View metadata, citation and similar papers at core.ac.uk

VOL. 194, NO. 6 THE AMERICAN NATURALIST

brought to you by .{ CORE

provided by DigitalCommons@USU

DECEMBER 2019

Larger Genomes Linked to Slower Development

and Loss of Late-Developing Traits

Molly C. Womack,"* Marissa ]J. Metz,"?> and Kim L. Hoke'

1. Department of Biology, Colorado State University, Fort Collins, Colorado 80523;

University, Fort Collins, Colorado 80521

2. Department of Biomedical Sciences, Colorado State

Submitted September 25, 2018; Accepted June 3, 2019; Electronically published October 18, 2019

Online enhancements: appendix. Dryad data: https://doi.org/10.5061/dryad.k02pq01.

ABSTRACT: Genome size varies widely among organisms and is known
to affect vertebrate development, morphology, and physiology. In am-
phibians, genome size is hypothesized to contribute to loss of late-
forming structures, although this hypothesis has mainly been discussed
in salamanders. Here we estimated genome size for 22 anuran species
and combined this novel data set with existing genome size data for
an additional 234 anuran species to determine whether larger genome
size is associated with loss of a late-forming anuran sensory structure,
the tympanic middle ear. We established that genome size is negatively
correlated with development rate across 90 anuran species and found
that genome size evolution is correlated with evolutionary loss of the
middle ear bone (columella) among 241 species (224 eared and 17 ear-
less). We further tested whether the development of the tympanic middle
ear could be constrained by large cell sizes and small body sizes during
key stages of tympanic middle ear development (metamorphosis). To-
gether, our evidence suggests that larger genomes, slower development
rate, and smaller body sizes at metamorphosis may contribute to the loss
of the anuran tympanic middle ear. We conclude that increases in an-
uran genome size, although less drastic than those in salamanders, may
affect development of late-forming traits.

Keywords: trait loss, evo-devo, heterochrony, paedomorphosis, tym-
panic middle ear loss, earless.

Introduction

Genome size evolution alters development, morphology, and
physiology across vertebrates. Specific consequences of larger
genomes include larger cell size (Ohno 1970; Szarski 1970, 1983;
Olmo and Morescalchi 1975, 1978; Horner and Macgregor
1983; Walker et al. 1991; Gregory 2000, 2001, 2002a; Hardie
and Herbert 2003; Mueller et al. 2008; Roth and Walkowiak
2015), slower metabolic rate (Vinogradov 1995, 1997; Gregory
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2002a), and slower development rate (Goin et al. 1968;
Bachmann 1972; Bennett 1977; Oeldorf et al. 1978; Horner
and Macgregor 1983; Camper et al. 1993; White and McLaren
2000; Chipman et al. 2001; Roth and Walkowiak 2015; Liedtke
et al. 2018). Within amphibians, larger genome size and the
associated larger cell sizes (Horner and Macgregor 1983;
Roth et al. 1994; Gregory 2001; Mueller et al. 2008; Roth
and Walkowiak 2015) have been hypothesized to affect the
development of late-forming anatomical structures via two
potential mechanisms. Larger cells take longer to proliferate
(Shuter et al. 1983; Vinogradov 1999), which is thought to
contribute to slower embryonic development (Bachmann 1972;
Oeldorf et al. 1978; Horner and Macgregor 1983; Chipman
et al. 2001), larval development (Goin et al. 1968; Camper
et al. 1993), and limb regeneration (Sessions and Larson 1987)
in amphibians with larger genomes. This slowing of devel-
opment rate (neoteny) can lead to paedomorphosis, a form
of heterochrony (change in developmental timing) in which
organisms become sexually mature before all traits have reached
their adult phenotype (Wake 1966; Gould 1977; Alberch et al.
1979; McNamara 1986). However, it also possible that larger
cell sizes associated with large genomes constrain develop-
ment at small body sizes due to limits on cell number, as pro-
posed in salamanders (Wake 1991; Hanken and Wake 1993).
However, the relationship between larger genome size and
evolutionary lability of late-forming traits has limited empir-
ical support.

Most work focused on the association between genome size
and trait loss has occurred in salamanders, which have an ex-
treme range of genome sizes (from 10.1 pg in Gyrinophilus
porphyriticus to 120.6 pg in Necturus lewisi; Gregory 2018)
that are sometimes accompanied by toe and lung loss (Wake
2009). However, frogs and toads (anurans) provide an excel-
lent opportunity to test whether less extreme genome size
evolution could affect the development of late-forming struc-
tures. Genome size varies in anurans (from 0.95 pg in Limno-
dynastes ornatus to 19 pg in Arenophryne rotunda; Gregory
2002b) and is positively associated with length of embryonic
(Bachmann 1972; Oeldorf et al. 1978; Horner and Macgregor
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1983; Chipman et al. 2001) and larval (Goin et al. 1968;
Camper et al. 1993) development in the limited taxa studied
to date. Furthermore, Roth et al. (1994) and Roth and Wal-
kowiak (2015) found that anurans (and salamanders) with
larger genome size had lower complexity of late-forming brain
structures. Thus, genome size variation in anurans may alter
morphology, although the prevalence of such morphological
changes and the underlying developmental mechanisms re-
main unclear.

One late-forming structure that may be affected by genome
size evolution in anurans is the tympanic middle ear. The tym-
panic middle ear facilitates detection of airborne sounds and
is a key tetrapod adaptation for hearing on land (reviewed
in Manley 2010). Surprisingly, within anurans, the tym-
panic middle ear has been lost at least 38 times (Pereyra et al.
2016) despite reduction of high-frequency (above 1 kHz)
hearing sensitivity (Lombard and Straughan 1974; Womack
et al. 2017) and lack of clear environmental selection pres-
sures to explain tympanic middle ear loss (Jaslow et al. 1988).
Furthermore, some frogs that are earless (completely lack
all tympanic middle ear structures) or have reduced tympanic
middle ears, such as Bombina bombina and B. orientalis, also
have large genomes (Roth and Walkowiak 2015). Therefore,
we hypothesize that the loss of peripheral auditory structures
in anurans may result from larger genome sizes, which either
result in paedomorphic loss of the tympanic middle ear or
result in larger cell sizes that impose space constraints on
small-bodied anurans.

The tympanic middle ear forms quite late, making it vul-
nerable to genome size expansion and associated shifts in de-
velopment rate, such as paedomorphosis. Development of the
middle ear structures begins just prior to metamorphosis and
proceeds proximally to distally (Hetherington 1987; Voro-
byeva and Smirnov 1987; Smirnov 1991; Womack et al.
2018b). Middle ear structures are lost in a distal to proximal
fashion; hence, loss may reflect incomplete development
(Vorobyeva and Smirnov 1987; Smirnov 1991; Pereyra et al.
2016). Furthermore, the middle ear can take up to a year to
complete development (Sedra and Michael 1959), leaving it
vulnerable to processes that truncate development of late-
forming structures.

Ontogenetic data from a few species implicate various forms
of paedomorphosis (neoteny, progenesis, and postdisplace-
ment) as an explanation for tympanic middle ear loss. For
neoteny, development rate of the organism is slowed and
late-forming traits are truncated. If progenesis occurs, the
development rate does not change but development of the
animal ends early and late-forming traits are truncated. Post-
displacement entails the delayed onset of a specific trait’s
development and truncation of the trait’s development. Van
Eeden (1951) first hypothesized the truncated middle ear de-
velopment in the coastal tailed frog (Ascaphus truei) was a
case of neoteny. Vorobyeva and Smirnov (1987) compared
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middle ear development at sparse ontogenetic time points
among nine anuran species and attributed middle ear varia-
tion to truncated development (progenesis). Smirnov (1991)
compared tympanic middle ear development in 10 anuran
species and argued that three different paedomorphic mech-
anisms could explain middle ear variation in three families
(Microhylidae, progenesis; Bombina, neoteny; Bufonidae,
postdisplacement) based on lineage-specific differences in
developmental timing of cranial structures. However, none
of these studies explicitly tested for differences in develop-
ment rate among species to determine whether slower devel-
opment rate (neoteny) could explain middle ear loss. One
reason development rate has not been rigorously compared
between species that vary in middle ear presence/absence is
a lack of development rate data for earless species. However,
genome size, which is more easily measured and correlates
positively with length of embryonic (Horner and Macgregor
1983) and larval (Goin et al. 1968) development in the few
anurans species studied, may provide indirect evidence that
slower development promotes middle ear loss.

A non-mutually-exclusive mechanism by which genome
size could affect lability of late-forming structures is cell size
to body size ratios that constrain the space available for struc-
tures to form. Genome sizes are associated with larger cell
sizes in anurans (Olmo and Morescalchi 1978; Horner and
Macgregor 1983; Gregory 2001; Mueller et al. 2008; Roth
and Walkowiak 2015) as well as all other vertebrates (Ohno
1970; Szarski 1970, 1983; Olmo and Morescalchi 1975, 1978;
Walker et al. 1991; Gregory 2000, 2001, 2002a; Hardie and
Herbert 2003). Wake (1991) and Hanken and Wake (1993)
proposed that large cell sizes and small body sizes prevent
formation of late-developing peripheral digits in salaman-
ders. Furthermore, the large cells and small bodies of the sal-
amander Thorius appear to generate a developmental trade-
off between the eyes and the brain, resulting in deformation
and posterior placement of the brain (Hanken 1983; Wake
1991). The anuran middle ear emerges just before metamor-
phosis (Sedra and Michael 1959; Hetherington 1987; Voro-
byeva and Smirnov 1987; Horowitz et al. 2001; Womack
etal. 2018b), and size at metamorphosis varies widely among
species (from 5 mm in Dendrophryniscus minutus to 95 mm
in Rana catesbeiana; Collins 1979; Moreira and Lima 1991).
Thus, large cell sizes in combination with smaller size at meta-
morphosis may disrupt development of the late-forming pe-
ripheral auditory system of anurans.

Here we assessed the relationship among anuran genome
size, length of the larval period, and middle ear loss within
a phylogenetic context. We combined genome sizes measured
in this study with existing genome size and development rate
data to estimate the correlation between genome size and
length of the larval period while accounting for phylogenetic
relationships. We then used phylogenetic comparative analy-
ses to determine whether larger genome size is associated
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with middle ear loss by comparing genome size between
eared species, which develop a full columella (middle ear
bone), and earless species, which lack all tympanic middle
ear structures. We demonstrated a positive relationship be-
tween genome size and cell size among eared and earless
anurans and used phylogenetic comparative analyses to de-
termine whether earless species have smaller body sizes at
metamorphosis in comparison to eared species. Finally, we
discuss the lack of shared life-history or ecological traits
among the earless species in our study, demonstrating little
evidence for alternative explanations for tympanic middle
ear loss. Our results expand on previously observed relation-
ships among genome size, development rate, and cell size in
anurans and link genome size evolution with evolutionary la-
bility of the anuran tympanic middle ear.

Material and Methods

Animal Collection and Museum Specimens
Used for Feulgen Staining

In this study, we used Feulgen staining to image red blood
cells and estimate the genome sizes of fixed specimens, both
field caught and from museum collections. We captured four
anuran species (two earless species, two eared species, seven
total animals) from sites in Ecuador and Peru (see table Al
for details; tables A1-A3 are available online). We euthan-
ized live-caught animals with 20% topical benzocaine and
then decapitated the animals. The specimen’s bodies were
preserved in 70% ethanol. The Institutional Animal Care
and Use Committee at Colorado State University approved
all experiments (protocol 12-3484A), and the Ministerio del
Ambiente in Ecuador and the Servicio Forestal y de Fauna
Silvestre in Peru approved collection, research, and export
permits. We added another 18 species (six earless species,
12 eared species, 24 total specimens) by using formalin-fixed
specimens from the United States National Museum (see ta-
ble A2 for details). We classified species as earless if they
lacked all tympanic middle ear structures (columella, tym-
panic annulus, and tympanic membrane) according to Pereyra
et al. (2016), and we excluded species that had conflicting
reports with regard to presence/absence of the columella
(Telmatobius niger) or that had only been reported to have
a very small portion of the columella present (Bombina ori-
entalis and Bombina variegata), as these species could not
be clearly categorized as eared or earless.

Feulgen Staining for Estimation of Genome and Cell Size

We stained and quantified genome size using Feulgen stain-
ing of chromatin as described elsewhere (Hardie et al. 2002).
In brief, we extracted erythrocytes from preserved specimens
(both ethanol and formalin fixed, as described above). We

then air-dried the slides, fixed them in MFA (methanol to for-
malin to acetic acid, 85:10:5) for 24 h, rinsed them for 10 min
under running tap water, hydrolyzed them in 5.0 N HCI for
2 h, briefly rinsed them in 0.1 N HC], stained them for 2 h
in Schiff reagent, rinsed them three times for 5 min each in bi-
sulfite solution, and then rinsed them in tap water. After three
2-min rinses in distilled water, we air-dried the slides and
applied coverslips with Permount. We white balanced and
imaged slides and then calculated integrated densities of 2-
27 erythrocyte nuclei (mean, 13.05; SD, 7.65) as a measure of
genome size, and we measured the area of three red blood
cells per specimen using Fiji (Schindelin et al. 2012). We then
calculated an average integrated density and red blood cell size
for each specimen and averaged those values within species to
estimate genome size and red blood cell size for all species.

Statistical Analyses

We performed all data visualization and statistical analyses
for this study in R (R Core Team 2017). All data and associ-
ated references are available in the Dryad Digital Repository
(https://doi.org/10.5061/dryad.k02pq01; Womack et al. 2019).
Before testing for differences in genome size between eared
and earless species, we first verified the accuracy of the ge-
nome sizes we estimated with Feulgen staining by generat-
ing a standard curve. The standard curve included species’
averages of genome size for eight species within our Feulgen
staining study that also had previously published genome sizes
in the Animal Genome Size Database (Gregory 2018). We
found that our genome size estimates were tightly correlated
with previously reported genome sizes (R* = 0.925, F, 4 =
73.97, P < .001), indicating that our genome size estimates
were reliable. For downstream analyses, we used this standard
curve regression to convert each species’ average integrated
density recorded from Feulgen staining to a C value that was
comparable with averaged species genome sizes from the
Animal Genome Size Database as well as a recently published
study (Liedtke et al. 2018).

To test for an association between genome size and length
of the larval period, we ran a phylogenetic generalized least
squares (PGLS) analysis using the R packages nlme (Pinheiro
et al. 2017) and phytools (Revell 2012). We first trimmed a
recent phylogeny of amphibians (Pyron 20144, 2014b) to
the 90 species for which we had both genome size estimates
and records of minimum larval period. We chose minimum
larval period because larval period can be delayed due to
many environmental factors, including diet (Pfennig et al.
1991; Kupferberg et al. 1994) and temperature (Marian and
Pandian 1985; Alvarez and Nicieza 2002; Buchholz and Hayes
2002). We also removed four outlier species (Ascaphus truei,
Rana (= Lithobates) grylio, R. (= Glandirana) rugose, and
R. (=Lithobates) septentrionalis) from this analysis because
these species only had recorded larval periods that included



overwintering (300 days or greater). We first tested for phy-
logenetic signal in the regression residuals for genome size
and minimum larval period using the R package phytools
(Revell 2012) to assess whether accounting for phylogenetic
relationships in our analysis was appropriate (Revell 2010).
We found the residuals of minimum larval period and ge-
nome size had significant phylogenetic signal (K = 0.220,
P = .005), so we ran our PGLS analysis with development
rate (minimum larval period in days) as the dependent vari-
able and with genome size (average C value) as the indepen-
dent variable, and we estimated phylogenetic signal (A) in the
residual error simultaneously with the regression parameters
(Revell 2010). We ran an additional PGLS analysis with an
Ornstein-Uhlenbeck (OU) model, which assumes that the
trait is drawn toward a fitness optimum, but we report results
only from our better-fit, A-transformed model, as determined
by Akaike information criterion (AIC) comparison (Brown-
ian motion [BM] AIC 153.03 < OU AIC 163.28; table A3).

We performed another PGLS analysis to assess whether ge-
nome size (average C value) was associated with earlessness.
We again trimmed a recent phylogeny of amphibians (Pyron
2014a, 2014b) to 241 species with known genome size and
middle ear presence/absence. We tested for phylogenetic
signal in the regression residuals of genome size and middle
ear presence/absence and found significant phylogenetic
signal (K = 0.406, P < .001). Thus, we ran a PGLS analysis
to test for a relationship between genome size (average C
value) and middle ear presence/absence while simulta-
neously estimating phylogenetic signal (A) in the residual
error and the regression parameters (Revell 2010). We ran an
additional PGLS analysis assuming an OU model, but we report
results only from our better-fit, A-transformed model as de-
termined by AIC comparison (BM AIC 894.41 < OU AIC
1,003.26; table A3).

To determine whether the observed relationship between
genome size and tympanic middle ear loss was robust, we
performed two resampling tests. Our first resampling test de-
termined whether the differences between eared and earless
species seen in this study are robust to changes in earless sam-
pling. We ran 17 additional PGLS analyses testing the rela-
tionship between genome size (average C value) and middle
ear presence/absence while estimating phylogenetic signal
(A) in the residual error simultaneously with the regression
parameters (Revell 2010). Each PGLS analysis had one of
the 17 earless species removed from the data set. All of the
17 PGLS analyses found an association between larger ge-
nome sizes and middle ear absence when accounting for phy-
logenetic relationships (range of P values, .001-.038). For our
second resampling test, we addressed whether the observed
relationship between larger genome size and earless species
could be influenced by the phylogenetic distribution of ge-
nome sizes in eared species, such that smaller genome size
estimates for ancestral eared species inflated the observed re-
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lationship between earlessness and larger genome size. To test
this possibility, we randomized genome sizes among only the
eared species in our data set to generate 1,000 unique ran-
domized eared species genome size data sets (not modifying
genome sizes of earless species from their original values). We
then performed 1,000 PGLS analyses with these randomized
eared species genome size data sets, simultaneously estimat-
ing the regression parameters and phylogenetic signal (A)
in the residual error (Revell 2010), and found that 100% of
the 1,000 PGLS analyses reported a significant association be-
tween larger genome sizes and middle ear absence when ac-
counting for phylogenetic relationships. This demonstrates
that the association between larger genome sizes and tym-
panic middle ear absence are robust to changes in the phy-
logenetic distribution of the eared species’ genome sizes.

Finally, we estimated the relationship between genome
size and cell size and tested whether earless species metamor-
phosed at smaller body sizes than eared species. We used a
linear regression (not PGLS) to estimate the relationship be-
tween genome size and red blood cell size because the regres-
sion residuals of genome size and cell size showed no phylo-
genetic signal (K = 0.402, P = .201). Next, we performed
PGLS analyses to test for differences between eared and
earless species in body size at metamorphosis (minimum
and maximum). We ran all downstream tests using minimum
recorded body size at metamorphosis and a second identical
set of tests that used maximum recorded body size at meta-
morphosis, and we report the results for both. We trimmed
an amphibian phylogeny (Pyron 2014a, 2014b) to the species
for which we had records of body size at metamorphosis (both
minimum and maximum in millimeters) and middle ear
presence/absence. We tested whether the earless species had
smaller minimum and maximum body sizes at metamorpho-
sis compared with eared species using PGLS analyses because
the regression residuals of the log metamorph body size and
middle ear presence/absence showed significant phylogenetic
signal (minimum metamorph size: K = 0.466, P < .001;
maximum metamorph size: K = 0.341, P < .001). We used
the log of metamorph body size in all PGLS analyses, and again
we estimated phylogenetic signal (A) in the residual error simul-
taneously with the regression parameters (Revell 2010). We ran
additional PGLS analyses assuming an OU model, but we re-
port results only from our better-fitting, A-transformed models
as determined by AIC comparison (minimum metamorph
size: BM AIC 86.99 < OU AIC 133.66; maximum metamorph
size: BM AIC 138.02 < OC AIC 160.09; table A3).

Results

Relationship between Genome Size
and Length of Larval Period

Both genome size and minimum larval period varied widely
among 90 anuran species included in this study (fig. 1).
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Genome sizes ranged from a C value of 0.95 in Platyplectrum
ornatum to 11.38 in Bombina bombina. Minimum reported
larval period ranged from 7 days in Scaphiopus couchii and
Bufo (= Rhinella) granulosus to 150 days in Limnodynastes
dumerilii. Genome size and minimum larval period had a
positive relationship when accounting for phylogenetic rela-
tionships (F, ¢ = 19.6, P < .001; fig. 1; table A3). Although
species with larger genomes tended to have longer minimal
larval periods, a small number of species with small genomes
had longlarval periods, such as Limnodynastes tasmaniensis,
which had a C value of 2.4 and a minimum recorded larval
period of 122 days (fig. 1).

Differences in Genome Size between Eared
and Earless Anuran Species

Genome sizes of the 224 eared species ranged from a C value
of 1.09 in Petropedetes cameronensis to 11.36 in Rana tien-
taiensis, and those of the 17 earless species ranged from a
C value of 1.81 in Sooglossus sechellensis to 11.38 in Bombina
bombina (fig. 2). Although eared and earless species over-
lapped in genome size, the genomes of earless species were
larger on average than the genomes of eared species when ac-
counting for phylogenetic relationships (F, 59 = 7.6, P =
.006; table A3; fig. 2).

Genome Size, Cell Size, and Body Size at Metamorphosis

We found a positive relationship between genome size and
average red blood cell size for 30 anuran species (F,,s =
24.8, P < .001; table A3; fig. 3). Next, we compared both min-
imum and maximum recorded metamorph body size between
six earless (Ascaphus truei, Bombina bombina, Capensibufo
rosei, Dendrophryniscus minutus, Pseudophryne bibronii,
and Rhinophrynus dorsalis) and 76 eared species. Body size
at metamorphosis ranged 3.1 to 95 mm in eared species
and from 5 to 41 mm in earless species (fig. 4). For minimum
recorded body size at metamorphosis, earless species had
smaller metamorph body sizes than eared species (F, 4 =
5.3, P = .023; table A3; fig. 4). However, maximum size at
metamorphosis for earless species trended smaller but did
not differ from eared species maximum size at metamorpho-
sis (F. &, = 3.3, P = .072; table A3).

Discussion

Our results link genome size evolution with the loss of a late-
forming sensory structure in anurans, showing that genome
size evolution may have sensory consequences in anurans.
We demonstrated a positive relationship between the length
of the larval period and genome size within anurans, pro-
viding a comprehensive test of the link between genome size
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and development rate while accounting for phylogenetic
relationships. We also provide evidence that larger genome
sizes may influence tympanic middle ear loss by two non-
mutually-exclusive mechanisms: heterochrony or compara-
tively larger cell sizes and small body sizes during key stages
of tympanic middle ear development.

Does Genome Size Limit Development Rate?

We found that species with larger genome sizes had slower
development rates (longer larval periods), similar to previous
studies in fewer anuran taxa (Goin et al. 1968; Camper et al.
1993); however, the relationship between genome size and
development rate in amphibians is more complex than a lin-
ear relationship. Our data suggest that genome size sets a lower
limit on the length of the larger period, such that a species
with a larger genome cannot develop as fast as a species with
a smaller genome; however, species with small genomes may
still develop relatively slowly (Limnodynastes tasmaniensis:
C value of 2.4, minimum larval period of 122 days; Richter-
Boix et al. 2011; Gregory 2018). The result that genome size
does not accurately predict development rate but instead
limits how fast development can proceed was also found by
Oeldorf et al. (1978) when they tested the relationship be-
tween genome size and duration of embryonic anuran devel-
opment. Thus, the negative relationship between genome size
and development rate remains evident at both embryonic and
larval development stages and remains strong with the in-
creased sample size and anuran diversity tested here. Envi-
ronmental factors, including prey availability (Pfennig et al.
1991; Kupferberg et al. 1994) and temperature (Marian and
Pandian 1985; Alvarez and Nicieza 2002; Buchholz and
Hayes 2002), could also contribute to the nonlinear relation-
ship between genome size and development rate that we ob-
served. To accomplish a broad phylogenetic comparison, we
wanted to compare the fastest larval development that been
observed among species. But experimental and comparative
studies that control for other factors known to affect develop-
ment rate (temperature, diet, density, etc.) may better deter-
mine how much genome size contributes to the variation
length of larval development among anuran species.

Support for Heterochrony Affecting Tympanic
Middle Ear Loss

The differences in genome size between closely related
eared and earless species give indirect evidence that hetero-
chrony—specifically neoteny—could be involved in con-
vergent loss of anuran tympanic middle ears. Since genome
size shows a positive relationship with minimum larval pe-
riod, species with larger genomes are less likely to develop
as fast as species with smaller genomes. The slowing of de-
velopment rate (neoteny) in earless species could lead to
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paedomorphosis and tympanic middle ear loss alone or in
combination with postdisplacement, another form of pae-
domorphosis that would postpone tympanic middle ear de-
velopment (relative to other traits), making it particularly
vulnerable to paedomorphic loss. For example, the true
toad family (Bufonidae) has the largest number of middle
ear loss events and may be particularly susceptible to tym-
panic middle ear loss when development rate is slowed,
since bufonids already have prolonged middle ear develop-
ment in comparison to other anuran species (Sedra and Mi-
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chael 1959; Hetherington 1987; Womack et al. 2018b). Fur-
thermore, although neoteny does not preclude truncated
juvenile development (progenesis), comparative analyses
of skulls did not find evidence that the columella is often
lost with other late-forming traits (Womack et al. 2018a),
as would be expected if progenesis were involved. More
studies investigating the development of closely related
eared and earless species across ear loss events will allow
us to determine whether genome size and heterochrony
are mediating earlessness via similar or disparate mecha-
nisms among earless lineages.

Support for Cell Size to Metamorph Body Size Ratio
Affecting Tympanic Middle Ear Loss

This study is the first phylogenetically informed test of
whether small body sizes in combination with large cell sizes
constrain structure development in anurans. We found that
larger genome size (and associated larger cell sizes) are as-
sociated with middle ear loss, and we also find that earless
species have smaller minimum body sizes at metamorphosis
(when the middle ear begins to form). These findings are
consistent with the hypothesis that larger cell sizes and
smaller body size at metamorphosis could contribute to mid-
dle ear loss in anurans. Although the effects of larger cell size
and small body size have mostly been discussed in relation
to late-developing traits in salamanders (Hanken 1983; Wake
1991; Hanken and Wake 1993), we cannot rule out the possi-
bility that large cell size and small body size similarly affect
tympanic middle ear development in anurans. However, the
maximum body sizes recorded for earless species at metamor-
phosis only trend smaller than the maximum recorded body
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Figure 4: Earless species (blue) have smaller minimum and maximum body sizes at metamorphosis than species that have a full middle ear
bone (orange). A, Boxplot showing that earless species have smaller minimum body size at metamorphosis than eared species. B, Scatterplots
showing the relationship between genome size and size at metamorphosis for eared (orange) and earless (blue) species.
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size for eared metamorphs, introducing the possibility that
earless species may not be constrained to metamorph body
sizes that differ from eared species. Data on size at metamor-
phosis (when the middle ear starts to form) exist for only six
earless species, limiting our ability to generalize our findings
across the many additional species with tympanic middle
ear loss. However, size at metamorphosis is positively corre-
lated with adult body size among anuran species (Werner
1986), and earless anuran species tend to have small adult
body sizes (Hetherington 1992; M. C. Womack, unpublished
data), suggesting that small body size at metamorphosis in
earless species may be a more widespread association. Our
work constitutes the first phylogenetic comparison that sup-
ports a possible association among increased cell size, small
body size, and loss of a late-forming amphibian structure.

Other Potential Ecological and Developmental
Contributors to Tympanic Middle Ear Loss

Earless species lack shared environmental, life-history, or
ecological traits, providing little evidence for alternative hy-
potheses to explain the repeated evolutionary loss of the an-
uran tympanic middle ear. In addition to a broad range in
development rate, anurans show striking variation in devel-
opment mode. Although most anurans undergo larval devel-
opment where embryos hatch from an egg and then have a
free-swimming tadpole stage, some species undergo direct
development, in which development from embryo to froglet
is completed with the egg, and other species are viviparous,
such that eggs are retained inside the female until they develop
into froglets. Although we analyzed only size at metamor-
phosis and development rate for earless larval species in this
study, earless species with known genome sizes in our study
include three direct-developing species and a single vivipa-
rous species (development mode data from Oliveira et al.
2017). Thus, tympanic middle ear loss occurs within species
of all development modes. Furthermore, a recent study found
no relationship between genome size and direct development
(Liedtke et al. 2018), indicating that development mode is not
a confounding variable in our analysis of the relationship be-
tween genome size and tympanic middle ear loss. Whether
earless direct-developing species have smaller body sizes at
hatching compared with eared direct-developing species re-
mains to be tested.

We also lack obvious evidence for ecological or environ-
mental selection pressures contributing to earlessness. The
earless species within this study inhabit a variety of micro-
habitats (including aquatic, burrowing, terrestrial, and tor-
rential; Moen and Wiens 2017) and are geographically wide-
spread (AmphibiaWeb 2019). Additionally, although a few
earless species lack voice boxes (e.g., Leiopelma archeyi and
L. hochstetteri [Trewavas 1932]), many earless species call
(Rhinophrynus dorsalis [Porter 1962], Hemisus marmoratus

[Passmore and Carruthers 1995], Nasikabatrachus sahya-
drensis [Thomas et al. 2014], Nimbaphrynoides occidentalis
[Sandberger et al. 2010], Osornophryne guacamayo [Glue-
senkamp and Acosta 2001], Sooglossus sechellensis [Nuss-
baum et al. 1982]). Furthermore, calls of earless species of-
ten have dominant frequencies above 1 kHz (e.g., Hemisus
marmoratus, 3.5-4.2 kHz [Passmore and Carruthers 1995];
Nasikabatrachus sahyadrensis, 1.2-1.3 kHz [Thomas et al.
2014]; Nimbaphrynoides occidentalis, 3.1 kHz [mean fre-
quency; Sandberger et al. 2010]; Osornophryne guacamayo,
3.2 kHz [Gluesenkamp and Acosta 2001]; Sooglossus sechel-
lensis, 2.7 kHz [Nussbaum et al. 1982]), in the frequency
range where earlessness is associated with hearing deficits
(Womack et al. 2017). Thus, little evidence implicates shared
selection pressures related to the ecology of earless species
in the repeated loss of the anuran tympanic middle ear;
however, these alternative hypotheses remain to be tested
at a broader phylogenetic scale.

Concluding Remarks

This study highlights potential developmental and morpho-
logical consequences of genome size evolution in anurans.
Here we estimated the genome size of 22 anuran species
and provide the largest comparative study of genome size
in relation to a trait loss. Our findings support the positive re-
lationship among genome size, larval period length, and cell
size within Anura while accounting for phylogenetic relation-
ships. We also show that earless species tend to have larger
genomes than their eared relatives, implicating slowed devel-
opment and/or cell size constraints during metamorphosis in
convergent tympanic middle ear loss in anurans.
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