared to 

steers that received the other three treatments. Over time, the average time that steers 

spend with their head down at each bunk visit and feed bout decreased (P < 0.05) during 

the feedlot period. These data indicate that as time progresses, animals spend less time 

with their head down while at the feed bunk and mineral treatment effects the average 

time that animals spend with their head down while at the bunk. The average amount of 

time that each steer spent at the bunk during each bunk visit and feed bout was affected 

by treatment (P < 0.01) and time (P < 0.001), but there was no effect of treatment*time (P 

> 0.05), Figure 13. As time went on, the amount of time that animals spent during each 

bunk visit and feed bout decreased (P < 0.05), Figure 13. Steers that received the HM 

treatment spent more (P < 0.05) time during each bunk visit and feed bout from d 14-28 

and 29-41 when compared to the other three treatments, Figure 13. There was no 

difference between animals receiving the different treatments after d 41 of the trial. 

Taken together, these data demonstrate that as time progresses animals spend less time, 

on average, during each feed bout and bunk visit and that in the beginning of the feedlot 

phase, animals that receive more mineral orally will spend more time at the bunk during 

each feed bout and bunk visit.  
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Virus Neutralization Assays 
 

The average virus neutralization antibody titer for BPIV3 was affected by time (P 

< 0.01), Figure 14. However, there was no effect of treatment (P > 0.05) or 

treatment*time (P > 0.05), Figure 14. As time went on the amount of antibodies found 

increased (P < 0.05) up until d 10 and then decreased as the trial period progressed. These 

data indicate that even though steers received different mineral supplementation 

strategies, there was no difference in amount of antibodies to BPIV3 found in the blood 

of the steers. The average virus neutralization antibody titer for BHV was affected by 

time (P < 0.01), Figure 15. However, there was no effect of treatment (P > 0.05) or 

treatment*time (P > 0.05), Figure 15. As time went on the amount of antibodies found 

increased up until d 20 and then decreased after that time. These data indicate that even 

though steers received different mineral supplementation strategies, there was no 

difference in amount of antibodies to BHV found in the blood of the steers. None of the 

animals during the trial were treated for sickness indicating that there was no effect of 

treatment on development of sickness. 
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CHAPTER V 

DISCUSSION  

 Trace minerals are essential in immune response, health, and performance of 

cattle (Galyean et al., 1999; Underwood and Suttle, 1999). Morbidity and mortality 

resulting from BRD in feedlot cattle continues to be one of the most substantial health 

problems facing the beef cattle industry (Duff and Galyean, 2007). Cattle that are mineral 

deficient are considered at-risk due to the effects on immune response, making them 

more susceptible to development of BRD and other diseases (McGill and Sacco, 2020). 

Bovine respiratory syndrome has been shown to result in a negative impact on economics 

(Duff and Galyean, 2007), health performance (Hutcheson and Cole, 1986), and immune 

response (Underwood and Suttle, 1999) of feedlot cattle. Improving mineral status of 

receiving cattle may help decrease occurrence of BRD. In the present study we 

investigated the effects of different TM supplementation strategies at receiving on 

performance, carcass quality, and immunity to a potential virus of mineral deficient 

feedlot cattle in order to determine best practices that producers can follow.  

Cattle in the United States average 7 h transport time to the feedlot (Cernicchiaro 

et al., 2012). The cattle in the present study were transported 5 h and experienced a 

moderate amount of stress. Mean baseline cortisol measurements for beef cattle are 

typically less than 10 ng/mL (Mormède et al., 2007). Grandin, et al. (1997) reported that 

cortisol measurements >70 ng/mL could be a good indicator of a stressful event. Previous 

studies have shown that stress-induced increases in glucocorticoid concentrations due to 

transportation have increased number of animals with shipping fever and decreased 

feedlot performance (Mormede et al., 1982). Mormede (1982) reported levels changed 
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from 1.72 ng/mL prior to transport to 17.98 ng/mL one week after calves arrived at a 

fattening unit. In the current study the animals experienced a moderate amount of stress 

as cortisol levels averaged around 35 ng/mL following transportation. This level of stress 

is typical of what receiving cattle would experience during transportation to the feedlot. 

In the present study, we found that feeding varying levels of minerals or providing 

an injectable TM supplement did not have an effect on BW, ADG or G:F of the steers 

when compared to the control steers. However, DMI was increased in the HM steers 

when compared to steers receiving the AM and CON treatments. Niedermayer et al. 

(2017) reported that there were no differences in BW, ADG, or G:F when administering 

an injectable TM supplement or a sterilized saline injection to certified natural angus 

steers. Previous research has demonstrated that varying levels of Mn (10, 20, 30, 120, or 

240 mg of DM) in the diet had no effect on steer performance (Legleiter et al., 2005). 

Ahola et al. (2005) reported that growth responses from dietary TM supplementation or 

injection are more evident in cattle that are mildly or severely deficient (Ahola et al., 

2005). The cattle utilized in the present study were only mildly deficient as evidenced by 

their starting liver mineral concentrations. Nunnery et al. (1996) reported steers that were 

supplemented with ZnSO4 had increased gain compared to steers supplemented with zinc 

methionine, but feed efficiency and feed intake were unaffected by the different 

treatments. Spears (1995) indicated that supplementing zinc above recommended 

requirements did not have a significant impact on gain, intake, or feed efficiency of 

growing and finishing beef cattle. Gaylean et al. (1995) analyzed the effects of dietary Zn 

and supplemental Cu on performance and health during the receiving, growing, and 

finishing phase. Neither source nor concentration of Zn had an effect on performance 
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during the three phases (Galyean et al., 1995). Martin et al. (1987) also reported the 

effects of zinc methionine on performance and no differences in ADG, DMI or feed 

efficiency were observed (Martin et al., 1987). Several other studies also demonstrate that 

TM supplementation has no impact on feedlot performance (Greene, 1988; Rust and 

Schlegel, 1993; Malcolm, 2000). Engle and Spears (2000a) found that feedlot 

performance of sixty Angus and twenty-four Angus/Hereford cross steers was not 

affected by Cu levels during the growing phase, and feed intake and feed efficiency were 

reduced. Additionally, Rust and Schlegel (1993) reported that Zn supplementation in 

finishing cattle resulted in increased ADG. Another study found that as dietary Zn 

concentration increase, DMI decreases (Malcolm-Callis, 2000). Similar to the present 

study, Niedermayer et al. (2017) also reported seeing an increase in DMI with steers 

receiving an injectable TM during d 56 – 124 and overall DMI (Niedermayer et al., 

2017). Neidermayer et al. (2017) hypothesized the increased DMI is due to 

supplementation of vitamin B12 and its role in propionate production (Allen et al., 2009). 

In the current study, the increase in DMI could be related to the effects that oral 

supplementation of minerals may have on feeding behavior. Generally, the results of the 

present study match those in existing literature and demonstrate that animals that are 

experiencing a mild mineral deficiency do not exhibit increased feedlot performance with 

mineral supplementation when compared to those animals that do not receive TM 

supplementation. To date, there have been relatively few studies that have analyzed the 

effects of changing the level/method of all TM on feedlot performance. As such, more 

research needs to be completed to determine how providing different levels of TM 
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impacts feedlot performance when compared to animals that do not receive TM 

supplementation. 

The results of the present study and others demonstrate that administering an 

injectable TM does initially increase liver Cu concentration but is only effective over a 

short period of time. However, providing TM supplementation at increased levels than 

are provided by the NRC results in improved liver Cu more long term. Prior research has 

found that provision of an injectable TM was an effective way to increase liver Cu 

concentrations within 15 d of the injection (Pogge et al., 2012). Several other studies 

have also demonstrated that injectable TM are an effective way to increase liver Cu 

concentrations (Daugherty et al., 2002; Kurz, 2004). Similar to the present study, Engle 

and Spears (2000a) reported that after d 56 of the growing phase and through the rest of 

the finishing phase, steers that received 20 or 40 mg of Cu/kg DM of Cu supplementation 

had increased concentrations than those not supplemented with Cu (Engle and Spears, 

2000a). In the current research we can see that as Cu levels are fed closer to levels 

provided by industry professionals, there is an increase in liver Cu concentration. 

Additional research needs to be completed to better understand how different mineral 

supplementation strategies impact liver Cu and which strategy is the best for receiving 

cattle that are known to be mineral deficient.  

In the present study steers that received a MM injection initially had increased 

liver Se concentrations when compared to steers in the other treatment groups. However, 

after 30 d in the feedlot, cattle receiving the HM treatment had increased liver Se when 

compared to the other treatments. Consistent with previous work, the steers that received 

an injectable TM had increased liver Se concentrations compared to the other treatments 
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shortly after receiving the injection (Pogge et al., 2012; Genther and Hansen, 2014). 

Other studies have also found that although injectable TMs can be an effective method to 

increase liver mineral status, the effective period is less than 45 d (Genther and Hansen, 

2014; Maas et al., 1994). In addition, Richards et al. (2011) reported that by providing 

0.34 mg of Se/kg DM for 130 d resulted in increased liver concentrations of Se when 

compared to steers not receiving any added supplementation. The results of this study and 

previous studies demonstrate that administering an injectable TM does initially increase 

liver Se concentration but is only effective over a relatively short period of time. 

However, providing oral TM supplementation at increased  levels that are provided by 

the NRC results in improved liver Se more long term. In the current research we can see 

that when Se levels are fed closer to levels that are used by industry professionals, there 

is an increase in liver Se concentration. Additional research needs to be completed to 

better understand how different mineral supplementation strategies impact liver Se and 

which strategy is the best for receiving cattle that are known to be mineral deficient. 

 The results of the present study demonstrate that feeding varying levels of 

minerals does not affect liver Mn concentration. Underwood and Suttle (1999) reported 

that supplying a diet that is high in Mn results in only slight differences in liver Mn 

concentration (Underwood and Suttle, 1999). This could be due to the fact that the liver 

does not have a long-term space for storing Mn, which is why it can be difficult to 

accurately measure in cattle (Hidiroglou, 1979). Bentley and Phillips (1951) reported that 

feeding dairy cows different levels of Mn (40, 60, 100, 350, and 550 ppm) for more than 

three years did not affect liver Mn concentration. Prior research that was completed with 

sheep, has also reported that Mn concentrations were not affected by supplementation of 
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Mn (Watson et al., 1973; Masters et al., 1988).  In contrast, several other studies have 

reported that liver Mn concentration increase as dietary Mn increases (Howes and Dyer, 

1971; Ivan and Hidiroglou, 1980). Additional research needs to be completed to better 

understand how different mineral supplementation strategies impact liver Mn and how 

producers should provide Mn to cattle that are mineral deficient. 

The results of the present study demonstrate that feeding varying levels of 

minerals does not affect liver Zn concentration. Olson et al. (1999) reported that there 

was no difference in Zn concentrations in the liver from newly weaned calves 

supplemented with organic or inorganic minerals. Spierenburg et al. (1988) reported that 

Zn levels in cattle was not affected when cattle were located within a 20 km radius of at 

least one zinc refinery plant. Nunnery et al. (1998) analyzed steers supplemented with 

either a Zn sulfate or Zn methionine at varying concentrations (5, 35, 95, 215, and 455 

mg Zn/kg) and found that neither amount nor source had no effect on Zn liver 

concentration in the animals. These findings are similar to that of Rojas et al. (1996), who 

found that providing 360 mg/d to cattle provided no difference in Zn liver concentrations. 

However, Ott et al. (1966) reported that Zn liver concentrations increased as levels of 

dietary Zn increased. Additional research needs to be completed to better understand how 

different mineral supplementation strategies impact liver Zn and which strategy is the 

best for receiving cattle that are known to be mineral deficient.  

  In the present study feeding varying levels of minerals or providing an injectable 

TM supplement did not impact carcass characteristics when compared to control steers. 

Similar to the present study, other studies have shown that feeding varying levels of 

minerals has no effect on carcass quality of feedlot steers (Caldera et al., 2017; Rhoads et 
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al., 2003). Although very few studies have looked at the impacts of providing varying 

levels of all TM, many studies have analyzed how provision of specific TM impact 

carcass quality. In a survey of feedlot consultants, it was found that feeding excess 

concentrations of Zn was a common practice as it is thought to improve carcass quality, 

and increase growth rates of cattle (Galyean, 1996). However, several studies have 

demonstrated that supplementing growing and finishing cattle zinc at varying levels had 

no impact on carcass characteristics (Pringle et al.,1973; Spears and Samsell, 1984). In a 

different study completed with finishing and growing cattle, supplementation of Zn 

resulted in an increase in marbling score and REA when compared to steers that were not 

supplemented (Spears and Kegley, 2002). Genther et al. (2014) reported that steers that 

were administered a TM injection had an increase in marbling score and quality grade, 

and a decrease in yield grade, KPH, and BF. Additionally, increasing supplemental Mn 

and Se in finishing steers had no impact on carcass characteristics, similar to the findings 

of the present study (Legleiter et al., 2005; Lawler et al., 2004). Providing supplemental 

Cu is thought to impact the metabolization of lipids, which has been linked to an increase 

in REA (Ward and Spears, 1997; Engle and Spears, 2000b; Engle et al., 2000). Malcolm-

Callis et al. (2000) found that feeding Zn at varying levels to feedlot steers had no effect 

on HCW, dressing percent, longissimus muscle area, marbling or yield grade. It has also 

been observed that carcass traits were similar between feedlot steers fed varying amounts 

of supplemental Mn (Nunnery et al., 1996). Generally, the results of the present study 

match those in existing literature and demonstrate that providing varying levels of TM 

has no impact on carcass characteristics. However, more research needs to be completed 

on specific minerals at varying concentrations to better understand how TM 
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supplementation may impact carcass characteristics when compared to those animals that 

do not receive TM supplementation.    

In the present study we found steers that were fed the HM treatment had an 

increase in feed bouts and bunk visits during the first half of the 110 d trial. When 

comparing the amount consumed at each feed bout/bunk visit, the HM treatment 

consumed the least when compared to the other treatment groups. They also had their 

head down the least amount of time when visiting the bunk at each feed bout/bunk visit 

when compared to the other treatments. The HM treatment also spent the longest time at 

the bunk during the first half of the feed trial. Taken together, these results demonstrate 

that proving TM supplementation at HM causes animals to go up to the feed bunk more 

often, but consume less feed each time that are there.  One explanation for this result 

might be that during each feed bout/bunk visit during the first half of the trial animals 

were receiving more oral mineral supplementation in a powder form and this impacted 

their feeding behavior. To our knowledge, no previous research has analyzed how 

provision of TM impacts feeding behavior of feedlot cattle. More research needs to be 

completed on specific minerals at varying concentrations to better understand how TM 

supplementation may impact feeding behavior when compared to those animals that do 

not receive TM supplementation and which strategy is the best for receiving cattle that 

are known to be mineral deficient. 

Many viruses can contribute to the development of BRD in feedlot animals such 

as BRSV, BVDV, BHV and BPIV3. The steers in the current study were not inoculated 

with any virus that contribute to the development of BRD. This could be why we did not 

see a significant difference in vaccine response. In the present study BHV and BPIV3 
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were assessed by analyzing virus neutralization antibodies. It was found that feeding 

varying levels of TM or providing an injectable TM supplement did not affect the 

antibody titer for BPIV3 or BHV. To our knowledge, no previous research has analyzed 

how provision of varying levels of TM impacts immunity to a potential virus. However, 

the TM Zn, Cu, and Se (and to some extent Mn and Co) are known to be involved in the 

immune response of cattle (Underwood, 1971; McDowell, 1992; Galyean et al., 1999; 

Spears, 2000; Goswami et al., 2005). Additionally, several studies have analyzed the 

effects of supplementing specific TM on measures of immunity. Chirase et al. (1991) 

found that crossbred steers that were supplemented with dietary Zn at 90 ppm had an 

enhanced recovery rate of infectious bovine rhinotracheitis (IBRV) stressed cattle. 

Galyean et al. (1995) reported a tendency for decreased morbidity in newly weaned 

calves that were supplemented with 70 mg Zn/kg DM than with a diet that contains 35 

mg of Zn/kg DM. Copper deficiency has been reported to result in a decrease in humoral, 

cell-mediated and non-specific immune function (Stabel and Spears, 1989). Dorton et al. 

(2003) conducted an experiment with 48 purebred angus steers and fed varying levels of 

Cu (10 mg Cu/kg DM of Cu sulfate, 10 mg Cu/kg Dm from a Cu-amino acid group, 20 

mg Cu/kg Dm from CuSO4, and 20 mg Cu/kg DM from Availa Cu) and saw that 

antibody responses tended to be enhanced by Cu supplementation (either 10 or 20 mg 

Cu/kg DM when compared to the control). Reffett et al. (1988) observed that Se deficient 

calves that received 0.03 mg Se/kg DM had a reduced humoral immune response after 

being challenged with IBRV on d 0 and 35 of the 70 d period when compared to calves 

that received 0.02 mg Se/kg of DM. However, Dorton et al. (2006) reported that 375 

steers were supplemented with 125 mg of Cu, 360 mg Zn, 200 mg of Mn, and 12.5 mg of 
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Co from one of two sources (sulfates or amino acid complexes) for 30 d of on-farm 

backgrounding and a 28 d feedlot receiving period and found no differences in morbidity 

or mortality rates. Ryan et al. (2015) also reported no effects of source of TM (Zn, Cu, 

and Mn from sulfates, organic amino acid complexes, or hydroxyl sources) on morbidity 

during the receiving period. Generally, the results of the present study match those in 

existing literature and demonstrate that feeding varying levels of TM or providing an 

injectable TM does not have an impact on overall cattle health. However, more research 

needs to be completed on specific minerals at varying concentrations and on other viruses 

that contribute to BRD to better understand how TM supplementation may impact 

immune response when compared to those animals that do not receive TM. 
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CHAPTER VI 

CONCLUSION 

 The objectives of this study are to determine how different mineral 

supplementation strategies impact feedlot performance, concentration of minerals in the 

liver, immunity to potential virus exposure and carcass quality in mineral deficient 

receiving cattle. Weight gains of steers did not differ between the different treatments. 

Results from the present study also indicate that ADG, DMI, and FE were unaffected by 

the varying levels of minerals supplemented. However, liver Cu and Se were commonly 

higher in steers fed the HM when compared to the other treatments. Liver Mn and Zn 

were unaffected by the different treatments. The data in the present study show that 

immune response to a potential virus was not affected. To our knowledge no previous 

research has looked into immune response to a potential virus with supplementing 

varying levels of TM. More research is needed to explore how TM effect immunity. 

Carcass quality was also not affected by feeding varying levels of minerals. By feeding 

increased levels of minerals, hepatic Cu and Se concentrations increased. However, more 

research is needed to determine the effects that varying levels have on cattle performance, 

health and carcass quality. 
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Table 1. Composition and chemical analysis 

(DM basis) of the finishing ration 

Item         

Ingredient, % DM  SEM1  
   Alfalfa Hay 10.7   
   Corn Silage 17.9   
   Barley  71.4   
Chemical Analysis    
   DM, % as fed 79 0.27  
   CP, %  13.1 0.09  
   Fat, %  2.19 0.02  
   Ash, %  6.59 0.06  
   Nem, Mcal/lb 0.82 0.003  
   Neg, Mcal/lb 0.54 0.003  
   TDN, %  77.22 0.25  
Mineral composition    
   Calcium, % 0.3 0.01  
   Phosphorous, % 0.32 0.003  
   Magnesium, % 0.18 0.004  
   Potassium, % 0.97 0.02  
   Sodium, % 0.04 0.002  
   Iron, ppm 124 28.42  
   Manganese, ppm 43 2.77  
   Zinc, ppm 49 1.95  
   Copper, ppm 12 0.63  
   Selenium, ppm 0.14 0.01   
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Table 2. Composition of mineral mix 

(DM basis) added to ration1 

Item       

Ingredient, %DM  
Calcium, % 5.81 

Chlorine, % 0.11 

Magnesium. % 1.47 

Sulphur, % 0.11 

Cobalt, ppm 178.76 

Copper, ppm 7,156.28 

Copper, ppm (chelate) 1,788.69 

Iodine, ppm 463.70 

EDDI, mg/lb 262.36 

Manganese, ppm 17,075.81 

Manganese, ppm 

(chelate) 4,268.95 

Selenium, ppm 142.30 

Selenium, ppm (chelate) 46.90 

Zinc, ppm 23,881.04 

Zinc, ppm (chelate) 5,970.07 

Vit A, KIU/lb 540.32 

Vit D, KIU/lb 129.47 

Vit D-3, KICU/ lb 129.47 

Vit E, IU/lb     5,174.52 
1Mineral was fed at 182.2 g to HM group (n = 10) and  

91.1 g to AM group ( n = 10). 
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Table 3. Comparison of trace mineral content between treatments and 

NRC requirements 

  NRC req. MM1 AM1 HM1 

Cobalt, mg/kg 0.15 - 96.48% 180.81% 

Copper, mg/kg 10 150% 73.66% 138.03% 

Iodine, mg/kg 0.5 - 119.59% 224% 

Manganese, ppm 20 50% 87.89% 164.68% 

Selenium, mg/kg 0.1 5000% 155.81% 291.94% 

Zinc, mg/kg 30 200% 81.94% 153.54% 
1These are the amount of each mineral found in the supplement relative to NRC requirements. 
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Table 4. Average cortisol level of steers after travel    

   Treatment1 SEM3 P-value2 

      AM CON HM MM     

Cortisol, ng/mL 34.385 35.591 35.465 35.277 3.430 0.99 
1Treatments include:  a diet containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above NRC requirements 

(HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or no mineral supplementation (CON; n 

= 10) for the first 40 d of the trial. 
2P-values indicate effect of treatment. 
3Standard error of the mean (SEM). 
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Table 5. Average daily gain of steers during the feedlot phase   

  Treatment1,2 SEM4 P-value3 

    AM CON HM MM     

Average daily gain, kg      
   Days 0-13 2.5 2.53 2.81 2.97 0.27 0.55 

   Days 14-27 1.84 2.22 1.8 1.56 0.26 0.37 

   Days 28-40 1.8 2.03 2.19 0.71 0.46 0.12 

   Days 41-55 1.98 1.017 1.12 2.32 0.47 0.16 

   Days 56 - 69 0.82ab 1.72ab 3.05b 0.34a 0.46 0.05 

   Days 70 - 83 2.13 1.29 1.435 2.53 0.44 0.17 

   Days 84-109 1.29 1.45 2.06 1.41 0.26 0.18 

   Days 0-109 1.7 1.72 1.94 1.65 0.10 0.18 
1Treatments include: a diet containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above NRC requirements 

(HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or no mineral supplementation (CON; n 

= 10) for the first 40 d of the trial. 
2Values with different letter superscripts indicate differences (P < 0.05) between treatments within that row. 
3P-values indicate effect of treatment. 
4Standard error of the mean (SEM). 
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Table 6. Carcass Data     

 Treatment1 SEM3 P-value2 

  AM CON HM MM     

HCW, kg 333.4 333.5 338.5 327.1 17.2 0.08 

Marbling Score 410.9 424.2 551.2 405.7 24.9 0.75 

Ribeye Area, cm20 73.6 75.4 74.6 73.0 2.1 0.88 

Ribeye fat thickness, mm 7.62 7.44 7.65 7.14 0.25 0.50 

Yield grade 2.3 2.3 2.3 2.1 0.16 0.76 

Marb:BF ratio4 -0.33 0.10 0.10 0.12 0.32 0.72 
1Treatments include: a diet containing oral supplementation of minerals provided at levels similar 

to NRC requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or no 

mineral supplementation (CON; n = 10). for the first 40 d of the trial. 
2P-Values indicate differences between treatments. 
3Standard error of the mean (SEM). 
4Marbling to backfat ratio was determined using the calculations previously described by 

Mohrhauser et al., 2015a. [(observation marbling score- marbling score x̄)/marbling SD]- 

[(observation backfat- backfat x̄)/backfat SD] 
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Figure 1. Average weight gain over 110 d finishing period in steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Values are 

represented as the least squares mean ± SEM.  P-values of repeated measure analysis for 

the fixed effects of treatment, time and their interaction are indicated in the top left corner 

of the graph.   
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Figure 2. Average dry matter intake (DMI) over 110 d finishing period in steers receiving 

a diet containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Values are 

represented as the least squares mean ± SEM.  P-values of repeated measure analysis for 

the fixed effects of treatment, time and their interaction are indicated in the top left corner 

of the graph. Time points with different letters indicate a difference (P < 0.05) between 

the different treatments at that specific time point.    
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Figure 3. Average gain:feed ratio over 110 d finishing period in steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Values are 

represented as the least squares mean ± SEM.  P-values of repeated measure analysis for 

the fixed effects of treatment, time and their interaction are indicated in the top left corner 

of the graph.   
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Figure 4. Mean backfat thickness (A) and ribeye area (B) of finishing steers as measured 

by ultrasound over the 110 d finishing period in steers receiving a diet containing oral 

supplementation of minerals provided at levels similar to NRC requirements (AM; n = 

10), oral supplementation of minerals provided at levels above NRC requirements (HM; 

n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or no mineral 

supplementation (CON; n = 10) for the first 40 d of the trial. Values are represented as 

the least squares mean ± SEM. P-values of repeated measure analysis for the fixed effects 

of treatment, time and their interaction are indicated in the top left corner 

of each graph. Time points with different letters indicate a difference (P < 0.05) between 

the different treatments at that specific time point.    
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Figure 5. Mean hepatic cobalt (Co) concentrations of finishing steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Any value below 

the bold black line is indicative of a clinical deficiency. Values are represented as 

least squares mean ± SEM. P-values of repeated measure analysis for the fixed effects 

of treatment, time and their interaction are indicated in the top left corner of the 

graph. Time points with different letters indicate a difference (P < 0.05) between the 

different treatments at that specific time point.    
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Figure 6. Mean hepatic copper (Cu) concentrations of finishing steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Any value below 

the bold black line is indicative of a clinical deficiency. Values are represented as 

least squares mean ± SEM. P-values of repeated measure analysis for the fixed effects 

of treatment, time and their interaction are indicated in the top left corner of the 

graph. Time points with different letters indicate a difference (P < 0.05) between the 

different treatments at that specific time point.    
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Figure 7. Mean hepatic manganese (Mn) concentrations of finishing steers receiving a 

diet containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Any value below 

the bold black line is indicative of a clinical deficiency. Values are represented as 

least squares mean ± SEM. P-values of repeated measure analysis for the fixed effects 

of treatment, time and their interaction are indicated in the top left corner of the graph.     
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Figure 8. Mean hepatic selenium (Se) concentrations of finishing steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Any value below 

the bold black line is indicative of a clinical deficiency. Values are represented as 

least squares mean ± SEM. P-values of repeated measure analysis for the fixed effects 

of treatment, time and their interaction are indicated in the top left corner of the 

graph. Time points with different letters indicate a difference (P < 0.05) between the 

different treatments at that specific time point.    
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Figure 9. Mean hepatic zinc (Zn) concentrations of finishing steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Any value below 

the bold black line is indicative of a clinical deficiency. Values are represented as 

least squares mean ± SEM. P-values of repeated measure analysis for the fixed effects 

of treatment, time and their interaction are indicated in the bottom left corner of the 

graph.   
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Figure 10. Average time each animal went up to the bunk defined as mean bunk 

visit (reading of a single animal eid tag when entering at a bunk whether it consumed feed 

or not, A) and feed bout (reading of a single animal eid tag when entering a bunk and 

consumed at least 10 g of feed, B) over 110 d finishing period in steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Values are 

represented as least squares mean ± SEM. P-values of repeated measure analysis for the 

fixed effects of treatment, time and their interaction are indicated in the top right corner of 

the graph. Time points with different letters indicate a difference (P < 0.05) between the 

different treatments at that specific time point.    
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Figure 11. Average amount consumed each time the animal goes to the bunk measured 

as mean consumption per bunk visit (each time an animal went up to the bunk, A) and 

consumption per feed bout (when an animal entered a bunk and consumed at least 10 g of 

feed, B) over 110 d finishing period in steers receiving a diet containing oral 

supplementation of minerals provided at levels similar to NRC requirements (AM; n = 

10), oral supplementation of minerals provided at levels above NRC requirements (HM; 

n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or no mineral 

supplementation (CON; n = 10) for the first 40 d of the trial. Values are represented as 

least squares mean ± SEM. P-values of repeated measure analysis for the fixed effects 

of treatment, time and their interaction are indicated in the top left corner of the 

graph. Time points with different letters indicate a difference (P < 0.05) between the 

different treatments at that specific time point.    
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Figure 12. Mean time spent with head down per bunk visit (each time an animal went up 

to the bunk, A) and time spent with head down per feed bout (when an animal entered a 

bunk and consumed at least 10 g of feed, B ) over 110 d finishing period in steers 

receiving a diet containing oral supplementation of minerals provided at levels similar to 

NRC requirements (AM; n = 10), oral supplementation of minerals provided at levels 

above NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 

10) or no mineral supplementation (CON; n = 10) for the first 40 d of the trial.  Values 

are represented as least squares mean ± SEM.  P-values of repeated measure analysis for 

the fixed effects of treatment, time and their interaction are indicated in the bottom left of 

the graph.  
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Figure 13. Mean bunk visit duration (each time an animal went up to the bunk, A) (when 

an animal entered a bunk and consumed at least 10 g of feed, B) over 110 d finishing 

period in steers receiving a diet containing oral supplementation of minerals provided at 

levels similar to NRC requirements (AM; n = 10), oral supplementation of minerals 

provided at levels above NRC requirements (HM; n = 10), a MultiMin® injection at 

labeled dose (MM; n = 10) or no mineral supplementation (CON; n = 10) for the first 40 

d of the trial. Values are represented as least squares mean ± SEM. P-values of repeated 

measure analysis for the fixed effects of treatment, time and their interaction are indicated 

in the top middle of the graph. Time points with different letters indicate a difference. 
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Figure 14. Average antibody titers for BPIV3 of finishing steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Values are 

represented as least squares mean ± SEM. P-values of repeated measure analysis for the 

fixed effects of treatment, time and their interaction are indicated in the top left corner of 

the graph.     
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Figure 15. Average antibody titers for BHV of finishing steers receiving a diet 

containing oral supplementation of minerals provided at levels similar to NRC 

requirements (AM; n = 10), oral supplementation of minerals provided at levels above 

NRC requirements (HM; n = 10), a MultiMin® injection at labeled dose (MM; n = 10) or 

no mineral supplementation (CON; n = 10) for the first 40 d of the trial. Values are 

represented as least squares mean ± SEM. P-values of repeated measure analysis for the 

fixed effects of treatment, time and their interaction are indicated in the top left corner of 

the graph.     
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