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ABSTRACT 

Mechanisms of Overyielding and Coexistence in Diverse Tallgrass Prairie Communities 

 
by 

Leslie E. Forero, Doctor of Philosophy 

Utah State University, 2021 

Major Professor: Dr. Andrew Kulmatiski 
Department: Wildland Resources 

Despite extensive research, the biodiversity paradox (the tendency of species to 

coexist despite competition) remains a central ecological enquiry. Coexistence at 

increasingly high diversity is associated with ecological benefits, including a saturating 

increase in aboveground biomass produced. Despite decades of research, the mechanisms 

driving this relationship, known as the biodiversity-productivity relationship, remain 

unexplained. Spatiotemporal partitioning of resources is a commonly invoked mechanism 

explaining coexistence and the overyielding associated with the biodiversity-productivity 

relationship. However, recent research suggests that soil pathogens and soil symbionts 

may be key players in the biodiversity-productivity relationship, making interactions 

between plants and soil biota, or plant-soil feedbacks (PSFs), a key area of interest when 

studying coexistence and productivity. 

Our experimentation on the role of PSFs in the biodiversity-productivity 

relationship in greenhouse conditions found that PSFs improved predictions of biomass 

production by 9% and accounted for 23% of overyielding due to complementarity. 
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However, the results from our research on the applicability of greenhouse PSF to field-

observed community data call the utility of this research into question. We found no 

significant correlation between greenhouse- and field-measured PSF at the soil, site, or 

species level. Thus, field experimentation is needed to understand the biodiversity-

productivity relationship as observed in the field. When greenhouse experiments on PSFs 

in the biodiversity-productivity relationship were replicated in the field, we found PSF-

informed models were 5% more accurate in predicting the variation in productivity than 

Null models, but PSFs could only explain 9% of overyielding due to complementarity. 

This implies that PSFs play a weak role in the biodiversity-productivity relationship in 

the field. An investigation of vertical niche partitioning in the same system found that 

nitrogen and water uptake profiles when adjusted by water-use and nitrogen-use 

efficiencies were correlated with species productivity on the landscape. This suggest that 

niche partitioning plays an important role in species growth and productivity in multi-

species communities. However, further research on niche partitioning’s role in the 

biodiversity-productivity relationship, and on how mechanisms of overyielding interact, 

will be needed to fully understand the biodiversity-productivity relationship. 

(196 pages) 

  



v 
 

PUBLIC ABSTRACT 

Mechanisms of Overyielding and Coexistence in Diverse Tallgrass Prairie Communities 

Leslie E. Forero 

Plants compete for the same basic nutrient and water resources. According to the 

competitive exclusion principle, when a substantial overlap in resource pools exists, the 

best competitor for resources should drive all other species to extinction. The ability for 

plants to coexist in violation of the competitive exclusion principle is the “biodiversity 

paradox”. Coexistence is actually beneficial for plants: as species diversity increases, you 

typically see increases in plant biomass production (known as the biodiversity-

productivity relationship). The mechanisms behind coexistence and the biodiversity-

productivity relationship remain an ecological mystery. One hypothesis is that plants 

obtain water and nutrients from different places in the soil, which reduces competition 

and results in plants coexisting and thriving by exploiting more spaces in the soil. 

Another hypothesis is that plants alter the soil in which they grow to their own detriment 

by accumulating species-specific soil pathogens or reducing soil nutrient levels. These 

plant-altered soils reduce the growth of species that are becoming too dominant in a plant 

community, creating a plant-soil feedback (PSF) effect that maintains biodiversity and 

increases productivity. I explored the role of PSFs and niche partitioning in coexistence 

and the biodiversity-productivity relationship. I investigated 1) how PSFs affect the 

biodiversity-productivity relationship in controlled greenhouse experiments, 2) whether 

greenhouse experiments are the best method to measure the role of PSFs in biodiverse 

communities in the field, 3) how PSFs affect the biodiversity-productivity relationship in 

diverse plant communities in the field, and 4) how partitioning of soil nitrogen and soil 
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water affect coexistence and plant productivity. 

Greenhouse experimentation suggested PSFs influence productivity and the 

biodiversity-productivity relationship, but PSFs when measured in the greenhouse were 

not correlated with PSFs that were measured in the field. This implies PSFs should be 

measured in the field when trying to predict coexistence or the biodiversity-productivity 

relationship as observed in the field. Our ability to predict coexistence and productivity in 

the field was slightly improved by the inclusion of PSFs. However, partitioning of soil 

water and soil nitrogen was strongly correlated with landscape productivity in the same 

system, indicating that PSFs are not the dominant mechanism of these phenomena. 
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CHAPTER 1 

INTRODUCTION 

Plants compete for the same resources: soil nutrients, soil water, and light. They 

acquire these same resources in similar ways (Silvertown 2004). Classical ecological 

theory suggests that when organisms compete for the same resources using the same 

strategies, stable coexistence is impossible (Gause 1932; Hardin 1960). Despite 

competing for the same resources using the same strategies, different plant species 

coexist, and even thrive (Tilman et al. 2001). This is termed the “biodiversity paradox.” 

There are ecological benefits associated with coexistence. Compared to 

monocultures, diverse plant communities are more stable over time, more resistant to 

ecological invasion, and on average produce more biomass in a given year (Tilman & 

Downing 1994; Tilman et al. 2001; Kennedy et al. 2002). The tendency for diverse plant 

communities to produce more biomass in a given year than monocultures, known as the 

biodiversity-productivity relationship, has a long history in ecological research, and was 

even mentioned in The Origin of Species (Darwin 1859). Observational studies remarking 

on the greater productivity of biodiverse ecosystems like deciduous forests when 

compared to low-biodiversity ecosystems like cornfields proliferated in the 50’s, 60’s, 

and 70’s (Odum 1953; Whittaker 1969; Trenbath 1974). However, the first controlled 

experiments manipulating biodiversity and observing productivity were not established 

until the early 90’s (Hooper & Vitousek 1997; Hector et al. 1999; Tilman et al. 2001). 

The results from controlled biodiversity-productivity experiments were 

unequivocal: more diverse plant communities typically produce more biomass than 

monocultures. However, the mechanisms behind the observed biodiversity-productivity 
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relationships were hotly debated. Adherents to the concept of biodiversity enhancing 

ecosystem function hypothesized the biodiversity-productivity relationship was due to 

complementarity effects, or interactions between species that enhanced productivity 

(Tilman et al. 1997). Skeptics argued that biodiversity-productivity relationships reported 

by these newly installed biodiversity-productivity experiments could be a selection effect, 

caused by the greater probability of high-biodiversity treatments to contain a high-

yielding species (Aarssen 1997; Garnier et al. 1997). A modified Price Equation was 

developed to parse biodiversity effects into complementarity and selection effects. The 

model found that the selection effect is typically zero on average, while complementarity 

is typically positive overall (Loreau & Hector 2001; Cardinale et al. 2007). This method 

for parsing selection effects from complementarity is unable to identify exactly what 

complementarity mechanisms are responsible for the observed biodiversity effect. 

Potential interactions between species generating the biodiversity-productivity 

relationship are myriad and include niche partitioning, and pathogen accumulation (van 

Ruijven & Berendse 2005; Schnitzer et al. 2011; Kulmatiski et al. 2012). 

The role of niche partitioning as a mechanism of coexistence and productivity is 

not as clear in plant communities as in animal communities because unlike animals, 

plants compete for the same resources using the same strategies (Silvertown 2004). One 

possible niche partitioning strategy available to plants is spatial or temporal 

diversification in resource acquisition; if plants obtain resources from different soil 

depths or at different times of year, they can minimize competition with each other 

(McKane et al. 2002). However, studying uptake of soil resources is difficult because 

rooting distributions are not associated with resource uptake. It is also near impossible to 
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determine species-specific identities if roots do not have a unique trait such as color 

variation (Tobar et al. 1994; Marulanda et al. 2003). Stable isotope tracer approaches 

suggest that spatiotemporal niche partitioning can play a role coexistence (McKane et al. 

2002; Kulmatiski & Beard 2013; Mazzacavallo & Kulmatiski 2015). However, the role 

of spatiotemporal niche partitioning in community productivity is not well resolved, with 

some studies suggesting it is important for productivity across a landscape, and other 

studies suggesting that niche overlap and community productivity are not related (von 

Felten et al. 2009; Barry et al. 2020; Kulmatiski et al. 2020). 

 Plant-specific soil pathogens have been suggested as a potentially important 

mechanism explaining coexistence and the biodiversity-productivity relationship (Maron 

et al. 2011; Schnitzer et al. 2011). In highly diverse plant communities, an individual 

plant has a low chance of growing near another plant of the same species, and thus a low 

chance of contracting a species-specific soil pathogen from conspecifics. Conversely, in 

monocultures, an individual plant has a high chance of growing near another plant of the 

same species, and a high chance of contracting species-specific soil pathogens that may 

be present. This may contribute to the maintenance of coexistence and the biodiversity-

productivity relationship by density-dependent limitations on survival and growth 

(respectively) of conspecifics and enhanced survival and growth of heterospecifics 

(Schnitzer et al. 2011; Eck et al. 2019). However, microbial life in soils is incredibly 

complex with many functional groups and trophic levels (Wall et al. 2010). Species-

specific symbionts like Rhizobia are common within certain functional groups and 

arbuscular mycorrhizal fungi are near-ubiquitous in the soil (Rillig 2004; Revillini et al. 

2016). Decomposers can change plant growth and survival by altering litter quality 



4 
 

(Ayres et al. 2009). Suggesting that species-specific plant pathogens are the only microbe 

influencing coexistence and the biodiversity-productivity relationship is an 

oversimplification; it also fails to explain the full range of variation within the 

biodiversity-productivity relationship. For example, pathogens as a mechanism of the 

biodiversity-productivity relationship only explain high-yielding high diversity plots and 

low-yielding low-diversity plots. However, approximately 20% of biodiversity-

productivity observations do not follow this trend and are high-yielding at low diversity 

or low-yielding at high diversity (Cardinale et al. 2007). Effects of species-specific 

symbionts and mutualists could explain these high-yielding low diversity and low-

yielding high diversity observations, but because of the complexity of life in the soil, 

separating the effects of individual mutualists, decomposers, and pathogens is difficult 

(Kulmatiski et al. 2012). 

 Despite this complexity, it is possible to describe the net effect of both positive 

and negative interactions between plants and soil organisms using a plant-soil feedback 

(PSF) bioassay. PSF experiments are typically implemented in two phases. During the 

first phase, plant-specific soil types are created by growing target species in a common-

garden soil. As the target species grow, they alter the soil microbial community within 

the soil. At the end of Phase 1, the target species are removed, but the altered soil 

microbial community remains. During Phase 2, target species are grown on soils 

cultivated either by the same target species (“home” or “self” soils), or on soils that were 

cultivated by a different target species (“away” or “other” soils). Plant growth on “self” 

soils is compared to growth on “other” soils; plants that experience increased growth on 

“self” soils compared to “other” soils have a positive PSF and plants that experience 



5 
 

decreased growth on “self” soil compared to “other” soils have a negative PSF (Bever 

1994). Plant species with a negative PSF would be anticipated to produce low biomasses 

at low diversity and high biomasses at high diversity; conversely, plant species with a 

positive PSF would produce high biomasses at low diversity and low biomasses at high 

diversity. A meta-analysis of PSF literature suggests that roughly 75% of species 

experience negative PSF and 25% of species experience positive PSF (Kulmatiski et al. 

2008). This is broadly consistent with the patterns of overyielding (80%) and 

underyielding (20%) observed in a meta-analysis of biodiversity-productivity literature 

(Cardinale et al. 2007). In addition, mathematical models predicting patterns of 

overyielding and underyielding from observed PSFs suggest a direct negative relationship 

between PSF and overyielding, i.e. a community consisting of plants with an average PSF 

of -0.5 would be predicted to overyield by 50% (Kulmatiski et al. 2012). 

 Although PSFs are a compelling potential mechanism of coexistence and the 

biodiversity-productivity relationship, they are notoriously variable (De Long et al. 

2019). PSFs have been observed to vary depending on time of experiment, amount of 

biotic and/or abiotic stress, and experimental methodology (Hawkes et al. 2013; Schittko 

et al. 2016; Beals et al. 2020). It has been suggested that experiments investigating PSFs 

as a putative mechanism of plant community dynamics in the field should be 

implemented in the field (Heinze et al. 2016). Despite this, the majority of PSF 

experiments take place in short-term, low-stress greenhouse conditions (Kulmatiski & 

Kardol 2008).  

 The overarching goal of this research was to advance our understanding of the 

mechanisms driving coexistence and the biodiversity-productivity relationship. To do 
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this, we 1) performed a pilot greenhouse study assessing the role of PSF in the 

biodiversity-productivity relationship, 2) determined the applicability of PSF measured in 

the greenhouse toward PSF measured in the field, 3) assessed the role of PSFs in the 

biodiversity-productivity relationship using a field experiment, and 4) measured niche 

partitioning within the same study system to quantify niche differentiation and its role in 

coexistence and biomass production. 
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CHAPTER 2 

PLANT-SOIL FEEDBACKS HELP EXPLAIN BIOMASS PRODUCTION IN 

COMMUNITIES1 

 
ABSTRACT 

1. Plant productivity often increases with species richness, but the mechanisms 

explaining this biodiversity-productivity relationship are not fully understood. We 

tested whether or not plant-soil feedbacks (PSF) can help explain how biomass 

production changes with species richness.  

2. Using a greenhouse experiment, we measured all 240 possible PSFs for 16 plant 

species. A suite of plant community growth models, parameterized with (PSF) or 

without PSF (Null) effects, was used to predict plant growth in 49 separately 

grown unique plant communities with assigned species richnesses of one to 16 

species. Selection effects and complementarity effects in modeled and observed 

data were separated.  

3. Plants created soils that changed subsequent plant growth by 25%, but because 

PSFs were negative for C3 and C4 grasses, neutral for forbs, and positive for 

legumes, the net effect of all PSFs was a 2% decrease in plant growth. 

Complementarity caused 16-species communities to produce 10.7 g (i.e. 34%) 

more biomass than monocultures. Null models incorrectly predicted that 16-

species communities would overyield due to selection effects. Adding PSF effects 

to Null models decreased selection effects, increased complementarity effects, 
                                                 

1 Forero L. E., Kulmatiski, A., Grenzer, J., & Norton, J .M. Plant–soil feedbacks help 
explain biomass production in communities. In preparation. 



12 
 
and improved correlations between observed and predicted community biomass. 

PSFs explained 2.5 g of the 10.7 g (23%) of complementarity-caused overyielding 

observed in experimental communities. Relative to Null models, PSF models 

improved predictions of the magnitude and mechanism of the biodiversity-

productivity relationship. Results provide clear support for PSFs as one of several 

mechanisms that determine biodiversity-productivity relationships and help close 

the gap in understanding how biodiversity enhances ecosystem services such as 

biomass production.  

4. Synthesis. Plant-soil feedbacks are a minor contributor to the biodiversity-

productivity relationship, explaining 23% of complementarity-caused 

overyielding. Further research quantifying the role of other complementarity 

mechanisms will be needed to fully understand the biodiversity-productivity 

relationship. 

 
1. INTRODUCTION 

Experimental plant communities with high species richness often produce twice 

as much aboveground biomass as monocultures (Jochum et al., 2020; Tilman et al., 

2001). Research on this diversity-productivity relationship began as a test of niche 

partitioning as a mechanism of overyielding, but it has become clear that other 

mechanisms are also important (Mahaut et al., 2020; Weisser et al., 2017). Overyielding 

occurs when species produce more biomass in communities than would be predicted from 

monocultures. In addition to niche partitioning, selection effects have been suggested as a 

mechanism of overyielding. Selection effects occur because productivity species are 

more likely to be present in more-diverse communities than less-diverse communities 
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(Aarssen, 1997). While important, niche partitioning and selection effects remain difficult 

to quantify (Barry et al., 2019; Clark et al., 2019; Mueller et al., 2013) and explain only a 

modest proportion of the large amount of variation in biomass production in diversity-

productivity experiments (Cardinale et al., 2007; Hector et al., 2002). For example, niche 

partitioning and selection effects are unlikely to explain why roughly 20% of plant 

communities underyield (Cardinale et al., 2007; Kulmatiski et al., 2012). Despite more 

than two decades of research, the relative contributions of distinct mechanisms generating 

the diversity-productivity relationship remains unresolved (Cardinale et al., 2012; Mahaut 

et al., 2020; Tilman et al., 1996).  

In addition to complementarity and selection effects, soil pathogens have been 

suggested as an additional mechanism of overyielding (Maron et al., 2011; Schnitzer et 

al., 2011). Species-specific soil pathogens can be expected to cause overyielding if they 

decrease plant growth more in monocultures than species-rich communities (Maron et al., 

2011; Schnitzer et al., 2011; van Ruijven et al., 2020). While promising, a focus on 

species-specific pathogen effects ignores the complex array of interactions that occur 

between plants and soils (i.e. plant-soil feedbacks or PSFs, Bever 1994; van der Putten & 

Peters 1997; Ehrenfeld et al. 2005). Species-specific plant symbionts, generalist 

pathogens, and even decomposers can have large effects on plant productivity 

(Eisenhauer et al., 2012; Helander et al., 2018; Revillini et al., 2016). The suite of 

positive and negative interactions between plants and soil organisms are typically 

described using a bioassay approach in which plant growth on ‘self-cultivated’ soils is 

compared to plant growth on soils cultivated by other plant species (Brinkman et al., 

2010; Rinella & Reinhart, 2018; van der Putten et al., 2013). This PSF approach provides 
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a quantitative measure of the net effect of positive and negative plant-soil interactions 

(Bennett & Klironomos, 2019; Bever, 1994).  

While two-phase experiments remain the standard in PSF research (Rinella & 

Reinhart, 2018), several approaches have been used to describe the role of plant-soil 

interactions in diversity-productivity relationships (Cowles, 2015; Guerrero‐Ramírez et 

al., 2019; Hendriks et al., 2013; Wang et al., 2019). Schnitzer et al. (2011), Maron et al. 

(2011), and Wang et al. (2019) found that diversity-productivity relationships develop in 

high-diversity microbial communities but not in low-diversity microbial communities. 

Similarly, Guerrero-Ramirez et al. (2019) found that plant growth was suppressed in soils 

from monoculture communities but not in soils from polyculture communities. These 

findings support a role of for plant-soil interactions in the diversity-productivity 

relationship, but complete removal of soil pathogens and shifts from high-diversity to 

low-diversity plant and microbial communities used in those experiments are likely to 

exaggerate PSF effects (Forero et al., 2019; Kulmatiski et al., 2008). We are aware of one 

study that used a two-phase PSF approach to support a role for PSF in diversity-

productivity relationships, but that study only tested effects in three-species community 

(Kulmatiski et al., 2012). There remains a need for a test of PSF effects in diversity-

productivity relationships for many plant species under experimental conditions that do 

not make dramatic changes to soil communities through sterilization and inoculation. 

The overarching goal of this research was to determine the role of PSFs in the 

diversity-productivity relationship. Using a factorial, two-phase greenhouse experiment, 

we measure all 240 possible PSFs for 16 plant species (Brinkman et al., 2010; Kulmatiski 

& Kardol, 2008; Rinella & Reinhart, 2018). A suite of plant community growth models 
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was parameterized either with or without PSF values to describe PSF effects on the 

diversity-productivity relationship (Kulmatiski et al., 2012). Model predictions were 

compared to plant growth observed in a new greenhouse diversity-productivity 

experiment and to an existing field-based diversity-productivity experiment. 

 
2. MATERIALS AND METHODS 

Two greenhouse experiments were performed: a PSF experiment and a diversity-

productivity experiment. Both experiments were designed to match a diversity-

productivity experiment at Cedar Creek Ecosystem Science Reserve Long Term 

Ecological Research Site, East Bethel, Minnesota, U.S.A. Pairing studies allowed us to 

test whether greenhouse data provided inference to the field experiment. Four C3 grasses, 

four C4 grasses, four legumes, and four non-leguminous forbs used in the Biodiversity II 

Experiment were selected for use in this study (Table 2-1, Tilman et al. 2001). Five 

species that together represented less than 3% of the biomass in the Biodiversity II 

experiment were excluded from our PSF and diversity-productivity experiments due to 

lack of seed availability (Asclepias tuberosa L., Dalea villosa Nutt., Dalea candida 

Michx.) and poor growth in previous experiments (Quercus macrocarpa Michx., 

Quercus ellipsoidalis E. J. Hill) (Ownbey & Morley 1991). Seeds were purchased from 

Prairie Moon Nursery (Minnesota, USA), Granite Seed (Utah, USA), and Prairie 

Restorations Inc. (Minnesota, USA). Seeds were treated with a 5% bleach solution for 

two minutes and germinated on paper in growth chambers before being planted in the 

greenhouse. L. capitata, L. perennis, D. purpurea and A. canescens were scarified prior 

to being placed in the growth chamber. A. gerardii, A. canescens, S. rigida, P. pratensis, 
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A. millefolium, K. macrantha, E. canadensis, M. fistulosa, and D. purpurea were 

germinated under a cool-season treatment (12 hours in light at 20° C and 12 hours in 

darkness at 15° C). S. scoparium, L. perennis, P. smithii, P. virgatum, S. nutans, and L. 

capitata were germinated under a warm-season treatment (12 hours in light at 30° C and 

12 hours in darkness at 20° C).  

 
2.1 PSF Experiment 

Roughly 600 L soil from an area adjacent to the Biodiversity II experiment was 

dried in a 31° C room for two months, then shipped to the Utah State University Crop 

Physiology Lab, Utah, U.S.A. A 6:1 mixture of loamy sand and sphagnum peat (Miller 

Companies, LLC, Hyrum, Utah) was steam sterilized twice for three hours. After cooling, 

field soil was added to this sand/peat mix to create a growth medium with 10% field soil 

by volume. This growth medium was used to fill 2,720 pots (950 mL, 7.6 cm x 7.6 cm x 

20.3 cm; Steuwe & Sons, Oregon, USA). Four seedlings of each species were planted 

into 170 randomly-assigned pots. Plants were grown at 25° C under an equal photoperiod 

under 1000W double-ended high pressure sodium lamps (Gavita Pro 1000 DE, Aalsmeer, 

The Netherlands). Once a month, 70 mL of a modified Hoagland solution (Peter’s 21-5-

20, 100 ppm N) was applied to each pot to prevent chlorosis. Plants were watered when 

the soil surface was dry, at least once per week. After one month, the two smallest 

seedlings were removed. Trays holding 25 pots were rotated through the greenhouse once 

per month, although treatments of trays were not blocked in any way and species were 

randomly distributed within the trays. Plants were grown 6 months, then clipped. Re-

sprouting roots were pulled and placed back into the pot of origin. Of the 2,720 planted 
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pots, 254 were discarded due to a lack of target plant growth and 2,466 were re-planted in 

Phase 2. In Phase 2, each species was planted in 16 to 35 replicate pots that had grown 

the same species in Phase 1 (i.e., self-cultivated soils or ‘self’ treatment) and three to nine 

replicate pots with soils cultivated by each of the 15 other species in the experiment (i.e., 

other-cultivated soils or “other” treatment), depending on the success of the Phase 1 

treatment. Plants were grown for six months, aboveground biomass was clipped and dried 

to constant weight at 60 °C and weighed to the nearest 0.1 g. 

 
2.2 Biodiversity-Productivity Experiment 

In the same greenhouse and at the same time, 190 12-L pots (22.9 cm in diameter 

x 39.4 cm high, Stuewe & Sons, Oregon, USA) were planted with a total of 16 seedlings. 

Each pot contained species from one of five different species richness levels (1, 2, 4, 8, or 

16 species). Monocultures were planted in 4 replicate pots and 16-species communities 

were planted in 30 replicate pots. Thirty-two different communities with two, four or 

eight species were each planted in three replicate pots. Forty of the 49 communities were 

identical to communities planted in Biodiversity II, seven lacked the uncommon species 

noted above, and monocultures of S. rigida and M. fistulosa were added to this 

experiment because they were accidentally excluded from the original Biodiversity II 

experiment due to a seeding error (Fargione, 2004). Plants were grown for eight months, 

then aboveground biomass was clipped, sorted by species, dried to constant weight at 60 

°C, and weighed to the nearest 0.1 g. 
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2.3 Calculating and Analyzing PSFs 

The PSF experiment was primarily used to parameterize growth rates in the 

community growth models, but we also report PSF values because they are a common 

metric that allow comparisons among PSF experiments. PSFs were calculated using the 

method 𝑆𝑆̅ − 𝑂𝑂�/max (𝑆𝑆̅,𝑂𝑂�) where S represents biomass produced in the response phase on 

“self” soils and O represents biomass produced in the response phase on “other” soils 

(Brinkman et al., 2010). Because ‘self’ and ‘other’ sample sizes differed and ‘self’ and 

‘other’ pots were not inherently paired, bootstrapping was used to calculate mean and 

confidence intervals for PSFs using the command sample_n from the R package ‘dplyr’ 

(Schittko et al., 2016; Wickham et al., 2020). Values with confidence intervals that did 

not overlap zero were considered positive or negative, as appropriate. Bootstrapping was 

used to describe the 240 soil*species PSF values. To describe species-level PSF (i.e., 

across 15 soil types), we report the mean and standard error of PSF values across soil 

types. To test whether or not species-level PSF differed from zero a one-way student’s t-

test in R was used. The same one-way student’s t-test was used to test whether or not soil 

types resulted in negative or positive PSF and to test if plant functional groups 

demonstrated positive or negative PSFs. 

2.4 Modeling Approach 

Mathematical models founded on logistic equations were used to describe species 

and community biomass over time. Plant community models described in Kulmatiski et 

al. (2011) and Kulmatiski et al. (2016) were used. To test PSF effects on plant 

community growth, models were parameterized so that each plant species had either one 

growth rate for all soil types (Null models) or a different growth rate for each soil type 
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(PSF models). For both PSF and Null models, a suite of simulations was performed in 

which five different carrying capacities were used. Both PSF and Null models describe 

plant growth logistically in a discrete time-step model, where growth is a function of 

abundances of different soil types. For example, the growth rate of species A on soil α is 

described as ΓAα = 52√Aα/I, where Aα = the final biomass of plant A on soil α, I = initial 

seed mass, and 52 represents the number of timesteps in the discrete model. Plant growth 

in any timestep is the mean of growth rates associated with each soil type present in the 

previous timestep, weighted by the relative abundance of each soil type (where ‘soil type’ 

is defined by the identity of the plant species that cultivated that soil). For example, for 

plant A across soil types α through ι, growth would be ΓAt = ΓAα Pα + ΓAβ Pβ + … + 

ΓAι Pι; and for plant B across all soil types, growth would be ΓBt = ΓBα Pα + ΓBβ Pβ + 

… + ΓBι Pι. A carrying capacity κ limited plant growth; the carrying capacity could be 

unique to either a species or to the community as a whole. Changes in each plant’s 

biomass can be described as At+1 = At + ΓAt ((κ-At)/κ), Bt+1 = Bt + ΓBt ((κ-Bt)/κ). 

Soil types grow as a function of plant growth in the previous timestep: for 

example, soil type α growth is calculated as αt+1 = (1 + µΓAtAt) αt; for soil type β growth 

is calculated as βt+1 = (1 + µΓBtBt) βt. The parameter μ represents a conversion factor 

between microbial biomass and plant biomass (Appendix A Table A-1). Microbial 

growth was not limited by a carrying capacity because microbial proportional abundances 

(i.e., 0 to 1) are used to determine plant growth responses to soil type, so the absolute size 

of different microbial communities does not affect plant growth. 

Null models included only one growth rate on all soil types. This growth rate was 

derived from species biomass on “other” soil types. A = f(ΓAother), B = f(ΓBother) 
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(Kulmatiski et al. 2016, Appendix A Table A-1). 

The five different carrying capacities were determined by 1) the maximum 

observed growth in any plot in the community experiment, 2) the maximum mean 

observed growth in any community, 3) the maximum species-specific growth in 

community plots, 4) the maximum observed growth in any PSF plot, and 5) the 

maximum species-specific growth in any PSF plot. Model results were compared to 

observed growth in greenhouses using generalized additive mixed models (gam in the 

mgcv package in R programming; Wood 2017) 

2.5 Parsing Selection and Complementarity Effects 

A modified Price Equation was used to calculate net biodiversity effects, 

complementarity effects, and selection effects for predicted and observed diversity-

productivity relationships (R package ‘partitionBEFsp” (Clark et al., 2019; Loreau & 

Hector, 2001). This method uses an additive model and monoculture growth to calculate 

over- or under-yielding of a polyculture: ΔRYi = Yi – (Mi/N) = (Yi/Mi) – (1/N), where 

ΔRYi is the over- or under-yielding of species i in mixture, Yi is the yield of species i in 

mixture, Mi is the yield of species i in monoculture, and N is the species richness of the 

polyculture. The net biodiversity effect is the difference between the total observed yield 

of a mixture and the expected yield, or average monoculture biomass of all species in a 

plot (∆𝑌𝑌 = 𝑌𝑌𝑂𝑂 − 𝑌𝑌𝐸𝐸). This net effect can be partitioned into a selection effect and a 

complementarity effect. Complementarity effects can be calculated as 𝑁𝑁∆𝑅𝑅𝑅𝑅������𝑀𝑀�, where N 

is the species richness of the mixture, ∆𝑅𝑅𝑅𝑅������ is the average deviation from the expected 
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relative yield, and 𝑀𝑀�  average yield in monoculture. Selection effects can be calculated as 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(∆𝑅𝑅𝑅𝑅,𝑀𝑀).  

 
3. RESULTS 

3.1 PSF Experiment 

Across the 240 soil*species combinations, the mean PSF was -0.02 and the mean 

of the absolute value of PSFs was 0.25. Nineteen values were positive, 23 values were 

negative and 198 values were neutral (Fig. 2-1a). Fifteen of 16 species demonstrated a 

PSF on at least one soil type.  

At the species-level (i.e., across soil types), the mean PSF was -0.12, and the 

mean of the absolute value of PSFs was 0.22. Five PSFs were negative, four were 

positive, and seven were neutral (Fig. 2-1b). At the functional-group level, C3 and C4 

grasses demonstrated negative PSF, forbs demonstrated neutral PSF and legumes 

demonstrated positive PSF (Fig. 2-1c). PSFs for the three most productive species in 

monoculture (L. capitata, D. purpurea, and A. canescens) were 0.19, 0.12 and 0.42. 

3.2 Biodiversity-Productivity Experiment 

Aboveground biomass increased with species richness: 16-species communities 

produced 34% more aboveground biomass than monocultures (Fig. 2-2). This was caused 

by a negative selection effect that increased with species richness (i.e., underyielding due 

to selection effects decreased as species richness increased) and a positive 

complementarity effect that increased with species richness (i.e. overyielding due to 

complementarity increased as species richness increased) (Fig 2-3a).  
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3.3 Model Predictions 

The PSF model predicted 24% more biomass in 16-species communities than in 

monocultures. The Null model predicted 19% more biomass in 16-species communities 

than in monocultures, (Fig. 2-2). There was no support for separating biomass, 

overyielding, and selection effects from observed, Null or PSF data (Table 2-2). There 

was support for separating complementarity effects from Null and PSF model predictions 

(Table 2-2). The PSF model predicted a constant positive complementarity effect that 

was large relative to the Null model (Fig. 2-3b and c). 

Predictions of community biomass by the PSF (y = 0.729x + 9.946, R2 = 0.674, P 

< 0.001, RMSE = 6.334) and Null models (y = 0.772x + 8.550, R2 = 0.582, P < 0.001, 

RMSE = 7.170) were correlated with community biomass observed in the 49 

experimental plant communities (Fig. 2-4). Predictions of species-level biomass in 

monocultures by the PSF (y = 0.883x + 5.709, R² = 0.907, P < 0.001, RMSE = 4.938) 

and Null models (1.058x + 1.840, R² = 0.895, P < 0.001, RMSE = 5.253) were also 

correlated with observed monoculture biomass (Appendix A Fig. A-2a). However, 

predictions of species biomass in multi-species communities from the PSF and Null 

models were not correlated with observations (Appendix A Fig. A-2b, A-2d, A-2f, A-2h) 

because both models over-predicted growth in three legume species with positive PSFs. 

When these three species were removed, PSF model predictions of species biomass in 2-

species (y = 1.131x + 3.428, R² = 0.207, P = 0.02, RMSE = 4.514), 4-species (y = 2.833x 

- 0.712, R² = 0.380, P < 0.001, RMSE = 5.007), 8-species (y = 2.543x - 0.488, R² = 

0.297, P < 0.001, RMSE = 2.464), and 16-species (y = 4.23x - 0.987, R² = 0.474, P = 

0.009, RMSE = 1.499) communities were correlated with observations. Null model 
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predictions of species biomass were correlated with observations in 4-species (y = 2.612x 

- 0.636, R² = 0.295, P = 0.002, RMSE = 5.339), 8-species (y = 2.109x - 0.216, R² = 

0.244, P < 0.001, RMSE = 2.515), and 16-species (y = 4.294x - 1.092, R² = 0.454, P = 

0.01, RMSE = 1.528) communities but not in 2-species communities (Appendix A Fig. 

A2-c, A-2e, A-2g, A-2i). 

 
4. DISCUSSION 

Plant communities produced more biomass than monocultures due to 

complementarity effects. More specifically, 16-species communities produced 34% more 

biomass than monocultures. Null models incorrectly predicted 19% overyielding due to 

selection effects. Adding PSFs to the Null model improved predictions by decreasing 

selection effects, increasing complementarity effects and predicting 23% overyielding in 

16-species communities relative to monocultures. Further, PSF model predictions of 

community biomass were better correlated with observations than Null model predictions 

(i.e., R2 = 0.67 and 0.58, respectively). Thus, adding PSFs to a plant community model 

improved predictions of plant community biomass production, and produced predictions 

where the mechanism of the diversity-productivity relationship was consistent with 

observations. Results provide clear support for PSFs as one of several mechanisms that 

determine diversity-productivity relationships.  

The diversity-productivity relationship observed in 16-species communities was 

caused primarily by 10.7 g of overyielding due to complementarity. Relative to Null 

models, PSF models increased complementarity effects from -0.5 to +2.1 g suggesting 

that PSF explained 23% (i.e., 2.6 / 10.7) of the overyielding observed in experimental 

communities. PSF causes overyielding due to complementarity when negative PSFs 
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decrease plant growth more in monocultures than in communities (Maron et al., 2011). 

This is likely to occur because ‘self’ soils and, therefore, species-specific soil pathogens 

are less common in diverse plant communities (Kulmatiski et al., 2012; van Ruijven et 

al., 2020). For example, communities with C3 grasses had neutral to negative PSF and the 

greatest overyielding due to complementarity (i.e., the largest deviations from expected 

monoculture yield ΔRY). Conversely, underyielding due to complementarity occurs 

when positive PSF effects increase plant growth in monocultures more than in 

communities (Kulmatiski et al., 2012). This is anticipated to occur because species-

specific soil symbionts are less common in diverse plant communities. 

After a six-month cultivation phase, plants created soils that changed subsequent 

plant growth by 25%. However, because PSFs were both positive and negative, the net 

effect of PSFs was only a 2% decrease in growth. When all the plants in a community 

demonstrate similar growth rates and PSF values, the plant community growth models 

used in this study predict that overyielding will be directly proportional to net PSF values 

(Kulmatiski et al. 2012). In other words, a net PSF of -10% would be expected to produce 

+10% overyielding. However, because intrinsic growth rates and PSF vary widely among 

species, the net effect of PSF on overyielding is a more complicated function of the 

specific plant-soil-plant interactions that occur in the community. In other words, the 

average PSF produced across the 16 species measured is not as important for the 

diversity-productivity relationship as the PSFs for the species in a biodiverse community, 

and the amount of species-specific soil being cultivated within a biodiverse community. 

For example, low-biomass plants with large PSFs and high-biomass plants with small 

PSFs will have little effect on overyielding. In this experiment, the net PSF value was -
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2%, but because some dominant and common species in the experiment realized 

relatively large negative PSF, models predicted 23% overyielding due to 

complementarity. For example, P. smithii, P. pratensis, and D. purpurea made up the 

largest proportion of the 16-species communities with 24%, 16%, and 7% abundances, 

respectively. P. smithii had a neutral PSF, P. pratensis a negative PSF, and D. purpurea a 

positive PSF, but their weighted average PSF was -0.09, which would be associated with 

9% overyielding, rather than the 2% suggested by the -0.02 average PSF value. Further, 

PSF varied widely among soil types. For example, though P. smithii had a neutral PSF at 

the species level it had PSFs of -0.46 and -0.59 on certain soil types.  

This experiment provided rare insight into factorial vs. species-level PSF 

(Kulmatiski 2016; Rinella & Reinhart 2018). Factorial experiments with more than two 

to three species have been uncommon, because factorial designs require large sample 

sizes. For example, this study produced 240 PSF values which are nearly as many as 

reported in several PSF meta-analyses that included 300 to 1000 PSF values (Crawford et 

al., 2019; Kulmatiski et al., 2008; Lekberg et al., 2018). This 16-species factorial design 

allowed us to examine how PSF varies across a relatively wide range of soil types (Fig. 

2-1a, b). Five species produced positive PSF on one soil type and negative PSF on 

another soil type. Further, PSF within a soil type varied widely, with only three soil types 

producing consistently negative or positive feedbacks (Fig. 2-1a). It should not be 

surprising that PSF vary widely on soils cultivated by different species (for example a 

legume vs. a C4 grass soil), but it has been difficult to demonstrate due to sample size 

requirements (Crawford et al., 2019; Rinella & Reinhart, 2018). In contrast to results 

from a previous study with three-species communities (Kulmatiski, 2016), results from 
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this experiment suggest that ‘other’ soil types are important to determining PSF and the 

role of PSF in plant community growth (Rinella & Reinhart, 2018). Additional factorial 

studies will be needed to gain a better understanding of how variable PSF values are 

across soil cultivation types and how important this is to plant community development. 

PSFs were well associated with plant functional group. Legumes and forbs 

produced 11 and seven of 19 positive PSFs. C3 and C4 grasses produced eight and seven 

of 20 negative PSFs (Fig. 2-1b). These results are consistent with previous PSF research; 

despite considerable variation grasses often produce negative PSFs and legumes produce 

positive PSF (Cortois et al., 2016; Lekberg et al., 2018; Mehrabi & Tuck, 2015). 

Similarly, among grasses, trees, shrubs, and forbs, grasses have the most negative PSFs 

(Kulmatiski et al., 2008). Negative PSF in grasses has been attributed to both soil nutrient 

depletion and species-specific pathogens (Bennett & Klironomos, 2019; Bezemer et al., 

2006; De Long et al., 2019). Positive PSF in legumes have been attributed to associations 

with species-specific rhizobia, although arbuscular mycorrhizal fungi are another likely 

candidate (Wagg et al., 2015). 

Across species richness levels, the PSF and Null models produced similar 

predictions of species biomass, though PSF predictions were consistently slightly better 

(Table 2-2, Fig. 2-4). Similar patterns were observed within species richness levels. In 

monocultures, both PSF and Null model predictions were highly accurate (Appendix A 

Fig. A-2a). In multi-species communities, both PSF and Null models overpredicted 

legume growth, with (Appendix A Fig. A-2b, A-2d, A-2f, A-2h). Legumes produced 

positive PSF which should decrease their growth in communities relative to monocultures 

if their associated symbionts are diluted in polyculture (Kulmatiski et al., 2012). The fact 
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that PSF models overpredicted legume growth suggests the way positive PSFs were 

incorporated into models underestimated their effects. In this experiment, PSF was 

measured as the growth of a species on a soil previously occupied by the same or a 

different species; however, in our diversity-productivity experiment plant-soil 

interactions were occurring between live species within the community. It is possible that 

measuring the legacy effects caused by the previous occupation of a pot with either the 

same or a different species underestimates the effects they have in an actively growing 

community (Eisenhauer et al., 2012). Alternatively, it is possible that emergent plant-soil 

interactions associated with diverse plant communities may result in larger PSF effects 

and overyielding in species-rich than species-poor soils (Latz et al. 2012).  

This greenhouse experiment was replicated in the field in a separate study 

(Chapter 4). A recent review found that greenhouse and field measured PSFs are not 

correlated (Forero et al., 2019), yet we did note some similarities between our greenhouse 

and field experiments. Both PSF and Null model predictions from this greenhouse 

experiment were correlated with community biomass in the field experiment (Chapter 4). 

Though, not surprisingly, predictions from greenhouse data were better correlated with 

observations of plant community biomass in the greenhouse than in the field (Chapter 4). 

Individual species-specific and species*soil specific greenhouse and field PSFs were not 

correlated (Forero et al., 2019). No model predictions were correlated with community 

biomass from a diversity-productivity experiment performed with the same species in 

1997 (data not shown). This is not surprising as herbivory, stress, microbial community 

composition and competition are also important in plant community productivity (Forero 

et al., 2019; Hawkes et al. 2013; Mahaut et al., 2020). Results suggest that PSF effects 
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may vary considerably over time and space. 

By measuring individual PSFs, this experiment took a reductive approach to 

understanding PSF effects in diversity-productivity relationships. We found that, when 

measured in plant monocultures, PSFs explained roughly 25% of observed 

complementarity effects. In contrast, several recent studies have highlighted the potential 

for emergent properties in community-level PSF (Guerrero‐Ramírez et al., 2019; Latz et 

al., 2012; Wang et al., 2019). Latz et al. (2012) found that some beneficial soil organisms 

are only found in diverse microbial communities. Both Guerrero-Ramírez et al. (2019) 

and Wang et al. (2019) found that diversity-productivity relationships develop in 

microbially-rich, but not microbially-poor soils. New experimental approaches will be 

needed to incorporate the role of soil microbial diversity in PSF and provide a clearer 

picture of how PSFs function in diverse communities.  

There is great interest in the diversity-productivity relationship because continued 

species diversity losses can be expected to decrease plant productivity and carbon 

sequestration (Isbell et al., 2015; Tilman et al. 2006). A better understanding of diversity-

productivity relationships can help constrain this outcome, and can additionally be 

harnessed for human well-being, for example by design plant communities that maintain 

plant diversity and increase plant productivity (Tilman et al., 2006). Our results suggest 

that PSFs are important in the diversity-productivity relationship, at least under 

conditions where stress, competition, and herbivory are tightly controlled (Beals et al., 

2020; Heinze & Joshi, 2018; Maestre et al., 2009). Results were also broadly consistent 

with a paired field experiment, thus providing clear support for PSFs as one of several 

mechanisms that determine the diversity-productivity relationship (Chapter 4).  
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TABLES 

Table 2-1. Plant species and functional groups used in the plant-soil feedback and 
biodiversity productivity experiments. Species included Pascopyrum smithii Rydb., Poa 
pratensis L., Koeleria macrantha (Ledeb.) Schultes, Elymus canadensis L., Andropogon 
gerardii Vitman, Panicum virgatum L., Schizachyrium scoparium (Michx.) Nash, 
Sorghastrum nutans (L.) Nash, Amorpha canescens Pursh, Lupinus perennis L., 
Lespedeza capitata Michx., Dalea purpurea (Vent) Rydb., Achillea millefolium L., 
Liatris aspera Michx., Solidago rigida L., and Monarda fistulosa L. (Ownbey & Morley, 
1991). 
Species Functional 

group 
Code 

Amorpha canescens Legume Ac 
Andropogon gerardii C4 Ag 
Achillea millefolium Forb Am 
Dalea purpurea Legume Dp 
Elymus canadensis C3 Ec 
Koeleria macrantha C3 Km 
Liatris aspera Forb La 
Lespedeza capitata Legume Lc 
Lupinus perennis Legume Lp 
Monarda fistulosa Forb Mf 
Poa pratensis C3 Pp 
Pascopyrum smithii C3 Ps 
Panicum virgatum C4 Pv 
Sorghastrum nutans C4 Sn 
Solidago rigida Forb Sr 
Schizachyrium scoparium C4 Ss 
 

  



40 
 

Table 2-2. Akaikie’s Information Criterion (AIC) from general additive mixed models 
for measures of the biodiversity-productivity relationship with different groupings. The 
lowest AIC for each measure of the biodiversity-productivity relationship are bolded. 
Generally, the best-performing model was model 3: PSF and Null model grouped and 
Observations separate, however, for the complementarity effect, model 2: PSF Model, 
Null Model, and Observations separate, was the best model. 
Model Random-effects 

groups 
Biomass 
Production 
AIC 

Overyielding 
AIC 

Selection 
Effect 
AIC 

Complementarity 
Effect AIC 

M1 None (global 
model) 

1145.866 604.7794 570.5035 573.5636 
 

M2 Group 1: PSF 
Model 
Group 2: Null 
Model 
Group 3: 
Observations 

1144.376 601.6686 
 

556.2153 
 

513.3917 
 

M3 Group 1: PSF 
Model and Null 
Model 
Group 2: 
Observations 

1142.419 600.9543 555.1877 
 

520.8377 

M4 Group 1: PSF 
Model and 
Observations 
Group 2: Null 
Model 

1146.084 601.3273 563.6283 542.1270 
 

M5 Group 1: Null 
Model and 
Observations 
Group 2: PSF 
Model 

1145.958 603.6236 570.0151 571.8514 
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FIGURES 

Plant C3 C4 Forb Legume 

Soil Ec Km Pp Ps Ag Pv Sn Ss Am La Mf Sr Ac Dp Lc Lp 

Ec Soil   -0.01 0.06 0.00 -0.09 -0.40 -0.08 -0.28 -0.09 -0.15 -0.12 0.12 0.21 0.09 -0.10 -0.44 

Km Soil -0.20   -0.27 -0.08 0.11 -0.01 -0.16 -0.13 -0.20 0.23 -0.13 -0.09 0.27 0.13 0.15 -0.15 

Pp Soil -0.01 -0.14   0.29 0.15 0.34 -0.11 -0.33 -0.03 0.80 0.18 0.65 0.44 0.47 0.59 0.29 

Ps Soil 0.14 0.05 -0.05   0.21 0.18 0.09 0.28 -0.22 0.82 -0.35 -0.29 0.37 0.48 0.54 -0.27 

Ag Soil 0.06 -0.08 -0.28 0.09   0.34 -0.05 -0.48 -0.26 0.72 -0.12 0.19 0.54 -0.10 0.27 -0.37 

Pv Soil 0.16 -0.12 -0.37 0.28 -0.22   0.01 0.00 0.07 0.88 -0.27 0.01 0.54 -0.08 -0.27 -0.25 

Sn Soil 0.13 0.07 -0.16 0.43 -0.19 0.23   0.28 -0.24 0.32 0.05 0.34 0.56 0.26 0.35 -0.41 

Ss Soil 0.13 -0.03 0.11 0.16 -0.07 0.08 0.08   0.14 0.22 0.15 0.05 0.27 -0.07 0.49 -0.43 

Am Soil -0.04 -0.28 -0.20 -0.01 -0.04 -0.12 -0.02 -0.03   0.60 -0.01 -0.38 0.29 0.38 0.06 -0.03 

La Soil 0.04 0.14 -0.63 0.00 -0.01 -0.35 -0.56 -0.33 -0.22   0.00 -0.13 0.87 0.27 0.09 -0.48 

Mf Soil -0.04 -0.02 -0.33 0.12 -0.02 0.17 0.16 -0.09 0.01 -0.10   0.15 0.37 -0.08 0.17 0.23 

Sr Soil -0.48 -0.17 -0.18 0.14 -0.17 0.16 -0.11 -0.07 -0.07 0.80 -0.13   0.63 -0.16 -0.03 -0.02 

Ac Soil -0.37 -0.26 -0.72 -0.46 -0.36 -0.27 -0.29 -0.05 -0.49 0.14 -0.53 0.65   0.00 0.34 0.07 

Dp Soil -0.37 0.00 -0.33 -0.36 -0.24 -0.58 -0.49 -0.64 -0.48 -0.28 -0.33 -0.21 0.10   0.02 0.38 

Lc Soil -0.37 -0.39 -0.61 -0.10 -0.08 -0.43 -0.38 0.03 -0.36 -0.22 -0.39 -0.37 0.29 0.32   0.72 

Lp Soil -0.66 -0.49 -0.62 -0.59 -0.44 -0.59 -0.43 -0.15 -0.24 -0.20 -0.45 0.26 0.51 -0.01 0.19   

 

Figure 2-1. Factorial plant-soil feedbacks (PSFs) (a), non-factorial species PSFs (b) and 
non-factorial functional group PSFs (c) as measured in the greenhouse. 95% confidence 
intervals were created via bootstrapping (a) or a one-way student’s t-test (b, c). Asterisks 
indicate PSFs with a mean significantly different from zero. 
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Figure 2-2. Biodiversity-productivity relationships predicted from a PSF-informed model 
(blue), a model without PSF effects parameterized with growth on other soils (orange); 
and biodiversity-productivity relationships observed in 12-L pots across community 
replicates in a greenhouse experiment (black) as analyzed by linear regression.  
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Figure 2-3. Net biodiversity effects (black) partitioned into selection effects (orange) and 
complementarity effects (gray) from observations in a greenhouse experiment (a), 
modeled predictions incorporating plant-soil feedbacks (b) and modeled predictions 
without PSF data (c). 
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Figure 2-4. Predicted community biomasses (g per 12 L pot) from PSF-informed models 
(blue) and models without PSF effects parameterized with growth on other soils (orange) 
biomasses observed in a greenhouse experiment. 
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CHAPTER 3 

GREENHOUSE- AND FIELD-MEASURED PLANT-SOIL FEEDBACK ARE NOT 

CORRELATED2 

 
ABSTRACT 

Plant-soil feedbacks (PSFs) have become a commonly invoked mechanism of 

plant coexistence and abundance. Yet, most PSF experiments have been performed in 

greenhouse conditions. To test whether or not greenhouse-measured PSF values are of 

similar magnitude and positively correlated with  field-measured PSFs, we compared PSF 

values from five different studies that measured PSF values in both greenhouse and field 

conditions. For 36 plant species, greenhouse-measured PSF values were larger than and 

not positively correlated with field-measured PSF values. Similarly, these 36 species 

produced 269 soil-specific PSF values, and for each site there was no positive correlation 

between these greenhouse- and field-measured PSF values. While PSFs were observed in 

both greenhouse and field conditions, results provided no support at the soil, site or 

species level that a positive correlation exists between greenhouse- and field-measured 

PSF. Further, greenhouse-measured PSF appear to overestimate field-measured PSF. 

Although from five studies, results strongly suggest that field experiments are needed to 

understand the role of PSFs in plant communities in natural settings. 

 

                                                 

2 Forero, L. E.,Grenzer, J., Heinze, J., Schittko, C., and Kulmatiski, A. (2019). 
Greenhouse- and field-measured plant-soil feedbacks are not correlated. Frontiers in 
Environmental Science. Doi: 10.3389/fenvs.2019.00184 
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1. INTRODUCTION 

 Plant-soil feedbacks (PSFs) are increasingly used to explain plant community 

dynamics including succession, invasion, legacy effects, landscape abundance, 

coexistence, and biodiversity (Kardol et al., 2006; Klironomos, 2002; van der Putten et 

al., 2013). However, PSF research continues to rely mostly on greenhouse experiments 

(Figure 3-1). Greenhouse PSF studies are useful for developing conceptual models of 

plant community dynamics (Aguilera, 2011; Bever et al., 1997; Bonanomi et al., 2005), 

however, it remains largely untested whether or not PSFs measured in the greenhouse are 

correlated with PSFs measured in the field (Kulmatiski and Kardol 2008, Schittko et al. 

2016).  

Plants can alter soil biota, and these changes in soil biota may subsequently affect 

their own growth and the growth of neighboring plants (Ehrenfeld et al., 2005; Reynolds 

et al., 2003). PSFs are typically investigated by testing a plant’s growth response to soils 

cultivated by different plant species (Bever, 1994). Many approaches have been used to 

test PSF effects (Kulmatiski and Kardol 2008) including unsterilized versus sterilized 

soils, comparisons among different field soil inoculum into sterilized soils, microbial 

filtrate inoculations, and two-phase experiments in which soil types are cultivated during 

an experiment. The two-phase approach remains a standard approach (Bever et al., 1997; 

van der Putten et al., 2013). In a two-phase experiment, during the conditioning phase of 

the bioassay (Phase 1), plants are used to create a soil with biota specific to that species. 

In the response phase (Phase 2), phytometers are planted to test the growth response of a 

species to the altered soil biota. Growth of the Phase 2 species on soil previously 

conditioned by the same plant (“home”) is compared to growth on soil previously 
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conditioned by a different plant (“away”). By using soil from Phase 1 to inoculate 

sterilized soils, this approach can isolate microbial from soil chemical (Ehrenfeld et al., 

2005; Ke et al., 2015; Morris et al., 2009) and physical (Kulmatiski et al., 2017; Kyle, 

2005) effects.  

PSF studies are typically executed in the greenhouse for several reasons. 

Greenhouse studies allow for many isolated replicates and can be performed throughout 

the year in rapid growth conditions. Because it is relatively easy to sterilize greenhouse 

soils, greenhouse studies more easily control legacy effects and separate soil nutrient 

effects from soil microbial effects, relative to field studies. However, completely isolating 

microbial from nutrient PSF may be unrealistic (Ke et al., 2015; Kulmatiski and Kardol, 

2008). Greenhouse studies also lack microsite variability which can increase the 

likelihood of detecting PSFs in the greenhouse (Burns et al., 2015; Rinella and Reinhart, 

2017). 

Abiotic and biotic conditions can be very different between the greenhouse and 

the field (Heinze et al., 2016; Schittko et al., 2016). Greenhouse soils are typically 

sterilized and inoculated with small amounts of live soil; this likely creates soil 

conditions favoring fast-growing microbes and fast-growing plant species (De Deyn et 

al., 2004; Eno and Popenoe, 1964; Howard et al., 2017). Frequent fertilization and 

watering can cause arbuscular mycorrhizal fungi to become parasitic as conditions 

change from low to high fertilization regimes, and dry to wet water regimes (Johnson et 

al., 2003; Schmidt et al., 2011). This could cause PSF to appear neutral or positive in dry 

field conditions, and negative or neutral in a greenhouse with a consistent water regime 

(Mohan et al., 2014). Large soil organisms are typically absent in greenhouses which 
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would affect plant-soil interactions (Kuťáková et al., 2018) such as below-ground 

herbivory (Bezemer et al., 2013; Hol et al., 2010). More broadly, stressful conditions 

found in field studies may induce greater facilitation and a more positive PSF in the field 

(Maestre et al., 2009). These differences have led several authors to recommend greater 

field experimentation (Heinze et al., 2016; Kulmatiski and Kardol, 2008; Schittko et al., 

2016).  

Here, our goal was to test whether or not greenhouse-measured PSFs are of a 

similar magnitude and positively correlated with field-measured PSFs. We predicted that 

greenhouse- and field-measured PSF would be positively correlated because we expected 

that plants have a dominant effect on soil microbial community composition and 

subsequent PSF; these effects should be similar in both settings due to similar plant 

species and soil microbial communities. A negative correlation or a lack of correlation 

between greenhouse- and field-measured PSF suggests that greenhouse conditions 

change plant-soil interactions in ways that reverse or change PSF values. To test this 

prediction, we compared greenhouse- and field-measured PSF values from published 

studies and publicly available datasets. To assess whether PSF is overestimated in 

greenhouse or field conditions, we compared the magnitude of PSF values (regardless of 

sign) by taking the absolute values of greenhouse- and field-measured PSF. 

 
2. METHODS 

A Scopus search for PSF studies with the term “plant-soil feedback” or “plant-soil 

feedbacks” in the title, abstract, or keywords was performed on March 19, 2019. Of the 

resulting 515 studies, meta-analyses, modeling papers, reviews, and non-English studies 

were removed. The remaining studies were reviewed to identify studies containing 1) a 
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home/away PSF method (Brinkman et al., 2010), 2) aboveground biomass or cover as the 

response variable, and 3) grasslands as the study ecosystem (Burns et al., 2017; Teste et 

al., 2017), which left 297 studies. Species from grassland ecosystems were selected as the 

focal organisms because most PSF research has been conducted in grassland ecosystems, 

so sufficient sample sizes from non-grassland ecosystems were unlikely (Kulmatiski et 

al., 2008; van der Putten et al., 2013). Of these 297 studies, 237 occurred in the 

greenhouse, 50 in the field, seven in mesocosms, and three included both greenhouse and 

field approaches. Of these three studies, data was collected from two, but one possible 

study did not respond to requests for data. An additional three datasets produced by the 

authors, which are publicly available at the USU Digital Commons, were also included. 

The resulting dataset contained paired greenhouse-measured and field-measured 

PSF values for 36 species derived from 2975 field observations and 2907 greenhouse 

observations at five different study sites. We used the paired dataset to 1) calculate PSF 

values using a single method for all data, 2) test for correlations between greenhouse- and 

field-measured PSF, and 3) compare PSF values and PSF magnitudes (absolute values) 

between greenhouse- and field-measured PSF. 

 
2.1 Study Sites 

Of the five study sites included, three were from Europe (Berlin, Potsdam, and 

Jena in Germany) and two were from North America (Winthrop, Washington and Cedar 

Creek, Minnesota in the United States). At all sites, the focal species selected were 

abundant in local plant communities. Four species were common among at least two 

study sites (Appendix A).  

All five studies compared phytometer growth responses to “home” and “away” 
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conditioned soil (Bever, 1994). When more than two species are used in a PSF 

experiment, this comparison can be undertaken by mixing all conditioned “away” soils 

together to create a single “away” treatment. This approach was used in the Berlin study; 

it eliminates site-by-site variation in soil microbes (Reinhart and Rinella, 2016; Rinella 

and Reinhart, 2017), and can be useful when the research question is not focused on 

spatial variability (Cahill et al., 2017; Gundale et al., 2017). Alternately, phytometer 

responses can be measured on each “away” soil creating a species*soil-level design. This 

approach was used in the studies at Cedar Creek, Jena, Potsdam, and Winthrop. Data 

from species*soil-level PSF experiments were converted to species-level PSF values by 

averaging a species’ growth across “away” soil types.   

 
2.2 Greenhouse Experiments 

The experiments at Cedar Creek, Jena, and Winthrop implemented a cultivated 

two-phase approach (Rinella and Reinhart, 2018). The experiments at Berlin and 

Potsdam collected conditioning soils from underneath monotypic stands in the field 

(Table 3-1; Kulmatiski and Kardol, 2008).  

For Phase 1, the Cedar Creek greenhouse experiment steam-sterilized a six-to-one 

mixture of sand and sphagnum peat inoculated with ten percent field soil. The prepared 

1-L pots were planted and grown for a six-month Phase 1. The Jena greenhouse 

experiment inoculated a three-to-one mixture of compost and sand with ten percent field 

soil. The prepared 1-L pots were planted and grown for an eight-month Phase 1. The 

Winthrop greenhouse experiment steam-sterilized a six-to-one mixture of coarse sand and 

sphagnum peat and inoculated with five percent field soil. The prepared 1-L pots were 

planted and grown for a three-month Phase 1. At the end of Phase 1, plants were removed 
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by hand-clipping; 2282 pots at Cedar Creek, 239 pots at Jena, and 216 pots at Winthrop 

had growth. 

For Phase 1, the greenhouse experiment at Potsdam collected field soil from 

underneath three different species’ monotypic stands and filled 90 0.41-L pots with 100% 

field soil (Heinze et al., 2016). In Berlin Schittko et al. (2016) collected field soil from 

underneath eight different species’ monotypic stands. The soil for the “away” treatment 

was mixed, where the soil for the “home” treatment was not mixed. A steam-sterilized 

sandy loam soil was inoculated with 23% “home” or “away” soils collected in the field 

and used to fill 240 pots, 80 of which were retained for the greenhouse experiment. 

For the greenhouse experiment at Cedar Creek, the Phase 2 length was six 

months; at Jena three months; at Winthrop, three months; at Potsdam two and one-third 

months; and at Berlin four months. Pots were clipped and aboveground biomass weighed 

for all species at the end of Phase 2 (Table 3-1).  

 
2.3 Field Experiments 

At Cedar Creek and Jena, the field site area was sprayed with glyphosate and 

disked. Experimental plots (0.35 m by 0.75 m) were established with 0.75 mm thick 

HDPE root barrier inserted to 35 cm deep between each plot. For Phase 1 at Cedar Creek, 

ten grams of pure live seed per m2 was applied to each of the plots. At Jena, 2000 total 

pure live seeds per m2 were applied to each of the plots. After a two-year Phase 1, the 

area was sprayed with glyphosate and hand-tilled using a garden claw. Non-target species 

were removed by hand-weeding. At Cedar Creek, plots containing C3 grasses and forbs 

were hand-tilled using a garden claw, but vigorous root growth in the C4 grasses 

necessitated tilling using a miniature tiller on plots containing that functional group. Seed 
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was re-applied at the same respective rates. After a 2-year Phase 2, aboveground biomass 

was clipped, dried and weighed; 2066 Cedar Creek plots and 345 Jena plots had growth. 

At Winthrop, the top 10 cm of vegetation and soil was removed (Kulmatiski, 

2019). A one-to-one mix of native soil inoculum and sand was applied to the prepared 

site, and disked to 15 cm to homogenize. A grid of 1.2 m wide geotextile cloth was laid 

down to create 315 1.5 by 1.5 m PSF plots in the area. Ten grams of pure live seed per m2 

was applied to each plot, and allowed to grow for a four-year Phase 1. After four years, 

Phase 1 plants were sprayed with glyphosate. Seed was re-applied for Phase 2 and plots 

were allowed to grow for three years. Growth was estimated using percent cover in June 

2013. 

At Potsdam, 30 (0.4 m by 0.4 m) plots were prepared by cutting the first 25 cm of 

roots under three different monotypic stands to create three Phase 1 treatments (Heinze et 

al., 2016). Three individuals of each species were planted in each plot. Individuals were 

spaced 10 cm apart and allowed to grow for 10 weeks. After the 10 weeks, aboveground 

biomass was harvested, and 89 individuals had growth.  

At Berlin, at week 14 of the greenhouse experiment, 160 pots were transferred to 

the field and left to sit on top of the soil for a period of two weeks (Schittko et al. 2016). 

After two weeks, the aboveground biomass was harvested. Extended methods for Cedar 

Creek and Jena are in Appendix A; for Potsdam, Winthrop, and Berlin extended methods 

are in Heinze et al., 2016; Kulmatiski et al., 2011, 2017; and Schittko et al., 2016. 

 
2.4 Statistical Analyses 

 To avoid bias from different calculation methods, original plant growth 

data on “home” and “away” soils was used to calculate PSF values using a single method 
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for all data (Brinkman et al. 2010). PSFs were calculated as (H-A)/maximum(H,A), 

where H is the aboveground growth (ground cover or biomass) produced by a species in 

Phase 2 on “home” soils, and A is the aboveground growth produced by a species in 

Phase 2 on “away” soils. The denominator refers to the maximum aboveground growth 

produced by a species regardless of soil type. This calculation has similar mathematical 

properties to the commonly used ln(H/A) metric (i.e., values that are symmetric around 

zero and bounded between +1 and -1). In addition, it has the advantage of being easily 

interpretable as the proportion increase or decrease in growth due to soil type (Brinkman 

et al. 2010). Plots or pots where the Phase 1 or the Phase 2 realized no growth were 

removed from the dataset. To prepare the data from species*soil-level PSF studies for a 

species-level analysis, one PSF value was calculated for each “away” species by taking 

the mean PSF value for each species across soil types.  

To determine if the mean PSF value for each experiment was different from zero, 

we took the standard error of the mean. For data from species-level PSF studies, one 

home versus away PSF was calculated for each species. For species-level PSF values, we 

used linear models to test for a correlation between greenhouse- and field-measured PSF 

within each study site and overall. For species*soil-level PSF values, we used linear 

models to test for a correlation between greenhouse- and field-measured PSF within each 

study site only, to control for the outsized effect of Cedar Creek’s data on the overall 

dataset. Linear models were performed using the polyfit and fitlm scripts in MATLAB 

(MathWorks, Inc, 2015b). Residuals for the species-level data were checked for 

normality using the Shapiro-Wilk test. 
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2.4.1 Comparisons 

 To compare PSF values and PSF magnitudes (absolute values) among study sites 

and regions, we performed a one-way analysis of variance (ANOVA) using the script 

anova1 in MATLAB. Significance was evaluated at α = 0.05. When significant, 

differences were explored with a Tukey’s Honest Significant Difference test in 

MATLAB using the script multcompare.  

 
3. RESULTS 

From species-level data, 36 paired PSF values were compared. Of these 36 

values, eight came from the mixed-soil PSF experiment at Berlin, and the remainder from 

species*soil-level studies where the mean PSF value across all soil types was calculated 

to create a single PSF value per plant species: 16 PSF values came from Cedar Creek, 

five from Jena, three from Potsdam, and four from Winthrop. Greenhouse PSF values 

were positive in Berlin and Potsdam, and neutral in Jena, Winthrop, and Cedar Creek 

(Figure 3-2a). Field PSFs were positive in Berlin and Winthrop, neutral in Jena and 

Potsdam, and negative in Cedar Creek (Figure 3-2a). For the species-level greenhouse-

measured data the average PSF was 0.046 and the coefficient of variance was 5.14; for 

the field-measured data the average PSF was -0.008 and the coefficient of variance was 

24.01.  

A total of 269 PSF values from species*soil-level field/greenhouse paired 

experiments were compared. Of these values, 239 came from the Cedar Creek study, 20 

from the Jena study, six from the Potsdam study, and four from the Winthrop study. PSF 

values for Berlin were excluded from the species*soil-level dataset because the study was 

not species*soil-level in design. Greenhouse PSF values were positive in Potsdam and 
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Jena, and neutral in Winthrop and Cedar Creek (Figure 3-2b). Field PSF values were 

positive in Winthrop, neutral in Jena and Potsdam, and negative in Cedar Creek (Figure 

3-2b). For the species*soil-level greenhouse-measured data the average PSF was -0.007 

and the coefficient of variance was 50.59; for the field-measured data the average PSF 

was -0.064 and the coefficient of variance was 4.81.  

We tested for correlations in species-level data both within and among sites. For 

species*soil-level data we tested within but not among sites because 86% of species-level 

data was from one site. For species-level data, there was no correlation between 

greenhouse- and field-measured PSF values across all study sites (F1,34 = 0.179, P = 

0.675, Figure 3-3a). Similarly, there was no correlation between greenhouse- and field-

measured PSF values within study sites (P > 0.05, Figure 3-3a). For the species*soil-level 

PSFs, there was no correlation between greenhouse- and field-measured PSF values at 

the Cedar Creek, Jena, and Winthrop sites (F1,237 = 0.001, P = 0.972; F1,18 = 0.003, P = 

0.959; and F1,2 = 0.039, P = 0.801; respectively; Figure 3-3b). There was a negative 

correlation between greenhouse- and field-measured data from the Potsdam site (F1,4 = 

10.129, P = 0.034, R² = 0.717; Figure 3-3b).  

We tested for differences in magnitude (absolute value) for species-level data 

only because of the strong effects Cedar Creek had on species*soil-level data. While 

there were few correlations between greenhouse- and field-measured PSF values, there 

were differences between the magnitude of greenhouse- and field-measured PSF values, 

indicating that PSF (either positive or negative) were larger in greenhouse than field 

conditions (F1,70 = 5.056, P = 0.028).  



56 
 

4. DISCUSSION 

Although PSFs are commonly invoked as a mechanism to explain complex plant 

community dynamics in the field, the majority of PSF experiments take place in 

controlled greenhouse conditions. We had predicted that greenhouse- and field-measured 

PSF would be positively correlated due to the dominant effects of plants on their soil 

microbial communities, but found no evidence to suggest that greenhouse-measured PSF 

data are positively correlated with field-measured PSF. We also found greenhouse-

measured PSF values were exaggerated relative to field-measured PSF values. Together, 

results suggest that the greenhouse-measured PSFs that predominate in the literature both 

overestimate and provide little direct inference into PSF effects in the field. Although our 

dataset is derived from only five sites, our results strongly suggest that PSFs are sensitive 

to growth conditions (Casper et al., 2008). Consequently, field experiments are likely to 

be needed to fully understand the role of PSFs in natural systems.  

There are several potential reasons that could explain why PSF values were 

smaller in the field than in the greenhouse. More stressful growing conditions (for 

example, competition, drought, or herbivory) may minimize PSF effects (Crawford and 

Knight, 2017; Fry et al., 2018; van der Putten et al., 2016). Although researchers in all 

five field experiments attempted to decrease competitive effects by hand-weeding, it is 

likely that competitive pressure was still greater in the field than greenhouse experiments 

due to the larger seed bank in unsterilized field soils (Lekberg et al., 2018). Similarly, 

greater aboveground herbivory in the field was likely to decrease PSF values directly by 

removing aboveground biomass and potentially indirectly by inducing increased 

belowground growth (Heinze and Joshi, 2018). Drought in the field may also decrease 
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PSF values by decreasing plant growth, microbial growth, and nutrient cycling rates (van 

der Putten et al., 2016). With only five studies and many potential factors affecting 

differences between greenhouse and field results, it was not possible to test these 

hypotheses, but they are consistent with our observation of larger PSF values in the 

greenhouse. 

Methodological differences were likely to explain why there was no positive 

correlation between field and greenhouse PSF values, though we were unable to isolate 

any specific methodological difference that would explain our results. Compared to the 

field, growing space is restricted, experiment length is shorter, and dominant soil 

microbes differ in the greenhouse. Excepting Berlin, greenhouse pots were smaller than 

field plots. Yet, we did not observe a qualitatively different relationship between 

greenhouse and field PSF values at Berlin. The Winthrop site had the largest difference 

between field plot and greenhouse pot size, yet PSF values were not notably different 

from other sites.  

Differences in temporal scales among sites similarly did not appear to drive our 

results. PSFs have been suggested to accumulate over time (Diez et al., 2010; Kardol et 

al., 2006; Kulmatiski et al., 2008; Lepinay et al., 2018), but Potsdam, which had similar 

greenhouse and field experiment lengths, did not have a positive correlation between 

greenhouse- and field-measured PSF. Sterilized soils, which were used at three of the five 

reviewed experiments, often have higher nutrient availability and promote faster plant 

growth, changing PSF values and soil microbial communities that drive PSF (De Deyn et 

al., 2004). However, sites using sterilized soils and sites using unsterilized soils both had 

uncorrelated PSF values. Little can be inferred from the five studies reviewed, but results 
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did not provide strong evidence to suggest that pot size, experiment length, or 

sterilization technique provided a strong explanation for the difference between 

greenhouse and field results. 

The only correlation observed between greenhouse- and field-measured PSF, was 

a negative correlation at the Potsdam site. This site was the only site to use 100% field 

soil in the greenhouse experiment. It is possible that a negative correlation occurred 

because under decreasing light conditions PSF can be reversed (Smith and Reynolds, 

2015), but it is not clear why this effect would only appear when 100% field soils were 

used. To the contrary, we would have expected that the use of 100% field soil would 

produce more similar results to the field.  

Although our results and results from previous studies suggest that PSF values are 

very context-dependent (Casper and Castelli, 2007), the PSF concept remains relevant to 

plant community ecology. Greenhouse-measured PSFs have been found to improve 

predictions of plant growth in communities in the greenhouse (Kulmatiski et al., 2011, 

2017) and field-measured PSFs have been found to improve predictions of plant growth 

in communities in the field (Klironomos 2002, Kardol et al. 2006, Mangan et al. 2010, 

Kulmatiski 2019; Mariotte et al. 2018). Thus, our results suggest that while greenhouse 

studies are useful for conceptual model development and predicting plant growth in 

greenhouse conditions, ecologists who wish to understand the role of PSFs for specific 

plant species in the field should rely on field studies.  

While from five studies, our results suggest that the PSF literature, which is 

predominantly derived from greenhouse experiments, overestimates PSF effects and 

while it may provide insight into general patterns of interactions that occur in plant 
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communities in the field, it provides little insight into the specific PSFs that determine the 

growth and abundance of specific plants in natural communities. Our findings are 

consistent with results from previous studies (Heinze et al., 2016; Schittko et al., 2016), 

and suggest that although greenhouse-measured PSFs are important for conceptual 

models, field experiments will likely be needed to understand the role of PSFs in 

complex plant community dynamics in the field. 
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TABLES 

Table 3-1. Methods for the paired greenhouse and field experiments. 
 Berlin Cedar Creek Jena Potsdam Winthrop 

Field plot size 1.4-L pots except for Cichorium 
intybus and Medicago x varia, which 

were in 3.1-L pots 

0.75 by 0.35 m 0.75 by 0.35 m 0.4 by 0.4 m 1.5 by 1.5 m 

Greenhouse pot 
size 

1.4-L and 3.1-L (see above) 1-L 1-L 0.41-L 1-L 

Phase 1 Type Inoculum Cultivated Cultivated Inoculum Cultivated 
Greenhouse live 

soil rate 
23% 10% 10% 100% 5% 

Greenhouse 
experiment length 

four-month Phase 2 six-month Phase 1 
and six-month Phase 

2 

eight-month Phase 1 
and three-month Phase 

2 

two and one-third 
month Phase 2 

three-month Phase 1 
and three-month Phase 

2 
Field experiment 

Length 
0.5 months spent in the field out of a 

four-month experiment 
24-month Phase 1 

and 24-month Phase 
2 

24-month Phase 1 and 
24-month Phase 2 

two and one-half 
month Phase 2 

48-month Phase 1, 32-
month Phase 2 

Greenhouse N 80 2282 239 90 216 
Field N 160 2066 345 89 315 
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FIGURES 

 

Figure 3-1. A Scopus search performed on March 18, 2019 for “plant-soil feedback” OR 
“plant-soil feedbacks” in abstract, title, or keyword of published articles from 1995 to 
2018 demonstrated an exponential increase in PSF research over the past 20 years. Dark 
gray indicates greenhouse studies and gray indicates field studies.
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Figure 3-2. Average greenhouse- and field-measured species-level (A) and species*soil-
level (B) PSF values (mean ± SE). Gray indicates greenhouse studies and white indicates 
field studies. 
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Figure 3-3. Greenhouse- vs. field-measured species-level (A) and species*soil-level (B) 
PSF values from five study sites. Yellow, Berlin; blue, Cedar Creek; orange, Jena; gray, 
Potsdam; green, Winthrop; black is a best-fit line for all study sites. Though only 
significant for the Potsdam species*soil-level data, best-fit regression lines are shown for 
each site to demonstrate that slopes were close to zero.
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CHAPTER 4 

PLANT-SOIL FEEDBACKS HELP EXPLAIN BIODIVERSITY-PRODUCTIVITY  

RELATIONSHIPS3 

 
ABSTRACT 

• Species-rich plant communities often produce twice as much aboveground 

biomass as monocultures, but the mechanisms causing these biodiversity-

productivity relationships remains unresolved. 

• We tested whether or not plant-soil feedbacks (PSFs) can help explain the 

biodiversity-productivity relationship. Using a field experiment, we measured all 

possible PSFs for 16 species in a tallgrass prairie system, Minnesota, USA. A 

suite of plant community growth models was parameterized with or without this 

PSF data and model predictions were compared to biomass in plant communities 

with one to 16 species, that were grown separately. 

• Across 240 PSF values, plants created soils that changed subsequent plant growth 

by 27%. Plant community growth models parameterized with these PSFs 

predicted 27% overyielding due to complementarity. Without these PSFs, Null 

models incorrectly predicted 17% overyielding due to selection effects. In 

experimental communities, complementarity resulted in 185% overyielding.  

• PSFs improved predictions of the magnitude and mechanism of overyielding 

relative to Null models. Results were consistent with theoretical models that 
                                                 

3 Forero LE, Kulmatiski A, Grenzer J, Norton JM. 2020. Plant-soil feedbacks help 
explain biodiversity-productivity relationships. In review. 
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predict a negative relationship between PSF and overyielding. Results, therefore, 

clearly demonstrated that PSFs can be one of several mechanisms that determine 

biodiversity-productivity relationships.  

 
INTRODUCTION 

Plant productivity typically increases with species richness (Cardinale et al., 

2007). Efforts to understand this fundamental aspect of ecosystem function (i.e., 

overyielding; Jochum et al., 2020) have understandably focused on mechanisms of 

overyielding such as complementarity and selection effects (Jing et al., 2015). 

Complementarity effects are often attributed to niche partitioning which allows species-

rich communities to capture more resources than species-poor communities (Tilman et 

al., 2006). Selection effects occur when more productive species are over-represented in 

species-rich relative to species-poor communities. However, niche complementarity and 

selection effects do not fully explain biodiversity-productivity relationships (Hector et al., 

2002; Mueller et al., 2013; Barry et al., 2019). For example, while most plant 

communities overyield, some communities underyield and niche-partitioning and 

sampling effects generally do not help explain this wide range of responses (Cardinale et 

al., 2007).  

Mechanisms that explain both over- and underyielding are likely to improve 

understanding of biodiversity-productivity relationships (Huston et al., 2000; Loreau & 

Hector, 2001). Plant-soil interactions offer the potential to explain both overielding and 

underyielding (Kulmatiski et al., 2012). Species-specific soil pathogens, for example, can 

be expected to be more abundant in monocultures than species-rich communities 

resulting in overyielding (Maron et al., 2011; Wright et al., 2017; Wang et al., 2019). 
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Conversely, species-specific soil symbionts can be expected to be more abundant in 

monocultures than species-rich communities resulting in underyielding (Bever et al., 

2012; Bauer et al., 2020). Although it is near-impossible and likely inappropriate to 

individually characterize the effect of each species-specific soil pathogen and symbiont 

on plant productivity, it is possible to summarize the net effect of negative and positive 

plant-soil interactions using PSF experiments (Bever, 1994; van der Putten & Peters, 

1997). Thus, PSFs offer the potential to help explain both overyielding and underyielding 

in biodiversity-productivity relationships (Kulmatiski et al., 2012; Wang et al., 2019). 

Several experimental approaches have been used to explore the role of plant-soil 

interactions in biodiversity-productivity relationships (Maron et al., 2011; Schnitzer et 

al., 2011; Hendriks et al., 2013; Jing et al., 2015; Guerrero‐Ramírez et al., 2019; Wang et 

al., 2019). Perhaps the best support comes from field (Maron et al., 2011) and potted 

(Schnitzer et al., 2011) studies that used fungicide and microbial inoculations to 

demonstrate soil organism effects on the biodiversity-productivity relationships (Maron 

et al., 2011; Schnitzer et al., 2011), but these types of sterilization and inoculation 

experiments have been found to exaggerate PSF effects (Kulmatiski et al., 2008; Lekberg 

et al., 2018). Several studies have used greenhouse experiments (Kulmatiski et al., 2012; 

Cowles, 2015; Guerrero‐Ramírez et al., 2019; Wang et al., 2019), but greenhouse 

experiments have been found to produce PSFs that are not correlated with field-measured 

PSF (Forero et al., 2019).  

Two-phase, factorial field experiments remain the preferred approach for 

describing PSF (Kulmatiski & Kardol, 2008; Brinkman et al., 2010; van der Putten et al., 

2013; Reinhart & Rinella, 2016). In these experiments, each plant in a community is 
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grown on soils cultivated by each other plant in the community. Due to the sample sizes 

required by factorial designs, these experiments have rarely been performed with more 

than a few species in the field (Hendriks et al., 2013; Crawford et al., 2019). We are not 

aware of any two-phase, field experiments that have tested the effects of PSF in 

biodiversity-productivity relationships. 

The overarching goal of this research was to quantify the role of PSFs in a 

biodiversity-productivity relationship. To do this, we measured PSFs for 16 species using 

a factorial, two-phase field experiment. We then parameterized a suite of plant 

community growth models with or without PSF plant growth data. Model predictions 

were compared to biomass in new and existing experimental communities with 1 to 16 

plant species. To better explain the mechanisms causing the biodiversity-productivity 

relationship, net biodiversity effects in model predictions and observed data were 

separated into complementarity and selection effect components (Loreau & Hector, 2001; 

Clark et al., 2019). 

 
MATERIALS AND METHODS 

Research was conducted in the Cedar Creek Ecosystem Science Reserve Long 

Term Ecological Research site, East Bethel, Minnesota, USA (45.403290 N, 93.187411 

W). Previous research at the study site demonstrated large increases in community 

biomass with species richness (i.e., biodiversity-productivity relationships) that increase 

over time and are caused by complementarity (Fargione et al., 2007). Soils are sandy and 

of the Nymore series: mixed, frigid, Typic Udipsamment. During the four years of the 

study, mean annual precipitation and temperature were 723.0 mm and 6.5° C, which is 

consistent with the 1963 to 2019 records at the site (769.3 mm and 6.6° C, respectively).  
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We performed two experiments: a PSF experiment and a biodiversity-productivity 

experiment. Each experiment included 16 species used in an existing biodiversity-

productivity experiment at the site (the Biodiversity II experiment; Table 1(Tilman et al., 

1997). Five species that together represented less than 3% of the biomass in the 

biodiversity-productivity experiment from 1997 (henceforth, BP1997) were excluded from 

our PSF and biodiversity-productivity experiments due to seed availability (Asclepias 

tuberosa L., Dalea villosa Nutt., Dalea candida Michx) and poor growth in previous 

experiments (Quercus macrocarpa Michx., Quercus ellipsoidalis E. J. Hill) (Ownbey & 

Morley, 1991). Seeds were purchased from Prairie Moon Nursery (Minnesota, USA), 

Granite Seed (Utah, USA), Prairie Restorations Inc. (Minnesota, USA) and Minnesota 

Native Landscapes (Minnesota, USA). 

In October 2014, a 1750 m2 fallow area adjacent to the BP1997 experiment was 

sprayed with a 5% glyphosate solution (Monsanto, Missouri, USA) and disc-harrowed to 

15 cm to incorporate vegetation and homogenize soils. For the PSF experiment, 2,720 

plots (0.75 m x 0.35 m) were established. For the biodiversity-productivity experiment, 

232 plots (1.5 m by 1.5 m) were established. For all plots, a 35-cm deep by 4-cm wide 

trench was dug and lined with a root barrier (1-mm thick high-density polyethylene; 

Global Plastic Sheeting, California, USA). Throughout the PSF and biodiversity-

productivity experiments, non-target plants were removed by hand several times each 

year.  

 
PSF Experiment 

A two-phase, factorial PSF experiment was used (Brinkman et al., 2010). Phase I 

began in April 2015. For each of the 16 target species, 10 g live seed m-2 was planted by 
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hand in 170 replicate plots. During 2015, plots were watered weekly to promote 

establishment, and during the first two years plots were weeded once every two weeks to 

ensure the conditioned soils were monospecific. Seeded plant species grew in 2608 of the 

2720 plots in Phase I. After two growing seasons, in late summer 2016, vegetation was 

killed with a 5% glyphosate treatment and aboveground biomass removed. To prevent 

resprouting in Phase II, plots were hand-tilled with a garden claw (~75% of plots) or 

rototiller as necessary (~25% of plots; Stihl Inc., Delaware, USA), November 2016. To 

further limit resprouting, a 5% glyphosate solution was applied again in April 2016 prior 

to seeding for Phase II.  

For Phase II, each target species was to be planted in 35 replicate plots with ‘self’ 

soils and nine replicated plots with each of the 15 ‘other’ soils. Because some target 

species failed to establish in Phase I, actual replication ranged from 27 to 35 replicates on 

‘self’ soils and five to nine replicates on each ‘other’ soil (Appendix C Table C-2). 

Further, each target species was randomly assigned to five to nine replicate plots that had 

no Phase I growth. These ‘control’ plots were used to parameterize one of the Null 

models. During Phase II, plots were weeded once per month. 

Plant cover in every plot was assessed by visual estimation in August 2017 and 

September 2018 and plant aboveground biomass was clipped, dried and weighed in 

October 2018. The 2017 percent cover data was converted to biomass values using the 

2018 percent cover to biomass relationship. 

 
Calculating and Analyzing PSFs 

PSF values were calculated from aboveground biomass data as follows: PSF = (S-

O)/maximum(S,O) where S is the aboveground biomass produced in Phase II on ‘self’ 
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soils, where O is the aboveground biomass produced in Phase II on ‘other’ soils 

(Brinkman et al., 2010). This value is symmetrical around zero, bound by -1 and 1 and 

easily-interpretable as the proportion change in growth among soil types. The mean and 

error associated with these values was estimated using bootstrapped confidence intervals 

calculated using the sample_n command from the R package ‘dplyr’ (Wickham et al., 

2020). Because PSFs were measured for 16 species on 15 soil types, analyses yielded 240 

species*soil level PSF values.  

While the PSF experiment was performed primarily to produce plant growth rates 

on different soil types for use in plant community growth models, we also report PSF 

values. The 240 species*soil-level PSF values were considered positive or negative when 

their 95% confidence interval did not overlap zero. Variation in species*soil PSF values 

is derived from the 27 to 35 replicate “self” and 5 to 9 replicate “other” field plots. 

Species-level PSF values were then calculated as the mean PSF value across 15 soil 

types. Variation in species-level PSF is derived from the 15 soil types. To determine if 

species-level PSF values differed from zero, one-way t-tests were used. Species-level 

PSF were considered different from zero when P < 0.05. To test whether or not PSF 

values changed between the first and second year of Phase II, a one-way ANOVA with 

year as a factor was used (‘aov’ and ‘TukeyHSD’ in R programming). Differences among 

years were considered significant when P < 0.05. 

 
Biodiversity-Productivity Experiment 

In April 2015, 63 plant communities containing 1 to 16 plant species were planted 

in 232 plots. Plant communities with 1, 2, 4, 8, 14, and 16 species were established with 

16, 14, 9, 9, 14, and 1 unique community compositions for each richness level, 
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respectively. Each unique community composition was planted in three replicate plots, 

except monocultures which were each planted in four replicates plots, and 16-species 

communities which were planted in 30 replicate plots. Community compositions were 

designed to replicate those in the BP1997 experiment (Tilman et al., 2001; Fargione et al., 

2007; Appendix C Table C-3). For 40 of 63 communities, species composition in the new 

and existing experiments were identical. The remaining 23 communities differed in that 

they did not include the five species described above, but again, these species represent 

less than 3% total biomass in BP1997.  

Each plot received 10 g live seed m-2, with each seeded species in the community 

representing equal proportions of the seed mix. Plots were watered in the first year of the 

study (2015), and were weeded every two weeks for the first two years of the study. 

Thereafter, plots were weeded once per month. In August 2017, percent plant cover by 

species was assessed by visual estimation to the nearest percent. Rather than removing 

thatch by burning (as in BP1997), total biomass was harvested and removed to prevent 

melting the plastic root barrier. In August 2018, plant cover in each plot was assessed by 

visual estimation, then randomly-selected 15 cm by 150 cm strips were clipped, sorted to 

species, dried to constant weight at 60 °C and weighed to the nearest 0.1 g. The 

remaining biomass was then clipped, dried and weighed. Percent cover to dry biomass 

correlations were used to transform percent cover values to biomass values. 

To provide an additional test of the role of PSF in the BP relationship, we also 

used published data from the fourth year of the BP1997 experiment (49; 

https://www.cedarcreek.umn.edu/research/data). Cover to biomass relationships reported 

for 2007 were used to convert species-level cover data to species-level biomass that were 
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then scaled to match observed community biomass (Tilman et al., 1997).  

 
Modeling Approach 

Plant species biomass in communities were predicted using the best-performing 

discrete plant community growth models in a similar previous study (i.e., the ‘logistic 

species-level-K model’ and the ‘logistic constant-K model’; Kulmatiski et al., 2011, 

2016). In this logistic growth model, species-conditioned soils ‘grow’ as a function of 

plant biomass, plant species growth rates, and a plant-to-microbe conversion factor 

(Appendix C Table C-1). Plant growth rates are a function of the proportion of different 

conditioned soil types present. To prevent run-away growth, biomass is limited by a 

carrying capacity, which can be either unique to a species or to the community. Null 

model simulations are the same except that they include only one soil type and one plant 

growth rate (Appendix C).  

Growth rates were derived from a) growth on control soils (control Null model), 

b) growth on ‘self’ soils (self Null model), or c) growth on each soil type (PSF model). 

Competition coefficients were assigned a value of ‘1’, but each species could affect the 

growth of other species due to community-level carrying capacities (Kulmatiski et al. 

2016). Each of these three model parameterizations (i.e., growth on control, growth on 

self, or growth on each soil type) was run with five different carrying capacities: 1) the 

maximum observed growth in any plot in the community experiment, 2) the maximum 

mean observed growth in any community, 3) the maximum species-specific growth in 

community plots, 4) the maximum observed growth in any PSF plot, and 5) the 

maximum species-specific growth in any PSF plot. Mean Null model predictions of 

community biomass were calculated from the 10 model simulations (Control Null, Self 
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Null each with five carrying capacities). Mean PSF model predictions were calculated 

from the five simulations with different carrying capacities. 

Because growth rates were derived from the second year of growth, we assumed 

that growth rates represented two years of growth. To simulate the four years of growth 

in the biodiversity-productivity experiment, model simulations were executed for 52 

timesteps, after which plant biomass was reduced to 1% of the previous timestep and 

allowed to run for another 52 timesteps. Model simulations for 52 or 208 time steps 

produced qualitatively similar results but only results from the 104 timestep approach 

described immediately above are reported since they best represented conditions in the 

field. Mean model output for the sum of species growth from the suite of Null or PSF 

model simulations are reported.  

 
Parsing Selection and Complementarity Effects 

For observed and predicted data, the relationship between species richness and 

community biomass was described using a best-fit log-linear regression (Proc Reg; SAS 

V9.4). To parse complementarity from selection effects from these biodiversity-

productivity relationships, we used the modified Price equation (R package 

‘partitionBEFsp”; Loreau & Hector, 2001; Clark et al., 2019). Complementarity effects 

can be either positive or negative, depending on whether species on average have higher 

or lower yields than the expected relative yield. Selection effects can be either positive or 

negative, depending on whether species have a positive or negative covariance between 

relative yield and biomass. This method is easily interpretable, comparable to other 

results, and remains the standard practice (Clark et al. 2019). Data from outlier 

communities with total biodiversity effects greater than five times the interquartile range 
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were removed. Because S. rigida, D. purpurea, D. villosa, and D. candida did not grow 

in monoculture communities in BP1997, when partitioning biodiversity effects for BP1997 

their monoculture growth was assumed to be twice biculture growth.  

 
Testing PSF and Biodiversity-Productivity Data 

Patterns in the observed and predicted biomass with species richness were 

described with simple, best-fit log linear regressions (Proc Reg; SAS V9.4). The 

relationship between predicted and observed biomass in different plant communities was 

assessed by ordinary least squares regression. Plant community biomass was the response 

variable that was predicted by either Null-or PSF-model-predicted biomass. Similarly, 

relationships between community-level PSF and overyielding were assessed by ordinary 

least squares regression (Kulmatiski et al., 2011). Community-level PSF for each species 

in the community was calculated as PSFi = (Si - Oi)/maximum(Si, Oi), where Oi 

represents the average growth of species i on any “other” conditioned soil type present in 

the community and Si represents the growth of species i on “self” conditioned soil (20). 

Community-level PSF across the entire community was calculated as the average of 

community-level PSF across each species in the community. 

 
RESULTS 

PSF Experiment 

PSFs were predominantly negative (Fig. 4-1). Across the 240 species*soil-level 

PSFs, 23 were negative, and 13 were positive (i.e., 95% confidence interval did not 

overlap zero; Fig. 4-1a). These 39 PSFs occurred across species so that 14 of 16 species 

demonstrated a PSF on at least one soil type (Fig. 4-1a). Because PSF were both positive 
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and negative, the mean absolute value of PSFs at the end of the experiment (0.27 in 2018) 

was larger than the mean of all values at the same time (-0.10). In other words, after a 

two-year training phase, plants created soils that changed subsequent plant growth by 

27%, but because some plants created soils that increased plant growth and other plants 

created soils that decreased plant growth, the net effect was that plants created soils that 

decreased plant growth by 10%. PSFs became more negative in the second year of Phase 

2 and were 0.00 and -0.10 in 2017 and 2018, respectively (T239 = 5.4, P < 0.001). The 

absolute value of PSF also increased from 0.23 in 2017 to 0.27 in 2018 (0.23; T239 = -3.1, 

P = 0.002). For conciseness, only 2018 species*soil level PSF values are shown in Fig. 4-

1a.  

When species*soil-level PSFs were averaged across soil types to produce one 

PSF for each species, there were five negative and three positive species-level PSFs in 

2017 and five negative and one positive species-level PSFs in 2018 (Fig. 4-1b). 

 
Biodiversity-Productivity Experiments 

After four years, community biomass in the concurrent biodiversity-productivity 

experiment increased with species richness (Fig. 4-2; F1,59 = 36.4, P < 0.001) from 55.6 g 

m-2 in monocultures to 187.3 g m-2 in 16-species communities (Fig. 4-2). This 131.8 g m-2 

difference represented a 237% increase in biomass production. Complementarity effects 

explained 172.5 g m-2 overyielding and selection effects explained 40.8 g m-2 

underyielding in 16-species communities (Fig. 4-3a).  

These results were consistent with those from a similar experiment performed at 

the site in 1997. In that experiment, after 4 years growth, biomass increased with species 

richness (F1,59 = 12.66, P < 0.001) from 78.5 g m-2 in monocultures to 183.4 g m-2 in 16-
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species communities (Fig. 4-2). This 104.8 g m-2 difference represented a 133% increase 

in biomass production. On average, 16-species communities experienced a 95.0 g m-2 

biodiversity effect. Complementarity effects explained 84.5 g m-2 overyielding. Selection 

effects explained 10.5 g m-2 overyielding (Fig. 4-3b).  

 
Model Predictions 

Plant-community growth models informed with PSF data (i.e., PSF models) 

predicted that biomass would increase with species richness (F1,59 = 7.81, P = 0.007), 

from 60.1 g m-2 in monocultures to 76.1 g m-2 in 16-species communities (Fig. 4-2). This 

16.0 g m-2 difference represented a 27% increase in biomass production. 

Complementarity effects explained 15.0 g m-2 overyielding. Selection effects explained 

1.0 g m-2 overyielding (Fig. 4-3c). Overyielding was negatively correlated with 

community-level PSF for 16-species communities (PSF = -5.2*overyielding + 0.15; F1,14 

= 9.57, P = 0.009, R2 = 0.42), but not for 2-, 4-, or 8-species communities (P > 0.05). 

Null models predicted that biomass would increase with species richness (F1,59 = 

7.33, P = 0.009) from 60.7 g m-2 in monocultures to 70.7 g m-2 in 16-species communities 

(Fig. 2). This 10.3 g m-2 difference represented a 17% increase in biomass production. 

Complementarity explained 1.5 g m-2 underyielding. Selection effects explained 11.8 g 

m-2 overyielding (Fig. 3d).  

Both PSF and Null model predictions were correlated with community biomass in 

the concurrent biodiversity-productivity experiment, though PSF model predictions were 

closer to 1:1 (Observed biomass = 0.97*PSF predicted biomass + 47.3) and had a 

stronger predictive ability (R2 = 0.20, P < 0.001, RMSE = 77.6; Appendix C Fig. C-1a) 

than Null model predictions (Observed biomass = 0.81*Null predicted biomass + 61.5, 
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R² = 0.14, P = 0.003, RMSE = 81.6; Appendix C Fig. C-1a). Neither PSF nor Null model 

predictions were correlated with biomasses from the biodiversity-productivity experiment 

performed in 1997 (P > 0.05; Appendix C Fig. C-1b). 

 
DISCUSSION 

PSFs improved understanding of the magnitude and mechanism of the 

biodiversity-productivity relationship. PSF models predicted greater overyielding than 

Null models, and the mechanism of this overyielding was correct in PSF models and 

incorrect in Null models. Explaining 12 to 15% of overyielding in new and existing 

biodiversity-productivity experiments, PSF effects were not large, rather, results provided 

clear support for PSFs as one of several mechanisms that determine the biodiversity-

productivity relationship (van Ruijven & Berendse, 2005). Results were consistent with 

previous modeling (Kulmatiski et al., 2012), greenhouse (Schnitzer et al., 2011; 

Guerrero‐Ramírez et al., 2019; Wang et al., 2019) and soil pathogen (Maron et al., 2011) 

studies, but the factorial, two-phase PSF field experiment and biodiversity-productivity 

experiments used here were expected to provide better insight into how plant-soil 

interactions affect biodiversity-productivity relationships in the field (Rinella & Reinhart, 

2017; Forero et al., 2019). 

Null and PSF models predicted that 16-species communities would produce 10.3 

g m-2 and 16.0 g m-2 more biomass than monocultures, respectively. However, Null 

models incorrectly predicted this overyielding was due to selection effects, while PSF 

models correctly predicted this was due to complementarity (Fig. 4-3). In new and 

existing biodiversity-productivity experiments, 16-species communities produced 104.8 g 

m-2 to 131.8 g m-2 more biomass than monocultures due to complementarity (Fig. 4-3). 
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Thus, PSFs predicted 12-15% of the observed biodiversity-productivity effect and the 

mechanism of this effect was consistent with the mechanism in the observed data.  

Null models predicted overyielding due to selection effects because faster 

growing species realized a competitive advantage and were over-represented in 

communities relative to mean plant growth in monocultures. In contrast, PSF models 

predicted overyielding due to complementarity. PSF caused overyielding because the 

effects of negative PSF (i.e., soil pathogens) were diluted in diverse communities (Maron 

et al., 2011; Schnitzer et al., 2011). While the net effect of PSF was to increase 

overyielding, positive PSF also helped improve correlations between predicted and 

observed community biomass by correctly decreasing the biomass of species with 

positive PSFs in communities (Appendix C Fig. C-1a; Kulmatiski et al., 2011). For 

example, a positive PSF for L. perennis on S. nutans soil, correctly resulted in less L. 

perennis biomass in L. perennis/S. nutans bicultures than predicted by the Null model. 

The magnitude and direction of PSFs in this study were broadly consistent with 

those from across the literature, suggesting that PSFs likely also play a small role in the 

biodiversity-productivity relationship in other systems (Crawford et al., 2019; Beals et 

al., 2020). The absolute value of PSFs (0.27) indicated that two years of plant growth 

created soils that changed subsequent plant growth by 27%. However, because PSFs were 

both positive and negative, the net PSF effect was smaller (i.e., a PSF value of -0.10 in 

2018). Absolute PSF values reported across the literature tend to be larger (0.53; 

Kulmatiski et al., 2008), but the greenhouse experiments commonly reported in the 

literature are known to produce larger PSF values than field experiments (Forero et al., 

2019; Beals et al., 2020). Regardless of whether PSFs change plant growth by 10% or 
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50%, they are unlikely to explain the 200% overyielding often observed in biodiversity-

productivity experiments (Cardinale et al., 2007; Kulmatiski et al., 2012).  

The plant community models used in this study produce a relationship between 

PSF and overyielding that approaches -1:1 as species richness approaches ~16 species 

(Kulmatiski et al., 2012). In this study, mean PSFs of -10% were associated with 27% 

observed overyielding. This relationship was closer to -3:1, in part, because it happened 

to be the case that large negative PSF were important for some dominant plant species 

(Kulmatiski et al., 2012). For example, P. virgatum was a dominant species with a -0.4 

PSF on soils cultivated by another dominant species, S. scoparium. However, the -5:1 

relationship observed between weighted, community-level PSF and overyielding in 16-

species communities was notably greater than -1:1, suggesting that the two-phase 

experimental approach underestimated PSF values or that PSFs may exaggerate or 

interact with other factors that also encourage overyielding (e.g., niche partitioning or 

competition; Barry et al., 2019). Regardless of the exact value, results provide clear 

support for a negative relationship between PSF and overyielding. 

PSF experiments are often performed by comparing plant growth on ‘self-

cultivated’ soils to plant growth on ‘other-cultivated’ soils (Brinkman et al., 2010; 

Rinella & Reinhart, 2017). At this species level, six species in our study in 2018 realized 

significant PSFs. However, using a factorial PSF experimental design allowed us to 

describe how each plant species grows on each of 15 soil types (Kos et al., 2015; Rinella 

& Reinhart, 2017). At this species*soil level, 14 of 16 plant species realized a significant 

PSF on at least one soil type. While most species realized either positive or negative 

PSFs, three plant species demonstrated significantly positive PSFs on one soil type and 
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significantly negative PSFs on a different soil type. For example, A. canescens PSF 

values ranged from -0.4 to +0.5. For this species, ‘self vs. other’ PSF experiments could 

be expected to report strongly positive, strongly negative or neutral PSF depending on the 

soil types used (Rinella & Reinhart, 2017). It should not be surprising that PSF varies at 

the level of soil type, but use of the factorial designs needed to demonstrate this pattern 

with more than two plant species remains less common than the use of ‘self vs. other’ 

approaches (Crawford et al., 2019). Thus, results provide a clear example of how broad 

species-level assessments of PSF can hide important soil-type specific PSFs (Kos et al., 

2015; Rinella & Reinhart, 2017; Bauer et al., 2020).   

In this study, PSF-informed models improved predictions of plant community 

biomass for the concurrent biodiversity-productivity experiment but not for the 1997 

experiment. Because factors from climate to anthropogenic nitrogen deposition to soil 

microbial community composition have likely changed in the 20 years between these two 

experiments, it is impossible to pinpoint why community biomass differs between the 

two experiments (van der Putten et al., 2016). An implication of the poor correlation 

between the new and old data is that inference about the effects of PSF on plant 

community development are likely to be time- or site-dependent (Eisenhauer et al., 

2012). However, despite a lack of correlation between predicted and observed biomass 

for specific communities, the general pattern of increasing aboveground biomass with 

species richness was consistent across both experiments and PSFs helped explain this 

pattern. Further, the mechanism of this effect was complementarity in the 1997 

experiment, the concurrent experiment and in PSF-informed predictions of this 

relationship. 
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PSFs explained 12% to 15% of the net biodiversity effect. Because PSF alone did 

not fully explain the biodiversity effect, it is likely that several mechanisms interact to 

produce the observed biodiversity-productivity relationship (Hooper et al., 2016; Lekberg 

et al., 2018; Pillai & Gouhier, 2019). Niche partitioning has long been thought to be a 

primary mechanism, but because niche-partitioning remains difficult to measure, the 

extent to which it determines the biodiversity-productivity relationship remains 

unresolved (Mueller et al., 2013; Barry et al., 2020; Mahaut et al., 2020). Because PSFs 

explained a small portion of the total biodiversity effect, results support a large role for 

niche partitioning. Future research that integrates the effects of niche partitioning, 

sampling effects and PSF can be expected to improve predictions of the effects of species 

loss on plant community productivity and resilience with implications for biofuel 

production and conservation. 

 
DATA ACCESSIBILITY 

Upon acceptance data will be archived with a DOI at Utah State University 

Digital Commons online repository. 
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TABLES 
 

Table 4-1. Plant species and functional groups used in the plant-soil feedback and 
biodiversity-productivity experiments. 
Species Codes Functional group 
Amorpha canescens Ac Legume 
Andropogon gerardii Ag C4 
Achillea millefolium Am Forb 
Dalea purpurea Dp Legume 
Elymus canadensis Ec C3 
Koeleria macrantha Km C3 
Liatris aspera La Forb 
Lespedeza capitata Lc Legume 
Lupinus perennis Lp Legume 
Monarda fistulosa Mf Forb 
Poa pratensis Pp C3 
Pascopyrum smithii Ps C3 
Panicum virgatum Pv C4 
Sorghastrum nutans Sn C4 
Solidago rigida Sr Forb 
Schizachyrium scoparium Ss C4 
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FIGURES 
 

 

Figure 4-1. Species*soil-level (a) and species-level (b) plant-soil feedback (PSF) values 
for 16 plant species. Negative species*soil-level PSFs shown in red. Positive 
species*soil-level PSFs shown in green. For species*soil-level PSFs, bold and underlined 
values indicate that the 95% confidence intervals (CI) did not overlap zero. CIs reflect 
variation among replicate field plots. Species-level PSFs represent the mean (+/- SE) of 
species*soil-level PSFs in 2017 (grey) and 2018 (black). Species-level PSF values that 
differed from zero in a one-sample t-test at the α = 0.05 level indicated with an asterisk.  
 

(a)
Plant/ 

C3 C4 Forb Legume 

Ec* Km* Pp Ps Ag Pv Sn Ss Am La* Mf Sr Ac* Dp* Lc Lp* Soil 
Ec Soil  -0.74 0.01 -0.05 -0.09 -0.06 -0.4 0.29 -0.13 -0.3 -0.31 0.35 0.41 -0.41 0.17 0.17 
Km Soil -0.32  -0.02 0.15 0.23 0.08 -0.01 -0.13 -0.04 -0.4 -0.07 0.27 0.01 -0.17 -0.22 0.19 
Pp Soil -0.23 -0.54  -0.19 0.44 -0.02 -0.6 -0.2 -0.13 -0.64 -0.12 0.13 -0.18 -0.16 -0.25 0.23 
Ps Soil -0.14 -0.49 0.31  -0.33 0.09 -0.25 0.16 0.14 -0.14 0.12 -0.43 0.25 -0.36 0.17 0.26 
Ag Soil -0.39 -0.6 -0.38 0.04  -0.14 0.18 0.11 -0.02 -0.51 -0.01 0.35 0.52 -0.25 -0.31 0.43 
Pv Soil -0.32 -0.35 -0.71 0.13 -0.08  0.26 -0.21 0.02 -0.07 -0.54 -0.07 0.44 -0.52 -0.33 0.03 
Sn Soil 0 -0.57 0.12 0.24 0.11 0.06  0.14 -0.19 -0.52 -0.26 -0.47 0.13 -0.43 0.12 0.68 
Ss Soil -0.34 -0.29 1 0.28 0.18 -0.4 -0.37  -0.27 0.13 -0.26 0.47 -0.04 -0.3 -0.32 -0.12 
Am Soil -0.39 -0.28 -0.54 -0.3 -0.06 -0.04 0.83 -0.2  -0.43 -0.01 -0.62 0.07 -0.27 -0.19 0.71 
La Soil -0.27 -0.47 -0.06 -0.36 0.06 0.18 -0.42 -0.08 -0.14  -0.33 -0.21 0.32 0.26 -0.2 0.44 
Mf Soil -0.13 -0.89 0.66 -0.17 0.01 0.27 -0.23 -0.25 0.46 0.25  -0.28 -0.37 -0.28 -0.33 -0.18 
Sr Soil -0.37 -0.79 -0.31 -0.17 0.16 0.42 0.21 -0.01 0.39 0.11 -0.12  0 0.1 -0.08 -0.4 
Ac Soil -0.04 -0.08 -0.01 -0.32 0.22 -0.21 0.74 0.24 0 -0.74 0.05 0.08  -0.26 -0.27 -0.38 
Dp Soil -0.45 -0.91 -0.32 -0.59 -0.23 -0.3 -0.57 -0.13 0.04 -0.5 0.04 -0.53 0.25  -0.22 0.67 
Lc Soil -0.26 -0.11 -0.2 -0.11 0.17 -0.38 -0.02 -0.16 -0.17 -0.18 -0.3 -0.37 -0.15 -0.37  -0.04 

  
(b)



97 
 

 

Figure 4-2. Aboveground biomass increased with species richness in a new (black 
symbols) and existing (grey symbols) field experiments and in both Null (green symbols) 
and plant-soil feedback (red symbols) model simulations. Each point represents total 
aboveground biomass in one community type (n = 63) after four years growth. Large 
values from six outlier plots are not shown.  
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Figure 4-3. Net overyielding (black symbols) increased with species richness due to 
complementarity (orange symbols) in the new field experiment (a) and in plant-soil 
feedback model predictions (c), but in the BP1997 experiment (b) and Null model 
predictions (d) total biomass increased due to selection effects (blue symbols). Each point 
represents one of 63 observed (a, b) or modeled (c, d) plant communities. Outlier values 
from one to five plots omitted from each panel for clarity. 
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CHAPTER 5 

VERTICAL RESOURCE UPTAKE PATTERNS HELP EXPLAIN OLD-FIELD 

PLANT ABUNDANCE4 

 
Abstract 

Vertical root distributions have long been thought to be important to plant growth 

and coexistence. However, it remains difficult to demonstrate how different root 

distributions affect resource uptake and plant growth on the landscape. We injected water 

and N tracers to five depths (5-150 cm) and measured uptake by 11 dominant grassland 

species, Minnesota, USA. Tracer uptake profiles were adjusted by depth-specific 

resource availability and resource-use efficiencies to estimate biomass production 

associated with each rooting distribution. These biomass estimates were compared to 

plant landscape abundance. Among species, water uptake ranged from 52 cm to 67 cm of 

soil water resulting in 1 to 94 g m-2 biomass. Rooting distributions that could absorb more 

water and produce more biomass were more abundant on the landscape (R2 = 0.31 and 

0.48, respectively). While on average 50% of water uptake occurred between depths 1 

and 19 cm, mean N uptake was deeper (occurring between depths 1 to 38 cm) and 

differed more among species than water uptake. However, N uptake and biomass 

resulting from N uptake were not correlated with plant landscape abundance. Within-

season temporal variation, not measured in this study, appeared to be important to N 

uptake, but less important to water uptake. It has long been difficult to demonstrate how 
                                                 

4 Forero LE, Kulmatiski A. Vertical resource uptake patterns help explain prairie plant 
abundance. In preparation. 
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root distributions affect plant abundance, but here we provided clear links between root 

distributions, water uptake, plant growth and landscape abundance.  

 
Introduction 

Different rooting distributions are likely to provide plants with different amounts 

of soil resources (Holdo and Nippert 2015; Guderle et al. 2018; Newman et al. 2020). 

Rooting distributions that provide more resources are likely to allow more plant growth 

and rooting distributions that provide access to resources little used by other species may 

minimize resource competition, allowing coexistence (Silvertown et al. 2015; Letten et 

al. 2017; Case et al. 2020). For example, some species produce mostly shallow roots and 

others produce deeper roots (Schenk and Jackson 2002; Zhou et al. 2020). Shallow roots 

may have preferential access to precipitation and nitrogen-rich soils; deep roots may have 

preferential access to larger and more stable soil resource pools (Ryel et al. 2008; Ward et 

al. 2013; Kulmatiski et al. 2017).  

While there is wide agreement that root distributions are likely to affect plant 

growth and coexistence, data demonstrating the extent of this effect remain difficult to 

collect (Schenk 2008; Silvertown et al. 2015; Barry et al. 2020; Kühnhammer et al. 2020) 

leading some to suggest that vertical niche partitioning may not be important (Higgins et 

al. 2000; Barry et al. 2020). Because it remains difficult to measure, vertical niche 

partitioning among plant species is often inferred from differences in root biomass 

distributions (Yu et al. 2007; Nippert and Holdo 2015; Barry et al. 2020). Yet, there is 

reason to believe that root biomass distributions may not be well-correlated with resource 

uptake (Chen et al. 2004; Sternberg et al. 2005; Gambetta et al. 2017). For example, large 

suberized roots can represent a large portion of root biomass but have little effect on 
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vertical resource uptake (Peek et al. 2005; Kulmatiski et al. 2010). Even fine roots can 

vary several-fold in their ability to absorb soil resources (Tobar et al. 1994; Marulanda et 

al. 2003; Kiba and Krapp 2016). Without measurements of soil resource uptake (instead 

of root biomass distributions), the extent of resource partitioning is unclear (Dubbert and 

Werner 2019). 

Stable isotope techniques offer the potential to describe vertical resource uptake 

distributions by different species in mixed communities in the field (McKane et al. 2002, 

Koeniger et al. 2010, Zheng et al. 2018). Natural abundance stable isotope approaches 

have the advantage that they can quickly sample resource uptake of many plants across 

the landscape, but inference for rooting distributions is limited by the types of naturally 

occurring isotope enrichment profiles that are present in the soil (Nippert and Knapp 

2007a; Rothfuss and Javaux 2017; Beyer et al. 2018). Isotope tracer techniques do not 

require naturally-occurring enrichment profiles and they provide more detailed patterns 

of vertical resource uptake. However, tracer experiments require more effort, and 

therefore provide more limited sampling (Beyer et al. 2016).  

Both natural abundance and tracer techniques can be used to quantify patterns of 

vertical resource uptake, but not necessarily the amount of water absorbed by different 

plants (Kühnhammer et al. 2020; Sprenger and Allen 2020). For example, large isotope 

concentrations can be found in plants with slow or fast sapflow rates (Vargas et al. 2020). 

Further, in tracer studies, there is potential for plants to absorb injected tracer in 

otherwise dry soils (Kulmatiski et al. 2017). These problems can be addressed by using 

tracer-derived root distribution data in soil water flow models (Holdo 2013; Warren et al. 

2015; Mazzacavallo and Kulmatiski 2015). This combined tracer and water flow model 
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approach provides estimates of the depth, timing, and extent of water use by different 

plant species (Nippert and Holdo 2015; Mazzacavallo and Kulmatiski 2015; Zheng et al. 

2018; Beyer et al. 2018). Tracer experiments also offer the potential to simultaneously 

follow multiple resources through the soil-plant continuum (Hoekstra et al. 2014). This is 

advantageous because limitations in more than one resource are likely to determine 

species coexistence in many systems (Swanson et al. 2015; Harpole et al. 2016; Yan et al. 

2020). 

Our goal was to link vertical root distributions with resource uptake and landscape 

abundance. To describe resource uptake distributions in a tallgrass prairie, we measured 

water and N tracer uptake by dominant species in plots that received tracer injections to 

one of five soil depths (5, 15, 30, 60 and 150 cm). Because water moves quickly through 

the soil-plant-atmosphere continuum, water tracer uptake profiles were used in soil water 

flow models to estimate the amount of water each rooting distributions could be expected 

to absorb across a growing season (Holdo and Nippert 2015; Kulmatiski et al. 2020a). 

Similarly, N tracer uptake was adjusted by estimates of N availability by depth across the 

growing season to estimate rooting distribution effects on season-long N uptake (McKane 

et al. 2002; Kulmatiski et al. 2017). Water and N uptake distributions were used to 

describe both total uptake (i.e., uptake across the root profile) and to identify depths at 

which a species could extract more soil resource than any other species (henceforth, 

‘unique niches’). Finally, water and N uptake were adjusted by water- and N-use 

efficiencies to provide an index of how resource uptake may affect biomass production. 

These indices were then compared to plant landscape rank abundance. We predicted that 

species with rooting distributions that could absorb more soil resources would be more 
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abundant on the landscape. 

 
Materials and Methods 

Research was conducted during peak growing season, July 20-25 2016 at Cedar 

Creek Ecosystem Science Reserve, East Bethel, MN, USA (45.396989, -93.191277). The 

study site is tallgrass prairie located at the boundary of hardwood forest and conifer forest 

ecosystems. Soils are sandy skeletal and in the Zimmerman soil series (Grigal et al. 

1974). Mean annual precipitation is 796 mm and mean annual temperature is 6.7 °C 

(PRISM Climate Group). Dominant species at the site include the native forbs Achillea 

millefolium (0.93% cover, Nutt.), Artemesia ludoviciana (6.13%, Nutt.), Erigeron 

canadensis (0.07%, Cronq.), Equisetum laevigatum (0.14%, A. Braun), and Ambrosia 

psilostachya (0.06%, DC.); the native C3 grass Panicum oligosanthes (0.59%, Schultes); 

the native C4 grasses Andropogon gerardii (0.65%, Vitman), Schizachyrium scoparium 

(3.50%, Nash), and Sorghastrum nutans (4.14%, Nash); and the non-native C3 grasses 

Poa pratensis (36.21%, L.) and Elymus repens (31.72%, Beauv.) (Ownbey and Morley 

1991). These 11 species represent 84% of the total aboveground biomass in the study 

system and are the focus of this study. Aboveground biomass data were obtained from 

Cedar Creek’s 2016 Experiment 002 survey, which was performed one week after tracer 

injections and plant sampling 

(https://www.cedarcreek.umn.edu/research/data/dataset?ple002). 

 
Tracer injections 

The tracer experiment broadly followed the approaches described by Kulmatiski 

et al. (2017). Briefly, 25 circular plots (3 m diameter), were established 5 m apart in a 20 



104 
 

m by 20 m study area. Each plot was randomly assigned to represent one of five 

replicates of each of five soil depths (5, 15, 30, 60, and 150 cm). In each plot, 314 pilot 

holes were drilled to the target depth in a 15 cm by 15 cm grid using a 1-cm drill bit and a 

hammer-drill (Hilti TE-60, Tulsa, Oklahoma). Custom-made syringes (16-gauge thin-

walled hypodermic tubing; Vita Needle Company, Needham, Massachusetts, USA) were 

used to inject 1 mL of 70% 2H20 that contained 1 mg 15NH4
15NO3 (Cambridge Isotopes, 

Tewksbury, MA). This tracer injection was followed by 2 mL tap water injection to clear 

tracer from the syringe. Therefore, each of 25, 7 m2 plots received 952 mL of tracer plus 

rinse water across 314 holes. Injections occurred over three days. Due to time constraints, 

injections to 150 cm were performed in three replicate plots instead of five replicate 

plots. The two unused plots were used to collect ‘control’ samples from plots that 

received no injections. 

 
2H2O tracer uptake  

Two days after injections in each plot (Hoekstra et al. 2014; Warren et al. 2015; 

Mazzacavallo and Kulmatiski 2015), non-transpiring stem tissues from one to three 

individuals of each of the 11 target species were clipped with rinsed clippers, placed in 

pre-made 19-mm wide medium-walled borosilicate tubes, sealed with parafilm and 

placed on ice (Pyrex, Corning, NY, USA). Samples were moved to a freezer within 6 

hours. Water from plant tissues was extracted using cryogenic distillation (Vendramini 

and Sternberg 2007) within two weeks of sampling. Extracted water samples were 

analyzed for hydrogen and oxygen isotopes on a wavelength scanned cavity ring-down 

spectrometer (Picarro L-2120i; Picarro Instruments, CA, USA). Raw hydrogen and 

oxygen concentrations were normalized to the VSMOW‐SLAP scale using three 
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calibrated waters. These calibrated waters (i.e., standards) were included for roughly 

every ten samples. The isotopic data for plant extracts were checked and adjusted for 

spectral contamination using ChemCorrect® software (Picarro Inc.). Isotope 

concentrations are typically low and reported in delta notation in units of parts per 

thousand (i.e., [{Rsa – Rstd}/Rstd] * 1,000, where R is the ratio of, for example, 2H to H, 

sa = sample, and std = standard – typically Vienna mean standard ocean water). 

Deuterium isotope values [in delta notation (δ)] were converted to deuterium excess 

values (δe) to control for natural isotope enrichment caused by evaporation as follows: δe 

= δ2H – [(8 * δ18O) + 10] (Craig 1961; Kulmatiski et al. 2010; Mazzacavallo and 

Kulmatiski 2015). To account for variation in natural enrichment among species, δe 

values for each species in control plots were subtracted from δe values for each species in 

experimental plots. Vials containing control samples for A. psilostachya and S. nutans 

broke during stem water extraction. Species control δe values ranged from 6.30 to 544.97, 

while mean treatment δe values were 1289.97, so the lack of control values for A. 

psilostachya and S. nutans was likely to have little effect on results. To allow a direct 

comparison among species that was not biased by plant mass, abundance, or lateral 

rooting distributions, tracer uptake was converted to the proportion of tracer uptake by 

depth (Kulmatiski et al. 2010; Hoekstra et al. 2014). 

 
Water uptake 

2H2O uptake was used to simulate the vertical distributions of active roots for the 

11 focal species by depth. The soil water flow model Hydrus 1D was used to integrate the 

effect of these vertical rooting distributions on water uptake across a growing season 

(Hartmann et al. 2018; Zheng et al. 2018; Kulmatiski et al. 2020a). A shortcoming of this 
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approach is that vertical root distributions for each of the eleven species must be 

simulated separately as a monoculture. A commonly used set of model parameters was 

used for all simulations, so parameter selection was not likely to affect interpretation of 

the effect of different rooting distributions (Kulmatiski et al. 2020a). Detailed parameter 

definitions and settings are provided in Appendix D Tables D-1 through D-3, but we a 

brief description is as follows: Evapotranspiration was estimated using the Penman-

Monteith equation (Šimunek et al. 2012). The hydraulic sub-model was a van Genuchten-

Mualem model with no hysteresis. Neural network predictions of soil hydraulic 

parameters were made using soil texture and bulk density data for the soil series (Grigal 

et al. 1974; Appendix D Table D-3). The water flow boundary conditions allowed for 

surface runoff and free drainage. In the water uptake model, plants were not allowed to 

shift their root distributions to compensate for a lack of uptake from dry soils by 

absorbing more water from wet soils because we measured root distributions directly 

(i.e., the critical stress for water uptake was set to 1). Radiation was considered as solar 

radiation. Plant height was assigned to the mean value for the site (Appendix D Table D-

4) and leaf area index was assigned a value of 1. Assigning a standard leaf area value 

across species isolated the effect of root distributions on water uptake. Interception was 

set to 2 mm. Hourly weather data used in Hydrus for summer 2016 was obtained from a 

weather station on-site at Cedar Creek Ecosystem Science Reserve. Windspeed and solar 

radiation data were obtained from a weather station at the nearby Carlos Avery Wildlife 

Management Area. This parameterization was repeated to estimate vertical root 

distributions in monoculture for each of the 11 species. Because model parameters were 

the same for all species, so parameter selection was not likely to affect the interpretation 
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of results. For example, use of the Hargreaves equation would likely result in greater 

estimates of evapotranspiration, but this greater evapotranspiration estimate would be the 

same for all rooting distributions and unlikely to significantly change differences in 

estimated water uptake among different rooting distributions.  

 
Nitrogen tracer uptake 

For N analyses, green plant tissue was collected two days after injection and dried 

at 49° C for 25 hours. Samples were analyzed in the Utah State University Stable Isotope 

Laboratory for total N and 15N/14N ratios by continuous-flow, direct combustion and 

mass spectrometry using a Europa Scientific 2020 system (PDZ, Crewe UK). Because 

background soil N pools were larger in shallow than deep soils, 15N enrichments caused 

by tracer injections were assumed to be smaller in shallow than deep soils (Stark 2000). 

To account for this background pool dilution effect, 15N enrichments were adjusted using 

a time-weighted mean 15N excess calculated using a two compartment (NH4
+ and NO3

-) 

isotope dilution model (as in Stark 2000 and Kulmatiski 2017). Initial 15N enrichments 

were estimated from the mass of soil wet by the tracer addition (based on the measured 

soil water content, the amount of water added, and texture-based estimates of field 

capacity), soil inorganic N concentrations measured prior to injection, and the amount of 

15N injected. Dilution of the 15N tracer was modeled assuming that turnover times of 

inorganic N pools were 1 d throughout the soil (Booth et al. 2005). We assumed that 

plants took up NH4
+ and NO3

- at rates proportional to their concentrations in KCl 

extracts. These calculations produced a dilution-adjusted concentration of 15N/14N in leaf 

tissues. 

To standardize 15N uptake across species with different total N concentrations in 
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their leaf tissues, dilution-adjusted 15N concentrations were converted to μg 15N per gram 

leaf biomass using sample weight and leaf N concentrations. The μg 15N per g leaf 

biomass in control samples was subtracted from treatment samples. As with 2H2O tracer 

values, to μg 15N per gram leaf biomass was converted to the proportion of uptake by soil 

depth for each species. Because shallow soils have greater soil N concentrations, dilution-

adjusted data indicated that tracer concentrations were smaller in shallow than deep soils. 

As a result, dilution-adjusted 15N uptake data indicated shallower uptake profiles than 

unadjusted values, though differences among species were similar in unadjusted and 

dilution-adjusted data (Appendix D Figure D-1). 

 
Soil water, N and root biomass 

Gravimetric soil water content was measured in 200 g grab samples from 15, 30, 

45, 60, 90, 105, 120, 135, 150, and 160 cm in depth. Soil samples were kept on ice while 

in the field and refrigerated. Weighed samples were dried at 65° C to constant weight and 

passed through a 2-mm sieve. Dry roots and rocks were collected by hand and weighed. 

Ten grams of dried soils were extracted in 100 mL 1 M KCl solution for five minutes and 

extractable soil N was determined on a Lachat autoanalyzer (Lachat Instruments, 

Loveland, Colorado, USA). 

 
Biomass production indices 

Water- and N-use efficiencies were used to provide an index of water and N-

uptake relationships to biomass production. Published water-use efficiencies were 

collected from Pastore et al. (2019). These values were calculated as the rate of net leaf 

photosynthesis divided by stomatal conductance as measured using a LICOR 6400 
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portable gas exchange system (Pastore et al. 2019). Percent leaf N data collected during 

isotope analyses were used as an N-use efficiency. These estimates were used to produce 

indices of resource uptake effects on biomass production and not precise estimates of 

biomass production, so we use them to produce a rank order estimate of resource uptake 

effects on growth. We compare these rank order estimates to the rank order of plant 

abundance on the landscape to test the hypothesis that both resource uptake and resource 

use efficiencies are important for biomass production. 

 
Statistical analyses 

To approximate the continuous soil profiles of root biomass and tracer uptake 

with depth we fit generalized additive mixed effects models (GAMMs) for water and 15N 

uptake (Wood 2012; Kulmatiski et al. 2017). We let the GAMMs have four “knots” to 

allow for a smooth interpolation between the five sample depths. We fit nested subsets of 

the mixed models with different groupings of species-level tracer uptake, which define 

each model’s random effects structure. Groupings included 1) an ungrouped “global” 

model, 2) a model grouped by C3 grasses, C4 grasses, forbs, and ferns, 3) a model 

grouped by grasses, forbs, and ferns, 4) a model grouped by grasses and forbs/ferns, and 

5) a model grouped by species. We fit models with group level intercepts and slopes (the 

“effect” of soil depth). All models were fit in R (R Core Research Team 2004) using the 

gam function from the mgcv package (Metadata S1; Data S1; Wood 2012). We used 

Akaikie’s Information Criterion (AIC) to rank models in terms of their support by the 

data. The model with the lowest AIC is the best model in terms of predictive ability and 

in terms of support from the data (Appendix D). Likewise, for any given hypothesis, we 

can compare two of the models and assess their relative support. Simple regressions were 
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used to compare observed vs. predicted plant absolute and rank abundance.  

 
Results 

By species, the sum of δe
 across depths (i.e., tracer uptake) ranged from 3704‰ in 

A. millefolium to 9037‰ in A. ludoviciana (Figure 5-2a). By depth, δe
 (mean ± SE) 

ranged from 25 ± 12‰ in 150 cm plots to 4147 ± 435‰ in 5 cm plots (Figure 5-2a, 5-

3b). GAMMs indicated that the proportion of water tracer uptake by depth differed 

among species, but not among functional groups (Table 5-2). When water tracer uptake 

was used in Hydrus 1D to estimate season-long water uptake, the mean depth of water 

uptake ranged from 26 to 33 cm across the 11 species. The total amount of water uptake 

ranged from 52 to 67 cm of soil water for the 11 species (Figure 5-2c). When adjusted by 

water use efficiencies, the variation in water uptake caused by differences in rooting 

distributions were estimated to result in range of biomass production from 1 to 94 g m-2.  

15N uptake ranged from 0.57 µg g-1 leaf biomass in S. nutans to 4.00 µg g-1 leaf 

biomass in P. pratensis (Figure 5-1a). By depth, 15N uptake ranged from 0.12 µg g-1 leaf 

mass in the 150 cm depth to 0.58 µg uptake g-1 leaf matter in the 60 cm depth (Figure 5-

1a, Figure 5-3a). The depths of 50% N uptake ranged (depending on species) from 18 to 

50 cm, with a mean of 38 cm. For 15N, GAMMs suggested that the proportion of tracer 

uptake by depth differed among functional groups (Table 5-3). 

Seven of the 11 species demonstrated depths at which they were estimated to 

extract more soil water than any other species (i.e., unique niches; Figure 5-2c). Five of 

the 11 species demonstrated unique niches in their proportion of 15N uptake g-1 leaf 

matter cm-1soil depth (Figure 5-1b). Nine of 11 species demonstrated a unique N niche, a 

unique water niche, or both. Neither total unique niche space nor rank unique niche space 
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was correlated with rank plant landscape abundance for water, N, or for a combination of 

the two. 

Rank landscape abundances were not positively correlated with total water uptake 

(Figure 5-4a). Rank landscape abundances were positively correlated with rank total 

water uptake (Figure 5a, y = 0.69x+ 1.85, R2 = 0.48, P = 0.02). The rank order of plant 

production estimated from water uptake and water use efficiencies was also correlated 

with rank plant landscape abundance (Figure 5-5d, y = 0.61x + 2.35, R² = 0.37, P = 0.05). 

Rank landscape abundances were not correlated with 15N per gram of leaf 

biomass or with the rank order of 15N per gram of leaf biomass (Figure 5-4b, 5-5b). When 

adjusted by leaf percent N (an estimate of N use efficiency), plant mass produced by N 

uptake was marginally correlated with plant rank landscape abundance (Figure 5-5c, y = 

0.58x + 2.51, R² = 0.34, P = 0.06). The sum or plant production expected from water and 

N uptake was correlated with rank plant landscape abundance (Figure 5-5e, y = 0.74x + 

1.53, R² = 0.44, P = 0.03). 

 
Discussion 

Different root distributions are believed to affect plant growth and coexistence by 

providing plants with different soil resource pools, but it remains difficult to link root 

distributions, resource uptake and plant growth (Hoekstra et al. 2014; Guderle et al. 2018; 

Jesch et al. 2018; Barry et al. 2020). By using tracer uptake data in a soil water flow 

model, we demonstrated how differences in vertical root distributions can result in 

differences in water uptake. Importantly, these differences were correlated with rank 

plant landscape abundance (R2 = 0.48). Similarly, when adjusted by water-use 

efficiencies, these water uptake values produced estimates of plant growth that were also 
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correlated with rank plant landscape abundance. Results, therefore, provided a 

mechanistic link between vertical root distributions, resource uptake, plant growth and 

plant landscape abundance. 

Vertical niche partitioning is not likely to be the only factor determining species 

abundance on the landscape. Horizontal and temporal niche partitioning, as well as 

herbivory, plant-soil feedbacks, fire competition, and other factors, are likely to affect 

species abundance (Adler et al. 2010; Levine et al. 2017). Yet, our estimates of resource 

uptake derived from a mid-season tracer experiment provided surprisingly good 

predictions of species abundance. Because previous studies have demonstrated that 

rooting distributions change during the growing season (McKane et al. 1990), we expect 

that repeated sampling through the growing season would have produced more accurate 

estimates of resource uptake by different rooting distributions that were better correlated 

with plant landscape abundance (Kulmatiski et al. 2020a). 

Consistent with previous studies, we found that all species relied on shallow roots 

for water uptake: the depth of 50% 2H2O uptake occurred between 26 cm and 33 cm and 

the depth of 50% of water uptake was between x and y cm (Nippert and Knapp 2007a; 

Nippert et al. 2012). Water uptake was slightly deeper than tracer uptake because plants 

maintained active roots in shallow soils even though those soils dried periodically during 

the growing season. Shallow rooting distributions resulted in large niche overlap, yet 

small differences in 2H2O tracer uptake profiles resulted in the amount of water uptake 

over the year ranging from between 52 and 67 cm across species. These differences 

appeared to be biologically important because plants with rooting distributions that could 

take up more water were more abundant on the landscape (R2 = 0.48). When adjusted by 
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water-use efficiencies, these water uptake values produced estimates of plant biomass 

that were also correlated with the rank order of plant abundance on the landscape (R2 = 

0.37). Several studies have suggested that vertical root niche overlap is too large to allow 

species coexistence (Higgins et al. 2000; Barry et al. 2020), but our results demonstrate 

that even small differences in vertical root distributions can result in large differences in 

soil water uptake (Kulmatiski et al. 2020b). 

Assuming rain-use efficiencies of 0.4 g mm-1 rain, our simulations suggest that 

differences in root distributions would allow species to produce between 208 g and 268 g 

biomass year-1 (Šimunek et al. 2012; Ruppert et al. 2012). The fact that root distributions 

alone were estimated to provide 29% more biomass to some species than others was 

somewhat surprising given the large niche overlap in water uptake profiles. This 

highlights the importance of converting root distributions to resource uptake and supports 

the idea that even small differences in root distributions can produce biologically 

important effects on water uptake and plant growth (Kulmatiski et al. 2020b). This is in 

contrast to previous studies suggesting that vertical root niche overlap is too large to 

allow coexistence (Jesch et al. 2018; Barry et al. 2020). 

N uptake was expected, but not found to be correlated with plant landscape 

abundance in this N-limited ecosystem. It is important to note, however, that our 

estimates of N uptake represented uptake during a two-day sampling period. We did not 

have depth and time specific estimates of N availability to produce season-long estimates 

of N uptake, but previous research at the site has demonstrated important changes in N 

uptake across the growing season indicating that these temporal patterns are important 

(McKane et al. 2002). In contrast, water uptake was estimated from season-long water 
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uptake. It is likely that repeated measures of N uptake are needed to understand rooting 

pattern effects on N uptake. Alternatively, our results are consistent with a recent review 

suggesting that, due to root proliferation, the total N uptake in a plant community is 

largely determined by N availability and not root activity (Kulmatiski et al. 2017; 

Dybzinski et al. 2018). 

Though not correlated with plant landscape abundance, N uptake data were 

reasonable and informative. N-uptake patterns differed from water uptake patterns. The 

mean depth of N-tracer uptake (38 cm) and N availability (58 cm) were both deeper than 

the mean depth of 2H2O tracer uptake (8 cm) and water availability (13 cm). These results 

add to a growing body of research showing that plant foraging for water resources occurs 

somewhat independently of foraging for N resources (McKane et al. 2002; da Silva et al. 

2011; Bakhshandeh et al. 2016). An important implication of this research is that root 

biomass distributions across the soil depth profile are unlikely to provide a good indicator 

of resource uptake (Kulmatiski et al. 2017).  

Together, differences in vertical uptake of water and N provided nine of 11 

species with depths at which they could extract either more water or N than any other 

species. These resource niches could be expected to encourage species coexistence by 

providing species with preferential access to resources at a certain depth (Kulmatiski et 

al. 2020a) 

Even with measurements of tracer uptake, it is difficult to estimate depth and 

species-specific resource uptake (Silvertown et al. 2015). For example, it may not be 

appropriate to compare raw isotope concentrations in stem tissues among plants because 

low concentrations could reflect small uptake, greater tracer dilution in larger plants, or 
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greater dilution in plants with more roots outside of the injection area (Hoekstra et al. 

2014). For these reasons, we reported tracer uptake as a proportion of uptake by depth – a 

measure that controls for species-differences. Proportion uptake, however, does not 

account for water uptake from otherwise dry soils or indicate the amount of water uptake, 

so the proportion uptake data was used in soil water flow model that accounted for rapid 

changes in precipitation, evaporation, percolation and transpiration (Holdo 2013; 

Mazzacavallo and Kulmatiski 2015; Zheng et al. 2018). The use of the soil water model 

was critical in this study. Tracer uptake alone indicated large niche overlap and tracer 

uptake was not correlated with plant landscape abundance. However, when tracer uptake 

patterns were used in a soil water flow model, water uptake was correlated with species 

landscape abundance. Results, therefore, highlight the importance of understanding root 

presence, root activity, and resource availability (Holdo 2013). 

In our system, previous research has suggested that both hydrologic niches and N 

niches are important for species coexistence (McKane et al. 1990; Nippert and Knapp 

2007b). Specifically, C3 plants were found to rely more on deep soil water than C4 plants 

(Nippert and Knapp 2007b, a), and that the two dominant species had larger niche spaces 

in shallow (0-12 cm) soils than the four subdominant species (McKane et al. 1990). 

Overall, our research provides strong support for spatial partitioning of multiple resources 

as a driver of coexistence and species productivity in diverse tallgrass prairie 

communities. However, incorporating additional data on temporal variation in spatial 

niche partitioning, and incorporating additional potential limiting resources in this 

approach is likely needed to fully understand coexistence and species productivity in 

diverse plant communities (Beyer et al. 2017; O’Keefe et al. 2019). A better 
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understanding of vertical resource partitioning can be expected to provide critical insight 

into both species coexistence and biosphere-atmosphere interactions under both current 

and changing climate conditions (Bradford et al. 2020; Tague et al. 2020).   

 
Data accessibility 

Upon acceptance data will be archived in a public repository with a DOI. 
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TABLES 

Table 5-1. AIC from general additive mixed models for water uptake for plants with 
different groupings, model 5 (grouped by individual species) had the lowest AIC. 
Model Random-effects groups AIC (WaterUptake) 
M1 None (global model) 1578.8588 
M2 Group 1: C3 grasses (Elyre, 

Panol, Poapr) 
Group 2: C4 grasses (Andge, 
Schsc, Sornu) 
Group 3: Ferns (Equla) 
Group 4: Forbs (Achmi, Ambps, 
Artlu, Erica) 

1416.0182 

M3 Group 1: Grasses (Andge, Elyre, 
Panol, Poapr, Schsc, Sornu) 
Group 2: Forbs (Achmi, Ambps, 
Artlu, Erica) 
Group 3: Ferns (Equla) 

1416.7418 

M4 Group 1: Grasses (Andge, Elyre, 
Panol, Poapr, Schsc, Sornu) 
Group 2: Forbs and Ferns 
(Achmi, Ambps, Artlu, Equla, 
Erica) 

1452.9951 

M5 Grouped by each species 972.8744 
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Table 5-2. AIC from general additive mixed models for 15N uptake for plants with 
different groupings, model 1 (no groupings, general model) had the lowest AIC for 15N 
not adjusted by depth, followed by model 5 (grouped by species). For 15N adjusted by 
depth, model 4 (grasses grouped, forbs and ferns grouped) and the general model were 
the two top performing models. 
Model Random-effects 

groups 
AIC (μg 
15N) 

AIC (P 15N) AIC (μg 15N 
cm-1) 

AIC (P 15N 
cm-1) 

M1 None (global 
model) 

53.81180 -55.45677 -242.0021 -55.68317 

M2 Group 1: C3 
grasses (Elyre, 
Panol, Poapr) 
Group 2: C4 
grasses (Andge, 
Schsc, Sornu) 
Group 3: Ferns 
(Equla) 
Group 4: Forbs 
(Achmi, Ambps, 
Artlu, Erica) 

57.25307 -41.52370 -235.6329 -41.28492 

M3 Group 1: Grasses 
(Andge, Elyre, 
Panol, Poapr, 
Schsc, Sornu) 
Group 2: Forbs 
(Achmi, Ambps, 
Artlu, Erica) 
Group 3: Ferns 
(Equla) 

55.97260 -43.79194 -235.5210 -43.28867 

M4 Group 1: Grasses 
(Andge, Elyre, 
Panol, Poapr, 
Schsc, Sornu) 
Group 2: Forbs 
and Ferns 
(Achmi, Ambps, 
Artlu, Equla, 
Erica) 

55.46894 -46.17570 -238.2838 -48.39272 

M5 Grouped by each 
species 

54.06140 -38.42413 -260.2586 -29.51704 
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FIGURES 

 
Figure 5-1. Species-level hydrologic profiles by depth, (a) excess deuterium uptake, b) 
proportion of deuterium uptake by depth adjusted by centimeters in the profile depth 
range, and (c) root water uptake in centimeters. Ambrosia psilostachya and Sorghastrum 
nutans (shown with dashed lines) did not have control samples.  
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Figure 5-2. µg 15N uptake per gram of leaf (a), and proportion 15N uptake per gram of 
leaf matter (b). 
  

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5
Pr

of
ile

 d
ep

th
 (c

m
)

µg 15N uptake g-1 leaf

Achmi
Ambps
Andge
Artlu
Elyre
Equla
Erica
Panol
Poapr
Schsc
Sornu

(a)

0

20

40

60

80

100

120

140

160

0 0.25 0.5 0.75 1

Pr
of

ile
 d

ep
th

 (c
m

)

Proportion 15N uptake g-1 leaf

Achmi
Ambps
Andge
Artlu
Elyre
Equla
Erica
Panol
Poapr
Schsc
Sornu

(b)



130 
 

 

Figure 5-3. Proportion soil water and nitrogen by depth. 
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Figure 5-4. Rank total water uptake (a), rank 15N uptake per centimeter of profile depth 
(b), rank total water uptake adjusted by water use efficiency rank (c), 15N uptake per 
centimeter of profile depth adjusted by percent nitrogen in leaf (d), and rank percent 
nitrogen per gram of leaf matter adjusted by nitrogen use efficiency plus rank total water 
uptake adjusted by water use efficiency (e) versus rank landscape abundance. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 Despite decades of research, coexistence and the biodiversity-productivity 

relationship remain important unresolved phenomena in ecological research (Hooper & 

Vitousek 1997; Hooper et al. 2016). Recent research suggests that interactions between 

plants and their co-associated microbes may be a key potential mechanism of mediating 

plant coexistence and biodiversity-productivity relationships, however, niche partitioning 

of resources is another possible mechanism (Schnitzer et al. 2011; Eck et al. 2019, Barry 

et al. 2020).  Because the extent to which plant-soil feedbacks and niche partitioning play 

roles in the biodiversity-productivity relationship remains a central unresolved ecological 

question, we performed a greenhouse study assessing the role of PSF in the biodiversity-

productivity relationship in Chapter 2, compared greenhouse and field-measured PSF in 

Chapter 3, performed a field study assessing the role of PSF in the biodiversity-

productivity relationship in Chapter 4, and  measured niche partitioning within the same 

study system to quantify the role of niche differentiation in coexistence and biomass 

production in Chapter 5. 

 In Chapter 2, I demonstrated that PSFs improve predictions of biodiversity-

productivity relationships using a controlled greenhouse experiment. In Chapter 3, I 

demonstrated that PSF measured in the greenhouse is not correlated with PSF measured 

in the field, and therefore it is likely that the biodiversity-productivity relationship as 

measured in the field will be best predicted by PSF measurements from the field. In 

Chapter 4, I demonstrated a role for PSFs, albeit weak, as a mechanism of the 

biodiversity-productivity relationship in the field. In Chapter 5, I investigated niche 
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partitioning as a mechanism affecting species productivity in the same system and 

demonstrated that strong vertical partitioning of nitrogen and water uptake is correlated 

with species productivity. 

 In Chapter 2, we measured 240 factorial PSFs for 16 species under greenhouse 

conditions. The average factorial PSF was -0.02 and the average absolute value of 

factorial PSF was 0.25; i.e. plant-associated soil microbes increased or decreased growth 

by 25% on average, but the net effect of all PSFs was a 2% decrease in plant growth. 

Using the soil-specific plant growths measured, we predicted diverse plant community 

growth for forty-nine unique plant communities with total species richness between one 

and 16 species. PSF-informed models predicted 24% more biomass in 16-species 

communities than in monocultures while Null models predicted 19% more biomass; we 

observed 33% more biomass in 16-species communities than in monocultures. Further, 

PSF models were able to predict 67% of the variation in total biomass production while 

Null models were only able to predict 58%, representing a 9% improvement. PSFs 

improved predictions of the biodiversity-productivity relationship’s magnitude. In 

addition the mechanisms of the biodiversity-productivity relationship predicted by PSF-

informed models were consistent with observed mechanisms of the biodiversity-

productivity relationship. 

 Although Chapter 2 suggests that PSFs have a role to play in the biodiversity-

productivity relationship, Chapter 3 illustrates that extending greenhouse PSF 

observations to plant community dynamics in the field is flawed. We compared PSF 

values measured in the greenhouse to PSF values measured in the field for 36 plant 

species across five different studies. These PSF values included 269 factorial PSF values 
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and 36 non-factorial PSF values. For both factorial and non-factorial PSF values, there 

was no significant correlation between greenhouse- and field-measured PSF at the soil, 

site, or species level. A major implication of this work is that greenhouse experiments are 

the most appropriate method for understanding plant dynamics in greenhouse conditions, 

and field experiments are the most appropriate method for understanding plant dynamics 

in the field. Thus, field experimentation is needed to understand the biodiversity-

productivity relationship as observed in the field. 

 In Chapter 4, I explored the role of PSFs in the biodiversity-productivity 

relationship in a field experiment. We measured 240 factorial PSFs and determined that 

the average factorial PSF value was -0.10 and the average absolute value of PSF was 

0.27, suggesting that plant-associated microbes increase or decrease growth on soils by 

27%, but the average effect is a 10% decrease in growth. These values (-.10 and 0.27) 

were broadly consistent with the average factorial PSF value (-0.02) and average absolute 

value of PSF (0.27) from the greenhouse experiment, suggesting a similar role for PSF in 

the biodiversity-productivity relationship between the two experimental contexts. The 

biodiversity-productivity relationship observed in the field was large, with 185% 

overyielding due to complementarity. PSF-informed models predicted 27% overyielding 

due to complementarity while Null models predicted 17% overyielding due to selection 

effects. PSF-informed models were 5% more accurate in predicting the variation in 

productivity than Null models and were 10% more accurate in predicting the magnitude 

of overyielding than Null models. However, no model came near predicting the 185% 

overyielding ovserved. The mechanism of overyielding in PSF-informed models were 

also consistent with the mechanism of overyielding in the observed biodiversity-
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productivity relationship. However, the majority of overyielding observed in the field 

could not be attributed to PSFs, suggesting a role for other mechanisms of 

complementarity like niche partitioning in the biodiversity-productivity relationship. 

 Although niche partitioning through different rooting patterns is frequently 

invoked as a mechanism of plant growth, productivity, and coexistence, measuring 

differences is rooting patterns remains difficult and is uncommonly done. In Chapter 5, I 

used a depth-specific dual-isotope tracer technique to investigate partitioning of 

belowground water and nitrogen resources for eleven dominant species in an ex-arable 

field converted to tallgrass prairie. Nine of the 11 species demonstrated unique depths at 

which they could extract either more soil water, more nitrogen, or both than other 

species, indicating that most species had unique niches. Further, nitrogen and water 

uptake profiles when adjusted by water-use and nitrogen-use efficiencies were correlated 

with species productivity on the landscape. Results suggest that niche partitioning plays 

an important role in species growth and productivity in multi-species communities. 

 The overall goal of this research was to quantify potential mechanisms of 

coexistence and the biodiversity-productivity relationship. We were able to demonstrate a 

role for PSFs in both the greenhouse (9% improvement in biomass predictions and 23% 

of the total complementarity observed) and the field (5% improvement in biomss 

predictions and 9% of the total complementarity observed), but ecologists should take 

caution when applying PSF findings in the greenhouse to plant community dynamics in 

the field. With PSFs explaining 23% of complementarity in the greenhouse and 9% in the 

field, 77-91% of overyielding due to complementarity remains unexplained. It is possible 

that our measurement of PSF as interaction in monoculture-conditioned soils may be 
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inappropriate, when we consider that PSFs in biodiversity experiments occur in soils 

conditioned by highly diverse plant communities. Alternately, it is possible that our 

measurements were appropriate, and PSFs are simply small in the field, and thus a small 

component of the biodiversity-productivity relationship. Although we were able to 

demonstrate an important role for spatial niche partitioning in species productivity in the 

same system, further experimentation on spatial niche partitioning as a driver of the 

biodiversity-productivity relationship is likely needed. It is possible and entirely likely 

that many mechanisms interact to produce a biodiversity-productivity relationship that is 

more than the sum of its constituent parts.  

 
REFERENCES 

Barry, K.E., Ruijven, J. van, Mommer, L., Bai, Y., Beierkuhnlein, C., Buchmann, N., et 

al. (2020). Limited evidence for spatial resource partitioning across temperate 

grassland biodiversity experiments. Ecology, 101, e02905. 

Eck, J.L., Stump, S.M., Delavaux, C.S., Mangan, S.A. & Comita, L.S. (2019). Evidence 

of within-species specialization by soil microbes and the implications for plant 

community diversity. Proc. Natl. Acad. Sci., 116, 7371–7376. 

Hooper, D.U. & Vitousek, P.M. (1997). The Effects of Plant Composition and Diversity 

on Ecosystem Processes. Science, 277, 1302–1305. 

Hooper, D.U., Chapin III, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., et al. 

(2016). Effects of biodiversity on ecosystem functioning: a consensus of current 

knowledge. Ecol. Monogr., 3–35. 

  



137 
 

Schnitzer, S.A., Klironomos, J.N., HilleRisLambers, J., Kinkel, L.L., Reich, P.B., Xiao, 

K., et al. (2011). Soil microbes drive the classic plant diversity–productivity 

pattern. Ecology, 92, 296–303. 

 

  



138 
 
 

 

 

 

 

 

 

 

APPENDICES 

 

  



139 
 

APPENDIX A 

CHAPTER 2 SUPPLEMENTAL INFORMATION 

Model details 

We used discrete logistic growth models to predict plant community growth and 

the biodiversity-productivity relationship (Table A-1; Kulmatiski et al. 2011). These 

models use soil-specific plant biomass production observations to calculate growth rates; 

growth rates were derived from growth on other soils (Null model), or growth on all soil 

types (PSF model). Competition coefficients were assigned a value of ‘1’, but each 

species could affect the growth of other species due to community-level carrying 

capacities. Each of these three models was run with five different carrying capacities: 1) 

the maximum observed growth in any plot in the community experiment, 2) the 

maximum mean observed growth in any community, 3) the maximum species-specific 

growth in community plots, 4) the maximum observed growth in any PSF plot, and 5) the 

maximum species-specific growth in any PSF plot. Model predictions for the PSF and 

Null models were calculated as the mean of the five simulations with different carrying 

capacities. 

Plant growth rates were calculated from the initial seed mass (0.002 g) and final 

observed biomass of each species on each soil. For example, for a model with 52 time 

steps, the growth rate of species A on soil α, Γ𝐴𝐴α = �𝐴𝐴α/𝐼𝐼52 , where Aα = the final 

biomass of plant A on soil α, and I = initial seed mass (Table 1). A different growth rate 

is calculated for each plant species on each species-conditioned soil (i.e., soil type): 

Γ𝐴𝐴𝑡𝑡 = Γ𝐴𝐴α𝑃𝑃α + Γ𝐴𝐴β𝑃𝑃β + ⋯+ Γ𝐴𝐴ι𝑃𝑃 
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Γ𝐵𝐵𝑡𝑡 = Γ𝐵𝐵α𝑃𝑃α + Γ𝐵𝐵β𝑃𝑃β + ⋯+ Γ𝐵𝐵ι𝑃𝑃 

⋮ 

Γ𝐼𝐼𝑡𝑡 = Γ𝐼𝐼α𝑃𝑃α+ Γ𝐼𝐼β𝑃𝑃β + ⋯+ Γ𝐼𝐼ι𝑃𝑃 

Species-conditioned soils ‘grow’ as a function of plant biomass, plant species 

growth rates, and a conversion factor μ (Table A-1). Conversion factor μ was set to 5 to 

reflect the assumption that microbial communities grow faster than plants (Kulmatiski et 

al. 2011). Species-conditioned soil growth was modeled as α𝑡𝑡+1 = �1 + μΓ𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡�α𝑡𝑡 , 

β𝑡𝑡+1 = �1 + μΓ𝐵𝐵𝑡𝑡𝐵𝐵𝑡𝑡�β𝑡𝑡, …, ι𝑡𝑡+1 = �1 + μΓ𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡�ι𝑡𝑡. 

The proportion each conditioned soil type comprises of the total soil community 

can be described by 𝑃𝑃α𝑡𝑡 = α𝑡𝑡/(α𝑡𝑡 + β𝑡𝑡 + ⋯+ ι𝑡𝑡) (Table A-1). Plant growth rates are a 

function of the proportion of different conditioned soil types present. To prevent run-

away growth, biomass is limited by a carrying capacity κ, which can be either unique to a 

species or to the community (Table A-1). Changes in each plant’s biomass can be 

described as 𝐴𝐴𝑡𝑡+1 = 𝐴𝐴𝑡𝑡 + Γ𝐴𝐴𝑡𝑡�(κ − 𝐴𝐴𝑡𝑡)/κ�, 𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 + Γ𝐵𝐵𝑡𝑡�(κ − 𝐵𝐵𝑡𝑡)/κ�, …, 𝐼𝐼𝑡𝑡+1 =

𝐼𝐼𝑡𝑡 + Γ𝐼𝐼𝑡𝑡�(κ − 𝐼𝐼𝑡𝑡)/κ�. 

Although the Null models are similar in their implementation, they do not 

incorporate growth on all conditioned soil types. For the self Null model, plant species 

biomass is a function of the average observed plant biomass across “other” soils, i.e. 𝐴𝐴 =

𝑓𝑓�Γ𝐴𝐴𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒�, 𝐵𝐵 = 𝑓𝑓�Γ𝐵𝐵𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒�, ..., 𝐼𝐼 = 𝑓𝑓�Γ𝐼𝐼𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒� (Table A-1).  
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Supplementary Tables 

Table A-1. Parameter definitions for the PSF and Null models. 
Parameter Definition 
A, B, …, I Plant A through I 
At, Bt, …, It Biomass of plant A through I at time t 
α, β, …, ι Conditioned soil types α through ι, 

cultivated by plants A through I 
ΓAt, ΓBt, … , ΓIt Growth rate of plant A through I at time 

t 
Pα, Pβ,…,Pι Proportion of conditioned soil type α 

through ι 
µ Conversion factor 
κ Carrying capacity 
Aother, Bother, …, Iother Plant A through I’s biomass on “other” 

soil 
Aα, Aβ, …, Aι 
Bα, Bβ, …, Bι 
⋮ 
Iα, Iβ, …, Iι 

Plant A through I’s biomass on 
conditioned soil types α through ι  

ΓAα, ΓAβ, … , ΓAι 
ΓBα, ΓBβ, … , ΓBι 
⋮ 
ΓIα, ΓIβ, … , ΓIι 

Growth rates of species A through I on 
conditioned soil types α through ι 
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Table A-2. Planting treatments for the 1997 biodiversity-productivity (BP) and the contemporary greenhouse (GH) experiment. The 
first digit indicates whether the species is planted (1) or not planted (0) in the BP1997 community. The second digit indicate whether a 
species is planted (1) or not planted (0) in the BP community. Thus, a 1 1 indicates that the species occurs in the mixture in both 
experiments, a 0 0 indicates that the species occurs in the mixture in neither experiment, a 1 0 indicates it was planted in the mixture in 
BP1997 but not in GH, and a 0 1 indicates it was planted in GH but not in BP1997. Codes indicate the reason the community was 
changed from the original community in BP1997. Code A indicates no difference between the BP1997

 and GH communities. Code B 
indicates that Dalea candida and Dalea villosa were removed from the community when seeding GH plots. Code C indicates that 
woody species were removed from the community when seeding GH plots. Code D indicates A. tuberosa was removed from the 
community when seeding GH plots. For one community, after woody species and A. tuberosa were removed, the diversity would be 7 
species, so S. scoparium was randomly selected to create a diversity of 8 species; this community is indicated by code CDE. Two 
novel communities, community A and community B were created specifically for the GH study because M. fistulosa and S. rigida co-
occur in the intended monoculture plots in BP1997

 due to a seeding error. 
Com Div. 

BP1997 
Div. 
GH 

Am Ac Ag At Dc Dv Dp Ec Km Lc La Lp Mf Pp Ps Pv Qe Qm Ss Sn Sr Code 

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

5 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 A 

11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

12 10 8 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 B 

20 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

26 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 A 

31 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

48 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

56 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

57 10 8 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 B 

81 8 8 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 A 

83 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

87 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 A 

93 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A 
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110 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 A 

115 9 8 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 CDE 

125 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

129 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

138 4 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

139 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A 

142 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

168 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

171 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

175 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 A 

176 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 A 

178 9 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 10 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 A 

185 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

193 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

202 17 16 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 D 

206 9 8 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 D 

208 8 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 A 

210 8 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

224 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 A 

229 4 4 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

230 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 A 

234 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

237 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

256 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A 

286 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 A 

290 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 A 

300 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 A 
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302 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 C 

303 10 8 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 A 

311 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 D 

330 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

333 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

A None 1    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0  

B None 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1  
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Supplementary Figures 

Figure A-1. An example of the PSF model in a community with two species. 
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Figure A-2. Predicted species biomass (g per 12 L pot) from a PSF-informed model 
(blue) and models without PSF effects (orange) versus observed species biomass (g per 
12 L pot) for a) monocultures, b) two-species communities and all species, c) two-species 
communities without Dalea purpurea and Lespedeza capitata, d) four-species 
communities and all species, e) four-species communities without D. purpurea and L. 
capitata, f) 8-species communities and all species, g) eight-species communities without 
D. purpurea and L. capitata, h) 16-species communities and all species, and i) 16-species 
communities without D. purpurea, L. capitata, and A. canescens. Note that A. canescens 
did not occur in two-, four-, and eight-species communities.  
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APPENDIX B 

CHAPTER 3 SUPPLEMENTAL INFORMATION 

SUPPLEMENTARY METHODS 

Cedar Creek, Minnesota 

At Cedar Creek Ecosystem Science Reserve, four C3 grasses, four C4 grasses, four 

leguminous forbs, and four non-leguminous forbs were selected to investigate based on 

functional group and abundance in plant communities at Cedar Creek:  Pascopyrum 

smithii Rydb., Poa pratensis L., Koeleria macrantha (Ledeb.) Schultes, Elymus 

canadensis L., Andropogon gerardii Vitman, Panicum virgatum L., Schizachyrium 

scoparium (Michx.) Nash, Sorghastrum nutans (L.) Nash, Amorpha canescens Pursh, 

Lupinus perennis L., Lespedeza capitata Michx., Dalea purpurea (Vent) Rydb., Achillea 

millefolium L., Liatris aspera Michx., Solidago rigida L., and Monarda fistulosa L. 

(Ownbey and Morley, 1991).   

Field research was conducted at Cedar Creek Ecosystem Science Reserve in East 

Bethel, Minnesota (45.403290, -93.187411), on the Nymore series (mixed, frigid, Typic 

Udipsamment).  Mean annual precipitation was 788.07 mm and mean annual temperature 

is 6.7° C.  A 1750 m2 fallow area adjacent to a large, long-term biodiversity experiment 

at Cedar Creek was sprayed with glyphosate and disked to thoroughly remove vegetation 

and homogenize soils in the top 15 cm.  0.75 mm thick HDPE root barrier was inserted to 

35 cm deep between each plot.  2,720 0.75 by 0.35 m PSF plots were established.  In 

spring 2015, all plots were seeded with 10 g pure live seed per m2.  During the first year, 

plots were watered weekly to ensure germination.  To establish the phase 1 treatment, 
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each of the 16 target species were planted as monocultures and grown from 2015 to 2016.   

Non-target species were removed by hand-weeding.  In 2016, fall PSF plots were sprayed 

with glyphosate and hand-tilled using a garden claw.  Plots with exceptionally thick roots 

were tilled using a rototiller.  In spring 2017, any living plants were sprayed again with 

glyphosate.  2,608 plots realized growth in phase I.  Plots were replanted with either the 

same (“self” treatment) or a different (“other” treatment) species.  Plots that did not 

realize growth were replanted randomly as a control soil treatment.  Growth was 

estimated using percent cover in summer 2017, and twice in summer 2018.  Plots were 

clipped, dried, and weighed in fall 2018. 

The greenhouse experiment was implemented at the Utah State University Crop 

Physiology Lab in Logan, UT.  Soil from an area adjacent to the field experiment was 

dried in a 31° C room, and shipped to Logan, UT.  A 6:1 mixture of loamy sand and 

sphagnum peat from Miller Companies, LLC in Hyrum UT was steam sterilized, and 

inoculated with 10% field soil.  2,720 1-L pots were planted with four seedlings, and then 

thinned down two seedlings after a one-month period.  Plants were grown for a 6 month 

period, then killed by clipping.  2,466 pots had growth in phase I, and all other pots were 

discarded.  Pots that realized growth were replanted with either the same (“self” 

treatment) or a different (“other” treatment) species, and grown for a 6 month period.  At 

the end of the experiment, aboveground biomass was clipped, dried, and weighed. 

 
Jena, Germany 

At Jena, Germany, nine plants were selected based on dominance in the local 

biodiversity experiment:  Arrhenatherum elatius (L.) P.Beauv., Anthriscus sylvestris (L.) 



150 
 

Hoffm., Dactylis glomerata L., Poa trivialis L., Geranium pratense L., Trifolium 

pratense L., Trifolium repens.  Of the nine, only five were successful in the greenhouse:  

Arrhenatherum elatius, Dactylis glomerata, Poa trivialis, Trifolium pratense, and 

Trifolium repens L. (Tutin et al., 1972). 

Field research was conducted at the Jena Experiment in Jena, Germany on a eutric 

fluvisol on the bank of the Saale River (50.951951, 11.623832).  Mean annual 

precipitation was 559 mm and mean annual temperature is 9.5° C.  A 730 m2 area in a 

fallowed field was sprayed with glyphosate and disked to thoroughly remove vegetation 

and homogenize soils in the top 15 cm.  0.75 mm thick HDPE root barrier was inserted to 

35 cm deep between each plot.  1251 0.75 by 0.35 m PSF plots were established in the 

area.  In spring 2015, all plots were seeded with 2000 pure live seeds per m2.  During the 

first year, plots received water twice weekly to ensure germination.  To establish the 

phase 1 treatment, each of the nine target species were planted as monocultures and 

grown from 2015 to 2016.   Non-target species were removed by hand-weeding.  In 2016, 

fall PSF plots were sprayed with glyphosate and hand-tilled using a garden claw.  To 

prevent regrowth roots of phase 1 species were removed.  Plots were replanted with 2000 

pure live seeds per square meter with either the same (“self” treatment) or a different 

(“other” treatment) species.  Growth was estimated using percent cover in fall 2017 and 

fall 2018.  Plots were clipped, dried, sorted, and weighed in summer 2018. 

The greenhouse experiment was implemented at the Halle Institute of 

Biology/Geobotany and Botanical Garden.  Soil from an area adjacent to the field 

experiment was dried and transported to Halle.  A 3:1 mixture of compost and sand from 

SWH Stadtwerke Halle in Halle DE was inoculated with 10% field soil.  650 1-L pots 
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were planted with 1 seedling each and grown for an eight month period.  Phase 1 plants 

were then killed by clipping, and hand-weeding if needed. 475 pots had growth in phase 

I, and all other pots were discarded.  Pots that realized growth were replanted with either 

the same (“self” treatment) or a different (“other” treatment) species. At the end of the 

experiment, aboveground biomass was clipped, dried, and weighed. 
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Supplementary Tables 

Table B-1. Species for paired experiments. 
Species Growth Form Origin Experiment 

Achillea millefolium Forb native Berlin, DE 
Cedar Creek, MN, US 

Amorpha canescens C3 native Cedar Creek, MN, US 
Andropogon gerardii Legume native Cedar Creek, MN, US 
Anthoxanthum odoratum C3 native Potsdam, DE 
Arrhenatherum elatius C3 native Jena, DE 

Potsdam, BB, DE 
Bromus tectorum C3 invasive Winthrop, WA, US 
Capsella bursa-pastoris Forb native Berlin, DE 
Centaurea diffusa Forb invasive Winthrop, WA, US 
Cichorium intybus Forb native Berlin, DE 
Dactylis glomerata C3 native Jena, DE 
Dalea purpurea C4 native Cedar Creek, MN, US 
Elymus canadensis C3 native Cedar Creek, MN, US 
Festuca idahoensis C3 native Winthrop, WA, USA 
Holcus lanatus C3 native Potsdam, DE 
Koeleria macrantha C3 native Cedar Creek, MN, US 

Winthrop, WA, US 
Lactuca serriola Forb invasive Winthrop, WA, US 
Lespedeza capitata Legume native Cedar Creek, MN, US 
Liatris aspera Forb native Cedar Creek, MN, US 
Lupinus perennis Legume native Cedar Creek, MN, US 
Medicago x varia Legume invasive Berlin, DE 
Monarda fistulosa Forb native Cedar Creek, MN, US 
Panicum virgatum C4 native Cedar Creek, MN, US 
Pascopyrum smithii Legume native Cedar Creek, MN, US 
Poa pratensis C3 invasive Cedar Creek, MN, US 
Poa trivialis C3 native Jena, DE 
Pseudoregneria spicata C3 native Winthrop, WA, US 
Schizachyrium scoparium C4 native Cedar Creek, MN, US 
Sisymbrium loeselii Forb native 

invasive 
Berlin, DE 
Winthrop, WA, US 

Solidago canadensis Forb invasive Berlin, DE 
Solidago rigida Forb native Cedar Creek, MN, US 
Sorghastrum nutans C4 native Cedar Creek, MN, US 
Tanacetum vulgare Forb native Berlin, DE 
Tragopogon dubius Forb invasive Winthrop, WA, US 
Trifolium pratense Legume native Jena, DE 
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Species Growth Form Origin Experiment 
Trifolium repens Legume native Berlin, DE 

Jena, DE 
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Table B-2. Locales, climate conditions, soil information, and site-use history for the field 
experiments. 

 Berlin Cedar Creek Jena Potsdam Winthrop 
Species 8 16 5 3 4 
Location 52.475° N, 

13.362° E 
45.403° N, 

93.187° 
50.952° N, 
11.623° E 

52.408° N, 
13.020° 

48.481° N, 
120.117° W 

Köppen 
Climate 

Classification 

Oceanic 
climate 
(Cfb) 

Hot summer 
continental 

(Dfa) 

Oceanic 
climate 
(Cfb) 

Oceanic 
climate 
(Cfb) 

Warm 
summer 

continental 
(Dfb) 

MAT 9.1 °C 6.5° C 8.6 °C 9.2 °C 6.9 °C 
MAP 570 mm 753 mm 565 mm 566 mm 395 mm 
Soil loamy sand 

 
loamy sand silty clay slightly 

loamy sand 
Gravelly 

loam 
Field site 
history 

Abandoned 
urban site 

Managed 
tallgrass 
prairie 

Managed 
meadow 

Managed 
meadow 

 

ex-arable 
alfalfa field 

Greenhouse 
experiment 

location 

Freie 
Universität 

Berlin, 
Germany 

Crop 
Physiology 
Laboratory 
in Logan, 
UT, USA 

Botanical 
Gardens of 

Martin-
Luther 

University in 
Halle 

(Saale), 
Germany. 

University 
of Potsdam, 

Germany 

USDA 
Forage and 

Range 
Research 

greenhouse 
in Logan, 
UT, USA 
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APPENDIX C 

CHAPTER 3 SUPPLEMENTAL INFORMATION 

Model Details 

Plant species biomass in communities was predicted using logistic growth models 

(Table C-1; Kulmatiski et al. 2011). Species growth rates were derived from a) growth on 

control soils (control Null model), b) growth on ‘self’ soils (self Null model), or c) 

growth on all soil types (PSF model). Competition coefficients were assigned a value of 

‘1’, but each species could affect the growth of other species due to community-level 

carrying capacities. Each of these three models was run with five different carrying 

capacities: 1) the maximum observed growth in any plot in the community experiment, 2) 

the maximum mean observed growth in any community, 3) the maximum species-

specific growth in community plots, 4) the maximum observed growth in any PSF plot, 

and 5) the maximum species-specific growth in any PSF plot. Mean Null model 

predictions of community biomass were calculated from the 10 model simulations 

(Control Null, Self Null each with five carrying capacities. Mean PSF model predictions 

were calculated from the five simulations with different carrying capacities. 

Plant growth rates were calculated from the initial seed mass (0.002 g) and final 

observed biomass of each species on each soil. For example, for a model with 52 time 

steps, the growth rate of species A on soil α, Γ𝐴𝐴α = �𝐴𝐴α/𝐼𝐼52 , where Aα = the final 

biomass of plant A on soil α, and I = initial seed mass (Table C-1). A different growth 

rate is calculated for each plant species on each species-conditioned soil (i.e., soil type): 

Γ𝐴𝐴𝑡𝑡 = Γ𝐴𝐴α𝑃𝑃α + Γ𝐴𝐴β𝑃𝑃β + ⋯+ Γ𝐴𝐴ι𝑃𝑃 



156 
 

Γ𝐵𝐵𝑡𝑡 = Γ𝐵𝐵α𝑃𝑃α + Γ𝐵𝐵β𝑃𝑃β + ⋯+ Γ𝐵𝐵ι𝑃𝑃 

⋮ 

Γ𝐼𝐼𝑡𝑡 = Γ𝐼𝐼α𝑃𝑃α+ Γ𝐼𝐼β𝑃𝑃β + ⋯+ Γ𝐼𝐼ι𝑃𝑃 

Species-conditioned soils ‘grow’ as a function of plant biomass, plant species 

growth rates, and a conversion factor μ (Table C-1). Conversion factor μ was set to 5 to 

reflect the assumption that microbial communities grow faster than plants (Kulmatiski et 

al. 2011). Species-conditioned soil growth was modeled as α𝑡𝑡+1 = �1 + μΓ𝐴𝐴𝑡𝑡𝐴𝐴𝑡𝑡�α𝑡𝑡 , 

β𝑡𝑡+1 = �1 + μΓ𝐵𝐵𝑡𝑡𝐵𝐵𝑡𝑡�β𝑡𝑡, …, ι𝑡𝑡+1 = �1 + μΓ𝐼𝐼𝑡𝑡𝐼𝐼𝑡𝑡�ι𝑡𝑡. 

The proportion each conditioned soil type comprises of the total soil community 

can be described by 𝑃𝑃α𝑡𝑡 = α𝑡𝑡/(α𝑡𝑡 + β𝑡𝑡 + ⋯+ ι𝑡𝑡) (Table C-1). Plant growth rates are a 

function of the proportion of different conditioned soil types present. To prevent run-

away growth, biomass is limited by a carrying capacity κ, which can be either unique to a 

species or to the community (Table 1). Changes in each plant’s biomass can be described 

as 𝐴𝐴𝑡𝑡+1 = 𝐴𝐴𝑡𝑡 + Γ𝐴𝐴𝑡𝑡�(κ − 𝐴𝐴𝑡𝑡)/κ�, 𝐵𝐵𝑡𝑡+1 = 𝐵𝐵𝑡𝑡 + Γ𝐵𝐵𝑡𝑡�(κ − 𝐵𝐵𝑡𝑡)/κ�, …, 𝐼𝐼𝑡𝑡+1 = 𝐼𝐼𝑡𝑡 +

Γ𝐼𝐼𝑡𝑡�(κ − 𝐼𝐼𝑡𝑡)/κ�. 

Although the Null models are similar in their implementation, they do not 

incorporate growth on all conditioned soil types. For the self Null model, plant species 

biomass is a function of observed plant biomass on “self” soil only, i.e. 𝐴𝐴 = 𝑓𝑓(Γ𝐴𝐴α), 𝐵𝐵 =

𝑓𝑓�Γ𝐵𝐵β�, …, 𝐼𝐼 = 𝑓𝑓(Γ𝐼𝐼ι) (Table 1). For the control Null model, plant species biomass is a 

function of observed plant biomass on unconditioned control soils only, i.e. 𝐴𝐴 =

𝑓𝑓�Γ𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�, 𝐵𝐵 = 𝑓𝑓�Γ𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�, ..., 𝐼𝐼 = 𝑓𝑓�Γ𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� (Table C-1).  

Because growth rates were derived from the second year of growth, we assumed 
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that growth rates represented two years of growth. To simulate the four years of growth 

in the biodiversity-productivity experiment, model simulations were executed for 52 

timesteps, after which plant biomass was reduced to 1% of the previous timestep and 

allowed to run for another 52 timesteps. Mean model output for the sum of species 

growth from the suite of Null or PSF model simulations are reported. 
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Supplementary Tables 

Table C-1. Parameter definitions for the PSF and Null models. 
Parameter Definition 
A, B, …, I Plant A through I 
At, Bt, …, It Biomass of plant A through I at time t 
α, β, …, ι Conditioned soil types α through ι, 

cultivated by plants A through I 
ΓAt, ΓBt, … , ΓIt Growth rate of plant A through I at time 

t 
Pα, Pβ,…,Pι Proportion of conditioned soil type α 

through ι 
µ Conversion factor 
κ Carrying capacity 
Acntl, Bcntl, …, Icntl Plant A through I’s biomass on 

unconditioned soil 
Aα, Aβ, …, Aι 
Bα, Bβ, …, Bι 
⋮ 
Iα, Iβ, …, Iι 

Plant A through I’s biomass on 
conditioned soil types α through ι  

ΓAα, ΓAβ, … , ΓAι 
ΓBα, ΓBβ, … , ΓBι 
⋮ 
ΓIα, ΓIβ, … , ΓIι 

Growth rates of species A through I on 
conditioned soil types α through ι 
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Table C-2. Treatments and sample sizes for the plant-soil feedback experiment. Each 
Phase I conditioned soil type had between five and nine ‘control’ plots, between 27 and 
30 ‘self’ plots, and between five and nine ‘other’ plots per Phase II species for a total of 
between 75 and 135 ‘other’ plots. 112 plots that did not have seeded species growth in 
Phase I, i.e. Phase I control treatment, were seeded with either one of the sixteen target 
species (N = 96) or left unseeded (N = 16). 
Phase I Phase II N 

Ac Control 5 
Ac Self 34 
Ac Other 120 
Ag Control 5 
Ag Self 30 
Ag Other 135 
Am Control 5 
Am Self 30 
Am Other 135 

Control Self 16 
Control Other 96 

Dp Control 5 
Dp Self 30 
Dp Other 135 
Ec Control 5 
Ec Self 30 
Ec Other 135 
Km Control 5 
Km Self 30 
Km Other 135 
La Control 5 
La Self 34 
La Other 120 
Lc Control 5 
Lc Self 30 
Lc Other 135 
Lp Control 5 
Lp Self 30 
Lp Other 120 
Mf Control 5 
Mf Self 34 
Mf Other 120 
Pp Control 5 
Pp Self 28 
Pp Other 135 
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Phase I Phase II N 
Ps Control 5 
Ps Self 31 
Ps Other 135 
Pv Control 5 
Pv Self 30 
Pv Other 135 
Sn Control 5 
Sn Self 30 
Sn Other 135 
Sr Control 5 
Sr Self 27 
Sr Other 75 
Ss Control 5 
Ss Self 30 
Ss Other 135 
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Table C-3. Planting treatments for BP1997 and the BP experiment. The first digit indicates whether the species is planted (1) or not 
planted (0) in the BP1997 community. The second digit indicate whether a species is planted (1) or not planted (0) in the BP 
community. Thus, a 1 1 indicates that the species occurs in the mixture in both experiments, a 0 0 indicates that the species occurs in 
the mixture in neither experiment, a 1 0 indicates it was planted in the mixture in BP1997but not in BP, and a 0 1 indicates it was 
planted in BP but not in BP1997. Codes indicate the reason the community was changed from the original community in BP1997. Code 
A indicates no difference between the BP1997

 and BP communities. Code B indicates that Dalea candida and Dalea villosa were 
removed from the community when seeding BP plots. Code C indicates that woody species were removed from the community when 
seeding BP plots. Code D indicates A. tuberosa was removed from the community when seeding BP plots. For one community, after 
woody species and A. tuberosa were removed, the diversity would be 7 species, so S. scoparium was randomly selected to create a 
diversity of 8 species; this community is indicated by code CDE. Two novel communities, community A and community B were 
created specifically for the BP study because M. fistulosa and S. rigida co-occur in the intended monoculture plots in BP1997

 due to a 
seeding error. Changed planting treatments are bolded and occur in red. 
Com Div. 

BP1997 
Div. 
BP 

Am Ac Ag At Dc Dv Dp Ec Km Lc La Lp Mf Pp Ps Pv Qe Qm Ss Sn Sr Code 

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

5 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

6 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 A 

11 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

12 10 8 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 B 

20 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

26 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 A 

30 17 14 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

31 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

34 17 14 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

35 17 14 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

46 17 14 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 CD 

48 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

56 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

57 10 8 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 B 
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Com Div. 
BP1997 

Div. 
BP 

Am Ac Ag At Dc Dv Dp Ec Km Lc La Lp Mf Pp Ps Pv Qe Qm Ss Sn Sr Code 

68 17 14 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

81 8 8 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 A 

83 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

87 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 A 

93 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A 

107 17 14 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 CD 

110 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 A 

115 9 8 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1 1 CDE 

125 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

129 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

136 17 14 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

138 4 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

139 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A 

142 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

156 17 14 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

160 17 14 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

168 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

171 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

175 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 A 

176 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 A 

178 9 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 10 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 A 

185 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

193 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

202 17 16 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 D 

206 9 8 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 D 
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Com Div. 
BP1997 

Div. 
BP 

Am Ac Ag At Dc Dv Dp Ec Km Lc La Lp Mf Pp Ps Pv Qe Qm Ss Sn Sr Code 

208 8 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 A 

210 8 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

220 17 14 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

224 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 A 

229 4 4 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 A 

230 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 A 

234 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

237 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

239 17 14 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 CD 

242 17 14 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

256 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 A 

273 17 14 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 CD 

286 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 A 

290 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 A 

300 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 A 

302 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 C 

303 10 8 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 A 

311 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 D 

330 2 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

333 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 

336 17 14 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 CD 

A None 1    0    0    0    0    0    0    0    0    0    0    0    0    1    0    0    0    0    0    0    0    0  

B None 1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1  
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Supplementary Figures 

 

 

Figure C-1. Observed versus predicted biomasses between the two biodiversity-
productivity experiments. The BP experiment (a, c) showed a stronger correlation 
between PSF-informed model predictions (blue) and observed biomass than null models 
(orange). Model predictions did not correlate with BP1997 experiment (b, d) observations. 
Results did not differ between models run with all 63 communities (a, b), and models run 
with only the 40 communities with identical composition in BP and BP1997 (c, d). 
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APPENDIX D 

CHAPTER 4 SUPPLEMENTAL INFORMATION 

Supplementary Data 

Generalized Additive Mixed Models 

To approximate the continuous soil profiles of root biomass and tracer uptake 

with depth we fit generalized additive mixed effects models (GAMMs) for water and 15N 

uptake (Wood 2012; Kulmatiski et al. 2017). We let the GAMMs have four “knots” to 

allow for a smooth interpolation between the five sample depths. We fit nested subsets of 

the mixed models with different groupings of species-level tracer uptake, which define 

each model’s random effects structure. Groupings included 1) an ungrouped “global” 

model, 2) a model grouped by C3 grasses, C4 grasses, forbs, and ferns, 3) a model 

grouped by grasses, forbs, and ferns, 4) a model grouped by grasses and forbs/ferns, and 

5) a model grouped by species. We fit models with group level intercepts and slopes (the 

“effect” of soil depth). All models were fit in R (R Core Research Team 2004) using the 

gam function from the mgcv package (Metadata S1; Data S1; Wood 2012). We used 

Akaikie’s Information Criterion (AIC) to rank models in terms of their support by the 

data. The model with the lowest AIC is the best model in terms of predictive ability and 

in terms of support from the data. Likewise, for any given hypothesis, we can compare 

two of the models and assess their relative support. Simple regressions were used to 

compare observed vs. predicted plant absolute and rank abundance.  
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Supplementary tables and figures 

Table D-1. Parameters and initial simulations for Hydrus 1-D runs. 
Parameter Initial simulation 
Number of soil materials 10 (Appendix D Table 2) 
Number of layers for mass balance 5 
Decline from vertical axis (0 = no slope) 0.01 
Soil depth (cm) 178 
Minimum time step (days) 0.00024 
Maximum time step (days) 72 
Water content tolerance 0.001 
Critical Stress Index for Water Uptake 1 
S-Shape parameters (P50, P3) -15296, 3 
HcritA (cm) 500000 
Latitude (degrees) 45.397 
Crop height (cm) Appendix D Table 4 
Leaf area index 1 
Root depth (cm) 178 
Radiation extinction 0.463 
Meterological conditions Hourly from 3/1/2016 to 9/30/2016 

from on-site measurements 
Soil profile Appendix D Figure 2 
 
 
Table D-2. Proportion sand, silt, and clay and bulk density in grams cm-3 for the 
Zimmmerman series at Cedar Creek, taken from Grigal et al. 1974. 
Depth (cm) Sand Silt Clay Db (g cm-3) 
0-18 93 3 4 1.3 
18-71 95.5 2 2.5 1.55 
71-91 90 4.5 5.5 1.65 
91-115 93 4 3 1.6 
115-120 88 2 10 1.7 
120-132 95 2 3 1.6 
132-137 91 1 8 1.7 
137-155 98 0 2 1.6 
155-160 94 0 6 1.6 
160-178 97 1 2 1.6 
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Table D-3. Water Flow parameters. 
Material Qr Qs α (cm-1) N Ks (cm/hr) I 
1 0.0536 0.451 0.0366 2.6596 28.2792 0.5 
2 0.0529 0.3723 0.0313 3.5442 31.4137 0.5 
3 0.0496 0.3453 0.0338 2.4319 9.52708 0.5 
4 0.0499 0.3574 0.0333 3.0469 19.4613 0.5 
5 0.0537 0.3349 0.0303 1.9815 4.52417 0.5 
6 0.0522 0.3575 0.0314 3.3392 25.5608 0.5 
7 0.0538 0.3327 0.0299 2.3184 7.80833 0.5 
8 0.0538 0.3561 0.0299 3.927 39.7817 0.5 
9 0.0564 0.3611 0.0289 2.9432 18.7746 0.5 
10 0.0527 0.3561 0.0308 3.7585 35.0737 0.5 
 
 
 
Table D-4. Plant heights used to parameterize the Hydrus 1-D model. 
Species Height (cm) 
Achmi 20 
Andge 100 
Ambco 30 
Artlu 33 
Elyre 40 
Equsp 20 
Erica 20 
Panol 20 
Poapr 40 
Schsc 100 
Sornu 100 
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Figure D-1. Micrograms of 15N uptake per gram of leaf matter (a, b) and proportion of 
15N taken up per gram of leaf matter for each depth for each species (c, d), either adjusted 
by background pool of nitrogen (a, c), or unadjusted by background pool of nitrogen (b, 
d). 
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Figure D-2. Proportion of deuterium uptake by depth adjusted by centimeters in the 
profile depth range was used to parameterize Hydrus 1-D soil profiles. 
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APPENDIX E 

AMPLICON ITS AND 16S RNA SEQ OF SOIL METAGENOME: QUANTIFYING 

PLANT-SOIL FEEDBACK EFFECTS IN CLASSIC DIVERSITY-PRODUCTIVITY 

EXPERIMENTS 

 
ABSTRACT 

Two-way interactions between plants and soil microbiota, also known as plant-

soil feedbacks, have major effects on the productivity of plant species. This project tested 

the role of plant-soil feedbacks in plant community productivity across two sites, one at 

Cedar Creek Ecosystem Science Reserve in East Bethel, Minnesota, USA, and the other 

at the Jena Experiment in Jena, Thuringia, Germany. Soil metagenomic analyses were 

undertaken to help identify the specific microbes that drive feedbacks. 

 
1. MATERIALS AND METHODS 

 
1.1 Cedar Creek Plant-soil feedback experiment 

A 1750 m2 fallow area adjacent to a large, long-term biodiversity experiment at 

Cedar Creek was sprayed with glyphosate and disked to thoroughly remove vegetation 

and homogenize soils in the top 15 cm.  0.75 mm thick HDPE root barrier was inserted to 

35 cm deep between each plot.  2,720 0.75 by 0.35 m PSF plots were established.  In 

spring 2015, all plots were seeded with 10 g pure live seed per m2.  During the first year, 

plots were watered weekly to ensure germination.  To establish the phase 1 treatment, 

each of the 16 target species were planted as monocultures and grown from 2015 to 2016.   

Non-target species were removed by hand-weeding.  In 2016, fall PSF plots were sprayed 

with glyphosate and hand-tilled using a garden claw.  Plots with exceptionally thick roots 
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were tilled using a rototiller.  In spring 2017, any living plants were sprayed again with 

glyphosate.  2,608 plots realized growth in phase I.  Plots were replanted with either the 

same (“self” treatment) or a different (“other” treatment) species.  Plots that did not 

realize growth were replanted randomly as a control soil treatment. Yearly growth was 

recorded as ocular estimate of percent cover prior to soil sampling for metagenomic 

analyses. 

 
1.2 Cedar Creek Plant-soil feedback experiment 

On 7/20/2015, 7/15/2016, 10/30/2017, and 10/7/2018, a 15cm x 4cm core 

consisting of approximately 200 g of soil was taken from the center of three randomly-

selected “self” plots and stored on ice. Soil corers were cleaned with 90% ethanol 

between samples. Samples were immediately transported to the University of Minnesota 

campus and stored at -80° C until DNA could be extracted. Soils were sieved and DNA 

was extracted using a MoBio Power Soil DNA kit. 

“Self” plots were re-sampled whenever growth on such plots was above zero, 

however, failed growth in some plots necessitated changes in plots being sampled in 

2016, 2017, and 2018.  

 
1.3 Cedar Creek Rhizosphere Soil Metagenomic Sampling 

On 10/7/2018, three individuals from the bulk soil plots sampled in 2018 were 

removed from the plot and stored on ice. Trowels used to remove individuals were 

cleaned with 90% ethanol between samples. Samples were immediately transported to the 

University of Minnesota campus and stored at -80° C until DNA could be extracted. Soils 

were dusted from the roots of the stored individuals and DNA was extracted using a 
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MoBio Power Soil DNA kit. 

 
1.4 Jena Plant-Soil Feedback Experiment 

A 730 m2 area in a fallowed field was sprayed with glyphosate to remove 

vegetation.  0.75 mm thick HDPE root barrier was inserted to 35 cm deep between each 

plot.  1251 0.75 by 0.35 m PSF plots were established in the area.  In spring 2015, all 

plots were seeded with 2000 pure live seeds per m2.  During the first year, plots received 

water twice weekly to ensure germination.  To establish the phase 1 treatment, each of 

the nine target species were planted as monocultures and grown from 2015 to 2016.   

Non-target species were removed by hand-weeding.  In 2016, fall PSF plots were sprayed 

with glyphosate and hand-tilled using a garden claw.  To prevent regrowth roots of phase 

1 species were removed.  Plots were replanted with 2000 pure live seeds per square meter 

with either the same (“self” treatment) or a different (“other” treatment) species.  Yearly 

growth was recorded as ocular estimate of percent cover prior to soil sampling for 

metagenomic analyses. 

 
1.5 Jena Bulk Soil Metagenomic Sampling 

On 9/1/2015, 1/1/2017, 10/1/2017, and 9/1/2018, a 15cm x 4cm core consisting of 

approximately 200 g of soil was taken from the center of nine randomly-selected “self” 

plots and stored on ice. Soil corers were cleaned with 90% ethanol between samples. 

Samples were transported to the Friedrich-Schiller-Universität Jena campus and stored at 

-80 ° C until DNA could be extracted. Soils for three “self” plots were pooled and sieved 

through a 2mm sieve to create three pooled samples from three plots for each species. 

DNA was extracted using a MoBio Power Soil DNA kit. 
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1.6 Jena Rhizosphere Soil Metagenomic Sampling 

On 9/1/2018, a minimum of three individuals from the bulk soil plots sampled in 

2018 were removed from the plot and stored on ice. Trowels used to remove individuals 

were cleaned with 90% ethanol between samples. Samples were transported to the 

Friedrich-Schiller-Universität Jena campus and stored at -80° C until DNA could be 

extracted. Soils were dusted from the roots of the stored individuals and pooled to create 

three pooled samples from three plots for each species. DNA was extracted using a 

MoBio Power Soil DNA kit. 

 
1.7 Metagenomic Processing 

DNA concentrations were checked using PicoGreen assay on a Modulus 

Microplate reader. Purified DNA was diluted to a maximum concentration of 6.0 ng/?l 

for bulk samples and 50.0 ng/μl for rhizosphere samples and stored at -80 °C until 

sequencing. Fungal ITS and bacterial 16S rRNA genes in the rhizosphere and bulk soil 

samples were amplified by Argonne National Laboratory using the primer sets ITS1f-

ITS2 (ITS) and 515F-806R (bacterial). The amplified genes were subsequently 

sequenced by Argonne National Laboratory on the Illumina MiSeq platform (Novogene 

Corporation, Beijing China) using the Earth Microbiome Protocol. 

 
2. RESULTS 

2.1 Description of files: 

MIMARKS.survey.soil.5.xlsx 

 Description of MIMARKS.survey.soil.5.1.xlsx: This file broadly describes the 

collection dates, elevations, environmental contexts, and agricultural additives for the 
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microbial data collected. 

SRA_metadata.xlsx 

 Description of SRA_metadata_vers2.xlsx: This file broadly describes the library 

strategy, library source, library selection, library layout, platform, instrument, and design 

description for the microbial data collected. 

 
2.2 Descriptions of parameters/variables 

2.2.1 Temporal (beginning and end dates of data collection):  

The Cedar Creek plant-soil feedback field experiment took place between May 

2015 and October 2018. Soil samples were collected on 7/20/2015, 7/15/2016, 

10/30/2017, and 10/7/2018. 

The Jena plant-soil feedback experiment took place between May 2015 and 

October 2018. Soil samples were collected on 9/1/2015, 1/1/2017, 10/1/2017, and 

9/1/2018. 

 
2.2.2 Instruments used and units of measurements: 

PicoGreen assay on a Modulus Microplate reader (ng DNA/μl) was used to 

measure DNA concentrations. 

 
2.2.3 Column headings of data files for tabular data:  

The file MIMARKS.survey.soil.5.xlsx consists of the following columns: 

Sample title 

Organism 

Collection date 
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Depth (centimeters) 

Elevation (meters) 

Broad-scale environmental context (ENVO type) 

Local-scale environmental context 

Environmental medium 

Geographic location 

Agrochemical additions 

The file SRA_metadata.xlsx consists of the following columns: 

Library ID 

Title 

Library strategy 

Library source 

Library selection 

Library layout 

Platform 

Instrument model 

Design description 

Filetype 

Filename 

Filename2 

Filename3 

Filename4 

Filename5 
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Filename6 

Filename7 

Filename8 

 
2.2.4 Location  

Cedar Creek Field Site: 45.403290 N, 93.187411 W 

Jena Field Site: 50.951951 N, 11.623832 E 

 

2.2.5 Symbol used for missing data:  

Empty cells represent missing data. 

 
2.2.6 Recommended software 

QIIME2 is recommended for processing the fastq data.  

 
2.4 Data Archive 

Data can be found archived at the National Center for Biotechnology Information 

Sequence Read Archive and USU Digital Commons at 

http://www.ncbi.nlm.nih.gov/bioproject/683074 and 

https://digitalcommons.usu.edu/all_datasets/127/. 
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