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ABSTRACT 

Propagation of Two Utah Native Plants: Ceanothus velutinus and Cercocarpus montanus 

By 

Asmita Paudel, Master of Science in Plant Science 

Utah State University 

Major Professor: Dr. Youping Sun 

Department: Plants, Soils and Climate 

Ceanothus velutinus (snowbrush ceanothus) and Cercocarpus montanus (alder-

leaf mountain mahogany) are native species with potential to be used in water-efficient 

landscapes. However, efficient propagation methods are not well developed. Our 

objectives were to develop efficient seed propagation, cutting propagation, and 

micropropagation protocols for these two species. 

Seeds of both C. velutinus and C. montanus were scarified and/or stratified and 

treated with gibberellic acid (GA3) to break dormancy. The results showed that C. 

velutinus seeds stratified for 2 months after being scarified at 90 ºC and treated with 500 

mg·L-1 GA3 had the greatest germination percentage (74.2 ± 2.0%), and C. montanus 

seeds treated with 50 mg·L-1 GA3 and stratified for 2 months had the greatest germination 

percentage (64.2 ± 3.6%). 

Terminal cuttings of C. velutinus were collected from May to Sept. 2019 and June 

to Aug. 2020 from the Tony Grove Lake area, Utah. Ceanothus velutinus cuttings 

collected in July tended to have a better rooting percentage than those collected at other 
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times of the year. Terminal and stem cuttings were collected in Aug. 2019 from the same 

area. Terminal cuttings were good compared with stem cuttings but were not significantly 

different in terms of rooting percentage. Likewise, different rooting hormones were tested 

using cuttings collected from greenhouse-grown seedlings. Hormodin 2 [3,000 mg·L-1 

indole-3-butyric acid (IBA)] tended to be the better rooting hormone.  

Terminal cuttings of C. montanus ‘Coy’ were collected in mid-July and different 

rooting hormones were tested. Hormodin 2 tended to be the better rooting hormone. A 

separate experiment was also conducted using terminal and stem cuttings. Stem cuttings 

tended to be better for C. montanus. Hardwood stem cuttings were collected on 11 May, 

2020, and wounding study was performed. Wounding promoted adventitious root 

formation of C. montanus.  

For micropropagation, Murashige and Skoog (MS) and Gamborg’s B-5 (B5) 

medium supplemented with 1 mg·L-1 benzylaminopurine (BA) were better than other 

medium for establishment of C. velutinus. In addition, ex vitro rooting study was 

successful for rooting microshoots of C. velutinus. For C. montanus, MS + 1 mg·L-1 BA 

tended to be better medium for multiplication stage.  

(113 pages) 
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PUBLIC ABSTRACT 

Propagation of Two Utah Native Plants: Ceanothus velutinus and Cercocarpus montanus 

Asmita Paudel 

Among various water conservative approaches, the use of native plants in 

landscape, such as Ceanothus velutinus (snowbrush ceanothus) and Cercocarpus 

montanus (alder-leaf mountain mahogany), is attractive. Efficient propagation methods are 

required to allow these native species to use in water-efficient landscaping. Sexual (seed) 

and asexual/vegetative (cuttings and micropropagation) propagation methods were 

evaluated. 

Seeds of both C. velutinus and C. montanus were scarified and/or stratified and 

treated with gibberellic acid (GA3) to break dormancy. The results showed hot water 

scarification and 2-3 months of stratification effectively broke the dormancy of C. 

velutinus seeds, and stratification for 2-3 months was needed for C. montanus seeds. 

Furthermore, GA3 also helped to increase germination of both species. 

Terminal cuttings of C. velutinus were collected from May to Sept. 2019 and June 

to Aug. 2020 from the Tony Grove Lake area, Utah. Terminal and stem cuttings were 

also collected in Aug. 2019 from the same area. Likewise, different rooting hormones 

were tested using cuttings collected from greenhouse-grown seedlings. Ceanothus 

velutinus cuttings collected in July tended to have a better rooting percentage than those 

collected at other times of the year. Hormodin 2 [3,000 mg·L-1 indole-3-butyric acid 
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(IBA)] tended to be the better rooting hormone. Terminal cuttings were good compared 

with stem cuttings but were not significantly different in terms of rooting percentage. 

Terminal cuttings of C. montanus ‘Coy’ were collected in mid-July and different 

rooting hormones were tested. Hormodin 2 tended to be the better rooting hormone. A 

separate experiment was also conducted using terminal and stem cuttings. Stem cuttings 

tended to be better for C. montanus. In addition, on 11 May, 2020, hardwood stem 

cuttings were collected and wounding study was performed. Wounding promoted 

adventitious root formation of C. montanus.  

For micropropagation, Murashige and Skoog (MS) and Gamborg’s B-5 (B5) 

medium supplemented with 1 mg·L-1 benzylaminopurine (BA) were better than other 

medium for establishment of C. velutinus. In addition, ex vitro rooting study was 

successful for rooting microshoots of C. velutinus. For C. montanus, MS + 1 mg·L-1 BA 

tended to be better medium for multiplication stage.  
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CHAPTER I 

LITERATURE REVIEW 

Water is an important natural resource-essential to health, social and economic 

well-being of people. In the United States (U.S.), water demand, especially in urban 

areas, is destined to exceed the supply (St. Hilaire et al., 2008). Urbanization, population 

growth and climatic change are three major factors responsible for water scarcity in urban 

areas. The urbanization of the western U.S. has progressed rapidly, and most populations 

are concentrated in cities (Kjelgren et al., 2000). The entire output of local and regional 

watersheds is, therefore, required to fulfill the demand for water by industry, personal and 

agriculture use. Urbanization also leads to the expansion of watershed-impervious areas 

and affects the hydrology, groundwater recharge, stream geomorphology, climate, 

biogeochemistry, and stream ecology, which limits further water availability for use by 

people (O’Driscoll et al., 2010). In Utah, the second driest state in the U.S., water 

demand is increasing day by day; parallel with the population growth. The 2015 report of 

Utah Division of Water Resources entitled “A Performance Audit of Projections of 

Utah’s Water Needs” predicts that the population of Utah is estimated to double (nearly 6 

million people) by 2060. This fast increase in population will strain currently developed 

water supplies. Most of the water in Utah is used for agricultural purposes. About 

5.18×109 cubic meter of fresh water is used every year for agricultural purposes in Utah 

(Strong et al., 2010). Of total available potable water, 60% is used for urban landscape 

irrigation (Kjelgren et al., 2000). However, water resources are limited in Utah, and more 

rigorous water conservation practices will likely be imposed relative to agriculture and 

landscape irrigation.  
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Native Plants 

Among various approaches for water conservation, the use of native plants in 

landscapes has considerable potential. Native plants, by definition, are plant species that 

occur naturally in a region, state, ecosystem, and habitat without direct or indirect human 

actions. Native plants in other words are those plants that occur naturally in a region in 

which they evolved so that they can thrive in that region. Drought tolerance is one of the 

peculiar characteristics of western U.S. native plants. They can maintain aesthetics in 

landscape with less applied water as compared with other exotic plants. Additionally, 

consumers are increasing their interest in natural landscapes and show willingness to pay 

a premium price for native plant products (McCoy, 2011). Native plants can be planted 

easily in low-water landscapes and are of great value in landscape maintenance (Rupp 

and Wheaton, 2014). Native plants are drought, disease and pest tolerant (Dyas, 1976). 

Native plants that have ornamental characteristics like short stature and glossy leaves are 

suitable for most water-conserving landscapes (Rupp et al., 2011). Kratsch (2011) studied 

water requirements of native plant species in two consecutive years by irrigating them in 

the first year and cutting off irrigation in the second. This author noted that Astragalus 

filipes (basalt milkvetch), Dalea searlsiae (searls’ prairie clover), Penstemon eatonii 

(firecracker penstemon), and Stanleya pinnata (desert princes’ plume) could be grown in 

well-drained soils without regular irrigation. Similarly, Rupp and Libbey (1996) 

identified various native species for landscape use and noted that Cercocarpus spp. did 

not require additional water once it was established and therefore could be effectively 
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grown in low-water landscapes. Thus, the use of native plants should be encouraged to 

help address water conservation issues in the landscapes of Utah.  

Native plants have valuable importance but some of them do not survive well 

when transplanted. They are susceptible to different soil-borne diseases and may be 

affected by native insects or pest. In addition, they are native to specific zone or higher 

elevations and may not thrive well in lower elevations or valleys. 

However, many native plants have been shown to perform well in urban 

landscapes in Utah, many more species may be candidates for utilization in this way. 

Ceanothus velutinus (snowbrush ceanothus ) and Cercocarpus montanus (alder-leaf or 

true mountain mahogany) are examples of underutilized Utah native plants. 

Ceanothus velutinus. It is a broad-leaf evergreen shrub in the Rhamnaceae family. 

Ceanothus is a common genus in North American ecosystems and includes 

approximately 50 species of evergreen or deciduous shrubs (Fross and Wilken, 2006). 

The common names of C. velutinus include snowbrush ceanothus, mountain balm, red 

root, sticky laurel, tobacco brush, and varnish leaf ceanothus. Native elevation range is 

2,135 to 2,745 meters (Fross and Wilken 2006; Rupp and Wheaton, 2014). It is native to 

western North America, covering a range from British Columbia south to California and 

east to Colorado. Ceanothus velutinus has multiple stems with procumbent branches and 

usually grows up to 0.9-2.5 meters tall (Seven Oaks Native Nursery, 2019). This species 

possesses characteristics that could prove valuable in the landscape, including shiny, 

evergreen, broadleaf foliage. Leaves are alternate and produce a pungent odor when 

crushed. Leaf blades of C. velutinus are 33-81 mm long and 21-53 mm wide and are 
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elliptical to ovate, leathery with dark green upper surface and pale green lower surface. 

Flowering occurs from March to August. The attractive white flowers of Ceanothus 

velutinus are produced in terminal clusters (Fig. 1-1A) (Fross and Wilken, 2006). Three-

lobed seed capsules are 3.5 to 5 mm wide, brownish with smooth to slightly wrinkled 

lobes (Fig. 1-1B). Seeds are ovoid and brownish; about 1 to 3 mm wide. Ceanothus 

velutinus is shade intolerant and commonly found on south-facing slopes. Importantly, it 

does not require heavy irrigation to complete its normal lifecycle. Ceanothus velutinus is 

a fire-adapted species, and incidence of fire is believed to enhance seed germination 

(Gratkowski, 1962). This is a nitrogen-fixing species and fills a soil-building role within 

its native habitat. In symbiosis with Frankia this species fixes nitrogen at rates of 20 to 

more than 142 Kg N ha-1 yr-1 (10,000 m-2) (Binkley et al., 1982; Youngberg and Wollum, 

1976).  

Leaves of C. velutinus are green throughout the year, even in winter, but the leaf 

edges often curl in the winter and may turn black without cover of snow (Karban, 2008). 

This species spreads by sprouts, forming dense thickets which make it difficult to identify 

the boundary of a single individual. Ceanothus velutinus is a high value plant for soil 

stabilization and forage for wildlife (McNabb and Cromack, 1983). Ceanothus velutinus 

has a high potential to be used for restoration, but the survival of planted seedlings is low 

and seed production is reduced due to over-grazing (Garrison, 1953).  

Cercocarpus montanus. It is a shrub to small tree and is prevalent across the 

western continental U.S.; being distributed within an area from Montana and South 
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Dakota, south New Mexico and Arizona (Vines, 1960; Woodmansee, 1969). This species 

can be found at elevations from 1,050 to 2,750 meters. 

 Cercocarpus montanus grows to a mature height of 4 meters tall (Fig. 1-2A). 

Leaves are oval, greenish above, and whitish below (Fig. 1-2B). Flowering occurs in May 

and June. Fruits are achenes with a long, white, fuzzy, curly tail, and ripen in August and 

September (Gucker, 2006) (Fig. 1-2B). Cercocarpus montanus has an extensive root 

system including rhizomes and plays a role in controlling erosion on dry slopes 

(Deitschman et al., 1974). Cercocarpus montanus grows on sites that are dry, erosive, 

and fertile (Brotherson, 1992). It is an actinorhizal plant that forms symbiosis with 

Frankia bacteria and plays an important role in nitrogen fixation (Paschke, 1997). This 

species generally forms pure stands or is found in mixed stands as a dominant, climactic 

species (Woodmansee, 1969).  

Cercocarpus montanus can tolerate soils high in lime and prefers sandy soils 

(Brotherson et al., 1984; Plummer 1969) with pH ranging from 6.8 to 7.7 (Plummer, 

1969). It grows nicely in shallow soils with 35% or greater coarse particles. This common 

shrub is palatable for livestock and a most valuable winter browse plant for wild animals.  

 

Native Plant Propagation 

Though native plants have significant potential value in landscapes, in many 

cases, use is limited because efficient propagation methods are not available. To promote 

the use of Utah native plants, effective propagation methods are needed. Plant 

propagation is the process of manipulating a plant and its environment to form additional 
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new plants. Sexual (seed and spores) and asexual/vegetative (cutting, layering, grafting, 

division, and micropropagation) propagation are the primary methods. For successful 

sexual or asexual propagation, a plant propagator must understand certain principles 

before developing propagation protocol for specific plants. 

 

Seed Propagation 

Propagation of approximately 250,000 angiosperm and 700 gymnosperm species 

has been successfully demonstrated through the use of seeds (Dirr and Heuser, 1987). It 

is an easy and reliable method of propagation, but offspring may not be identical to 

parents; homogeneity being an important trait for nursery products. For successful seed 

propagation, the embryo must be alive and capable of germination. Environmental 

conditions must be favorable, and seed dormancy, if present, must be overcome. Dormant 

seeds will not germinate immediately after dissemination even in the presence of optimal 

growing conditions. There are different kinds of seed dormancy, physical (exogenous) 

and physiological (endogenous) dormancy are commonly referenced.  

Physical dormancy. Physical dormancy is often the result of the presence of a 

hard, impermeable seed coat. Such seed coats protect against microbial infection (Dalling 

et al., 2011). Seeds with physical dormancy can persist in the soil for long time, often 

many years (Shen-Miller et al., 1995). In addition to protecting the viability of seed, a 

hard seed coat inhibits water uptake and limits oxygen diffusion to the embryo, thus 

preventing germination. One or more layers of tightly packed palisade macroscleroids 

cells with water repellant chemicals are responsible for the impermeability of hard seed 
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coats (Werker, 1980). The impermeable layer works as the ‘water gap’ which needs to be 

opened for successful germination of seeds with physical dormancy (Baskin et al., 2000). 

In order to break physical dormancy a seed coat needs to be cracked, softened, abraded or 

removed using acid, hot water, or mechanical scarification. Kildisheva et al. (2011) 

reported that Sphaeralcea munroana (munro’s globemallow) seeds are physically 

dormant and need scarification for germination. They mentioned that S. munroana seeds 

after mechanical stratification with sharp blade demonstrated a 93% germination rate.  

Physiological dormancy. Seeds with physiological dormancy are viable but even 

under ideal conditions are unable to germinate due to the presence of inhibiting 

chemicals. A low ratio of gibberellic acid (GA3) to abscisic acid (ABA) is thought to be 

important for creating a dormant state in seeds. A combination of environmental and 

physical factors is required to modify the chemical makeup of the seed and allow for 

germination (Baskin and Baskin, 2004). Cold or warm stratification helps in breaking 

physiological dormancy. Application of gibberellins can shorten the period of cold 

stratification requirement of many plants (Ching, 1972). Gibberellic acid (GA3) is the 

most used form of gibberellin (Hartmann et al., 2002). Utah native plant like Acer 

grandidentatum (bigtooth maple) was successfully propagated after breaking seed 

dormancy with combination of warm moist treatment and stratification (Woodruff et al., 

2012). Similarly, Eriogonum corymbosum (lacy buckwheat), and Penstemon digitalis 

(beardtongue) were propagated after breaking seed dormancy with cold stratification, and 

GA3, respectively (De Mello et al., 2009; Meyer and Paulsen, 2000). 
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Ceanothus velutinus is difficult to grow from seeds. However, if the seeds are 

collected in a timely fashion and handled carefully then 70-80% of the seeds germinate 

(Rupp and Wheaton, 2014). Seeds remain viable in the soil for several years as they have 

physical dormancy created by a hard seed coat. Ripening of dry capsules occurs from 

August to early October, and seeds can be collected from wild prior to dehiscence. 

Ceanothus velutinus seeds are physically and physiologically dormant (double 

dormancy). Scarification is necessary to break physical dormancy, and stratification to 

break physiological dormancy. Similarly, Sphaeralcea ambigua (desert globemallow) 

and Sphaeralcea coccinea (scarlet globemallow) had 45% and 85% germination, 

respectively, when a combination of mechanical scarification and 30-day stratification 

was performed (Dunn, 2011). Ceanothus velutinus seeds germinate typically after fire 

and temperatures of 80-95 ℃ are necessary to break its hard seed coat (Native Plants 

PNW, 2019). After scarification, cold treatment is also needed as stratification. 

Cercocarpus montanus is commonly propagated from seeds (Rupp and Wheaton, 

2014). Fruits are ripened and dispersed from July to October (Kitchen, 2008). Seeds of C. 

montanus (alder-leaf mountain mahogany) need stratification to break physiological 

dormancy (Rosner et al., 2003). Cold stratification is found to be successful in breaking 

dormancy. On the other hand, chemical treatments like GA3, thiourea, and hydrogen 

peroxide had less success in breaking dormancy in Cercocarpus ledifolius (curl-leaf 

mountain mahogany) (Kitchen, 2008).  
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Vegetative Propagation 

Sexual reproduction produces visible variability in native plant products, a 

characteristic not considered acceptable for most commercial markets (Dole and Gibson, 

2006). In such cases, vegetative propagation can be used to produce clones that are 

individually identical and true-to-type to original plant. Vegetative propagation is desired 

for commercial nursery production as it generates more uniform plants and a whole new 

plant can be created from portion of parent plant (Hartmann et al., 2002). 

 

Cutting Propagation 

 Cutting propagation is the most common method of vegetative propagation of 

woody plants (Rupp and Wheaton, 2014). Generally, stems, leaves, and roots are used for 

cutting propagation. Rooting ability of cuttings is species dependent, and there is also 

significant variation within a species (Ercisli et al., 2001). The physiological processes 

associated with rooting of cuttings is influenced by various factors, including timing of 

cutting harvest, rooting medium, application of appropriate growth regulators, and 

temperature of the rooting environment, and their interactions.  

Rooting medium like peatmoss mixed with perlite and have adequate moisture 

holding capacity combined with porous characteristics that enhance drainage and 

provides appropriate conditions for rooting of cuttings (Gislerod, 1983). Seasonal timing 

of cutting collection, plant part utilized, and addition of auxins such as indole-3-butyric 

acid (IBA) play important roles in adventitious root formation (Dole and Gibson, 2006).  
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Adventitious root formation. Some species have existing root initials on 

vegetative cuttings while others develop adventitious roots. Formation of adventitious 

roots is the important goal with many species for propagation by stem cuttings (Hartmann 

et al., 2002). There are several factors which influence adventitious rooting in stem 

cuttings including rooting hormones, rooting medium, and wounding. In some species 

root initials are present, and roots are formed under favorable environmental conditions. 

On the other hand, wound-induced adventitious roots are formed after a cut is made. 

Wound-induced adventitious root formation is divided into four stages: dedifferentiation, 

induction, outgrowth of stem, and root elongation (Davies and Hartmann, 1988). 

Adventitious roots arise from various plant tissues including vascular rays, secondary 

phloem, cambium, phloem, callus, lenticels or pith (Davies and Hartmann, 1988; Davies 

et al., 2018; Girouard, 1967).  

Time of cutting collection. Timing is an important factor for successful rooting. 

The seasonal growth phase of a plant when cuttings are collected often determines the 

rooting success (Still and Zanon, 1991). Carbohydrate content, endogenous auxin levels, 

rooting co-factors, and rooting inhibitors which have important roles in rooting ability 

change during seasonal development of plant (Melcher, 2016). Smith and Wareing 

(1972) stated that photoperiod causes the variations in endogenous auxins which have 

important roles in adventitious rooting and higher levels of auxins are synthesized in long 

days when compared with short days.  

Firmness of the wood and the stage of terminal bud development are indicators of 

cutting status. Amelanchier spicata (dwarf serviceberry) cuttings collected in June had 
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higher rooting rate (88%) than July cuttings (Melcher, 2016). Similarly, hardwood and 

softwood cuttings of Juglans cinerea (butternut) rooted best when cuttings were taken in 

mid-May and June, respectively (Pijut and Moore, 2002). In addition, softwood to semi-

hardwood cuttings of Amelanchier laevis (smooth serviceberry) collected in mid-May to 

mid-June performed best in terms of cutting rooting percent and root quality than cuttings 

taken in July (Still and Zanon, 1991). Moreover, Ceanothus americanus (New Jersey tea) 

cuttings taken in June had 57% rooting success which was higher than cuttings taken later 

in July and August (Cartabiano, 2013). 

Semi-hardwood stem cuttings of C. velutinus collected in summer can have higher 

success rate for rooting after 8 weeks of sticking (Rupp and Wheaton, 2014). Rosner et 

al. (2000) found less than 1% rooting of C. montanus when cuttings were collected 

during the period January to April. 

Type of cuttings. Type of cuttings used for propagation affects rooting of cuttings 

(Hartmann et al., 2002). Softwood and semi-hardwood cuttings are the most common in 

nursery industry. Softwood cuttings are preferred in many species since there is higher 

chance of gaining post-rooting growth (Smalley et al., 1987). However, softwood 

cuttings are delicate, wilt easily, and need special care (Hartmann et al., 2002). Terminal 

cuttings with a shoot apex are seen as advantageous for increasing the rooting percentage 

(Malan, 1992). In some species young stem tissue roots faster than old stem tissue (Dole 

and Gibson, 2006). Populus tremuloides (aspen) do not root well from stem cuttings but 

root cuttings have been used successfully for propagation (Snedden et al., 2010). Everett 

et al. (1978) reported that semi-hardwood cuttings of Artemisia spinescens (budsage), 
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Atriplex lentiformis (big saltbush), Ceratoides lanata (winterfat), Grayia spinosa (spiny 

hopsage), Lepidospartum latisquamum (wooly scalybroom), Prunus andersonii 

(Anderson’s peachbrush), Rosa woodsii (woods’ rose), Salvia dorrii (Dorr’s sage), and 

Vitis arizonica (canyon grape) were superior to softwood or hardwood cuttings. 

Conversely, softwood cuttings were good compared with semi-hardwood cuttings in A. 

spicata propagation (Melcher, 2016).  

Wounding. Wounding positively affects root production in stem cuttings for some 

species (Hartmann et al., 2002). Stem cuttings of A. laevis had a positive effect of 

wounding on rooting, but wounding had no effect on Amelanchier alnifolia (saskatoon 

serviceberry) (Bishop and Nelson 1980; Still and Zanon, 1991). Arctostaphylos species 

which are difficult to root had a beneficial effect from lateral wounding (Wisura, 1980). 

Wounding speeds rooting and increase the surface area of cambium-exposed tissue 

(Davies and Hartmann, 1988). Some species can produce adventitious roots naturally 

while in others wounding increases cellular division near the vascular cambium and 

phloem that promotes callus formation which is often followed by development of 

adventitious roots (Pijut et al., 2011). Wounding is beneficial for some species but can be 

detrimental for rooting success in other species because it creates a site of entry for 

harmful microorganisms (Dirr and Heuser, 1987). Adventitious root formation and root 

quality of A. spicata were enhanced by wounding (Melcher, 2016). In some hard-to root 

species adventitious root quantity and uniformity increases when they are wounded and 

then treated with an auxin (Alsup et al., 2003, Griffin and Bassuk, 1996). 
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Rooting hormones (Auxins). Auxins are produced in plant apical meristems and 

other actively growing tissues such as developing leaves, fruits, flowers, and seeds 

(MacAdam, 2009). Indole-3-acetic acid (IAA) is potentially valuable auxin for use in 

propagation that is naturally occurring and found abundantly in plants; but it is very 

sensitive to light and unstable in solutions (Dunlap and Robacker, 1988; Tanimoto, 

2005). Therefore, stable exogenous auxins, like IBA and 1-naphthaleneacetic acid (NAA) 

in liquid or powder form are most commonly used as root-inducing hormones. Mixtures 

of IBA and NAA are often efficacious for rooting. The right concentration of auxin is 

necessary for root formation. High doses of auxin can lead to foliar senescence, 

chloroplast damage, destruction of membranes, necrosis, and even plant death (Blythe et 

al., 2007). Rupp et al. (2011) reported successful cutting propagation of the native woody 

species Arctostaphylos patula (greenleaf manzanita), Arctostaphylos pungens (point-leaf 

manzanita), and Cercocarpus intricatus (little leaf mountain mahogany) using auxin in 

combination with intermittent mist with bottom heat. The auxin employed was IBA/NAA 

at a concentration of 4,000/2,000 mg·L-1 and proved superior for rooting cuttings when 

compared with concentrations 0 mg·L-1 and 2,000/1,000 mg·L-1.  

 

Micropropagation 

Micropropagation, also called in vitro or tissue culture propagation, is an 

important method for the multiplication of many foliage plants, cut flowers, and potted 

plants. Many identical plants can be produced from one original plant using small pieces 

of plant shoots, roots, or reproductive structure. Explant type, culture medium and growth 
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regulators have important roles in the success of micropropagation (Davies et al., 2018). 

Nodal stem cuttings or tissue pieces from leaves, petioles, or roots are used for 

micropropagation, and explant type has influence on the success of tissue culture.  

Culture medium consisting of agar, inorganic nutrient elements, sucrose, and 

vitamins supplements are used to grow tissue, and optimal medium constituents vary with 

species. In general, cytokinins are believed to help promote shoot growth and auxins root 

growth. Efficacious protocols for new shoot growth and development vary among 

species, and optimization of basal salts and plant growth regulator combinations is 

necessary (Mackay et al., 1996; Rounsaville and Ranney, 2010).  

Some Utah native plants were successfully propagated via micropropagation. 

Pruski et al. (1990) successfully used in vitro culture to propagate four cultivars of A. 

alnifolia and found that shoot-tip explants were better than dormant buds when taken 

from actively growing plants. Combination of benzylaminopurine (BA) and GA3 as foliar 

sprays were considered important in breaking dormancy and formation of axillary shoots 

in cultured A. alnifolia. In addition, use of an IAA/NAA (2.8/1.1 µM) (≈0.5/0.2 mg·L-1) 

mixture induced the highest rate of rooting. Similarly, Murashige and Skoog (MS) salts 

(full, 1/2, 1/4, and 1/8-strength) were used for rooting study of A. alnifolia, wherein 38% 

of the shoots formed roots in 1/8-strength MS medium and shoots failed to form roots in 

full-strength MS medium (Alosaimi and Tripepi, 2016). Clonal propagation of P. 

tremuloides is demonstrably possible by micropropagation (Haapala et al., 2004). 

Moreover, nodal cuttings of A. grandidentatum were used for tissue culture, wherein 

Driver-Kuniyuki Walnut (DKW) was the best medium for shoot multiplication, and IAA 
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induced rooting in microshoots (Bowen-O’Connor et al., 2007). In addition, Calochortus 

nuttallii (Sego lily) bulb basal sections were used for tissue culture in which Schenk and 

Hildebrandt (SH) basal medium and BA were successfully used for shoot multiplication 

and NAA for rooting (Hou et al., 1997).  

No peer-reviewed literature is available for tissue culture of C. velutinus and C. 

montanus. They are difficult to propagate by cuttings, and micropropgation could provide 

another alternative for propagation. Development of efficient micropropagation protocols 

could be very important in creating economically viable nursery products with these two 

species. Using a series of controlled experiments, we plan to develop efficacious 

propagation strategies for the Utah native plant species C. velutinus and C. montanus. By 

so doing, we will expand the potential for use of native plants in water-efficient 

landscapes. 
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Fig. 1-1. Ceanothus velutinus flowers and fruits. (A) Flowers and (B) fruits. Pictures by 

Dr. Larry A. Rupp. 
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Fig. 1-2. Cercocarpus montanus in the wild and its leaves and fruits. (A) Cercocarpus 

montanus in the area of Wind Cave, Logan, UT (41o45’48’’ N, 111o43’2’’ W, 

elevation 1798 m) and (B) its leaves and fruits. 

 

 



18 

 

CHAPTER II 

 SEED PROPAGATION OF CEANOTHUS VELUTINUS AND CERCOCARPUS 

MONTANUS1 

Abstract 

Ceanothus velutinus Douglas ex Hook. [snowbrush ceanothus (Rhamnaceae)] and 

Cercocarpus montanus Raf. [alderleaf mountain mahogany (Rosaceae)] are native 

species with urban landscape value and potential to create unique aesthetics and conserve 

water. Propagation protocols for these native species are not well established. Because of 

dormancy, seed propagation requires scarification and (or) stratification. We designed a 

study to further define protocols necessary to consistently produce high rates of 

germination for these two species. Ceanothus velutinus seeds were scarified in hot water 

at 50, 70, or 90 ºC and soaked with gibberellic acid (GA3) at 0, 50, 250, or 500 mg·L-1 for 

24 hours before stratification for 1, 2, or 3 months. Seeds of C. velutinus stratified for 2 

months after being scarified at 90 ºC and treated with 500 mg·L-1  GA3 had the greatest 

germination percentage (74.2 ± 2.0%). Percent germination was the lowest when seeds 

were scarified at 50 ºC and treated without GA3 but with 2 months stratification. 

Cercocarpus montanus seeds were treated with GA3 at 0, 50, 250, or 500 mg·L-1 and 

stratified for 1, 2, or 3 months. Seed germination of C. montanus increased as 

                                                            
1 Paudel, A., Y. Sun, L.A. Rupp, J. Carman, and S.L. Love. 2020. Overcoming seed 

dormancy in two rocky mountain native shrubs: Ceanothus velutinus and Cercocarpus 

montanus. Native Plants Journal. 
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stratification time increased. Seeds dipped in 50 mg·L-1 GA3 and stratified for 2 months 

had the greatest germination percentage (64.2 ± 3.6%). 

 

Introduction 

The use of native plants has gained popularity in ecological landscape design, 

green building construction, and urban habitat development (Calkins, 2005; Hooper et al., 

2008). Rocky Mountain native plants have evolved under climate and soil conditions that 

require less water and fertilizer than do traditional landscape plants, and they help in 

reducing air pollution and promoting biodiversity (USDA, 2019). Utah ranks the top fifth 

among US states for native plant species diversity (Hooper et al., 2008; Stein 2002).  

Ceanothus velutinus Douglas ex Hook. (Rhamnaceae), common name snowbrush 

ceanothus, is native to western North America from British Columbia to California and 

eastward to Colorado.  Ceanothus velutinus is an evergreen shrub with oval leaves and 

can grow up to 0.9-2.5 meters tall (Seven Oaks Native Nursery, 2019). Aromatic white 

flowers are found in 5-10 cm long corymbose inflorescences. Ceanothus velutinus prefers 

full sun and coarse-textured, well-drained soils. In addition, it is stress tolerant and fixes 

nitrogen, which plays a soil-building role (Conard et al., 1985). The fruit is a 3-lobed, dry 

capsule containing dark red-brown seeds when mature. 

Cercocarpus montanus Raf. (Rosaceae), common name alder leaf mountain 

mahogany, is another native of Utah that is drought tolerant and grows well in alkaline 

soils (Lady Bird Johnson Wildflower Center, 2019). As a shrub or small tree, C. 

montanus grows 2.5-6 meters tall. It possesses attractive leaves that are dark green on top 
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and are fuzzy silver underneath. The fruits are silvery-white and showier than the 

flowers. The fruit is an achene, and seeds are physiologically dormant. 

Seeds that are viable but unable to germinate under favorable conditions are 

defined as dormant (Finch-Savage and Leubner-Metzger, 2006). In some species 

dormancy takes the form of hard seed coats that act as a mechanical barrier that prevents 

germination (physical dormancy) (Abubakar and Muhammad, 2013). In order to break 

physical dormancy, the seed coat should be broken, softened, abraded or removed using 

acid, hot water or mechanical scarification. In other species, dormancy is physiological 

and can be overcome by cold stratification. Gibberellic acid (GA3), an endogenous plant 

growth regulator, plays an important role in seed germination by inducing enzymes that 

weaken the mechanical resistance of seed coverings (endosperm or seed coat), 

stimulating cell expansion, and mobilizing seed storage reserves for embryo growth 

(Dewir et al., 2011; Gupta and Chakrabarty, 2013; Lecat et al., 1992). Gibberellic acid is 

also used to break physiological dormancy in seeds of many species (De Mello et al., 

2009; Kitchen and Meyer, 1991). 

Ceanothus seeds can remain viable in the soil for years under field conditions, 

which illustrates that they are strongly dormant (Conard et al., 1985). Ceanothus 

velutinus is difficult to propagate from seeds because both physical and physiological 

dormancy are present (Rupp and Wheaton, 2014). In a 2-week preliminary study, C. 

velutinus seeds without any scarification and stratification treatment did not germinate 

(unpublished data). However, if C. velutinus seeds are collected and handled carefully, 

70-80% of the seeds will usually germinate (Rupp and Wheaton, 2014). Luna (2008) 
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indicated that dormancy in C. velutinus is both physical and physiological, and that 

scarification using hot water at a temperature of 80 to 90 ºC to break physical dormancy 

and then stratification in cold, moist conditions for 1-3 months are required for adequate 

germination. Rosner et al. (2003) reported that seeds of C. montanus need stratification. 

In the reported experiment they used a 5-10 minutes soak in concentrated sulfuric acid 

and 0, 30, or 60 days stratification. Ultimately, they concluded that scarification is less 

effective than stratification. 

We conducted the present study to establish efficient protocols for seed 

propagation of C. velutinus and C. montanus. The specific objectives were: 1) to 

determine an efficacious scarification temperature, optimal stratification time, and 

suitable GA3 concentration for breaking dormancy of C. velutinus seeds, and 2) to 

determine the optimal stratification time and the effective GA3 concentration for breaking 

dormancy of C. montanus seeds. 

 

Materials and Methods 

Seeds of C. velutinus were purchased from the Native Seed Foundation (Polson, 

MT) (Fig. 2-1A). Collection site is at an elevation of 975 meters nearby Libby, Lincoln 

County, Montana. Seeds were collected in August 2018 and stored in a metal drum at a 

temperature of 1 to 7 ºC with a few perforations for air flow (Billington, 2018).  

Prior to the experiment, seeds were stored at 1.9 ± 0.4 ºC in a refrigerator. An 

electronic data logger (Marathon, EDL, San Leandro, CA) was used to measure the 

temperature inside the refrigerator. Seeds were wrapped in cheesecloth and dipped in a 
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hot water bath (Isotemp 102, Fisher Scientific, Canada) at 50, 70, or 90 ºC for 10 

seconds. They were then immediately plunged in a cold water bath with ice at 6 ºC for 1 

hour. Afterward, seeds in each temperature treatment were divided into four groups and 

soaked in 0, 50, 250, or 500 mg·L-1 gibberellic acid solution (GA3, Caisson Laboratories, 

Smithfield, UT) for 24 hours. Distilled water was then used to rinse the seeds, and 

floating seeds were discarded. Seeds were wrapped in moist paper towels and kept in a 

resealable plastic bag with some unfilled space left for aeration. They were refrigerated at 

1.9 ± 0.4 ºC for 1, 2, or 3 months of stratification. We inspected seeds regularly, and 

water was added as needed.  

We ordered seeds of C. montanus from Sheffield’s Seed Company (Locke, NY) 

(Fig. 2-1B). Seeds were collected in Colorado and stored in sealed containers in a freezer 

(Shefield’s Seed Company, 2018). Upon receipt, seeds were refrigerated at 1.9 ± 0.4 ºC 

until used. Seeds were soaked in 0, 50, 250, or 500 mg·L-1 GA3 solution for 24 hours. 

They were then rinsed with distilled water, and floating seeds were discarded. We kept 

seeds at 1.9 ± 0.4 ºC for 1, 2 or 3 months of stratification as previously described. 

Routine inspection was performed, and water was added as needed. 

Stratified seeds of C. velutinus and C. montanus were placed in Petri dishes 

(Genesee Scientific, Morrisville, NC) on moist blotter paper (Hoffman Manufacturing, 

Corvallis, OR). Each treatment included 12 Petri dishes as replicates and each Petri dish 

contained 30 C. velutinus seeds. We used similar procedures for C. montanus except only 

20 seeds were placed in each Petri dish. Petri dishes were then sealed with Parafilm 

(American National CanTM; Menasha, WI) and the seeds were allowed to germinate at 25 
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ºC under cool-white fluorescent lamps (184.5 ± 9.3 µmol·m-2·s-1) for 2 weeks. We used a 

quantum light meter (MQ-100, Apogee Instrument, Logan, UT) to measure fluorescent 

light intensity. Germinated seeds were counted as radicles emerged. 

The experiment was conducted using a complete randomized design (CRD). 

Three-way and two-way analyses of variance were conducted for C. velutinus and C. 

montanus, respectively. Trend analysis was performed to locate the rate of seed 

germination. Means separation among treatments was adjusted using Tukey’s method for 

multiplicity at α = 0.05. All statistical analyses were conducted using SAS software (SAS 

university edition, Cary, NC). 

 

Results 

As the temperature for scarification increased from 50 to 90 ºC, the percent 

germination increased linearly (p < 0.0001) (Table 2-1 and Fig. 2-2). On average, 17.4, 

34.4, and 63.1% of seeds germinated when they were dipped in the hot water bath at 50, 

70, and 90 ºC, respectively. 

 Stratification time significantly affected seed germination of C. velutinus (p < 

0.0001) (Table 2-1). Seeds stratified for 2 or 3 months showed greater germination than 

those stratified for only 1 month (Fig. 2-2). The percent germination of C. velutinus seeds 

was 31.2, 38.8, and 44.9% when stratified for 1, 2, or 3 months, respectively. The percent 

germination increased linearly with increase in time for stratification (p < 0.0001). 

Gibberellic acid enhanced the germination of C. velutinus seeds (p < 0.0001) 

(Table 2-1). When seeds were dipped in GA3 solutions at 0, 50, 250, or 500 mg·L-1, 
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percent germination were 34.7, 39.4, 39.7, and 39.4%, respectively. The 0 GA3 treatment 

produced statistically less germination than all treated seeds, which were not different 

from each other. 

Scarification temperature, stratification time, and GA3 treatment also had 

interactive effects on seed germination of C. velutinus (p < 0.0001). Seeds scarified in hot 

water at 50, 70, or 90 ºC and stratified for 2 and 3 months had better germination rates 

than 1 month stratified seeds (Table 2-1 and Fig. 2-2). In addition, seeds scarified at 90 

ºC and stratified for 2 or 3 months had higher germination rates compared with seeds 

stratified for 1 month and scarified at 70 and 90 ºC. Similarly, the combination of longer 

stratification time, 90 ºC scarification and addition of GA3 increased the germination rate 

of C. velutinus seeds. 

Cercocarpus montanus seeds stratified for 1, 2 and 3 months had 34.8, 55.6, and 

57.8% germination, respectively (Fig. 2-3). Seed germination increased linearly with 

duration of stratification (p < 0.0001) (Table 2-2). Gibberellic acid also enhanced the 

germination of C. montanus seeds (p = 0.031) (Table 2-2). When seeds were dipped in 

GA3 solution at 0, 50, 250, or 500 mg·L-1, the germination rate was 45.7, 52.3, 50.7, and 

49%, respectively (Fig. 2-3). For C. montanus seeds, stratification times and gibberellic 

acid levels interacted significantly (p < 0.0002) (Table 2-2). Pretreatment of seeds with 

GA3 before stratification increased the germination rate. Seeds stratified for 1 month had 

higher germination at 500 mg·L-1 GA3 compared to lower concentrations of GA3 (Fig. 2-

3). For 2 and 3 months stratified seeds, the germination rate increased slightly or 

remained the same with the increasing concentration of GA3. 
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In our study, a hot water treatment of C. velutinus seeds at 90 ºC followed by a 2 

months stratification and 500 mg·L-1 GA3 treatment produced the highest percent 

germination at 74.2 ± 2 %. For C. montanus, seeds dipped in 50 mg·L-1 GA3 and 

stratified for 2 months had the greatest germination percentage at 64.2 ± 3.6%. 

 

Discussion 

Presence of a hard seed coat inhibits seed germination, an effect that may be due 

to prevention of water or oxygen uptake or the presence of some chemical inhibitors 

within the coat (Taiz and Zeiger, 2002). The hard seed coat must be weakened to break 

physical dormancy. In this study, hot water scarification was used to weaken the seed 

coat of C. velutinus. Our results indicate that C. velutinus seeds should be scarified at 

temperatures as high as 90 ºC to break their physical dormancy and enhance the rate of 

germination. Similarly, Radwan and Crouch (1977) reported that seeds of Ceanothus 

sanguineus Pursh (Rhamnaceae), common name redstem ceanothus, effectively 

germinated when treated with hot water at 90 ºC or boiling water at 100 ºC. Moreover, 

seeds of Ceanothus fendleri A. Gray (Rhamnaceae), common name Fendler’s ceanothus, 

exposed to 70 or 90 ºC for 10 minutes had greater germination (25 and 35%) than those 

exposed to no heat (12%) (Huffman, 2006).  

Once physical dormancy is broken for double-dormant seeds, stratification can 

further help to increase seed germination. Schramm and Johnson (1981) found 70% 

germination when seeds of Ceanothus americanus L. (Rhamnaceae), common name New 

Jersey tea, were dipped in boiling water for 1.5 minutes and then stratified for 10 weeks, 
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but boiling water treatment alone or stratification treatment alone had low germination 

rates (28 to 30%). Stratification time to break physiological dormancy of seeds varies 

with plant species. In this experiment, long stratification periods of 2 or 3 months were 

particularly beneficial for both C. velutinus and C. montanus. Radwan and Crouch (1977) 

indicated that germination increased with an increase in stratification times for C. 

sanguineus. The highest germination percentage (84%) occurred after 4 months of 

stratification. Similarly, Rosner et al. (2003) stratified C. montanus seeds for 0, 30, and 

60 days and observed that 60 days stratification was the most effective for seed 

germination.  

Gibberellic acid is widely used to enhance the germination of seeds with 

physiological dormancy (Baskin and Baskin, 2014; Bonner, 2008). Endogenous levels of 

abscisic acid (ABA) (growth inhibitor) and GA3 (growth promoter) are thought to be 

responsible for physiological dormancy of seeds (Hilharst and Karseen, 1992). Hence, the 

growth potential of embryos is enhanced when seeds are pretreated with GA3 (Rascio et 

al., 1998). A good example is that germination of C. velutinus seeds scarified at 90 ºC, 

stratified for 1 month, and treated with 50 mg·L-1 of GA3 was 25% greater than seeds 

with the same scarification and stratification, but without GA3 treatment (Fig. 2-2). Seed 

germination rates for Ziziphus joazeiro (Rhamnaceae), common name Juazerio, were 

enhanced by GA3 treatment at rates of 346, 692 or 1038 mg·L-1, and no significant 

difference occurred among GA3 treatments (Araujo et al., 2009), which is similar to our 

results.   All of these results indicate that GA3 promotes seed germination (De Mello et 
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al., 2009; Fang et al., 2006). Gibberellic acid may be a cost-effective and time saving 

alternative to cold stratification to effectively enhance germination. 

In addition, Kitchen and Meyer (1991) stated that cold stratification helps to 

increase the effects of GA3 in breaking seed dormancy. Stratification along with 

application of hormones and (or) scarification have been used to break seed dormancy in 

many species (Duan et al., 2004; Macchia et al., 2001). For instance, the combined effect 

of cold treatment and GA3 increased the germination percentage in Intermountain region 

penstemon species and Morus nigra L. (Moraceae), common name black mulberry 

(Kitchen and Meyer, 1991; Koyuncu, 2005). In our study, the combination of cold 

stratification and GA3 treatment enhances the seed germination rate of both C. velutinus 

and C. montanus. 

 

Conclusions 

Both C. velutinus and C. montanus seeds exhibited dormancy. Scarification in hot 

water at 90 ºC together with stratification for 2 or 3 months effectively broke the 

dormancy of C. velutinus seeds. In addition, GA3 also helped to increase C. velutinus 

seed germination. For C. montanus seeds, a combination of stratification for 2 months 

and GA3 treatment at 50 mg·L-1 effectively broke seed dormancy. 
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Table 2-1. A summary of analysis of variance for effects of scarification, gibberellic acid, 

stratification, and their interactions on the seed germination of Ceanothus velutinus. 

Source 

Degree of 

freedom 

F value Pr > F 

Temperature 2 1168.49 <0.0001 

Gibberellic acid 3 9.62 <0.0001 

Month 2 101.95 <0.0001 

Temperature × Gibberellic acid 6 3.4 0.0028 

Temperature × Month 4 30.75 <0.0001 

Gibberellic acid × Month 6 7.55 <0.0001 

Temperature × Gibberellic acid × Month 12 4.12 <0.0001 
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Table 2-2. A summary of analysis of variance for the effects of stratification and 

gibberellic acid, and their interactions on the seed germination of Cercocarpus 

montanus. 

Source Degree of freedom F value Pr > F 

Gibberellic acid 3 3.04 0.0314 

Month 2 83.47 <0.0001 

Gibberellic acid × Month 6 4.89 0.0002 
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Fig. 2-1. Seeds of Ceanothus velutinus and Cercocarpus montanus. (A) Ceanothus 

velutinus and (B) Cercocarpus montanus. 
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Fig. 2-2. The effects of scarification temperatures, stratification periods, and gibberellic 

acid concentrations on germination of Ceanothus velutinus seeds. Seeds were 

scarified at (A) 50, (B) 70, or (C) 90 ºC, treated with gibberellic acid at 

concentrations of 0, 50, 250, or 500 mg·L-1, and subsequently stratified for 1, 2 or 3 

months. 
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Fig. 2-3. Germination of Cercocarpus montanus seeds treated with different 

concentrations of gibberellic acid and different time of stratification. Seeds were 

treated with 0, 50, 250, or 500 mg·L-1 of gibberellic acid and stratified in a 

refrigerator for 1, 2 or 3 months. 
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CHAPTER III  

CUTTING PROPAGATION OF CEANOTHUS VELUTINUS AND CERCOCARPUS 

MONTANUS 

Abstract 

Ceanothus velutinus (snowbrush ceanothus) and Cercocarpus montanus (alder-

leaf mountain mahogany) are potential native species for use in water-efficient 

landscaping. Experiments were designed to develop effective cutting propagation 

protocols to allow both species to express their potential in landscapes. Terminal cuttings 

of C. velutinus were collected from May to Sept. 2019 from Tony Grove Lake area, Utah. 

Cuttings were dipped in 1,000/500 or 3,000/1,500 mg·L-1 indole-3-butyric acid (IBA)/1-

naphthaleneacetic acid (NAA) as Dip‘N Grow or talc-based rooting hormone Hormodin 1 

(1,000 mg·L-1 IBA) or Hormodin 2 (3,000 mg·L-1 IBA) and stuck in a rooting medium 

consisting of perlite and peatmoss (4:1). Cuttings collected in July when treated with 

Hormodin 2 had 22% rooting which tended to be better than cuttings collected in other 

months and subsequently treated with other rooting hormones. Likewise, cuttings were 

collected from June to Aug. 2020 from the same area and similar results were observed. 

For cuttings taken in Aug. 2019 from the same area, terminal cuttings were good compared 

with stem cuttings but were not significantly different in terms of rooting percentage. In 

another experiment, rooting hormones were tested using cuttings collected from 

greenhouse-grown seedlings. Hormodin 2 tended to be the better rooting hormone. 

Terminal cuttings of C. montanus ‘Coy’ collected in mid-July 2019 were treated 

with 2,000/1,000, 3,000/1,500, or 4,000/2,000 mg·L-1 IBA/ NAA as Dip‘N Grow or 
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Hormodin 1, Hormodin 2, or a combination of both (Hormodin 1 + 1,000/500 mg·L-1 

IBA/NAA as Dip‘N Grow or Hormodin 1 + 3,000/1,500 mg·L-1 IBA/NAA as Dip‘N 

Grow). Although there was no significance among hormone treatments, cuttings treated 

with Hormodin 2 had the highest rooting percentage (37%). A separate experiment was 

conducted for terminal and stem cuttings using 3,000/1,500 mg·L-1 IBA/NAA as Dip‘N 

Grow. Stem cuttings tended to be better for rooting. On 11 May, 2020, hardwood stem 

cuttings were collected for a wounding study. Cuttings rooted at 38.9%, 52.8% and 

86.1% when lacking a wound, following perpendicular cuts, or when one side of the stem 

was scraped, respectively.  

 

Introduction 

Vegetative propagation is often superior to sexual propagation for commercial 

nursery production because uniform plants can be generated (Dole and Gibson, 2006; 

Hartmann et al., 2002). Cutting propagation utilizes a portion of plant leaf, stem, or root 

for propagating ornamental plants identical to the parent plant. Various factors such as 

seasonal timing of collection, tissues used for cuttings, type and concentration of plant 

rooting hormones (e.g. auxins), and type of wounding, play important roles in root 

formation on cuttings (Dole and Gibson, 2006). 

Plants exhibit different seasonal physiological conditions, so the scheduling of 

cutting collection impacts the success of cutting propagation. If an ideal time for cutting 

collection is missed, a year of production may be lost. During the growing season, plants 

experience seasonal growth and development patterns with carbohydrate content, 

endogenous auxin, rooting co-factors, and/or rooting inhibitors changing over time. Each 
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of these play important roles in rooting capability (Melcher, 2016). Amelanchier spicata 

(dwarf serviceberry) cuttings had a higher rooting rate (88%) when collected in June than 

in July (Melcher, 2016). Similarly, 57% rooting was obtained on Ceanothus americanus 

(New Jersey tea) cuttings when softwood cuttings were collected in June (Cartabiano and 

Lubell, 2013). 

The type of cuttings used for propagation also affects rooting (Hartmann et al., 

2002). Softwood and semi-hardwood cuttings are most common utilized in the nursery 

industry. Softwood cuttings are preferred in many species since there is high chance of 

achieving post-rooting growth (Smalley et al., 1987). On the other hand, softwood 

cuttings are delicate, wilt easily, and successful application requires special care 

(Hartmann et al., 2002). Terminal and basal (subterminal) cuttings are two types of stem 

cuttings and woody species may respond uniquely to one or the other. Terminal cuttings 

with shoot apices are generally seen as advantageous for increasing rooting percentages 

(Malan, 1992).  

Basal treatment of stem cuttings with synthetic auxins such as indole-3-butyric 

acid (IBA) can enhance rooting rate as well as increase the quantity of adventitious roots 

(Hartmann et al. 2002). However, the success of rooting depends on the type and 

concentration of auxin and plant genotype. Graves (2002) reported that Rhamnus 

caroliniana (Carolina buckthorn) showed the highest percentage of rooting when cuttings 

were dipped in 3,000 mg·L-1 IBA. Results showed a reduction in rooting percentage at 

8,000 mg·L-1 IBA. High doses of auxin can lead to foliar senescence, chloroplast 

damage, destruction of membranes, necrosis and even plant death (Blythe et al., 2007). 



36 

 

Wounding may enhance adventitious rooting on stem cuttings (Hartmann et al., 

2002). Some species can produce adventitious roots naturally while in others wounding 

increases cellular division near the vascular cambium and phloem, which promotes callus 

formation - followed by adventitious roots (Pijut et al., 2011). The adventitious root 

formation and root quality of A. spicata were enhanced by wounding (Melcher, 2016). 

Arctostaphylos species, which are difficult to root, showed beneficial effects following 

lateral wounding along the bottom (1 cm) of the cutting (Wisura, 1980). 

Ceanothus velutinus (snowbrush ceanothus) and Cercocarpus montanus (alder-

leaf or true mountain mahogany) flourish in low-water landscapes. However, few studies 

have been conducted on propagation of these two landscape worthy species. Seed 

propagation has been recently investigated for C. velutinus and C. montanus. However, 

off-type plants are produced from seed propagation (Dole and Gibson, 2006).  

Though Rupp and Wheaton (2014) experimented with IBA as a rooting hormone 

for cutting propagation of C. velutinus, currently, there exists no peer-reviewed literature 

regarding cutting propagation of C. velutinus. Gucker (2006) reported that vegetative 

regeneration is possible from root crowns and rhizomes of C. montanus. However, there 

are still questions as to the correct time for cutting collection, type of auxins and their 

concentrations, and proper plant parts for propagating C. velutinus and C. montanus. The 

purpose of this study was to develop an efficient protocol to successfully propagate C. 

velutinus and C. montanus via stem cuttings. Factors evaluated during the experiment 

were: timing of cutting collection, types of cuttings, plant rooting hormones, and type of 

wounding.  
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Materials and Methods 

Evaluation Series 1: Ceanothus velutinus 

Timing of cutting collection. Terminal cuttings (≈15 cm) were collected in the 

middle of each month from May to Sept. 2019 from the Tony Grove Lake area, Utah (lat. 

41°52'34"N, long. 111°34'21"W, elevation 2010 m). Nine separate clonal clumps were 

labeled for cutting collection. Cuttings were collected in the morning on 15 May, 13 

June, 16 July, 16 Aug., or 20 Sept. 2019. Cuttings were immediately wrapped with moist 

paper towels, placed on ice in a cooler, transported to the USU campus, and kept in a 

walk-in cooler at 4 °C overnight.  

Terminal cuttings were recut to 12-13 cm in length and stripped of bottom leaves 

leaving 5 leaves at the top (Fig. 3-1A). Wounds (3 or 4 perpendicular cuts to the wood 

around the base) were created using a sharp blade on both sides of the cuttings. Cuttings 

were quickly dipped in distilled water and subsequently treated with a talc-based rooting 

hormone Hormodin 2 (ai. 0.3%, 3,000 mg·L-1 IBA, OHP, Mainland, PA), Hormodin 1 

(1,000 mg·L-1 IBA) or liquid-based rooting hormone at a concentration of 1,000 or 3,000 

mg·L-1 IBA plus 500 or 1,500 mg·L-1 NAA in 25% ethanol as Dip‘N Grow (1% IBA, 

0.5% 1-napthaleneacetic acid (NAA), Dip‘N Grow, Clackamas, OR). Afterwards, the 

cuttings were laid on paper towels for about 1 minute. Cuttings were implanted vertically 

into inserts (180 ml inserts, 8 cm depth, Landmark Plastic Corporation, Akron, OH) 

containing a moist medium of perlite (Expanded Perlite; Malad City, ID) and peat moss 

(100% Canadian Sphagnum peat moss, SunGro Horticulture, Agawam, MA) at a 
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volumetric ratio of 4:1. Cuttings were placed on a white-cloth-covered intermittent mist 

bench and supplied with bottom heat at 23 oC using a heating mat (Propagation Mat, 

Grower’s Nursery Supply, Salem, OR). Cuttings were misted at a frequency set to 

maintain conditions above 40 vapor pressure deficit (VPD) units using a Water Plus VPD 

mist controller (Phytotronics, Earth City, MO) in a greenhouse covered with 60% shade 

cloth (Fig.3-1B). Cuttings were drenched with Aliette® fungicide (80% fosetyl 

aluminium, 6.18% nonylphenol ethoxylate, 4.4% lignosulfonic acid, 0.16% crystalline 

quartz; Bayer CropScience, Research Triangle, NC) at a rate of 2.5 gram per gallon. 

Cuttings were evaluated at the end of 6 weeks. 

In 2020, terminal cuttings (≈15 cm) were collected from June to Aug. from the 

same plants. Cuttings were collected in the morning on 15 June, 1 July, 16 July, 30 July, 

15 Aug. 2020. Cuttings were processed and stuck in the rooting medium as described 

previously and only Hormodin 2 was used as a rooting hormone. 

Stem and terminal cuttings. On 16 Aug. 2019, cuttings (≈30 cm) were collected 

from the Tony Grove Lake area as described above. Cuttings were divided into terminal 

cuttings (10-12 cm long) and subtended stem cuttings (10-12 cm long). Bottom leaves 

were removed leaving the top 3-5 leaves. Cuttings were subsequently processed, and 

same rooting hormones and rooting substrate were used as describe above. Cuttings were 

evaluated at the end of 8 weeks. 

Plant growth regulator. Terminal cuttings from greenhouse seedlings (≈12-13 cm 

long) were stripped of bottom leaves leaving 4 leaves at the top. Cuttings were 
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subsequently processed, and identical rooting hormones and rooting substrate were used 

as described in the previous experiments. Cuttings were evaluated at the end of 8 weeks. 

Evaluation Series 2: Cercocarpus montanus 

Stem and terminal cuttings. On 11 July 2019, propagation experiments were 

conducted for C. montanus ‘Coy’ using cuttings collected from plants located in a 

landscape in Hyde Park, Utah (Fig. 3-2A). Cercocarpus montanus ‘Coy’ is an evergreen 

selection with smaller leaves that has been selected for the landscape use (Paudel et al., 

2020). Healthy cuttings (≈24 cm long) were collected, wrapped in moist paper towels, 

and placed on ice in a cooler at 4 ºC until used. An experiment was performed to 

determine the best part of the stem for use in cutting propagation. The cuttings were cut 

into halves with the top part as terminal cuttings (10-12 cm) and the bottom portion as 

stem cuttings (10-12 cm). Terminal and stem cuttings were wounded as described for C. 

velutinus above and quick-dipped in a solution of 3,000 mg·L-1 IBA and 1,500 mg·L-1 

NAA as Dip‘N Grow in 25% ethanol and stuck in a rooting substrate containing perlite 

and peatmoss (4:1). Cuttings were placed on the bench with intermittent mist system set 

to maintain 40 VPD units and supplied with bottom heat at 23 °C for eight weeks (Fig. 3-

2B). 

Plant growth regulator. The second experiment was performed to determine the 

best rooting hormone and the optimal concentration for cutting propagation. Terminal 

cuttings (12-14 cm) were prepared as aforementioned and treated with plant growth 

regulators as Dip‘N Grow in 25% ethanol and talc-based Hormodin (Table 3-1).  
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Wounding. On 11 May, 2020, hardwood stem cuttings, previous season growth 

(10-12 cm) were collected, wrapped in moist paper towels, and stored in a cooler at 4 ºC 

overnight. Three treatments were designed to determine the best way of wounding. Either 

cuttings were left unwounded, perpendicular cuts (3-4) to the wood around the base, or 

scraped at the base by removing the bark on one side. Hormodin 2 was used as a rooting 

hormone. Cuttings were placed on the bench with an intermittent mist system set to 

maintain 60 VPD units. Other protocols were followed as described above for C. 

montanus. 

Experimental design and statistical analyses. The experiments were conducted 

using a completely randomized design. At harvest, callus formation and rooting on each 

of stem cuttings were recorded. Number of roots was counted, and the length of the 

longest root (cm) was also measured. An analysis of variance was conducted on all data. 

Callus formation and rooting on cuttings were treated as a binary data (0, 1). The nine 

separate clonal clumps for cutting collection were considered as a random variable. All 

statistical analyses were performed with PROC GLIMMIX or PROC MIXED procedures 

using a Statistical Analysis Software (SAS) university edition (SAS Institute, Cary, NC). 

Hierarchical cluster analyses were conducted using Ward method in JMP 13.2.1 (SAS 

Institute, Cary, NC) for plant growth regulator experiment with mean values of the 

percent rooted cuttings, number of roots per cuttings, and length of the longest root.  

Results and Discussion 

Evaluation Series 1: Ceanothus velutinus 
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Timing of cutting collection. Percent callus formation and rooting were 

significantly (p < 0.0001) influenced by the timing of cutting collection. Callus formation 

was the highest in August, followed by July, when compared with other months (Fig. 3-

3A). Hormodin 2 treated cuttings tended to show greater callus percentage. Similarly, 

cuttings collected in July had a greater rooting percentage than those for other months 

(Fig. 3-3B). In addition, Hormodin 2 treated cuttings had greater percent rooting. 

Cuttings collected in July and treated with Hormodin 2 produced 22% rooting. There was 

no significant effect of the timing of cutting collection or rooting hormone on the number 

of roots and length of roots. Numerically, number of roots and length of roots increased 

from May to August and again decreased in September (Fig. 3-3C and D).  

Similarly, C. velutinus cuttings collected in the middle of July 2020 had 

numerically greater callus (68.1%) and rooting percentage (23.6%) (Table 3-2).  

These results indicated that C. velutinus cuttings collected in July rooted better 

than cuttings collected in other months from the wild at an elevation of 2010 m. Based on 

the physiological status of the cuttings, those collected on 15 May and 13 June were 

considered hardwood cuttings; those on 16 July and 16 Aug. were softwood to semi-

hardwood cuttings, while those on 20 Sept. were semi-hardwood cuttings. Given that 

cuttings collected in May and June had lower callus or rooting rates, softwood and semi-

hardwood cuttings may be most suitable for C. velutinus cutting propagation. Cartabiano 

and Lubell (2013) showed that C. americanus had a higher rooting percentage when 

softwood cuttings were collected in June. This contrast might be due to differences in 

species, elevation, location of parent plants, a different method of wounding. In our 
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study, C. velutinus plants in Logan Canyon usually start new growth in May, and the 

early season growth produced is of insufficient length for softwood cuttings by the 

middle of June. In addition, phenological growth phase affects the endogenous auxins 

and impacts rooting potential (Blakesley et al., 1991). As stems transit from young to 

mature phase, lignified tissues in the plants increase and can inhibit adventitious root 

formation (Melcher, 2016). In addition, it has been reported that plant genetic variation 

results in different rooting ability (Mabizela et al., 2017). However, in our study, there 

was no significance in rooting among cuttings that were taken from nine C. velutinus 

clumps. 

Stem and terminal cuttings. Type of cuttings affected the callus percentage (p = 

0.0001). There was no significance in the type of cuttings in terms of the rooting 

percentage, number of roots per cutting, and length of the longest root formed. Similarly, 

there was no significant effect of the rooting hormone for callus and root formation. In 

addition, no significant interaction was observed between type of cuttings and rooting 

hormone. Numerically, terminal cuttings had greater callus and root formation with more 

roots and longer roots when compared with stem cuttings (Table 3-3 and Fig. 3-4). In our 

study, terminal cuttings were usually younger and softer than stem cuttings. Similarly, 

Dole and Gibson highlighted that young stem tissue rooted faster than old stem tissue in 

some species (Dole and Gibson, 2006). This can be partly explained by the fact that 

endogenous auxin is produced in actively growing shoots including apical meristems, 

which plays a crucial role in the development of root primordia (Haissig, 1970; 

MacAdam, 2009).  
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Plant growth regulator. There was no significance in the type of rooting 

hormones applied in terms of the percent rooting, number of roots per cutting and length 

of the longest root formed (Table 3-4). Numerically, cuttings treated with Hormodin 2 

tended to have greater rooting percentage (37.0%) and more roots (11.2) when compared 

with other hormones (Table 3-4). Similar results were observed previously in that 

Hormodin 2 produced more and longer roots in the C. velutinus cuttings (US Department 

of Agriculture, 2018). Conversely, it has been reported that high doses of auxin can lead 

to foliar senescence, chloroplast damage, destruction of membranes, and plant death 

(Blythe et al., 2007). In our study, we also observed leaf drooping while propagating the 

C. velutinus cuttings which may be due to high concentration of auxin. Further research is 

necessary to find out the right concentration of auxin for root formation in C. velutinus 

cuttings. Although not data-related, we observed that talc-based hormone was convenient 

to use and resulted in less stem rot problems. 

Evaluation Series 2: Cercocarpus montanus 

Stem and terminal cuttings. Cercocarpus montanus cuttings formed callus about 5 

weeks after cuttings were treated and placed on the mist bench. On average, 50.8% and 

23.8% of stem and terminal cuttings, respectively, formed callus (Table 3-5 and Fig. 3-

5A and B), whereas 11.1% and 4.8% of the stem and terminal cuttings, respectively, 

developed roots. The number of roots and length of the longest root derived from stem 

cuttings were double that from terminal cuttings. Higher rooting response from stem 

cuttings may be due to higher levels of carbohydrate content. Dole and Gibson (2006) 

reported that high carbohydrate to nitrogen ratio favors adventitious root formation. In 
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addition, stem cuttings used in this study were semi-hardwood, while terminal cuttings 

were softwood. This result indicates that semi-hardwood cuttings are appropriate 

materials for propagating C. montanus. 

Plant growth regulator. Hormodin 2 produced the highest rooting percentage at 

37% and Hormodin 1 plus 3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA had the lowest 

rooting percentage at 16.7% (Table 3-6 and Fig. 3-5C and D). Hormodin 2 treated 

cuttings also produced the highest number of roots (14.5) and the longest root (2.8 cm) 

when compared with cuttings treated with other rooting hormones. There was no 

significance for rooting percent, the number of roots formed, and the length of the longest 

root among rooting hormones. Based on a hierarchical cluster analysis, Hormodin 2 was 

a better plant growth regulator for root formation of C. montanus cuttings. Note: talc-

based rooting hormone is easier to handle and use as compared with liquid-based rooting 

hormone products. 

Overall rooting percentage for C. montanus was lower than 50%. Similarly, 

Rosner et al. (2000) reported less than 1% of rooting in C. montanus when cuttings of 

current season growth were used. Further research on the cutting propagation of C. 

montanus is necessary to produce acceptable propagation protocol for commercial 

application. 

Wounding. Cercocarpus montanus cuttings formed callus about 4-5 weeks after 

cuttings were placed on the mist bench. Wounding significantly increased percent callus 

formation (p = 0.003), percent rooting (p = 0.0009), number of roots formed (p = 0.006) 

and length of the longest root (p = 0.04). Cuttings rooted at 38.9%, 52.8% and 86.1%, 
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respectively, when not wounded, cuts were made, or one side scraping was done (Table 

3-7 and Fig. 3-6). Hartmann et al. (2002) reported that wounding positively affected root 

production on stem cuttings. In some hard-to-root species, adventitious root quantity and 

uniformity also increase when cuttings were wounded and treated with an auxin (Alsup et 

al., 2003, Griffin and Bassuk, 1996). Wounding increased cellular division near the 

vascular cambium and phloem, which promoted callus formation followed by 

adventitious roots (Pijut et al., 2011). The high rooting percent in this experiment 

indicates that timing of cutting collection may affect the rooting. Similarly, semi-

hardwood and hardwood stem cuttings may have higher tendency toward root formation 

in C. montanus. 
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Table 3-1. Different rooting hormones and combinations for cutting propagation of 

Cercocarpus montanus ‘Coy’. 

Treatment Dip‘N Growz Hormodin 

1 2,000 mg·L-1 IBA and 1,000 mg·L-1 NAA - 

2 3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA - 

3 4,000 mg·L-1 IBA and 2,000 mg·L-1 NAA - 

4 1,000 mg·L-1 IBA and 500 mg·L-1 NAA 1,000 mg·L-1 IBA as 

Hormodin 1 

5 - 3,000 mg·L-1 IBA as 

Hormodin 2 

6 3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA 1,000 mg·L-1 IBA as 

Hormodin 1 

z IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid. 
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Table 3-2. Callus and root formation of terminal cuttings of Ceanothus velutinus 

collected in 2020 and treated with Hormodin 2z. 

Time Callus (%) 

Rooted 

cuttings (%) 

No. roots per 

cutting 

Length of 

longest root 

(cm) 

15-June 40.3 by 6.9 ab 5.2 a 4.4 a 

1-July 38.9 b 13.9 ab 3.5 a 2.0 a 

16-July 68.1 a 23.6 a 6.3 a 2.7 a 

30-July 34.7 b 6.9 ab 3.0 a 2.0 a 

15-August 38.9 b 5.6 b 2.5 a 1.3 a 

z Hormodin 2: 3,000 mg·L-1 indole-3-butyric acid. 

y Same letters within a column denote no significance among the time for cuttings 

collection as measured by Tukey’s method for multiplicity at α = 0.05. 

 

 

 

 

 

 

 



Table 3-3. Callus and root formation of stem and terminal cuttings of Ceanothus velutinus treated with plant growth regulators as 

liquid-based Dip‘N Grow or talc-based Hormodin. Treatments were applied on 16 Aug., 2019.  

Type of 

cuttings 

Rooting hormonez Callus (%) 

Rooted cuttings 

(%) 

No. of roots per 

cutting 

Length of longest 

root (cm) 

Stem 1,000 mg·L-1 IBA and 500 mg·L-1 NAA 37.4 aby 0 a 0 a 0 a 

3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA 29.6 b 7.4 a 6.5 a 12 a 

1,000 mg·L-1 IBA as Hormodin 1 37 ab 0 a 0 a 0 a 

3,000 mg·L-1 IBA as Hormodin 2 55.5 ab 7.4 a 2.5 a 1.5 a 

Terminal 1,000 mg·L-1 IBA and 500 mg·L-1 NAA 77.8 a 22.2 a 7.2 a 5.5 a 

3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA 63 ab 25.9 a 24.1 a 5.8 a 

1,000 mg·L-1 IBA as Hormodin 1 66.7 ab 3.7 a 2.5 a 1 a 

3,000 mg·L-1 IBA as Hormodin 2 63 ab 18.5 a 8.4 a 3.9 a 

z IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid. 

y Same letters within a column denote no significance among cutting-and-auxin treatments by Tukey’s method for multiplicity at α = 

0.05.

4
8
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Table 3-4. Callus and root formation of terminal cuttings of Ceanothus velutinus treated 

with plant growth regulators formulated as liquid-based Dip‘N Grow or talc-based 

Hormodin. Cuttings were taken from greenhouse grown seedlings. Treatments were 

applied on 7 Aug., 2019.  

Rooting hormonez 

Rooted 

cuttings (%) 

No. roots 

per cutting 

Length of 

longest root 

(cm) 

1,000 mg·L-1 IBA and 500 mg·L-1 NAA 22.2 ay 8.2 a 5.3 a 

3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA 25.9 a 5.9 a  3.1 a 

1,000 mg·L-1 IBA as Hormodin 1 25.9 a 6.4 a 3.9 a 

3,000 mg·L-1 IBA as Hormodin 2 37.0 a 11.2 a 5.2 a 

z IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid. 

y Same letters within a column denote no significance among auxin treatments as 

measured by Tukey’s method for multiplicity at α = 0.05. 
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Table 3-5. Callus and root formation of stem and terminal cuttings of Cercocarpus 

montanus ‘Coy’. Cuttings were treated with 3,000 mg·L-1 indole-3-butyric acid (IBA) 

and 1,500 mg·L-1 1-naphthaleneacetic acid (NAA) as Dip‘N Grow. This experiment 

was carried out on 11 July 2019. 

Type of 

cuttings 

Callus 

(%) 

Rooted cuttings 

(%) 

No. roots per cutting 

Length of the 

longest root 

(cm) 

Stem 50.8 az 11.1 a 6.3 a 2.5 a 

Terminal 23.8 b 4.8 a 3.0 a 1.1 b 

z Values within a column accompanied by the same letters denote lack of significance 

between stem and terminal cutting by Tukey’s method for multiplicity computed at α = 

0.05. 

 

 

 

 

 

 

 



Table 3-6. Root formation of Cercocarpus montanus ‘Coy’ terminal cuttings treated with liquid-based Dip‘N Grow or talc-based 

Hormodin or a combination of both as treatments. This experiment was carried out on 11 July 2019. 

Treatment Dip‘N Growz Hormodin 

Rooted 

cuttings 

(%) 

No. roots 

per 

cutting 

Length of 

longest 

root (cm) 

1 2,000 mg·L-1 IBA and 1,000 mg·L-1 NAA - 24.1 ay 5.5 b 1.5 b 

2 3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA - 20.4 a 9.0 ab 2.0 ab 

3 4,000 mg·L-1 IBA and 2,000 mg·L-1 NAA - 25.9 a 8.3 ab 2.1 ab 

4 1,000 mg·L-1 IBA and 500 mg·L-1 NAA 1,000 mg·L-1 IBA as Hormodin 1 18.5 a 9.9 ab 2.5 ab 

5 - 3,000 mg·L-1 IBA as Hormodin 2 37.0 a 14.5 a 2.8 a 

6 3,000 mg·L-1 IBA and 1,500 mg·L-1 NAA 1,000 mg·L-1 IBA as Hormodin 1 16.7 a 10.2 ab 2.6 ab 

z IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid. 

 y Same letters within a column denote no significance among auxin treatments by Tukey’s method for multiplicity at α = 0.05.

5
1
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Table 3-7. Callus and root formation of stem cuttings without wounding, with cuts, and 

scraped on one side for Cercocarpus montanus ‘Coy’. Cuttings were treated with 

Hormodin 2 (3,000 mg·L-1 indole-3-butyric acid).  

Type of 

cuttings 

Callus (%) 

Rooted cuttings 

(%) 

No. roots per 

cutting 

Length of 

longest root 

(cm) 

Control 55.6 bz 38.9 b 5 b 2.6 b 

Cuts 80.6 ab 52.8 b 9.4 ab 4.4 ab 

Scraping 91.7 a 86.1 a 11.1 a 4.4 a 

z Same letters within a column denote lack of significance among wounding treatments as 

computed using Tukey’s method for multiplicity at α = 0.05. 
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Fig. 3-1. Ceanothus velutinus cuttings treatments. (A) Cuttings treated with different 

rooting hormones and (B) placed on a mist bench. 
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Fig. 3-2. Cercocarpus montanus ‘Coy’ plants and cuttings. (A) Plants in the landscape 

and (B) cuttings on a mist bench. 

 

 



 

Fig. 3-3. Callus and root formation of Ceanothus velutinus terminal cuttings collected in May, June, July, Aug. and Sept. 2019 and 

treated with different rooting hormones. (A) Callus percentage, (B) rooting percentage, (C) number of roots, and (D) length of the 

longest root. Missing standard error bars represent no rooting. 

      IBA: indole-3-butyric acid; Hormodin 1: 1,000 mg·L-1 IBA; Hormodin 2: 3,000 mg·L-1 IBA

5
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Fig. 3-4. Representative rooted Ceanothus velutinus cuttings. (A) Stem cuttings and (B) 

terminal cuttings. 
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Fig. 3-5. Representative photos of rooting on Cercocarpus montanus ‘Coy’ cuttings. (A) 

Rooted stem cuttings, and (B) terminal cuttings [both were treated with 3,000 mg·L-1 

indole-3-butyric acid (IBA) and 1,500 mg·L-1 1-naphthaleneacetic acid (NAA) 

(Dip‘N Grow, 1% IBA and 0.5% NAA)], (C) rooted terminal cuttings [treated with 

Hormodin 2 (3,000 mg·L-1 IBA)] and (D) representative densely rooted cutting 

following treatment with Hormodin 2. 
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 Fig. 3-6. Cercocarpus montanus ‘Coy’ rooted cuttings with or without wounding. 

Rooted cuttings: (A) without wounding, (B) with cuts on both stem sides, (C) 

scraping the bark on one stem side, and (D) closer view of rooted cutting with side 

scraped.  
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CHAPTER IV  

MICROPROPAGATION OF CEANOTHUS VELUTINUS AND CERCOCARPUS 

MONTANUS 

Abstract 

Ceanothus velutinus (snowbrush ceanothus) and Cercocarpus montanus (alder-

leaf or true mountain mahogany) are native species of Western United States. They have 

important role in soil building by nitrogen fixation. In addition, they have potential for 

water-efficient landscaping. However, research-based information on its propagation is 

limited. In this study, nodal segments of C. velutinus containing one or two axillary buds 

from greenhouse-grown seedlings were disinfected using 10% bleach and cultured on 

Gamborg’s B-5 (B5), Murashige and Skoog (MS), Quoirin and Lepoivre (QL), Schenk 

and Hilderbrandt (SH), or Woody Plant Medium (WPM) supplemented with 1 mg·L-1 

benzylaminopurine (BA), 30 g·L-1 sucrose, and 8 g·L-1 agar. Explants were incubated at 

25 °C with a 16-hour photoperiod for 1 month. Based on cluster analyses, MS + 1 mg·L-1 

BA and B5 + 1 mg·L-1 BA medium were better than other medium. Of the culture media 

evaluated, MS + 1 mg·L-1 BA medium produced more shoots (1.2) and leaves (4.2) and 

the longest shoot (1 cm). Application of rooting hormone [Hormodin 1 (1,000 mg·L-1 

IBA), Hormodin 2, or Dip‘N Grow at a concentration of 1,000 mg·L-1 IBA plus 500 

mg·L-1 1-napthaleneacetic acid (NAA)] enhanced the rooting percentage for ex vitro 

rooting of C. velutinus. For C. montanus, nodal segments containing one or two axillary 

buds were disinfected and cultured on MS medium. Microshoots induced after 1 month 

were subcultured for shoot proliferation on MS or WPM containing BA, kinetin (kin) or 
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zeatin (ZT) at 1 mg·L-1 for 1 month. Based on cluster analyses, MS + 1 mg·L-1 BA 

medium was better than other medium. On average, one new microshoot and four new 

leaves and longer microshoots (1.6) were produced on MS + 1 mg·L-1 BA.  

 

Introduction 

 Micropropagation is one method for producing many identical plants from one 

original plant using cultured small pieces of plant shoots, roots, or reproductive structure. 

The success of micropropagation depends on explant type, culture media and growth 

regulators (Davies et al., 2018). Nodal stem cuttings or pieces from other plant parts like 

leaf, petiole, or root are used for micropropagation. Culture medium consisting agar, 

inorganic nutrient elements, sucrose, and vitamin supplements is used to grow tissue, and 

efficacious components of culture medium vary with plant species. As a rule of thumb, 

cytokinins are believed to enhance shoot growth and auxins in root growth.  

Utah native plants have been successfully propagated by micropropagation. 

Pruski et al. (1990) successfully micropropagated four cultivars of Amelanchier alnifolia 

(saskatoon serviceberry) and found that shoot-tip explants harvested from actively 

growing plants worked better than dormant buds. Combination of benzylaminopurine 

(BA) and gibberellin (GA) as foliar spray was considered important in breaking 

dormancy and formation of axillary shoots in A. alnifolia plantlets. In addition, within the 

Pruski et al (1990) study, use of indole-3-acetic acid (IAA)/1-naphthaleneacetic acid 

(NAA) (2.8/1.1 µM) (≈0.5/0.2 mg·L-1) mixture induced the best rooting response.  
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Propagation of Populus tremuloides (aspen) has been successful using 

micropropagation (Haapala et al., 2004). Moreover, nodal cuttings of Acer 

grandidentatum (bigtooth maple) were used for tissue culture with Driver-Kuniyuki 

Walnut (DKW) being the best medium for shoot multiplication and IAA being the best 

hormone for rooting microshoots (Bowen-O’Connor et al., 2007).  

Ceanothus velutinus (snowbrush ceanothus) and Cercocarpus montanus (alder-

leaf mountain mahogany) are two Utah native plants with potential for use in water-

conserving landscapes. Very limited propagation research has been conducted on C. 

velutinus and C. montanus. Ceanothus velutinus is difficult to grow from seeds. No peer-

reviewed literature is available related to tissue culture of C. velutinus and C. montanus. 

They are difficult to propagate by cuttings, and micropropgation may be another 

alternative for efficient propagation. 

  

Materials and Methods 

Preparation of explants. Healthy C. velutinus seedlings from plants growing in a 

research greenhouse and C. montanus plants from a landscape at Utah State University 

(Logan, UT) were chosen as subjects for micropropagation. Nodal cuttings from newly 

developed shoots were harvested and washed in running tap water for 15-30 minutes 

(Fig. 4-1). Cuttings were disinfected in 70% ethanol for 1 minute and rinsed 2-3 times in 

autoclaved distilled water. Cuttings were then soaked in 10% ultra-bleach (6% sodium 

hypochlorite, Sam’s west, Bentonville, AR) plus five drops of Tween® 20 (Fisher 
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scientific, Fair Lawn, NJ) per 150 ml for 10 minutes and rinsed 3-5 times with autoclaved 

distilled water.  

Culture conditions. All the apparatus involved in tissue culture procedures, such 

as scalpels, scissors and forceps were maintained as sterile to prevent contamination. UV 

light was switched on for 30 minutes to disinfect the laminar airflow hood. Surfaces were 

wiped with 70% ethanol before use. Aseptic cultures were maintained in a culture room 

with temperature being maintained at 25 °C and a 16-hour photoperiod under cool white 

fluorescent lamps (184.5 ± 9.3 µmol·m-2·s-1). Fluorescent light intensity was measured 

using a Quantum Light Meter (MQ-100, Apogee Instrument, Logan, UT). 

Establishment (Stage I). For C. velutinus, Murashige and Skoog (MS; Murashige 

and Skoog, 1962), Woody Plant Medium (WPM; Lloyd and McCown, 1980), Gamborg’s 

B-5 (B5; Gamborg et al., 1968), Schenk and Hilderbrandt (SH; Schenk and Hildebrandt, 

1972), or Quoirin and Lepoivre (QL; Quoirin and Lepoivre, 1977) were used as basal 

medium supplemented with 1 mg·L-1 benzylaminopurine (BA) as plant growth regulator, 

30 g·L-1 sucrose as energy source, and 9 g·L-1 agar (Agar; Caisson laboratories, 

Smithfield, UT) as solidify agent. The pH of the medium was adjusted to 5.7 before being 

dispensed into 60-ml test tubes with 8 ml of growth medium in each tube.  

For establishment of C. montanus, MS medium was supplemented with 30 g·L-1 

sucrose, 9 g·L-1 agar, and 1 mg·L-1 BA. The disinfected nodal cuttings were dissected 

into segments containing 1-2 buds (Fig. 4-2) and planted proximal end down on the 

medium, and the culture tubes were sealed with parafilm (American National CanTM, 

Menasha, WI). After 1 month, number of explants that survived without contamination 
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were recorded, and healthy shoots were used for multiplication stage studies. Number of 

shoots formed, and length of the longest shoot were recorded for C. velutinus as a way to 

determine the best medium for establishment. 

Multiplication (Stage II). Microshoots of C. velutinus from stage I were 

transferred to MS medium supplemented with cytokinins for multiplication (Fig. 4-3A). 

Microshoots turned brown even after repeated subculture and dried over time. 

Similary, microshoots of C. montanus from stage I were transferred to MS or 

WPM medium supplemented with cytokinins [BA, Zeatin (ZT), or Kinetin (kin)] at a 

concentration of 1 mg·L-1 and cultured for 1 month (Fig. 4-3B). Number of microshoots, 

number of leaves per microshoot, and the length of the longest microshoot were recorded. 

An additional study on C. montanus to refine best conditions for shoot 

proliferation was performed using different GA3 concentrations. MS as a base was 

supplemented with 1 mg·L-1 BA and 0.1 mg·L-1 NAA as well as 0, 0.5, or 1 mg·L-1 GA3. 

Increase in the number of shoots, leaves and length of the longest shoot were recorded 

after 3 weeks.  

Rooting (Stage III). Microshoots of C. velutinus and C. montanus were grown on 

full, half, or quarter-strength MS medium supplemented with 1 mg·L-1 or 2 mg·L-1 

indole-3-butyric acid (IBA) for 1 month. Rooting was not observed in vitro on MS 

medium with IBA. Microshoots turned brown and dried over time. A study was 

performed on ex vitro rooting of C. velutinus. Microshoots were extracted from the tubes 

(Fig. 4-4A) and washed in tap water. Microshoots were treated with distilled water 

(without rooting hormone), talc-based rooting hormone Hormodin 1 (ai. 0.1%, 1,000 
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mg·L-1 IBA, OHP, Mainland, PA) or Hormodin 2 (3,000 mg·L-1 IBA) or liquid-based 

rooting hormone Dip‘N Grow (1% IBA, 0.5% 1-napthaleneacetic acid (NAA), Dip‘N 

Grow, Clackamas, OR) at a concentration of 1,000 mg·L-1 IBA plus 500 mg·L-1 NAA in 

25% ethanol. Afterwards, the microshoots were laid on paper towels for about 1 minute 

and inserted vertically into inserts (180 ml, 8 cm depth, Landmark Plastic Corporation, 

Akron, OH) containing a moist medium of perlite (Expanded Perlite; Malad City, ID) and 

peat moss (100% Canadian Sphagnum peat moss, SunGro Horticulture, Agawam, MA) at 

a volumetric ratio of 4:1. Microshoots were placed in a greenhouse on a white-cloth-

covered intermittent mist bench with bottom heat at 23 oC provided using a heating mat 

(Propagation mat, Grower’s Nursery Supply, Salem, OR) and a misting system set to 

maintain 60 Vapor pressure deficit (VPD) units using a Water Plus VPD mist controller 

(Phytotronics, Earth City, MO) (Fig. 4-4B). 

Experimental design and data analyses. All experiments were conducted using a 

complete randomized design (CRD). Analysis of variance was calculated for all data. 

Rooting on microshoots were considered as a binary data (0, 1). Statistical analyses were 

performed with PROC GLIMMIX or PROC MIXED procedures using a Statistical 

Analysis Software (SAS) university edition (SAS University Edition, Cary, NC). 

Hierarchical cluster analyses were conducted in JMP 13.2.1 (SAS Institute, Cary, NC) for 

establishment and multiplication experiment with mean values of the number of shoots 

per node, length of the longest shoot, and number of leaves formed. 
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Results and Discussion 

Evaluation Series 1: Ceanothus velutinus 

Establishment. Within 3 to 4 weeks, microshoots of C. velutinus formed from 

cultured nodes. About 50% of the explants were free of contamination (data not shown). 

Contamination observed was primarily bacterial. Ceanothus velutinus is an actinorhizal 

plant (Binkley et al., 1982), and actinobacteria may exist in their tissues. Basal medium 

had a significant effect on the formation of shoots (p < 0.002). MS medium supplemented 

with 1 mg·L-1 BA produced the most shoots, about 1.2 per node (Table 4-1; Fig. 4-5). 

Shoots of at least 1 cm in length were formed on both MS and B5 medium supplemented 

with 1 mg·L-1 BA. More leaves were observed on MS and B5 medium when compared 

with WPM medium.  

Protocols for new shoot growth and development vary among species, and 

specific basal salts and plant growth regulator combinations are necessary in order to 

create an efficacious procedure (Mackay et al., 1996; Rounsaville and Ranney, 2010). 

Based on these results, MS medium with 1 mg·L-1 BA proved to be the best of the basal 

medium evaluated for establishment or shoot initiation of C. velutinus. The MS salt 

formula is commonly used for plant regeneration via tissue culture (Davies et al., 2018). 

Single-node stem explants of Epilobium canum ssp. garrettii (Garrett’s firechalice), 

although an herbaceous species, similarly produced more axillary shoots on MS medium 

when compared with WPM medium (Alosaimi et al., 2018).  

Ex Vitro rooting. After 7 weeks in inserts with bottom heat, callus formed around 

the stems, and roots were observed on microshoots. Application of hormone enhanced the 
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rooting percentage (p = 0.04). Plantlets rooted at 11.1%, 50%, 55.6%, and 61.1% 

microshoots when dipped in distilled water as no hormone treatment, 1,000 mg·L-1 IBA 

and 500 mg·L-1 NAA, Hormodin 1, and Hormodin 2, respectively (Table. 4-2; Fig. 4-6). 

Number of roots and the length of the longest root formed lacked statistical significance 

among rooting hormones. For ex vitro rooting of C. velutinus, application of an auxin like 

IBA may be necessary. In addition to providing an effective alternative methodology to 

in vitro rooting, the ex vitro rooting procedure provided good transition to the 

environment and saved labor and time needed for micropropagation of this species.  

 

Evaluation Series 2: Cercocarpus montanus 

Establishment. Within three to four weeks microshoots of C. montanus formed 

from the explant nodes. About 75% of C. montanus explants were free of contamination 

(data not shown). Both bacterial and fungus contamination was observed. Bacterial 

contamination may have been due to actinorhizal nature of C. montanus (Paschke, 1997). 

Multiplication. Formation of microshoots and increase in shoot length were 

significantly better on MS medium plus 1.0 mg·L-1 BA (p = 0.01 and p = 0.02, 

respectively). One new shoot and almost 4 new leaves formed on MS medium plus 1.0 

mg·L-1 BA (Table 4-3). The length of the longest shoot was 1.6 cm. On WPM medium 

supplemented with 1.0 mg·L-1 BA, no multiple shoots formed, and leaf drop was 

common. MS supplemented with kin or ZT and WPM supplemented with kin or ZT had 

similar responses. MS medium supplemented with 1.0 mg·L-1 BA may be the best 

medium for shoot multiplication of C. montanus. In similar fashion, other researchers 
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observed more adventitious shoots produced on leaf, petiole or root explants of 

Epilobium angustifolium (fireweed) with BA supplemented medium compared with kin 

supplemented medium (Turker et al., 2008).  

In order to increase the number of shoots the basal medium with MS plus BA was 

supplemented with NAA and GA3. Higher concentrations of GA3 increased formation of 

new leaves (p = 0.02) and shoots (p = 0.02) (Table 4-4; Fig 4-7). Approximately 3.7 new 

leaves and 1.1 new shoots formed at a concentration of 1.0 mg·L-1 GA3 in three weeks. 

Gibberellic acid has ability to break the dormancy, promote bud growth, and help stem 

elongation (Pierik, 1997). The elongated shoots can be then further divided and serve as 

mother stock culture for multiplication phase.  
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Table 4-1. Establishment of Ceanothus velutinus cultured on different mediaz.  

Mediumy  

Cytokinin  

(1 mg·L-1)  

Shoots  

(no.) per node 

Length of the 

longest shoot 

(cm)  

Leaves  

(no.)  

B5  BA 1.0 bx 1.0 a 4.2 a 

MS  BA 1.2 a 1.0 a 4.2 a 

QL  BA 1.0 b 0.9 a 3.7 ab 

SH  BA 1.0 b 0.9 a 3.9 ab 

WPM  BA 1.0 b 0.8 a 3.5 b 

z This experiment was repeated five times (n = 5, subsample = 10).  

y Benzylaminopurine (BA), Gamborg’s B-5 (B5), Murashige and Skoog (MS), Quoirin 

and Lepoivre (QL), Schenk and Hilderbrandt (SH), and Woody Plant Medium (WPM). 

x Same letters within a column denote no significance among media as indicated by 

Tukey’s method for multiplicity at α = 0.05. 
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Table 4-2. Ex vitro root formation for microshoots of Ceanothus velutinus treated with 

plant growth regulators applied as liquid-based Dip‘N Grow or talc-based Hormodin. 

Cuttings were dipped in the distilled water as a treatment without rooting hormone. 

This experiment was carried out on 18 June 2020.  

Treatmentsz 

Rooted 

microshoots 

(%) 

Roots (no.) 

per 

microshoot 

Length of 

the longest 

root (cm) 

Distilled water 11.1 by 2 a 1 a 

1,000 mg·L-1 IBA and 500 mg·L-1 NAA  50.0 ab 3.7 a 2.3 a 

1,000 mg·L-1 IBA as Hormodin 1 55.6 ab 4.6 a 3.5 a 

3,000 mg·L-1 IBA as Hormodin 2 61.1 a 3.7 a 1.9 a 

z IBA: indole-3-butyric acid; NAA: 1-naphthaleneacetic acid. 

y Same letters within a column denote no significance among auxin treatments indicated 

by Tukey’s method for multiplicity at α = 0.05. 
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Table 4-3. Shoot proliferation of Cercocarpus montanus cultured on two different basal 

media and three different cytokininsz.  

Mediumy  

Cytokinin  

(1 mg·L-1)  

New shoots  

(no.)  

Length of the 

longest shoot (cm)  

Leaves  

(no.)  

Growth 

Indexw  

MS  BA  0.9 a x  1.6 a  3.8 a  11.6 a  

MS  kin  0.3 ab  0.7 b  0.5 a  0.5 a  

MS  ZT  0.3 ab  1.0 ab  3.3 a  4.3 a  

WPM  BA  0.0 b  0.5 b  0.0 a  0.0 a  

WPM  kin  0.4 ab  1.0 ab  3.0 a  4.2 a  

WPM  ZT  0.3 ab  0.9 ab  2.1 a  2.5 a  

z This experiment was repeated three times (n =3, subsample =10).  

y Benzylaminopurine (BA), kinetin (kin), Murashige and Skoog (MS), Woody Plant 

Medium (WPM), and zeatin (ZT). 

x Same letters within a column denote no significance among multiplication media as 

indicated by Tukey’s method for multiplicity at α = 0.05. 

w Growth index = shoot number × shoot length × leaf number  
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Table 4-4. Shoot proliferation of Cercocarpus montanus cultured on Murashige and 

Skoog (MS) medium supplemented with 1 mg·L-1 BA, 0.1 mg·L-1 NAA and various 

concentrations of GA3
z. 

GA3  

(mg·L-1) 

Increment in 

Leaves (no.) Length of shoot (cm) New shoots (no.) 

0 0.4 by 0.2 a 0.4 b 

0.5 0.3 b 0.6 a 0.4 ab 

1 3.7 a 0.5 a 1.1 a 

z This experiment was repeated twice (n=2, subsample =6).  

Benzylaminopurine (BA), gibberellic acid (GA3), and 1-naphthaleneacetic acid (NAA). 

y Same letters within a column denote no significance among treatments as indicated by 

Tukey’s method for multiplicity at α = 0.05. 
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 Fig. 4-1. Preparation of explants for micropropagation. (A) Ceanothus velutinus in a 

USU research greenhouse, (B) Cercocarpus montanus in USU landscape, (C) 

washing of cuttings in running tap water, and (D) disinfection of cuttings in a laminar 

flow hood using hypochlorite and Tween® 20.  
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Fig. 4-2. Nodal cuttings for the establishment stage. (A) Prepared nodal cutting and (B) 

culture tubes under lights in a growth chamber.  
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Fig. 4-3. Microshoots formed after the establishment stage. (A) Microshoots of 

Ceanothus velutinus and (B) Cercocarpus montanus. 
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Fig. 4-4. Photos for ex vitro rooting study. (A) Healthy microshoots of Ceanothus 

velutinus and (B) microshoots in a mist bench for ex vitro rooting.  
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Fig. 4-5. New microshoots from cultured nodes of Ceanothus velutinus. Microshoots 

were produced on Murashige and Skoog (MS) and Gamborg’s B-5 (B5) medium 

supplemented with 1 mg·L-1 benzylaminopurine (BA). 
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Fig. 4-6. Rooted Ceanothus velutinus microshoots in ex vitro condition when treated with 

different auxin compounds. (A) Roots on microshoots without hormone treatment, 

(B) treated with 1,000 mg·L-1 indole-3-butyric acid (IBA) and 500 mg·L-1 1-

naphthaleneacetic acid (NAA) (Dip‘N Grow, 1% IBA and 0.5% NAA), (C) 

Hormodin 1 (1,000 mg·L-1 IBA), and (D) Hormodin 2 (3,000 mg·L-1 IBA).  

  

 

 

 

 

 

 



78 

 

 

Fig. 4-7. Multiple shoots of Cercocarpus montanus with addition of gibberellic acid. 

Murashige and Skoog (MS) medium supplemented with 1 mg·L-1 BA, 1 mg·L-1 

gibberellic acid and 0.1 mg·L-1 1-naphthaleneacetic acid (NAA) was used. 
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CHAPTER V 

 CONCLUSIONS 

Ceanothus velutinus (snowbrush ceanothus) and Cercocarpus montanus (alder-

leaf or true mountain mahogany) are two underutilized Utah native plants. Both C. 

velutinus and C. montanus are actinorhizal plants that form symbiosis with Frankia 

bacteria and have a soil-building role. In addition, they have high value in water-efficient 

landscapes. Therefore, the establishment of seed and vegetative propagation protocols for 

these native plants is crucial to introducing them in urban landscape. 

Ceanothus velutinus seeds possess a hard seed coat and exhibit both physical and 

physiological dormancy. Seeds of C. montanus exhibit physiological dormancy. In order 

to break dormancy and enhance germination, pretreatment of seeds is necessary. 

Scarification in hot water at 90 ºC together with stratification for 2 or 3 months 

effectively broke the dormancy of C. velutinus seeds. In addition, gibberellic acid (GA3) 

also helped to increase C. velutinus seed germination. For C. montanus seeds, a 

combination of stratification for 2 months and GA3 treatment at 50 mg·L-1 effectively 

broke seed dormancy. 

Various evaluated factors play important roles in the propagation of plants by 

stem cuttings. Timing of cutting harvest of C. velutinus positively influenced rooting 

percentage and quality. Late summer (July or August) was the best time for collecting C. 

velutinus cuttings from the wild at an elevation of 2010 m. Terminal cuttings were better 

for rooting when compared with interstem cuttings. Application of synthetic auxins, 

specifically indole-3-butyric acid (IBA) to the base of stem cuttings enhanced rooting rate 
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as well as increased the quantity of adventitious roots. From this experiment, we 

observed that talc-based Hormodin 2 (3,000 mg·L-1 IBA) was effective and easier to use 

than liquid formulations of auxin.  

Hardwood or semihard wood cuttings of C. montanus were better for propagation 

when compared with softwood cuttings. Similarly, Hormodin 2 tended to be the most 

effective hormone for rooting C. montanus. Finally, wounding promoted greater 

adventitious rooting percentages and root quality.  

In the micropropagation study, the growth of new shoots from nodal cuttings of 

C. velutinus and C. montanus was observed after 3 to 4 weeks of being cultured on 

Murashige and Skoog (MS) medium. The most efficient medium for micropropagating C. 

velutinus was MS medium supplemented with benzylaminopurine (BA). Ex vitro rooting 

was effectively performed for rooting microshoots of this species. Similarly, MS medium 

supplemented with BA was best for the multiplication of C. montanus shoots. Use of GA3 

supplemented medium led to increased number of shoots and stem elongation.  

Continued micropropagation research will focus on increasing the number of 

microshoots and improving rooting response of C. velutinus and C. montanus. In the 

meantime, these protocols will provide a basis for successful in vitro propagation. Plant 

tissue culture is unique in mass propagating disease-free plants. However, further 

research is needed on all aspects of vegetative propagation of C. velutinus and C. 

montanus in order to develop a viable propagation system.  
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APPENDIX  

 

Table A-1. GPS coordinates and site elevations for Ceanothus velutinus plants collected 

within the area of Tony Grove Lake, Utah.  

 

 

 

 

 

Plant  Coordinates  

1  lat. 41°52'34"N, long. 111°34'21"W, elevation 2010 m  

   

2  lat. 41°52'34"N, long. 111°34'20"W, elevation 2020 m  

   

3  lat. 41°52'34"N, long. 111°34'19"W, elevation 2000 m  

   

4  lat. 41°52'36"N, long. 111°34'16"W, elevation 1980 m  

   

5 lat. 41°52'36"N, long. 111°34'16"W, elevation 2000 m  

   

6 lat. 41°52'36"N, long. 111°34'16"W, elevation 2000 m  

   

7  lat. 41°52'35"N, long. 111°34'16"W, elevation 2000 m  

   

8 lat. 41°52'34"N, long. 111°34'20"W, elevation 2000 m  

   

9 lat. 41°52'35"N, long. 111°34'20"W, elevation 2020 m  
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Fig. A-1. Seeds treatment. (A) Seeds soaked in gibberellic acid solution and (B) 

refrigerated to accomplish stratification.  

 

 

 

 

 

Fig. A-2. Germinated seeds in Petri dishes. (A) Ceanothus velutinus and (B) Cercocarpus 

montanus seeds. 
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Fig. A-3. Temperature readings of the refrigerator where seeds were kept for 

stratification. An electronic data logger (Marathon, EDL, San Leandro, CA) was used 

to measure the temperature inside the refrigerator. Temperature reading were taken 

for 5 days with an interval of 12 seconds. 
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Fig. A-4. Aerial image of the site for collecting Ceanothus velutinus cuttings and wild 

populations of Ceanothus velutinus at Tony Grove Lake area, Utah. 

 

 

Fig. A-5. Stem and terminal cuttings of Ceanothus velutinus. (A) Stem and (B) terminal 

cuttings. 
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